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Preface

This book is a result of the painful experience of learning from scratch with little
reference material directly dealing in a collective manner with the application of
radar processing principles to automotive applications. Radar processing as a topic
is well matured and has been around for decades. The main focus has been on
military applications such as missile tracking and navigation. However, the arrival
of non-traditional applications in the form of advanced driver assistance systems
exposed the inadequacy of volumes of material already available on the topic.
Therefore, a holistic approach starting from the basics to detailed aspects is nec-
essary. Consequently, this book is meant to be the groundbreaker for such an
approach providing the big picture to the interested reader on full range of radar
principles required for the autonomous driving applications.

The subject of this book is theory, principles, and methods used in radar algo-
rithm development with a special focus on automotive radar signal processing. In
the automotive industry, autonomous driving is currently a hot topic that has led to
numerous applications for both safety and driving comfort. It is estimated that full
autonomous driving will be realized in the next twenty to thirty years and one of the
enabling technologies is radar sensing. However, there are very few books in the
market covering essential tools and methods necessary for the successful imple-
mentation of the processing algorithms. There is also no single self-contained text
describing the full depth and breadth of the required foundation for building these
applications making it necessary for both professionals and newcomers to gather
information from multiple texts scattered in the literature. Our main intention in this
book is to address the problem by presenting both detection and tracking topics
specifically for automotive radar processing. It is meant to be a one-stop solution to
the abovementioned problem.

The content given in this book is a result of several years of research and
development experience in the automotive industry. Based on this experience, this
book provides illustrations, figures, and tables for the reader to quickly grasp the
concepts and start working practical solutions. A complete and comprehensive
coverage of all the essential methods and tools required to successfully implement
and evaluate automotive radar processing algorithms is presented. In addition,

vii



instructive references are given as a bridge to connect to the vast ideas that have
been studied in the past. From the ideas, deep insights can be gained for tailoring
particular methods to the autonomous driving applications. The chapters are
organized as follows:

Chapter 1 Fundamentals of Radar Systems. This chapter presents the basics of
radar systems. It also describes the importance of antennas to radar systems. In
addition, it gives an overview of current automotive applications where radar
systems are increasingly being incorporated. Automotive radar processing will be
the main focus of this book.

Chapter 2 The Radar Equation. This chapter introduces the radar equation
which is essential for understanding the effects of propagation on the transmitted
radar signal. It outlines the effect of propagation losses on the maximum detectable
range. This is illustrated by an example with typical automotive radar parameters.

Chapter 3 Signal Processing for Radar Systems. This chapter introduces key
ideas behind signal processing of received radar signal. It deals with Fourier
transforms and their applications to radar signal processing. It also gives a wide
coverage of window functions that are typically used in processing radar signals.
Extension of these concepts to two-dimensional processing is concisely presented.

Chapter 4 Radar Waveforms and Their Mathematical Models. This chapter
deals with various radar waveforms derived from the frequencies that are used in
target detection and localization. Waveform design is a critical part of automotive
radar development. Depending on target range, velocity, and angle, the waveform
can be chosen carefully to meet the requirements. Among the waveforms, FMCW
and fast chirp ramp sequence are explained with illustrations. The essential math-
ematical relations that affect radar performance are given. The effects of parameter
selection are also considered.

Chapter 5 Radar Target Detection. Target detection is one of the very first
operations that has to be performed on received radar signal. The purpose of
detection is normally to distinguish genuine target reflection from noise and clutter.
This chapter discusses the main concepts and methods used for radar detection,
especially with reference to Sterling target models. Topics related to constant
false alarm rate detections are explained to give an insight to both new seasoned
readers.

Chapter 6 Direction of Arrival (DOA) Estimation. DOA estimation forms the
third component of the radar cube: range, velocity, and angle. In practice, DOA
estimation is often complicated by the fact that there will be a multiple and
unknown number of source signals impinging on the receiver array at the same
time, with unknown amplitudes. This chapter gives a detailed presentation of DOA
methods. The aim of this chapter is to give some of the actively and continuously
researched methods in DOA estimation that are a key part of automotive radar
algorithms. The strengths and the limitations of the most popular methods are given
to allow informed decision of the best choice for a given target application.

Chapter 7 Target Filtering and Tracking. Based on range, velocity, and DOA,
target tracking is a key part of automotive radar processing. Filtering enables the
radar system to capture the targets’ motion dynamics in real time. This chapter
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introduces the key methods based on conventional Kalman filtering. Additionally,
advanced recent approaches based on Bayesian theory are introduced. The idea is to
give a good understanding of the tracking approaches and also indicate some of the
points that present challenges in practical applications. Finally, we also touch on
data association which cannot be avoided for multi-target processing.

Chapter 8 Target Recognition and Classification Techniques. This chapter
introduces a hot topic in automotive radar processing. Recognition and classifica-
tion are normally associated with image processing but the use of these techniques
radar processing is increasing. This trend is driven by regulatory requirements
which are making it necessary to distinguish objects in the driving environment.
The demand for recognition techniques is even more important in the autonomous
driving setting since human control has to be eventually eliminated. In this chapter,
we cover machine learning concepts and also touch on deep learning algorithms,
providing examples to drive the point home.

Chapter 9 Automotive Radar Applications. This chapter gives some of the key
applications categorizing them into short-range radar (SRR) and long-range radar
(LRR) areas. Radar requirements are given along to illustrate the challenges
involved in the radar systems. This chapter ends with future directions although I
should say that the changes in this field are so rapid that prediction is a risky
business.

I hope that the material presented in this book will be valuable to all readers,
both new and already working on the next-generation autonomous driving algo-
rithms. The degree of success of this book can be judged by the level of reduction
of the pain required to start building and evaluating radar processing algorithms for
future vehicles.

I hope that this new perspective that I have attempted to elaborate will find
reverberations in the automotive industry.

Tsukuba, Japan Jonah Gamba
2019
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Chapter 1
Fundamentals of Radar Systems

1.1 Introduction

Radar is a device that employs electromagnetic waves to determine the existence and
location of objects by relying on the strength of received reflected waves. The term
radar is an acronym for radio detection and ranging [1, 2].

On the electromagnetic spectrum, depending on the target application, radar
stretches from the high-frequency (HF) band of 3–30 MHz for over-the-horizon
(OTH) radar to mm (millimeter) band of 40–300 GHz for automotive, autonomous
vehicle navigation, high-resolutionmeteorological observation, and imaging, among
other applications [3]. Current automotive radars employ frequencies in the
24–100 GHz range, but the tendency to move frequencies above 100 GHz frequency
is an active research and development topic. It is worth noting that at higher frequen-
cies, signal attenuation increases, thereby limiting the detection range. According
to [2, 4], attenuation by due to water vapor has maxima at 22.24 GHz and at about
184 GHz, while attenuation due to oxygen molecules peaks at 60 and 118 GHz. For
oxygen molecules, the attenuation attains a value greater than 10 dB/km at 60 GHz,
while for water vapor it approaches 1 dB/km at 60 GHz. Below 1 GHz, the effect of
atmospheric attenuation can be considered negligible, and important above 10 GHz.
Figure 1.1 illustrates the position of radar applications on the electromagnetic spec-
trum.

1.2 Essential Functions of Radar

The key functions of the radar are to detect, locate, and in most cases, track objects of
interest. In automotive applications, the objects of interests are vehicles, pedestrians,
bicycles, motorcycles, etc., including obstacles that are found on or along roads.
In most recent cases under research, the radar is also tasked with recognition and
classification of these objects [5–8].

© Springer Nature Singapore Pte Ltd. 2020
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2 1 Fundamentals of Radar Systems

Fig. 1.1 Illustration of the position of radar signals on the electromagnetic spectrum. Radar spreads
from 3 to 300 MHz in the radio spectrum

1.3 Radar System Fundamentals

Generally, radar systems consist of three major subsystems: the transmitter, the
receiver, and signal processing subsystems as shown in Fig. 1.2. The antenna serves
as the electromagnetic interface to the outside.

The transmitter subsystem functions as the source of the signal. The ranging capa-
bilities of the radar are mainly determined by the transmitter design. Therefore, the
power generated and the associated costs of the transmitter are important character-

Fig. 1.2 Components of a simplified radar system



1.3 Radar System Fundamentals 3

istics to consider. Moreover, for all radar applications, the power that is radiated by
the antenna is regulated which further places constraints on the transmitter design.
As will be shown in the following sections, the detectable maximum range is propor-
tional to the fourth root of the transmitted power. This means that, in order to double
the detectable range, the power must be increased by sixteen times, i.e., by 24. The
transmitter ismade of thewaveform generator, the up converter, and the power ampli-
fier. The various waveforms that are used in radar systems will be discussed in the
following chapters.

The receiver subsystem functions as the receiver of the usually known reflected
signal. Due to the presence of clutter and other unwanted signals, the receiver should
ideally maximize the signal-to-noise ratio (SNR) of the desired signal by rejecting or
suppressing unwanted signals. Themain components of the receiver are the low-noise
amplifier (LNA), and the down converter.

The function of the signal processing subsystem applies various algorithms on the
received signal to extract useful information that can be used to determine the object
position, for tracking and object identification. Since most radar systems operate in
the presence of clutter and noise, powerful signal processing techniques are a neces-
sity. On the other hand, due to limitation of hardware resources, installation space,
and other constraints, there is a limit to the complexity of the algorithms that can be
implemented, especially for real-time automotive and navigation applications.

1.4 Antennas for Radar Measurements

As outlined in Sect. 1.3, in order to transmit and receive EM signals, radar requires an
antenna. There are various types of antennas that are used in automotive radars. These
include planar, waveguide, lens, and reflector antennas [9, 10]. The planar antennas
are gaining widespread use due to their low cost and simpler mounting requirements.
The scanningmechanism can either be mechanical or electronic although the general
trend is to utilize electronic scanning. Electronic scanning eliminates moving parts
which could be problematic when it comes to maintenance.

1.5 Antenna Arrays Basics

Array processing is concerned with processing of signals acquired from antenna
arrays. An antenna array is a set of multiple antennas from which the signals are
combined or processed in order to achieve improved performance when compared
to an individual antenna. The main purpose of antenna array is to increase signal
strength, increase the directivity, reduce sidelobe power, increase signal-to-noise
ratio (SNR), maximize signal-to-noise-plus-interference ratio (SNIR), and increase
antenna gain [11].



4 1 Fundamentals of Radar Systems

The main task of the antenna designer is to minimize losses, reduce size, and
reduce the cost of array antenna. Common array configurations include linear arrays,
planar arrays rectangular arrays, and circular arrays, among other arrays. To under-
stand the basic operations of the antenna, we derive some relations for the simplest
and most common antenna configuration, which is the linear array.

Linear Antenna Arrays
Consider a linear antenna array ofN spatially separated antenna elements, whereN is
an integer greater than or equal to two. The performance of an antenna array increases
with the number of antenna elements in the array at the expense of increased size,
complexity, and cost. However, recent advances in antenna design and processing
methods such as virtual array techniques are promising low-cost antennas at reduced
size and complexity.

In the application of antennas arrays, array directivity, array steering, and array
beamwidth are of great interest and play an important role in determining the expected
behavior of the antenna.We use the uniform linear array antenna as an example to get
a better understanding of these characteristics in relationship to the antenna geometry.
The uniform linear array consists of uniformly spaced antenna elements. The uniform
linear array is chosen because of its wide use and its simplicity.

The radiation properties of the array can be explored from the array factor. The
array factor of linear array with equally spacedN isotropic radiating elements placed
along horizontal axis x as a function of the angles θ and φ in a spherical coordinate
system shown in Fig. 1.3 can be expressed by following equation

AFLIN(θ,φ) =
N∑

n=1

Ine
j(δn+kdn∗sin θ) (1.1)

Fig. 1.3 Illustration of a
five-element uniform linear
array antenna along the
x-axis
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where In and δn (n = 1, 2 … N) are the amplitude and phase excitation of nth array
element, d = distance between two adjacent elements, and wave number k = 2π

λ
, (λ

= wavelength).
Values In and δn are determined by specific design of beam forming network.

Typically, the array factor is expressed by an absolute value Eq. (1.1) normalized to
its maximum and is plotted in dB scale.

For the uniform amplitude and equal phase distributions (In = I and δn= δ, n =
1, 2 … N), normalized array factor is given by

|AFLIN(θ,φ)| = 1

N

∣∣∣∣∣
sin

(
N ∗ kd ∗ sin θ

2

)

sin
(
kd ∗ sin θ

2

)
∣∣∣∣∣. (1.2)

It is seen that the linear array factor (1.2) is independent of φ values, and since it
is of the form f (x) = sin(Nx)/(N ∗ sin(x)), it has a maximum equal to 1 for the
angle direction θ = 0. It follows that array factor before normalization (i.e., before
division by N) has a maximum value ofN. As can be seen, the function (1.2) also has
maximum value for the following angle directions (grating lobe angle directions)

θr = ± sin−1
(
λ ∗ r

d

)
, r = 1, 2, . . . (1.3)

The array factor, AF, can be considered as the spatial analog of a low-pass finite-
impulse response averaging filter in discrete-time digital signal processing. It may
also be viewed as a window-based narrow-beam design using a rectangular window.

If the distance between the adjacent elements is equal or less than the wavelength
λ, linear antenna array has only one beam peak within the visible observation angle
region (−90◦ to 90◦). When d > λ, the unwanted beam peak (grating lobe) occurs
in the real angle range of (−90◦ to 90◦). Therefore, observation angle range dictates
the value of the maximum element spacing to avoid the occurrence of the grating
lobe. For example, if the observation angle occurs in the range −30◦ and 30◦, array
element spacing can be chosen as 2λ. As it follows from Eq. (1.2), the value of the
maximum sidelobe (with respect to the main beam peak) for the array with uniform
amplitude distribution is about −13.1 dB, and the angle direction of this lobe can be
estimated from the following expression

θmaxlobe = ± sin−1

(
3λ ∗ 1

2Nd

)
. (1.4)

As can be seen fromFigs. 1.4 , 1.5 , 1.6, and 1.7, one-wavelength spacing generates
grating lobes with an magnitude that is equal to the main lobe value. Values for the
maximum sidelobes are around −13 dB which follows from the expression (1.2).
The beamwidth of the main lobe between two adjacent nulls is about

�θ ∼= 2λ

Nd
. (1.5)
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Fig. 1.4 Array factor for a two-element array, with array spacing d = λ/2

Fig. 1.5 Array factor for four-element array, with element spacing of d = λ/2. The increase in
directivity is evident, but unwanted sidelobes on either side of the main beam arise
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Fig. 1.6 Array factor for a two-element array with an element spacing of d = λ

Fig. 1.7 Array factor for a four-element array with an element spacing of d = λ
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The directivity of the broadside linear array factor toward the normal to the array
with uniform amplitude and phase distribution is given by [12]

DLIN = N 2

N + 2
∑N−1

n=1 (N − n) ∗ sinc(nkd)
, (1.6)

where sinc(x) = sin(x)/x is the cardinal function. From Eq. (1.6), it can be shown
that the directivity increases as the number of antenna elements increases but drops
when grating lobes are present.

Example Given an 11-element antenna with a spacing of 2.5λ, then the main lobe
beamwidth can be estimated as

�θ ∼= 2λ

Nd
= 2 ∗ λ

11 ∗ 2.5λ
= 0.0727[rad] = 4.17

[
deg

]
.

Consider a linear array of two antenna elements of spacing d meters as shown
in Fig. 1.8. From basic mathematics, the phase difference between the two antennas
is a result of the distance x. We can express this distance as x = d sin(θ) and the
corresponding time difference of arrival as�t . Then, we can express the radian phase
difference �φ between antennas 1 and 2 two as

�φ = ω ∗ �t = ω ∗ x

c
= ω ∗ d ∗ sin(θ)

c
, (1.7)

where c is the speed of light (electromagnetic waves) and ω is the angular velocity.
The above expression (1.7) can be simplified to

�φ = 2π f ∗ d ∗ sin(θ)

f λ
= 2π d∗ sin(θ)

λ
= 2πd

λ
sin(θ). (1.8)

The factor k0 = 2πd
λ

is sometimes referred to as the wave number. The above
two antenna concept can be extended to N-element linear array antenna so that the
expression becomes

Fig. 1.8 Two-element linear
array example



1.5 Antenna Arrays Basics 9

�φ = 2π(N − 1)d

λ
sin(θ). (1.9)

Theoretically, the value of d is conveniently set to λ
2 as this avoids grating lobes

in the antenna’s field of view (FOV). Therefore, with d = λ
2 , the phase difference at

the n-th antenna with reference to the antenna 1 is given by

�φ = 2π(n − 1) ∗ λ/2

λ
sin(θ) = π(n − 1) sin(θ). (1.10)

For the general case where d = kλ, and k is constant, the phase difference is
given by

�φ = 2π(n − 1)∗kλ
λ

sin(θ) = 2kπ(n − 1) sin(θ). (1.11)

It follows that the phase difference is a function of the direction of arrival for a
given array configuration.

Examples (1) Phase difference for n = 2 and d = λ
2 is shown in Fig. 1.9.

(2) Phase difference for n = 2 and d = λ
4 is shown in Fig. 1.10.

(3) Phase difference for n = 2 and d = λ is shown in Fig. 1.11.

In practice, phasemeasurements are restricted to the range [−π ,π ]. This is due the
fact phase angles which are shifted by multiples of±2π outside the interval [−π , π ]
cannot be distinguished from angles within the interval [−π , π ]. Specifically, angles

Fig. 1.9 Phase change for n = 2 and d = λ
4 for θ in the range [−90, 90] degrees



10 1 Fundamentals of Radar Systems

Fig. 1.10 Phase change for n = 2 and d = 0.25λ for θ in the range [−90, 90] degrees

Fig. 1.11 Phase change for n = 2 and d = λ for θ in the range [−90, 90] degrees
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in |�φ| ≤ π | are indistinguishable from those in the interval �φ ± (2m + 1)π,

where m is a nonzero integer. This is referred to as phase wrapping. For the n-array
antenna, the so-called phase-wrap angle can be computed as

2kπ(n − 1) sin(θ) = π (1.12)

sin(θ) = 1

2k(n − 1)
(1.13)

θ = sin−1

(
1

2k(n − 1)

)
(1.14)

Theoretically, one approach to bring the phase into the desired range can be
accomplished by addition of or subtraction of 2π , depending on the measured angle.
When the measured angle is less than −π , add 2π to bring the angle into the [−π ,
π ] range. On the other hand, when the measured angle is greater than +π , subtract
2π , so the angle falls into the [−π , π ] range.

For automotive radar, phase estimation is important in the measurement of direc-
tion of arrival, which will be explained in detail in Chap. 6.

If the target lies in the [−π , π ] interval, then correct detection is possible, but
if phase wrapping occurs, false detection of target happens. One solution to this
problem is sensor fusion, in which case false angles can be eliminated by comparison
of corresponding range obtained for target position based on either the image sensor
or LIDAR.

1.6 An Outline of Automotive Radar Applications

With the rapid drive toward driverless or autonomous driving, the number of auto-
motive applications is ever increasing, with focus on safety and comfort. Signal
processing can be handily used in many of these applications. Besides radar, other
sensors such as the ultrasonic sensor, camera, LIDAR, and GPS can be used to gener-
ate the input signals to the signal to processor in a sensor fusion setup. Audio, image,
and array processing algorithms can be applied to the acquired signals in order to
extract information for automatic control of vehicle dynamics or alert the driver
of impending dangers around the vehicle. We will mostly give examples related to
active safety as it is directly related to recent advances in driving technology such as
driverless or autonomous driving.

Automotive radar applications can be classified by the level autonomy [13, 14].
Here, we briefly describe current and future applications based on this classification.
The Society of Automotive Engineers (SAE) [13] defines six levels of automation
that are seen as the best way to advance autonomous technology.

https://doi.org/10.1007/978-981-13-9193-4_6
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Level 0 (NoAutomation): Humandriver in control all the time. Thatmeans the driver
performs steering, braking, and acceleration. There are no systems that automatically
assist except for some warnings.
Level 1 (Driver Assistance): Collision mitigation braking that automatically brakes
if a collision is imminent is possible. However, the driver is still in control of most
of functions.
Level 2 (Partial Automation): Automatic acceleration/deceleration, braking, and
steering assistance. It is at this level that somemeaningful level of automation begins.
However, the driver is required to continuously monitor the vehicle and the traffic
during the all the time. Additionally, the drivermust be in a position to resume control
of the vehicle immediately if necessary.
Level 3 (Conditional Automation): The driving system executes steering and accel-
eration/deceleration operation including monitoring of the driving environment. At
this level, the burden on the driver is reduced so that continuous monitoring is no
longer necessary. However, the driver must be able to take control when requested
to do so by the system.
Level 4 (High Automation): Extends the autonomous capabilities to be able to han-
dle all driving responsibilities is specific scenarios, even if a human driver fails to
respond appropriately to request for intervention. These scenarios are derived from
the type of road, the vehicle speed, and the environmental conditions.
Level 5 (Full Automation): Levels 1–4 apply to some driving modes, but Level 5
takes full control of the vehicle for all driving modes. A human driver is not required.
The vehicle is capable of completely and independently performing the driving task
on all types of roads, at all speeds and under all environmental conditions. This level
of autonomy is still under research and development and could take some time to
achieve. However, great progress has been made up to Level 4 which brings Level 5
within reachable range.

For each level of autonomy, a radar system with desired characteristics to achieve
the expected performance is required. For driver assistance systems at Level 1, the
radar sensor mainly performs the task of distance calculation, while the radar acts as
integral part of sensors needed to replace the driver at Level 5 automation.

1.7 Challenges for Automotive Radar Developers

Development of the automotive radar sensor faces many challenges from both hard-
ware and software aspects. The software component is dominated by signal process-
ing. Without efficient signal processing algorithms, the utility of the radar sensors
becomes very limited.

Starting with hardware aspects, size and weight are key factors that determine
whether OEMs will accept the radar sensor as an option for the vehicle model under
consideration. Currently, it is not mandatory to incorporate the radar sensors into
vehicles and therefore minimization of sensor cost and vehicle integration effort
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are of paramount importance. One of the known and most cited advantages of radar
over other sensors is the ability to install it behind thebumper fascia. Immediately, size
becomes constrained. The beauty of having the sensor behind the bumper fascia is that
vehicle aesthetics are not affected by the addition of a safety-related sensor. Although
radar sensing obviously enhances safety, it is desirable that it should not change the
appearance of the vehicle as this would require extra effort in the design of the vehicle
body. Therefore, the radar sensor must fit into the limited space behind the bumper.
For passenger cars, the width of the bumper is limited to 40–50 cm. To complicate
matters, not the full length of the bumper is usable. Most vehicles target the edges
of the bumper near the headlights. The radar designer must aim to make the sensor
less than the bumper width. Even though weight does not limit the radar very much,
light weight is desirable in order to reduce installation cost. The current trend is to
reduce the weight to below 200 g. A topic related to radar dimension is calibration
which can be simplified depending on size of radar.

The next challenge is radar waveform design and signal processing. The radar
applications are broadly divided into short range, mid-range, and long range [15].
This gives rise to short-range radar (SRR), mid-range radar (MRR), and long-range
radar (LRR), respectively. After deciding on the radar application, the next natural
step would be to define limits and resolution for range, velocity, and angle. This is
a task for waveform design and will ultimately affect the radar antenna design. The
waveform design decides the type modulation, the frequency bandwidth, and signal
transmission and reception methods. A detailed look at this topic is presented in
Chap. 6. During waveform design, an iterative choice of radar waveform, antenna
configuration, and signal processing algorithm has to be performed until a combina-
tion that meets the target application is decided. This process is very time-consuming
since it can only be stopped after key performance indicators are achieved. It also
requires intensive collaboration between hardware developers, software developers,
and system testers.

Since the target of radar sensing always includes object tracking, choosing a
tracking algorithm is a non-trivial task.Abalance has tomade between available radar
device resources and tracking performance. The options available for this task include
simple one-step prediction filters and complex nonlinear filters like the extended
Kalman filters and particle filters. These options are treated in detail in Chap. 7.
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Chapter 2
The Radar Equation

2.1 Introduction

This chapter introduces the radar equation which is essential for understanding the
effects of propagation on the transmitted radar signal.

2.2 Radar Performance Requirements

In most applications, the radar should be designed to meet specific performance
requirements. These requirements include the maximum range, range resolution,
maximum velocity, velocity resolution, covered field of view in the angular space,
and many other additional demands. The same requirements are also placed on the
radar in an automotive applications. In order to meet these system requirements, the
fundamental performance characteristics are determined by what is referred to as the
radar equation. In this chapter, we take some effort to introduce the radar equation
and what it means to the final target application.

2.3 The Radar Equation

As stated in the previous chapter, the antenna acts as the interface between the
radar system and the transmissionmedium through which the electromagnetic waves
propagate. The radar equation gives the relationship between the transmitted signal
power, received signal power, the range to reflecting object, the characteristic of the
reflecting objects, and antenna properties. It can be expressed as follows.

Pr = PtG tGrλ
2σs

(4π)3R4
= PtG tAeσs

(4π)2R4
. (2.1)

© Springer Nature Singapore Pte Ltd. 2020
J. Gamba, Radar Signal Processing for Autonomous Driving,
Signals and Communication Technology, https://doi.org/10.1007/978-981-13-9193-4_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9193-4_2&domain=pdf
https://doi.org/10.1007/978-981-13-9193-4_2


16 2 The Radar Equation

InEq. (2.1), Pr denotes the received signal power,and Pt represents the transmitted
signal power. The antenna properties are represented by the transmit gain G t and the
receive gain Gr. The parameter Ae = Grλ

2

4π corresponds to the effective aperture
of the receiving antenna. The characteristics of the reflecting object at range R are
represented by σs, which is referred to as the radar cross section (RCS). The RCS is a
measure of a target’s ability to reflect radar signals in the direction of the radar receiver
[1] and is very difficult to estimate. The λ represents the transmitted electromagnetic
signal wavelength and can be considered constant for any given radar system.

The above radar equation can be expressed in terms of range R as follows.

R = 4

√
PtG tAeσs

Pr(4π)2
(2.2)

It is therefore clear from the above equation that the range is proportional to the
fourth root of the transmitted power. By taking into consideration losses associated
with the signal reception, the maximum detectable range can be estimated. In order
to expand the range that can be covered by the radar system, high receiver sensitivity
is required since transmit power cannot be arbitrarily increased. As further simplifi-
cation of Eq. (2.1), the transmit gain and receive gain can be considered to be equal
and constant. Since λ is constant, the dominant variables affecting received power
become the transmitted power, the range, and the radar cross section.

Furthermore, if the minimum detectable power by the receiver, Smin, is used to
define the radar equation, Eq. (2.2) can be expressed as [1]

R = 4

√
PtG tAeσs

Smin(4π)2
. (2.3)

2.4 Effect of Losses

The effect of propagation losses can be incorporated into the radar equation so that
it gives a closer resemblance to expectations in practical situations.

The minimum received power can be expressed in terms of SNR as follows:

Smin = kT0BFn ∗ SNR, (2.4)

where kT0B is referred to as the thermal noise from an ideal ohmic conductor and k
is the Boltzmann constant (1.38064852(79) × 10−23 J/K), T0 is the standard temper-
ature/absolute temperature (290 K), and B is the receiver bandwidth (Hz) or effective
noise bandwidth. Fn is the noise figure, and it accounts for nonlinearities introduced
by the non-ideal receiver circuitry. The noise figure is a dimensionless value that
is defined as the ratio of input to output SNR of the receiver. Additionally, system
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losses denoted by L can be incorporated into the radar equation resulting in

R = 4

√
PtG tAeσs

kT0BFn ∗ SNR(4π)2L
. (2.5)

Furthermore, factors accounting for pulse integration and effects of propagation
of the radar signal can also be added to the radar equation but for our purposes,
Eq. (2.5) is sufficient to illustrate the effect of losses on the maximum detectable
range. Depending on the radar requirements, the radar equation can also be fine-
tuned to be application-specific such as for surveillance radar and radar jammers.

In most applications, the key radar parameters such as antenna gain, wavelength,
and noise figure remain unchanged. Considering a target of interest like a vehicle at
a fixed distance, we can easily determine the demands placed on the transmit power
in order to double the detectable range. Doubling the detectable range gives both the
system and/or the driver enough time to react in collision avoidance scenarios. The
range is proportional to the fourth root of the transit power, i.e., R ∝ 4

√
Pt. In

order to double the detection range, this would translate to 2R ∝ 2 4
√
Pt = 4

√
16Pt.

Keeping everything else constant, doubling the detectable distance would require
increasing the transmit power by 16 times. For the above reason, simply boosting
the transmit power places extreme limits system requirements, and hence, innovative
radar designs incorporating complex signal processing techniques are used to extend
the ranging capabilities of the radar sensor.

2.5 Radar Equation for Automotive Applications

In automotive applications, the radar equation is used to determine the maximum
detectable range, and one challenge is the estimation of the RCS [2]. Due to the
differences in shape, size, and texture of automotive targets, the RCS cannot be
accurately estimated [3].

According to ITU [4], for automotive radars operating in the frequency band
77.5–78 GHz, the detection distance in meters can be expressed as:

R = 4

√
PtG2

Aλ2σtg

Smin(4π)3
(2.6)

where Pt is the transmitter power (W), GA the antenna gain, σ tg the effective target
area, equal to 1 m2, λ the wavelength, equal to 3.859 × 10−3 m at 77.75 GHz, and
Smin is receiver sensitivity, W. It is assumed that the transmit gain and receive are
equal.

By taking attenuation, Latm, of radio waves in the earth atmosphere into account,
target detection distance, Ratm, will be given by the following equation:
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Ratm = 4

√
PtG2

Aλ2σ

Smin(4π)3Latm
. (2.7)

Attenuation of radio waves in the earth atmosphere generally consists of attenu-
ation in atmospheric gases (oxygen and water vapor) and attenuation in fog or rain.
The analysis shows that the greatest contribution to the attenuation of radio waves
is due to the atmospheric gases and rain. Therefore, to estimate detection distance,
attenuation of radio waves in the atmosphere, Latm (dB) needs to be determined. This
attenuation is defined by the formula:

Latm = Ratm *
(
γg + γR

)
(2.8)

where γg is the specific attenuation due to atmospheric gases, dB/km, γR the spe-
cific attenuation due to rain, dB/km, and Ratm the detection distance considering
attenuation of radio waves in the earth’s atmosphere.

Atmospheric losses are normally determined by typical atmospheric conditions
of pressure (Patm = 1013 hPa), temperature (Tatm = 15 °C), water vapor density (ρ
= 7.5 g/m3), and rain intensity (R = 5, 10, 15, 20, 25 and 30 mm/h).

Under these conditions, the specific attenuation due to oxygen at 77.75 GHz is
estimated to be 0.088 dB/km and that due to water vapor is 0.286 dB/km. This gives
a total specific attenuation

(
γg + γR

)
of 0.374 dB/km. However, in real-operating

situations, conditions are far from ideal and deviations should be expected.
Although the above analysis is valid, it is more common to consider the overall

system losses Ls which include polarization losses, atmospheric propagation losses,
and antenna pattern losses among others [5]. In this case, the maximum range can
be expressed as

Rmax = 4

√
PtG2

Aλ2σs

Smin(4π)3Ls
. (2.9)

Alternatively, we can rewrite Eq. (2.9) from Eq. (2.5) as

Rmax = 4

√
PtG2

Aλ2σs

kT0BFn ∗ SNRmin(4π)3Ls
. (2.10)

If the system bandwidth is defined in terms of coherent processing time Tcpi, then
we can write Eq. (2.10) as

Rmax = 4

√
PtG2

Aσsλ2Tcpi
kT0Fn ∗ SNRmin(4π)3Ls

, (2.11)
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where SNRmin is the minimum SNR corresponding to the minimum receive power.
For most automotive applications, the typical radar parameters in the frequency band
76–81 GHz are shown in Table 2.1 [6–8].

As an additional note about the discussion, in practice, it is more convenient to
work with decibels than physical units since all operations can be performed by
simple addition and subtraction instead of multiplication. For this purpose, Eq. (2.7)
can be re-arranged and written as

10 ∗ log10(Smin) = 10 ∗ [
(Pt) + log10

(
G2

A

) + log10(σs) + log10
(
λ2

)
− log10(Ls) − log10

(
(4π)3

) − log10
(
R4
max

)]
Smin[dB] = Pt[dB] + GA[dB] + σs[dB] + λ[dB]

− Ls[dB] − Cnst[dB] − R[dB]

where GA[dB] = 10 ∗ log10
(
G2

A

)
is the gain term, λ[dB] = 10 ∗ log10

(
λ2

)
is the

wavelength term, Cnst[dB] = 10 ∗ log10
(
(4π)3

)
, R[dB] = 10 ∗ log10

(
R4
max

)
is the

range- and wavelength-dependent term. The same can be done for other forms of the
radar equation. Figure 2.1 illustrates the range detection principle.

Example Let’s consider an automotive radar sensor in the 76–81 GHz band with
λ the wavelength equal to 3.859 × 10−3 m, transmit power Pt of 12 dBm, the

Table 2.1 Typical automotive radar parameters

Parameter Typical range Notes

Operating range (m) 0–250 Depends on the intended application,
e.g., SRR, MRR, and LRR

Transit power (dBm) 10–13 Depends on regulations.

TX/RX antenna gain (dBi) 10–25 Depends on the azimuth and
elevation of the field of view (FOV)

Receiver noise figure (dB) 10–20 Depends on hardware
implementation.

Radar cross section (RCS) (dBsm) (−10)–20 Pedestrians to trucks/buses

Receiver sensitivity (dBm) (−120)–(−115) Depends on hardware
implementation

Minimum detection SNR (dB) 10–20 Depends on hardware
implementation

Fig. 2.1 An illustration of range detection by radar. The reflected signal from the target car is used
to detect the range R
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transmitter/receiver antenna gain of 12 dBi, minimum SNR of −20 dB, system loss
of 3 dB, noise Figure Fn of 16 dB, and a bandwidth of 1 GHz. Assuming that the
target being tracked is a passenger vehicle with a radar cross section of 10 m2, the
maximum range without and with losses can be estimated as follows.

Without losses taken into consideration,

R[dB] = Pt[dB] + GA[dB] + σtg[dB] + λ[dB]

− kTB[dB] − Cnst[dB] − Fn[dB] − Smin[dB]

Rλ[dB] = (12 − 30)[dB] + 2 * 12[dB] + 10[dB] + (−48.272[dB])

− (−143.975)[dB] − 32.976[dB] − (16[dB]) − (−20)[dB]

= 82.727[dB]

R4
max = 1082.727/10 = 187,383,347.2

Rmax = 116.999[m].

Taking losses into consideration,

R[dB] = Pt[dB] + GA[dB] + σtg[dB] + λ[dB] − Ls[dB]

− kTB[dB] − Cnst[dB] − Fn[dB] − Smin[dB]

Rλ[dB] = (12 − 30)[dB] + 2 * 12[dB] + 10[dB] + (−48.272[dB]) − 3[dB]

− (−143.975)[dB] − 32.976[dB] − (16[dB]) − (−20)[dB]

= 79.727[dB]

R4
max = 1079.727/10 = 93,914,141.4

Rmax = 98.443[m]

As expected, the effect of losses is to reduce the detectablemaximum range. Radar
parameters play a crucial role in the range coverage of the radar sensor, and extra
care needs to be taken in their design.
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Chapter 3
Signal Processing for Radar Systems

3.1 Introduction

This chapter introduces key ideas behind signal processing of received radar signal.
We will mostly be interested in Fourier transforms and their applications to radar
signal processing.

3.1.1 Definition of Fourier Transform

The purpose of the Fourier transform is to transform a time-domain signal into the
frequency-domain signal. For periodic signals, compact representation of the signal
becomes possible. That means a series of time-domain signals can be represented by
a single number, i.e., the frequency of the signal. Signal compression for transmission
is one popular application of this concept [1, 2].

There are many a good books and online materials that give various levels of
details about the Fourier transforms and their mathematical interpretation [3–5].
That kind of analysis is beyond the scope of this chapter, but our intention is to give
the necessary background since Fourier transform is a basic tool used in radar signal
processing.

The Fourier transform (FT) of a signal x(t) is defined as

X(ω) =
∞∫

−∞
x(t)e− jωtdt, ω ∈ (−∞,∞) (3.1)

or

X( f ) =
∞∫

−∞
x(t)e− j2π f tdt, f ∈ (−∞,∞). (3.2)
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The inverse Fourier transform (IFT) is then given by

x(t) = 1

2π

∞∫

−∞
x(t)e jωtdω, (3.3)

or

x(t) = 1

2π

∞∫

−∞
x(t)e j2π f td f . (3.4)

The above definitions provide basic relationships required to transform signals
from the time domain to the frequency domain and vice versa.

3.1.2 Fourier Transform Properties

This section outlines some of the commonly used Fourier transform properties,
and where appropriate, some short comments of the utility are given.

Linearity

Input signal Fourier transform Conditions

ax(t) + by(t) aX(ω) + bY (ω) a and b are constants

Symmetry

Input signal Fourier transform Conditions

2πX(−ω)
∫ ∞
−∞ X(t)e− jωtdt X(ω) exists

Time shift

Input signal Fourier transform Conditions

x(t ± t0) e±jωt X(ω) t0 is real

Time shift results in phase shift in the Fourier domain.

Time and Frequency Scaling

Input signal Fourier transform Conditions

x(at) 1
|a| X

(
ω
a

)
X(ω) exists
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The scaling property explains what is often referred to as time dilation and fre-
quency compression. When a < 1, x(at) is dilated or expanded and X(ω/a) is
compressed. On the other hand, when a > 1, x(at) is compressed and X(ω/a) is
expanded.

Central ordinate

Input signal Fourier transform Conditions

X(0)
∫ ∞
−∞ x(t)dt

x(0) 1
2π

∫ ∞
−∞ X(ω)dω

Frequency shift

Input signal Fourier transform Conditions

e±ω0 t
∫ ∞
−∞ x(t)dt X(ω ∓ ω0) X(ω) exists

Modulation

Input signal Fourier transform Conditions

x(t)cos(ω0t) 0.5 ∗ [(X(ω + ω0) + (X(ω − ω0)] X(ω) exists

x(t)sin(ω0t) 0.5 1
j ∗ [(X(ω − ω0) − (X(ω + ω0)] X(ω) exists

Derivatives

Input signal Fourier transform Conditions
dn
dtn x(t) ( jω)n X(ω) Derivatives exits

Time convolution

Input signal Fourier transform Conditions∫ ∞
−∞ x(τ )h(t − τ)dτ X(ω)H(ω) X(ω), H(ω) exists

Frequency convolution

Input signal Fourier transform Conditions

x(t)h(t) 1
2π

∫ ∞
−∞ X(τ )H(ω − τ)dτ
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Autocorrelation

Input signal Fourier transform Conditions

x(τ )x∗(τ − t)dτ X(ω)X∗(ω) = |X(ω)|2

Parseval’s theorem

Input signal Fourier transform Conditions∫ ∞
−∞

∣∣x(t)2∣∣dt ∫ ∞
−∞|X (ω)|2dω

Moments

Input signal Fourier transform Conditions

mn = ∫ ∞
−∞ tn x(t)dt dn

dωn X(ω)|ω=0 mn is the nth moment

3.1.3 Fourier Series

Fourier series is the decomposition of a periodic signal into the sum of sinusoidal
functions [3]. Mathematically, the decomposition can be performed as follows:

sN (t) = A0

2
+

N∑
n=1

Ansin

(
2πnt

T
+ ϕN

)
, (3.5)

where T denotes the period, N is the number sinusoids, An are Fourier coefficients,
and ϕN is an arbitrary phase term.

The complex equivalent of the Fourier series expansion can be given as

sN (t) = a0
2

+
N∑

n=1

an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

)
=

N∑
n=−N

cne
− j 2πntT , (3.6)

where the Fourier coefficients are given by

an = 2

T

t0+T∫

t0

s(t) cos

(
2πnt

T

)
dt

bn = 2

T

t0+T∫

t0

s(t) sin

(
2πnt

T

)
dt
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cn = 1

T

t0+T∫

t0

s(t)e− j 2πntT dt (3.7)

The Fourier coefficients can then be given computed as

An =
√
a2n + b2n (3.8)

ϕN = tan−1

(
bn
an

)
(3.9)

From the above equations, the approximation of s(t) by sN (t) gets better as
N → ∞. One use of the Fourier series expansion is for radar waveform genera-
tion where the goal is to increase robustness to interference as described in [6] and
[7].

3.1.4 Sampling Theorem

Digital signal processing is commonly applied in radar processing. A prerequisite
for this to be possible is the availability of sampled discrete data. The sampling
theorem defines the conditions under which the original signal can be faithfully
reconstructed from sampled data. Although there are many recent innovative sam-
pling methods in the literature including the use of splines, the Shannon sampling
theorem remains the de facto standard. The sampling theorem states that if x(t) is
a bandlimited signal with bandwidth B, then it can be reconstructed from samples
obtained at a sampling rate greater than 2B.

In mathematical form, we can write

x(t) =
∞∑

n=∞
x(nT )g(t − nT ), g(t) = sin c(ωs t), (3.10)

where ωs = 2π fs is the radian sampling frequency.

3.1.5 Discrete Fourier Transforms (DFT)

As shown in Sect. 3.1.1, the Fourier transform is defined by continuous integrals over
infinite duration. This presents problems in the applications such as radar processing
where the computation of continuous integrals is unimaginable and the infinite dura-
tion requirement is not feasible. To overcome this limitation, discretization of the
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Fourier transform is necessary. This makes it possible to compute Fourier transforms
of sample data using discrete Fourier transforms [1, 5, 8–11].

By definition, the discrete Fourier transform (DFT) of signal x(n) is given by,

X(k) =
N−1∑
n=0

x(n)e− j 2πnkN , k = 0, 1, . . . , N − 1, (3.11)

where x(n) is the sampled signal at time n, k is the kth frequency in radians per
second, and X (k) is the complex-valued discrete Fourier transform at frequency k.
X(k) can also be thought of complex spectrum at frequency k.

We can similarly define the inverse discrete Fourier transform (IDFT) as

x(n) = 1

N

N−1∑
k=0

X(k)e j
2πnk
N , n = 0, 1, . . . , N − 1. (3.12)

The DFT can be computed by simple multiplication and addition operations and
can therefore be easily used in most applications using digital signal processing
techniques. In practice, the DFT is efficiently computed using FFT algorithms which
reduces computational complexity from order N 2 to N logN . As will be seen in
Sect. 3.2, the discrete Fourier transform is used in Range–Doppler estimation.

3.1.6 Power Spectrum Estimation

By definition, the power spectrum is the Fourier transform of the autocorrelation
sequence of a stationary process [12, 13]. For a signal x(t), the spectrum estimation
S( f ) can be given by

S( f ) =
∞∫

−∞
Rxx (τ )e− jωtdτ , (3.13)

where Rxx (τ ) denotes the autocorrelation function. The signal whose spectrum is to
be estimated is usually embedded in noise. For this reason, high-resolution spectrum
estimation techniques are essential. It is not the intention of this section to go into
the details of spectrum estimation but to give a very brief insight of the topic since
it is important for automotive radar processing. In-depth and excellent presentation
of this subject can be found in [13–15].

Traditional methods of spectrum estimation solely rely on the discrete Fourier
transform (DFT) to obtain the power spectrum of an observed data sequence. Popular
among these are the periodogram and Blackman–Turkey methods [13]. Their major
weakness, however, is that they fail to resolve closely spaced spectral peaks when
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short-duration data sequences are used. This weakness is the main motivation behind
the so-called high-resolution techniques, notably the autoregressive (AR), moving
average (ARMA) [16] and eigendecomposition techniques, [17, 18]. Although these
high-resolution techniques give better-resolved spectrum estimates, it is only at high
signal-to-noise ratios (HSNRs) that their performance can be guaranteed to be supe-
rior to the traditional methods. The reason for this could be attributed to the inability
to accurately separate the signal subspace from the noise subspace at low signal-to-
noise ratios (LSNRs). The presence of noise is a serious nonlinearity problem in AR
parameter estimation. For further details on this topic, refer to [12].

Although the power spectrum is defined terms of the autocorrelation function, in
practice, it is estimated using the DFT. The DFT can be efficiently computed by the
FFT and hence its widespread use. In that case, the power spectrum is the magnitude
of the FFT result.

For radar processing, spectrum estimation is almost always used to estimate the
range and velocity of the target. However, angular position of the target is obtained
by high-resolution techniques since it is usually desirable to separate closely spaced
targets.

3.1.7 Windowing Techniques

Windows are required in order to improve the spectrum estimation results. The reason
is that the periodic assumption used in DFT requires that estimated frequencies are
integer multiples of frequency resolution. This cannot be guaranteed, and the result
is discontinuities in the spectrum which in turn results in spreading of energy into
multiple frequency bins which manifest as sidelobes. This problem can be improved
by using window functions. Window functions start near or at zero, then increase to
a maximum at the center of the sampled data sequence, and then decrease again [14].
From the convolution principle, windowing has the smoothing effect of the frequency
response of the signal. This leads to the reduction in sidelobes when compared to the
spectrum without windowing. However, windowing also results in the undesirable
widening of the main lobe, which means that a trade-off has to be made.

Window functions have been in use for a long time [19–21], and below we give
some of the windows commonly used in automotive radar signal processing.

3.1.7.1 Rectangular Window

The window function is defined by the following expression:

w(n) = 1. (3.14)

The window has the effect of multiplying the data sequence by a rectangular
function of unit amplitude and is thus equivalent to just using the observed sequence.
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3.1.7.2 Parzen Window (de La Vallee Poussin Window)

The window function is B-spline function defined by the following expression.

w(n) =
⎧⎨
⎩
1 − 6

(
2n
N

)2(
1 − 2|n|

N

)
, 0 ≤ |n| ≤ N

4

2
(
1 − 2|n|

N

)3
, N

4 < |n| ≤ N
2

(3.15)

3.1.7.3 Triangular Window (Bartlett Window)

The window function is defined by the following expression.

w(n) = 1 −
∣∣∣∣∣
n − N−1

2

L/2

∣∣∣∣∣ (3.16)

or

w(n) =
{(

2n
N

)
, 0 ≤ n ≤ N

2(
2 − 2n

N

)1
, N

2 < |n| ≤ N
(3.17)

3.1.7.4 Welch Window (Parabolic Window)

The window function is a quadratic function defined by the following expression.

w(n) = 1 −
(
n − N−1

2
N−1
2

)2

(3.18)

3.1.7.5 Hanning Window

The Hann window is one of the popular windows in automotive radar signal pro-
cessing. The window function is defined by the following expression.

w(n) = 0.5(1 − cos

(
2πn

N − 1

)
(3.19)
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3.1.7.6 Hamming Window

The window function is defined by the following expression.

w(n) = 0.54 − 0.46 cos

(
2πn

N − 1

)
(3.20)

3.1.7.7 Blackman Window

The window function is defined by the following expression.

w(n) = a0 − a1 cos

(
2πn

N − 1

)
+ a2 cos

(
4πn

N − 1

)
(3.21)

where a0 = 0.42, a1 = 0.5, and a2 = 0.08.

3.1.7.8 Nuttall Window

The window function is defined by the following expression.

w(n) = a0 − a1 cos

(
2πn

N − 1

)
+ a2 cos

(
4πn

N − 1

)
− a3 cos

(
6πn

N − 1

)
(3.22)

where a0 = 0.355768, a1 = 0.487396, a2 = 0.144232, and a3 = 0.012604.

3.1.7.9 Blackman–Nuttall Window

The window function is defined by the following expression.

w(n) = a0 − a1 cos

(
2πn

N − 1

)
+ a2 cos

(
4πn

N − 1

)
− a3 cos

(
6πn

N − 1

)
(3.23)

where a0 = 0.3635819, a1 = 0.4891775, a2 = 0.1365995, and a3 = 0.0106411.

3.1.7.10 Blackman–Harris Window

The window function is defined by the following expression.

w(n) = a0 − a1 cos

(
2πn

N − 1

)
+ a2 cos

(
4πn

N − 1

)
− a3 cos

(
6πn

N − 1

)
(3.24)
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where a0 = 0.35875, a1 = 0.48829, a2 = 0.14128, and a3 = 0.01168.

3.1.7.11 Flat-Top Window

The window function is defined by the following expression.

w(n) = a0 − a1 cos

(
2πn

N − 1

)
+ a2 cos

(
4πn

N − 1

)

− a3 cos

(
6πn

N − 1

)
+ a4 cos

(
8πn

N − 1

)
(3.25)

where a0 = 1, a1 = 1.93, a2 = 1.29, a3 = 0.388, and a4 = 0.028.

3.1.7.12 Turkey Window

w(n) =

⎧⎪⎪⎨
⎪⎪⎩

0.5 + 0.5 cos
(
π

(
2n

a(N−1) − 1
))

, 0 ≤ n < a(N−1)
2

1, a(N−1)
2 ≤ n ≤ (N − 1)

(
1 − a

2

)
0.5 + 0.5 cos

(
π

(
2n

a(N−1) − 2
a + 1

))
, (N − 1)

(
1 − a

2

)
< n ≤ (N − 1)

(3.26)

Setting a = 0 yields the rectangular window, while a = 1 results in the Hanning
window.

3.1.7.13 Kaiser Window

The window function is defined by the following expression.

w(n) =
I0

(
πα

√
1 − (

2n
N−1

)2)

I0(πα)
, (3.27)

where I0 is the zeroth-order modified Bessel function of the first kind. The trade-off
between themain lobewidth and sidelobe level is determined by the tuning parameter
α.

3.1.7.14 Dolph–Chebyshev Window

The window function is defined by the following expressions.
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Table 3.1 Properties of window functions

Window function Section Highest
sidelobe
level (dB)

−3 dB
mainlobe
width (bins)

−6 dB
mainlobe
width (bins)

Sidelobe
roll-off rate
(dB/oct)

Rectangular 3.1.7.1 −13 0.88 1.21 −6

Parzen 3.1.7.2 −53 1.82 2.66 −24

Triangular (Bartlett) 3.1.7.3 −27 1.27 1.78 −12

Welch (Parabolic) 3.1.7.4 −21 1.15 1.59 −12

Hanning 3.1.7.5 −32 1.44 2.00 −18

Hamming 3.1.7.6 −43 1.30 1.81 −6

Blackman 3.1.7.7 −58 1.64 2.30 −18

Nuttall 3.1.7.8 −93 1.91 2.68 18

Blackman–Nuttall 3.1.7.9 −98 1.98 2.62 −6

Blackman–Harris 3.1.7.10 −71 1.62 2.27 −6

Flat-top 3.1.7.11 −44 2.94 3.56 −6

Turkey (a = 0.5) 3.1.7.12 −15 1.15 1.57 −18

Kaiser (α = 3.5) 3.1.7.13 −82 1.83 2.57 −6

Dolph–Chebyshev
(α = 4.0)

3.1.7.14 −80 1.65 2.31 0

W0(k) = cos
(
N cos−1

(
β cos

(
πk
N

)))
cos h

(
N cos h−1(β)

)

β = cos h

(
1

N
cos h−1(10α)

)

cos h−1(x) = ln
(
x + √

x2 − 1.0
)

w0(n) = 1

N

N−1∑
k=0

W0(k)e
j2πkn/N ,−N

2
≤ n ≤ N

2
(3.28)

As can be observed from Eq. (3.28), the window function is computed by inverse
DFT. The properties of the window functions described above are summarized
in Table 3.1.

3.2 Multi-dimensional Fourier Transforms (Basis
for Range Doppler Estimation)

The Fourier transform theory can be extended to multi-dimensional signals [18]. For
radar signal processing, we are mostly interested in two-dimensional (2D) and three-
dimensional (3D) discrete extensions. 2D DFT is used to compute Range–Doppler
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profiles, which provide the basic functions of the radar. Additionally, 3D DFT can
be used for direction-of-arrival DOA estimation. In this section, we give a brief
description of 2D DFT as it is the key to understanding higher dimension Fourier
transforms. It is worth mentioning that in most applications, the DFT is efficiently
performed using the fast Fourier transform (FFT) algorithm.

Imagine thatwehave twoa two-dimensional signal f (m, n)definedon thediscrete
grid of size M × N . The 2D DFT is defined by

F(k, l) = 1

MN

M−1∑
m=0

N−1∑
n=0

f (m, n)e− j2π( k
M m+ l

N n),

k = 0, . . . , M − 1, l = 0, . . . , N − 1. (3.29)

The inverse transform is given by

f (m, n) =
M−1∑
k=0

N−1∑
l=0

F(k, l)e j2π( k
M m+ l

N n), m = 0, . . . , M − 1, n = 0, . . . , N − 1.

(3.30)

The following table summarizes some of the important properties of the 2D DFT.

Property Expression Conditions

Periodicity F(k, l) = F(k + aM, l) = F(k, l + bN ) =
F(k + aM, l + bN );

a and b are
integers

Conjugate
symmetry

F(k, l) = F∗(−k,−l), |F(k, l)| = |F∗(−k,−l)| Input signal
f (m, n) is real

Power spectrum P(k, l) = |F(k, l)|2
Mean value (D.C) f (m, n) = F(0, 0)

Convolution
theorem

f (m, n) ∗ h(m, n)
FT→ F(k, l)xH(k, l),

FT denotes Fourier transform, ‘*’ denotes
convolution operation.

Scaling f (am, bn) →FT 1
|ab| F

( k
a , l

b

)
a and b are
constants

Translation
f (m − m0, n − n0) →FT F(k, l)e

− j2π
(

k
M m0+ l

N n0
)

f (m, n)e j2π( m
M k0+ n

N l0) →FT f (k − k0, l − l0)
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3.3 Noise and Clutter Reduction in Radar Signals

In real situations, the signal received by the radar sensor is always embedded in noise
and clutter. While noise can be characterized by some assumed statistical distribu-
tion, clutter is more difficult to characterize since it is the result of reflections from
undesirable obstacles which behave like targets. For automotive radar, the sources
of clutter include rain, ground reflections, and roadside structures.

In fact, the reflections within the radar field of view that are not the target of
interest can be considered as clutter. The level of interference from clutter can be
characterized by the signal-to-clutter ratio, which depends on the RCS, clutter reflec-
tivity, and the degree of exposure of the clutter, among other factors [22]. The s/c
ratio can be incorporated into the radar equation although this presents challenges
due to the dynamic nature of clutter. In some situations, when the distribution of
the clutter signal is Gaussian, it is better to use the combination of noise and clutter
as total interference in the received signal such that instead of SNR, we now have
signal-to-clutter-plus-noise ratio (SCNR). This then leads to signal-to-interference
ratio (SIR) expressed as

SIR = 1
1

SCR + 1
SNR

, (3.31)

where SCR is the signal-to-clutter ratio. The modified radar equation then becomes

R = 4

√
PtGt Aeσs

kT0BFn ∗ SIR(4π)2L
. (3.32)

Some strategies to reduce the effect of clutter include multi-target indication
(MTI), pulse Doppler processing, and polarization techniques. Using narrow beam
width radar antenna and increasing range resolution by widening the bandwidth can
be effective for certain types of clutter. The downside of these additional measures
is increased radar system complexity, cost, and size. Therefore, it may be better to
improve signal processing techniques in order to suppress clutter to desirable levels.
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Chapter 4
Radar Waveforms and Their
Mathematical Models

4.1 Introduction

As introduced in Chap. 1, radar covers a wide range of frequencies in the RF band.
This chapter deals with various radar waveforms derived from those frequencies that
are used in target detection and localization.

4.2 Waveform Types Overview

Before constructing a radar system, critical decisions about the system properties
have to be made. One of these properties is the radar waveform to be used. The wave-
form not only determines what type of algorithm used for processing the received
signal but also has an impact on the cost and complexity of the system’s hardware
elements.

In general, radar waveform’s taxonomy classifies them into continuous waves
or pulsed waves. Continuous waves normally require separate receive and transmit
antennas. Isolation requirements limit the transmit power but range estimation is
generally good. On the other hand, for pulsed signals, the same antenna can be used
for both transmission and reception, with some relaxation on power limits but blind
ranges could result from radar measurements. These kinds of trade-offs have to be
considered when selecting the waveform.

On the second level, modulation techniques further separate the type of final
waveforms used. As in communications systems, amplitude, phase, and frequency
modulation can be applied to the waveforms. Additionally, the choice of polarization
can also have a significant impact on the processing of the received signal.

In the following sections, we introduce the most commonly used radar waveforms
and their properties.

© Springer Nature Singapore Pte Ltd. 2020
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Fig. 4.1 An example of the CW for velocity detection

4.3 Continuous Waveform (CW)

The CW, illustrated in Fig. 4.1, has good Doppler resolution but cannot resolve
range. The frequency resolution is given by � f = 1

Tcw
, where Tcw is the period of

the continuous wave.

4.4 Pulse Doppler Radar (PDR) Waveform

With pulse Doppler radar, good range resolution andDoppler resolution are possible.
They are, respectively, given by � f = 1

Np∗Tp
and �R = c ∗ Tp

2 , where Np is the
number of pulses, Tp is the pulse width, and c is the speed light. Figure 4.2 is an
example of the PDR waveform.

4.5 Frequency-Modulated CW (FMCW) and Their
Variations

FMCW is one of the most commonly used types of waveform. This is because it is
possible to estimate both range and velocity at reduced device cost [1, 2]. Although
pulse Doppler radar can achieve the same functionality, it is dogged by high design
and device costs.
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Fig. 4.2 An example of the pulse Doppler radar (PDR waveform for both range and velocity
detection

4.5.1 Linear Frequency-Modulated CW (LFMCW)

Due to the target range and Doppler frequency shift, a beat frequency is generated.
The components of the beat frequency are given by the following expressions.

fb = B

Ts
∗ 2R

c
(4.1)

fD = 2vr
λ

(4.2)

These are superimposed as difference frequencies from the up and down chirps,
fbu and fbd , respectively, are shown in Fig. 4.3.

fbu = fb − fd (4.3)

fbd = fb + fd (4.4)

From Eqs. (4.3) and (4.4), the target range and radial velocity can be estimated as

R = cTs
4B

∗ ( fbd + fbu) (4.5)

vr = λ

4
( fbd − fbu) (4.6)
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Fig. 4.3 An example of the LFMCW for range and velocity detection

FMCW: Ghost targets
For single-target scenarios, the target range and velocity is normally extracted from
the intersection of the range-velocity profiles obtained from the up and down chirps,
Fig. 4.4a. For multiple targets, the multiple intersections of range-velocity profiles
give rise to ghost targets as shown in Fig. 4.4b.

The presence of ghost target is a serious problem in automotive radar as it can result
in wrong range and velocity, which in turn increases the risk of position judgment.
Wrong position of judgment can lead to a fatal crash. This ghost target problem is
one reason why alternatives to FMCW radar are sought for automotive applications.

4.5.2 Stepped FMCW

A stepped FMCW radar system transmits a sequence of sinusoids at different fre-
quencies and measures the steady-state amplitude and phase shift induced by the
radar channel at each discrete frequency. It was originally motivated by the result-
ing simplified signal processing techniques since fixed stable frequencies could be
used [3, 4]. Specifically, the target range profile can be computed using inverse
discrete Fourier transformation (IDFT), which can be achieved by high-speed FFT
algorithms. Figure 4.5 gives an image of how the stepped FMCW scheme works.

The phase of the reflected signals from a target at range R is given by

ϕ = 2π fc ∗ 2R

c
. (4.7)



4.5 Frequency-Modulated CW (FMCW) and Their Variations 41

Fig. 4.4 a An example of single-target range-velocity profile from LFMCW. Target range and
velocity can be extracted unambiguously. b An example of multi-target range-velocity profile from
LFMCW. Ghost targets result from multiple intersection points between different targets

From Eq. (4.7), the range can be extracted as

R = cϕ

4π fc
. (4.8)

However, at high frequencies, the maximum unambiguous range is too small to be
useful, especially for automotive application. As an example, taking the maximum
possible phase of 2π the corresponding maximum range at a center frequency of
77 GHz becomes
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Fig. 4.5 An example of the stepped FMCW for range and velocity detection

Rmax = cϕ

4π fc
= 2π ∗ 3 × 108

4π ∗ 77 × 109
= 3

77 ∗ 2 ∗ 10
= 0.195 cm. (4.9)

This is obviously of no practical use for many applications. However, if the two
center frequencies f1 and f2 are used, then for a target at rangeR, the resulting phases
from the two frequencies are given by

ϕ1 = 2π f1 ∗ 2R

c
(4.10)

ϕ2 = 2π f2 ∗ 2R

c
. (4.11)

The phase difference �ϕ becomes

�ϕ = ϕ2 − ϕ1 = 4πR

c
( f2 − f1) = 4πR

c
� f (4.12)

where the � f = f2 − f1 is the step frequency. From the above equation, Eq. (4.12),
the range can be estimated as

R = c�ϕ

4π� f
(4.13)

For the maximum possible phase difference of 2π then a maximum range of
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Rmax = 2πc

4π� f
= c

2� f
. (4.14)

For step frequency of say 10 MHz, then the maximum range becomes

Rmax = 3 × 108

2 × 10 × 106
= 15m. (4.15)

By choosing an appropriate value of step frequency, a target maximum range can
be set.

This is the basic principle of the stepped FMCW waveform approach to range
estimation.

4.5.3 Multi-frequency Shift Keying (MFSK)

The MFSK waveform offers the possibility of simultaneously measuring unambigu-
ous range and velocity [5, 6]. The concept is illustrated in Fig. 4.6. Two intertwined
and shifted frequencies A and B are used. Based on the phase difference of the range
spectra measured from f A and fB and the step frequency, the range can be estimated
as R,

R = −c

4π fstep
. (4.16)

Fig. 4.6 An example of the MFSK waveform for range and velocity detection. Two frequency
steps A and B are employed
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where �ϕ = fB − f A is the phase difference.
From the FFT spectrum, it is expected that the peak will be detected at the same

bin denoted by Npeak for both frequencies and the following expression defines ambi-
guities in range and velocity [6].

Npeak = v

�v
− R

�R
, (4.17)

where�v is the velocity resolution and�R the range resolution. Thephase difference
is given by

�ϕ = v

�v
∗

(
π

N − 1

)
− 2 fshift

c
∗ 2πR, (4.18)

where N is the number of FFT points used.
Substituting the velocity expression into the phase Eq. (4.18), the unambiguous

range can be obtained as

Runamb = c�R

π

(N − 1) ∗ �ϕ − Npeak ∗ π

c − 4(N − 1)�R fshift
. (4.19)

Similarly, the unambiguous velocity can be computed as

vunamb = (N − 1)�v

π

(
c�ϕ − 4π�R fshiftNpeak

)
c − 4(N − 1)�R fshift

. (4.20)

From the above expression (4.20), it can be observed that the availability of phase
shift information from frequency spectrum is sufficient to estimate range and velocity
unambiguously.

4.5.4 Interrupted FMCW (FMICW)

The FMICWaddresses the problem of isolation between the transmitter and receiver.
This is achieved by only enabling reception when switching signal is off as shown
in Fig. 4.7. Reception is only allowed when the timing signal is off and the received
waveform is shown by the shaded portions.

As can be seen in Fig. 4.7, for close targets, the total reception time reduced
significantly, making it difficult to detect close range targets. For long-range targets,
the effect is opposite. Therefore, a compromise has to be made between short-range
and long-range targets [7, 8].

When the round-trip delay from the target is amultiple of the switching period, the
received signal power is zero, resulting in blind ranges. To avoid the phenomenon,
the switching frequency fs should be chosen such that
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Fig. 4.7 An example of the FMICW for range and velocity detection. The blue waveform is the
original uninterrupted waveform. The red is the transmitted waveform while the green-dashed is
the reflected waveform

fs = c

4Rmax
. (4.21)

The blind ranges RB occur at

RB = c ∗ k

2 fs
, k = 0, 1, 2, . . . (4.22)

The FMCIW finds use in automatic cruise control (ACC) radar. This is because
these radars traditionally use FMCW waveform and it is important to reduce near
range clutter and maximize detection at long range.

4.6 Fast Chirp Ramp Sequence Waveform

Although the FMCW is a popularly used waveform for automotive radar and other
applications, its main drawback is that in multi-target environments, it is necessary
to match velocity and range values for each target. This is referred to as pairing.
Incorrect matching could result in mispairing which leads to wrong target position
or velocity estimation. To avoid this problem, the fast chirp ramp sequence shown in
Fig. 4.8 makes it possible to estimate both target range and velocity without pairing.

The process of obtaining range and velocity utilizes 2-DFT which is performed
first for each individual chirp/ramp to obtain range information and second across
ramps to obtain velocity information. By further computing angle information based
on the antenna configuration used to receive the chirp ramp sequence, then 3D target
data can be constructed and consists of range, velocity, and angle. For angle esti-
mation, high-resolution techniques like Capon, MUSIC, and ESPRIT can be used.
An illustration of this concept is shown in Fig. 4.9. Taking the DFT along the chirp
samples gives range samples for each chirp while taking FFT along the DFT gives
velocity samples. Additionally, by independently computing the angle, using say
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Fig. 4.8 An example of the fast chirp ramp sequence waveform for range and velocity detection

Fig. 4.9 An illustration of the 3D data cube concept from chirp ramp sequence waveform

MUSIC, results in direction of arrival estimates. Finally, the result is a similar 3D
data cube consisting of range, velocity, and angle of arrival for each detected target.

If the fast chirp ramp sequence is swept froma carrier frequency fc, then frequency
at any given time instant f (t) can be expressed as

f (t) = fc + B

T
t = fc + αt, (4.23)

where B is the sweep bandwidth, T the sweep duration, and α = B
T denotes the chirp

rate as illustrated in Fig. 4.8. The corresponding instantaneous phase can be obtained
from the relation:

ω(t) = dϕ(t)

dt
= 2π f (t). (4.24)
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From which the

ϕ(t) =
t∫

0

2π f (t)dt = 2π
(
fct + α

2
t2

)
+ ϕ0, (4.25)

where ϕ0 denotes the initial phase.
Transmitted sinusoidal signal can now be expressed as

s(t) = A cos
(
2π

(
fct + α

2
t2

)
+ ϕ0

)
. (4.26)

Without taking the initial phase into consideration, a general expression for the
transmitted mth chirp ramp is given by the following expressions

s(t) = A cos
(
2π fct + πα

2
(t − mT )2

)
. (4.27)

For a target at a range R, and with radial velocity v away from the radar, the
round-trip delay τ of the reflected chirp signal is given by

τ = 2(R + vt)

c
. (4.28)

The received r(t) delayed chirp signal becomes

r(t) = B cos
(
2π fc(t − τ) + πα

2
(t − τ − mT )2

)
. (4.29)

Assuming normalized amplitudes A for both the transmitted and received chirp
signals, we get

s(t) = cos
(
2π fct + πα

2
(t − mT )2

)
. (4.30)

r(t) = cos
(
2π fc(t − τ) + πα

2
(t − τ − mT )2

)
. (4.31)

The transmitted and received signals are passed through a mixer and low-pass
filter to get g(t) expressed as

g(t) = s(t)r(t) = cos
(
2π fct + πα

2
(t − mT )2

)

cos
(
2π fc(t − τ) + πα

2
(t − τ − mT )2

)
. (4.32)

Using the trigonometric identity cos(x) cos(y) = 1
2 (cos(x + y) + cos(x − y))

and the fact that the high-frequency component s filtered, we get
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g(t) ∼= 1

2
cos

(
2π fcτ + 2πατ(t − mT ) − πατ 2

)
. (4.33)

Substituting the τ into g(t) results in

g(t) = 1

2
cos

(
2π fc

(
2(R + vt)

c

)
+ 2πα

(
2(R + vt)(t − mT )

c

)
− πα

(
2(R + vt)

c

)2
)

.

(4.34)

Since it can be assumed that c2 � (R + vt)2 the third term of the g(t) can be
considered to be negligible. The filtered mixer output becomes

g(t) = 1

2
cos

(
2π fc

(
2(R + vt)

c

)
+ 2πα

(
2(R + vt)(t − mT )

c

))
(4.35)

g(t) = 1

2
cos

(
2π

(
2R fc
c

+ 2 fcvt

c

)
+ 2πα

(
2
(
Rt − RmT + vt2 − mvtT

)
c

))

(4.36)

g(t) = 1

2
cos

(
2π

(
2R fc
c

+ 2 fcvt

c
+

(
2Rαt − 2RαmT + 2αvt2 − 2mαvtT

)
c

))

(4.37)

Considering ts being the time from the start of the mth ramp chirp, we can write

t = ts + mT, 0 ≤ t0 ≤ T . (4.38)

Substituting the above expression (4.38) into g(t) results in

g(ts) = 1

2
cos

(
2π(

2R fc
c

+ 2 fcv(ts + mT )

c

+
(
2Rα(ts + mT ) − 2RαmT + 2αv(ts + mT )2 − 2mαv(ts + mT )T

)
c

)

)

(4.39)

g(ts) = 1

2
cos

(
2π(

2R fc
c

+ 2 fcv(ts + mT )

c

+
(
2Rα(ts + mT ) − 2RαmT + 2αv

(
t2s + 2mtsT + m2T 2

) − 2mαv(ts + mT )T
)

c
)

)

(4.40)

By assuming that second-order terms are negligible, g(ts) can be approximated
as
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g(ts) = 1

2
cos

(
2π

(
2R fc
c

+ 2vmT fc
c

+ (2Rα + 2v fc + 2mBv)ts
c

))
(4.41)

where the fact that B = αT is used. Assuming that the target is slowly moving and
that the first term corresponds to constant phase, g(ts) can be compactly expressed
as

g(ts) = 1

2
cos

(
2π

(
mT fd + f pk ts

))
(4.42)

where

f pk = (2Rα + 2v fc + 2mBv)

c
= (2Rα)

c
+ fd + (2mBv)

c
= fbeat + fd + fm . (4.43)

fbeat is the beat frequency introduced by the time delay between the transmitted
and received signals. fm is the frequency component due to target motion during
sweeps and is generally assumed to be negligible. For the fast chirp ramp, theDoppler
shift between ramps is usually considered to be negligible. Therefore, range can be
estimated from the beat frequency as

fbeat = (2Rα)

c
(4.44)

R = c fbeat
2α

(4.45)

Range accuracy can be improved by taking the fd + fm component into consider-
ation. Traditionally, the range is computed by taking the FFT of the beat signal g(ts),
from which the frequency peak of each chirp corresponds to the approximated fbeat.

Using the time-shift property, the Fourier transform of g(ts) is given by

G( f ) = 1

4

(
ei2πmT fd

)
δ( f − fbeat) + 1

4

(
e−i2πmT fd

)
δ( f + fbeat) (4.46)

From the peak of FFT spectrum, the corresponding beat frequency fbeat can be
extracted while the phase at the peak frequency can be used to obtain the Doppler
frequency and its corresponding velocity.

Range Resolution and Maximum Range

The resolution depends only on the ramp chirp bandwidth B and can be expressed as

�R = c

2B
. (4.47)
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If N points are used to compute the FFT, then the maximum range can that can
be computed is given by

Rmax =
(
N

2

)
∗ �R = cN

4B
(4.48)

However, independent of FFT samples, the absolute maximum range depends on
the chirp period and is given by cT /2.

Example Given a sweep bandwidth BW of 4 GHz, the achievable range resolution
can be computed as follows:

�R = c

2B
= 3 × 108

2 × 4 × 109
= 0.0375 [m].

Table 4.1 gives typical values of BW and corresponding range resolution values.

Velocity Resolution and Maximum Velocity

According to Nyquist theorem, the maximum Doppler frequency depends on the
chirp period T and is given by

fdmax = 1

2T
. (4.49)

From the definition of Doppler frequency, the corresponding maximum velocity is
given by

fdmax = 1

2T
= 2 fcvmax

c
(4.50)

which results in

vmax = c

2T ∗ 2 fc
= c

4 fcT
. (4.51)

If there are a total of M chirp ramps in a single scan, the Doppler resolution is
� fd = 1

MT , and then the velocity resolution �v is given by

Table 4.1 Typical values of
range resolution and
corresponding maximum
range assuming 256 FFT
points

Bandwidth [GHz] DeltaR [m] Rmax (256 FFT points) [m]

0.48 0.3125 80.00

0.60 0.2500 64.00

1.00 0.1500 38.40

2.00 0.0750 19.20

4.00 0.0375 9.60
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�v = �v = c

2 fc
∗ 1

MT
= c

2 fcMT
. (4.52)

Increasing the number of ramp chirps M leads to improved velocity resolution.

Example Assuming 64 chirps in a single scan, a center frequency of 79 GHz and
chirp period of 40 µs velocity resolution can be computed as follows:

�v = 3 × 108

2 ∗ 79 × 109 ∗ 64 ∗ 40 × 10−6
= 2.23

[m
s

]
.
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Chapter 5
Radar Target Detection

5.1 Introduction

Target detection is one of the very first operations, which has to be performed on
received radar signal. The purpose of detection is normally to distinguish genuine
target reflections from noise and clutter. This chapter discusses the main concepts
and methods used for radar detection.

5.2 Target Models (Sterling 1–Sterling 4 Models)

The availability of a target’s radar cross-section (RCS) statistical characteristics could
significantly improve the performance of target detection algorithms.

For this purpose, Swerling [1] introduced the Swerling models, to describe the
statistical properties of the RCS of objects based of chi-square distribution of varying
degrees of freedom. Five different Swerling models numbered I through V exist and
are summarized below.

Swerling I

The target reflections in a single scan have a constant RCS magnitude σ , but it varies
from scan to scan according to the chi-square probability density function (PDF)
with two degrees of freedom. The PDF is given by the following expression.

f (σ ) = 1

σavg
e− σ

σavg , σ ≥ 0 (5.1)

where σavg is the mean value of RCS.

Swerling II

The PDF for the RCS is the same as Eq. (4.1) but is independent from pulse to pulse
instead of from scan to scan.
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Swerling III

The RCS has the same description as Swerling I, with the difference that there are
four degrees of freedom. The PDF is given by the following expression.

f (σ) = 4σ

σ 2
avg

e− 2σ
σavg , σ ≥ 0 (5.2)

Swerling IV

The RCS varies from pulse to pulse according to Eq. (5.2), instead of from scan to
scan.

Swerling V (Swerling 0)

The RCS is constant, which corresponds to infinite degrees of freedom.
The Swerling models are important in theoretical studies and also in the case

where a single target of predictable RCS behavior is under investigation. However,
in the case of multiple dynamic targets in clutter, determining detection thresholds
using the models could be challenging [2].

Summary of Swerling models I to IV

PDF Scan-to-scan fluctuations Pulse-to-pulse fluctuations

f (σ) = 1
σavg

e
− σ

σavg , σ ≥ 0 Swerling I Swerling II

f (σ) = 4σ
σ2avg

e
− 2σ

σavg , σ ≥ 0
Swerling III Swerling IV

The Swerling model can be integrated into the target detection probability as
follows. If the input signal to the threshold detector which consists of a signal com-
ponent of amplitude A embedded in Gaussian noise of variance ξ 2 is denoted by r(t),
the probability density function of r(t) can be expressed as

f (r(t)) = r(t)

ξ 2
I0

(
r A

ξ 2

)
e
− r(t)2+A2

2ξ2 (5.3)

where I0(·) is the zeroth-order modified Bessel function of first kind. The above
expression defines a Rician probability density function. In case of noise only, we
have,

f (r(t)) = r(t)

ξ 2
I0

(
r(t)A

ξ 2

)
e
− r(t)2

2ξ2 (5.4)

which is a Rayleigh distribution function. For large SNR, the Rayleigh approximates
to Gaussian distribution.
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f (r(t)) ≈ 1√
2ξ 2

e
− (r(t)−A)2

2ξ2 (5.5)

Probability of false alarm

For a given detection threshold Pthr, the probability of false alarm Pfa is given by

Pfa =
∞∫

Pthr

r(t)

ξ 2
e
− (r(t))2

2ξ2
d(r(t)) = e

− (Pthr)
2

2ξ2 (5.6)

From the above equation, the threshold can be expressed in terms of the probability
of false alarm as follows:

Pthr =
√
2ξ 2ln

(
1

Pfa

)
. (5.7)

Probability of detection

From the PDF of r(t), we can define the probability of detection as

PD =
∞∫

Pthr

r(t)

ξ 2
I0

(
r A

ξ 2

)
e
− r(t)2+A2

2ξ2 d(r(t)). (5.8)

Many approximations of the Pfa and PD are possible, and tables are available
from which the required SNR to achieve a given of Pfa and PD can be obtained [3].

The joint probability density function f (x, σ ) for target detection canbedefined as

f (x, σ ) = f (x/σ ) f (σ ). (5.9)

The probability of detection f (x) is given by

f (x) =
∫

f (x, σ )d(σ ) =
∫

f (x/σ ) f (σ )d(σ ) (5.10)

where the conditional probability density function f (x, σ ) is given by

f (x/σ) =
(
2xξ 2

Mσ 2

) M−1
2

e
(
−x− 1

2 ∗ Mσ2

ξ2

)
IM−1

⎛
⎝

√
2Mxσ 2

ξ 2

⎞
⎠ (5.11)

M is the number of integrated pulses. Performing integration of f (x) results in an
incomplete gamma function [4].

From the automotive perspective, an insight into the fluctuating target model can
be obtained from the results of an investigation of ground vehicles which consisted
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of a large van, large truck, mid-size sedan, and mid-size truck described in [5]. Swer-
ling I target behavior of ground vehicles was shown to be the most general case
for all dataset distributions and parameter variations, although angular variation was
limited. Additionally, Swerling III target behavior could be applied to about 90%
of the sampled data but dependence on radar resolution was identified to be a rele-
vant contributing factor. In conclusion, the choice of the Swerling model becomes
a design decision taking into consideration signal-to-noise ratio (SNR), probability
of detection, and probability of false alarm performance requirements, although the
recommended conservative approach is to use the Swerling I target model. Some
recent studies have also shown that, instead of the Gamma distribution used in Swer-
ling models, the Weibull distribution is the best fit for measured radar reflections
from a broad range of personal vehicle classes [6].

5.3 Peak Detection

Peak detection is necessary in order to select valid targets from received reflections
in the presence of noise and clutter. The frequency spectrum normally consists of
multiple peaks as shown in Fig. 5.1. For automotive applications, the task is made
more difficult by the fact that roadside obstacles and ground reflections make up the
received reflections. Various strategies with different degrees of success are available
for accomplishing the task of peak detection. In most cases, peak detection is per-
formed using Range–Doppler profiles obtained by DFT of the received reflections.

In the following subsections, we give a brief description of the theoretical back-
ground behind detection methods.

Fig. 5.1 An illustration of typical range spectrum obtained after FFT. The peak detection task is
to extract target peaks, 4 in this case, and avoid peaks from the noise floor
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5.3.1 Fixed Threshold

The threshold detector (Neyman–Pearson detector) is simplest method that can be
used for peak detection. In this case, a predetermined threshold is set such that any
target returns exceeding that threshold are considered valid. If the received signal is
composed of target reflections s(t) and noise n(t), with the threshold set to Pthr, then
the detection rule can be expressed as follows:

s(t) + n(t) ≥ Pthr , TrueDetection (5.12)

n(t) ≥ Pthr, FalseAlarm (5.13)

The meaning is that a false alarm occurs when target presence is decided when
in actual fact only noise exists. The above expressions are true for non-fluctuating
targets of identical reflectionmodels but failswhen amixture of different targets exists
in radar’s field of view. Additionally, target reflection characteristics are affected by
range, angle, size, and other factors such target shape. Therefore, multiple thresholds
will be needed to cover such scenarios. For this reason, adaptive detection thresholds
have been the subject of research for a long time.

5.3.2 Multi-cell Thresholding

Multi-cell thresholding techniques are necessary for dealingwith caseswhich arise in
practice where the computed DFT power spreads to adjacent range or Doppler bins.
In this situation, it is desirable to detect only a single peak from such a group of bins.
The strategy is simply to compare consecutive bins and make a detection decision
when there is a change in gradient on either side of the bin under consideration.
Using range bins as an example, the assumption here is that targets can be resolved
if they are separated by at least one range bin. The drawback of this approach is that
some targets exhibit fluctuating behavior around the peak which could in turn lead
to detection of multiple targets when in fact only a single target exists. Moreover,
without imposing as second threshold for noise, there is a possibility that noise could
lead to excessive false alarms.

5.3.3 Constant False Alarm Detection (CFAR)

In order to address the issues associatedwith fixed thresholding andmulti-cell thresh-
olding, the CFAR approach has been applied with some measure of success [7]. It
should be borne in mind that this approach doesn’t come at no cost. In radar applica-
tions to automotive, besides radar size, computation cost ismajor issue. The increased
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performance of the detection algorithm demands an increase in computation speed
and device memory for every scan [8]. A trade-off between performance and cost
has to be made. In this section, we briefly outline some of the important CFAR
algorithms.

False alarm refers to false detection of targets from radar returns. It is traditionally
computed by estimating the number of target detections when only noise is present
in all range cells.

It is desirable to keep the false constant because detection algorithms are very
sensitive to noise and clutter which is almost always present in received radar returns.
Therefore, the general objective of all radar detection schemes is to ensure that false
alarms do not fluctuate randomly. During the detection process, each cell/bin is
evaluated for the presence or absence of a target using a threshold. It is beneficial to
be able to detect both high- and low-fidelity targets while maintaining constant false
alarm rate. This calls for an adaptive thresholding method, and most modern radars
take this approach [9]. Among the most commonly used variations of the basic
CFAR methods are cell-averaging CFAR (CA-CFAR), cell-averaging greatest-of
CFAR (CAGO-CFAR), cell-averaging smallest-of CFAR (CAGO-CFAR), CA order
statistic CFAR (CAOS-CFAR), cell-averaging statistic Hofele (CASH-CFAR), and
max–min statistic CFAR (MAMIS-CFAR).

CFAR

The CFAR principle dates back to the late 1960s [9]. Solutions to the false alarm
problem involve implementation of constant false alarm rate (CFAR) schemes that
vary the detection threshold as a function of the sensed environment. While there
exists a large number of types of CFAR circuits, they are usually based around the
“background averager” (sometimes referred to as cell-averagingCFAR).A simplified
block diagram is shown in Fig. 5.2.

This circuit estimates the level of interference (noise or clutter) in radar range
cells on either side of a range cell and uses this estimate to decide if there is a target
present in the cell of interest in the center. The process steps out one cell in range
and is repeated until all range cells have been investigated.

The basic idea behind the circuit is that when noise is present, the cells around
the cell of interest will contain a good estimate of the noise in the tested cell; i.e., it
is assumed that the noise or interference is spatially or temporarily homogeneous.
Theoretically the circuitwill produce a constant false alarm rate,which is independent
of the noise or clutter level so long as the noise has a Rayleigh distribution in all
range cells investigated by the circuitry.

Cell-Averaging CFAR (CA-CFAR)

In this approach, depicted in Fig. 5.3, rather than taking a single fixed value, the
threshold is computed by taking the average power of the cells around the cell under
test (CUT). The CUT is the cell for which the presence or absence or a target is to be
determined. To make sure that the CUT does not influence the threshold calculation,
cells immediately around the CUT are excluded from the computation. These cells
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(a) 1D CFAR 

(b) 2D CFAR 

Fig. 5.2 An example of cells used for a 1D CFAR and b 2D CFAR. CUT is the cell under test. The
cells in the region label G are the guard cells, while those in the region labeled R are the reference
cells

Fig. 5.3 Principle of CFAR detector. A multiplication α and an offset β are used to adjust the
average value
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are referred to as guard cells. For the 1D case, the guard cells are to the left and right
of the CUT, while for 2D case, they form a ring around the CUT.

A target is judged present in the CUT if its power is both greater than that of all
the guard cells and also greater than the computed average power level.

Cell-Averaging Greatest-Of CFAR (CAGO-CFAR)

This is a variation of CA-CFAR in which for the 1D case, the averaging is performed
separately for the left- and right-side cells. The threshold is then simply the max of
the two results. This method is illustrated in Fig. 5.4.

The average value used for threshold computation is determined as follows.

Taver = MAX

(
1

N

N∑
i=1

xi ,
1

M

M∑
i=1

yi

)
(5.14)

The advantage of this approach is simplified and reduced computation and
improvement in target detection performance in some cases. The notable disad-
vantage is the inability to correctly detect masked targets, but this applies to all
CA-CFAR variants.

Cell-Averaging Smallest-Of CFAR (CASO-CFAR)

This is similar to CAGO-CFAR except that the minimum instead of the maximum
is computed. As can be imagined, this has the effect of increasing detection of low-
power masked targets at the risk of in increased misdetections. Figure 5.5 shows how
the detector works.

The average value used for threshold computation is determined as follows.

Taver = MIN

(
1

N

N∑
i=1

xi ,
1

M

M∑
i=1

yi

)
(5.15)

Fig. 5.4 Principle of CAGO-CFAR detector. A multiplication α and an offset β are used to adjust
the average value
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Fig. 5.5 Principle of CASO-CFAR detector. A multiplication α and an offset β are used to adjust
the average value

Cell-Averaging Ordered Statistic CFAR (CAOS-CFAR)

Instead of getting averages as in other variants of CFAR, CAOS-CFAR computes
the order statistic of the reference cells [10]. The rank in the order statistic is pre-
determined, and threshold average value can be selected by taking the rank for all
the values or by CAGO-CFAR/CASO-CFAR when the left and right sides are con-
sidered separately. An improvement in performance is achieved for masked targets.
However, the required sorting of cells greatly increases the computational complex-
ity, making it difficult to implement in automotive applications. The circuit diagram
of this method is shown in Fig. 5.6.

For any set of values {a1, a2, . . . , an}, the order statistic operation first sorts the
values into a sequence {a(1), a(2), . . . , a(n)} from which the kth value is selected.

Fig. 5.6 Principle of CAOS-CFAR detector. A multiplication α and an offset β are used to adjust
the average value
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Fig. 5.7 Principle of CASH-CFAR detector. A multiplication α and an offset β are used to adjust
the average value

Cell-Averaging Statistic Hofele (CASH-CFAR)

The cell-averaging statistic Hofele CFAR (CASH-CFAR), illustrated in Fig. 5.7,
is based on a series of summating elements associated with each range cell and a
specific maximum–minimum detector [11–13]. It utilizes a series of subregisters
to perform summations from which the minimum is selected. This is then treated
just like the average value from CA-CFAR. The advantage of the CASH-CFAR
algorithm is reduced computation load compared to CAOS-CFAR while achieving
similar performance.

Maximum–Minimum Statistic CFAR (MAMIS-CFAR)

TheMaximum–MinimumStatistic CFAR (MAMIS-CFAR) is built on the same prin-
ciple as CASH-CFAR, with the difference being the use of special maximum–mini-
mum detector instead of summation blocks of the CASH-CFAR algorithm.

Although a variety of other CFAR algorithms such as the MAMIS and CASH
have been proposed in the literature, CA-, CAGO-, CASO, and CAOS-CFAR remain
the most popular and well-understood methods. As previously mentioned, compu-
tational complexity and other considerations may prevent the use of these more
robust algorithms in favor of simple thresholding techniques, especially in automo-
tive applications. Nevertherless, with the increasing prospect of reduction in hard-
ware cost and availability of high-speed processors, the drift to high-performance
algorithms is inevitable.
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Chapter 6
Direction of Arrival (DOA) Estimation

6.1 Introduction

The importance of DOA estimation in radar processing for automotive applications
cannot be overstated. It forms the third component of the radar cube: range, velocity,
and angle. In practice, DOA estimation is often complicated by the fact that there
will be multiple and unknown number of source signals impinging on the receiver
array at the same time, with unknown amplitudes. Additionally, the received source
signals are almost always corrupted by additive noise and clutter is present. Besides
these challenges, we also have to deal with the multipath problem. Although the task
of DOA estimation is not an easy one, there are several methods in the literature,
developed over a period spanning more than 50 years, that can be used to estimate
the number of source signals and their directions. The aim of the chapter is to give
some of the actively and continuously researched methods in DOA estimation that
are a key part of automotive radar algorithms. However, it is not the intention of this
chapter to cover a detailed analysis of each and every method but to give a good
insight into the strengths and the limitations of the most popular methods.

6.2 Classification of DOA Estimation Methods

The DOA methods can be broadly classified into quadratic, linear prediction, and
subspacemethods [1]. Examples include digital beamformingwhich can be classified
as a quadratic method, forward–backward linear prediction and MUSIC which is
a subspace method.
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6.3 Approaches to DOA Estimation

There are several ways of performing DOA estimation. The methods shown in
Table 6.1 have been widely used and research on improvements is currently ongoing.

Comparisons of these methods from a performance and an application point of
view in various journals, conference proceedings, etc., have continuously been made
until recently [2–4].

Even with advances in technology, there seems to be no magic method that solves
the resolution, complexity, and robustness matrix. In automotive applications, the
requirements placed on these methods are made even more difficult by limitations
on antenna size and placement.

6.3.1 Signal Model

For every method, a signal model needs to be defined. Consider a radar system
consisting of an array of M sensors (antennas elements) onto which signals from K
sources (targets) are received. The received signals can be expressed as

X(t) = A(θ)s(t) + N(t), (6.1)

where X(t) = [x1(t), . . . , xM(t)]T is theM × 1 received sensor data vector, A(θ) =
[a(θ1), . . . , a(θK )] is the M × K manifold matrix (also referred to as the steering
matrix), s(t) = [s1(t), . . . , sK (t)]T the K x 1 source signal vector and N(t) =
[n1(t), . . . , nM(t)]T represents the M x 1 sensor noise vector of variance σ 2. The
manifold matrix is made of steering vectors defined as

a(θi ) =
[
1, e− j2πd sin(θi )

λ , . . . , e− j2πd(N−1) sin(θi )
λ

]T
(6.2)

where d is the antenna element spacing (considering a ULA = see figure), λ is the
wavelength of propagating signals, θi is the direction (angle) of arrival of the signal
from the ith source. “T” denotes the transpose operation. The signalmodel is depicted
in Fig. 6.1.

In some methods such as DBF and Capon where optimization of weights is
required, it is important to consider weighted output of the sensors as will be shown

Table 6.1 Categorization of popular methods used for DOA estimation

Classification Methods

Quadratic Maximum Likelihood (IQML, MODE), DBF, Capon, etc.

Linear Prediction (LP) Forward–Backward LP, Maximum Entropy

Subspace MUSIC, Root-MUSIC, ESPRIT, WSF, Minimum Norm, PHD, etc.
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Fig. 6.1 An illustration of the signal model. The direction of arrival θ corresponds to any of the
source directions θi and d is the antenna element spacing. Theminimumnumber of antenna elements
is two

the following sections. In that case, theweighted linear combination of sensor outputs
can be expressed as follows:

y(t) =
M∑

m=1

w∗
i xi (t) = wHX (6.3)

where w∗
i is the weight for the ith sensor. The, asterisk (*) denotes complex conju-

gation while and H denotes is the conjugate or Hermitian transpose.
The output power, P(w), of the sensor array can be expressed as follows:

P(w) = E
[|y(t)|2] = wH E

[
XXH

]
w = wH Rw, (6.4)

where E[·] denotes the expectation operation, where R denotes the input signal
covariance matrix.

6.3.2 DOA Estimation Methods

In the following sections, we give details of computation involved in various popular
DOA methods.

Digital Beamforming (DBF)

The DBF algorithm maximizes the output power in a specific direction by optimiz-
ing the weight vector [5]. The optimum weight vector is given by the following
expression.
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wopt = a(θ)√
aH (θ)a(θ)

(6.5)

Substituting the optimum weight vector into Eq. (6.4) gives the DBF power spec-
trum as follows.

PDBF(θ) = aH (θ)Ra(θ)

aH (θ)a(θ
(6.6)

Properties

The DBF has low computation complexity since it only requires the estimation
of covariance matrix R of the received data vector. By creating a steering vector at
equally spaced angles in the desired interval, the angle corresponding to themaximum
power can be extracted as the DOA.

The DBF is known for it’s inability to resolve closely spaced targets. However, it
can be used as the first step to narrow the target range for high-resolution methods.

Capon

The Capon algorithm aims to maintain constant gain for signals arriving from a
specific direction while giving smaller weight to noise [6]. It is an alternative to
maximum likelihood methods that is used to solve for the minimum variance dis-
tortionless response (MVDR) of an array such that the signal to interference ratio is
maximized. The optimization problem can be expressed as

min(P(w)) subject to wH a(θ) = 1. (6.7)

The resulting optimum weight vector is given by

wopt = R−1a(θ)

aH (θ)R−1a(θ)
. (6.8)

Substituting the optimum weight vector into Eq. (6.4) gives the Capon power
spectrum as follows.

PCapon(θ) = 1

aH (θ)R−1a(θ)
(6.9)

Properties

The Capon method gives superior performance to the DBF in terms of resolving
closely spaced targets [3]. Additionally, the major computation is the determination
of the inverse covariance matrix from the data. This makes it very attractive in many
situations where high resolution is a requirement. It is also worth noting that both
Capon ad DBF do not require prior knowledge of the number of signal sources. The
DOA and power of the source signals can be simultaneously estimated. The ability
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of Capon to separate multiple targets is only limited by SNR and receiver array size
which is a common restriction for most high-resolution DOA methods.

The downside of the Capon method lies in the need to stabilize the computa-
tion. Determination of the inverse of nearly-singular covariance matrix is not trivial,
especially in automotive applications where the received signals are degraded by
both noise and clutter. Due to the limited aperture of the antenna, the covariance
matrix cannot be reliably computed without some form of regularization as part of
pre-processing. This hurdle in the computation of the covariance matrix, however,
does not deter the use of Capon. Of course, some preprocessing techniques have to
be applied as mentioned above.

Multiple Signal Classifier (MUSIC)

MUSIC takes the subspace approach to the DOA estimation problem [7]. It utilizes
eigen-decomposition as the main tool. The theory behind eigen-decomposition can
be found in [8]. Here, we give the main points.

The main assumption behind subspace methods is that the signal and noise sub-
spaces are orthogonal. Using the orthogonality principle, a pseudo-spectrum can be
computed.

The covariance matrix can be separated into the signal and noise components.
By definition, R = E

[
XXH

]
and can be written as

R = E
[
(A(θ)s(t) + N(t))(A(θ)s(t) + N(t))H )

]

= A(θ)E
[
s(t)sH (t)

]
A(θ)H + E[N(t)(N(t))H

= A(θ)Rs A(θ)H + σ 2 I, (6.10)

where Rs is the unobserved source signal covariancematrix and I denotes the identity
matrix. For simplicity, explicit dependency on time t in Eq. (6.10) has been omitted. It
can be observed that the covariance matrix can be separated into the signal subspace
and the noise subspace that is independent of θ .

Through eigen-decomposition, the covariance matrix R can be decomposed into
matrices of eigenvectors and eigenvalues as follows.

Since the signal subspace is of size K, thenM − K eigenvalues of R belong to the
noise subspace. If ui is an eigenvector of R, then we can write

Rui = (
A(θ)Rs A(θ)H + σ 2 I

)
ui = λiui (6.11)

where λi , i = 1, . . . , M, is the ith eigenvalue of R. The eigenvalues of R can be
partitioned into λi = σ 2

i + σ 2 for i = 1, . . . , K and λi = σ 2 for i = K + 1, . . . , M .
Since Rs is positive-definite, we can write

uH
i

(
A(θ) Rs A(θ)H

)
ui = 0, i = K + 1, . . . , M (6.12)

(
A(θ)H

)
ui = 0, i = K + 1, . . . , M (6.13)
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(
a(θk)H

)
ui = 0, k = 1, . . . , K , i = K + 1, . . . , M. (6.14)

From Eq. (6.14), the MUSIC algorithm finds angles θk for which the signal sub-
space is orthogonal to noise subspace.

The eigenvectors of the noise subspace are defined by

U N = [
uK+1, . . . , uM

]
. (6.15)

Based on Eq. (6.15), the MUSIC pseudo-spectrum can be computed using the
following expression.

PMUSIC(θ) = 1

aH (θ)U NUH
N a(θ)

(6.16)

Properties

The MUSIC algorithm is one of the high-resolution techniques for DOA estimation.
It is capable of reliably resolving targets with angular separation of as low as 1°
from severely degraded received signals with very few spurious peaks in the pseudo-
spectrum. Since MUSIC computes the pseudo-spectrum of the received signal, it
cannot be used to estimate the power of the signal sources. For power estimation,
DBF or Capon can be used in conjunction with MUSIC. By increasing the number
of snapshots used for spectrum estimation, the ability of MUSIC to separate multiple
targets can be improved.

Despite the high performance, MUSIC requires prior knowledge of the size of
the signal subspace. It also depends on eigen-decomposition which requires high
computational complexity.

Root-MUSIC

This is aMUSIC algorithmvariantwhereDOAestimation performed byfinding roots
of a polynomial [9]. The denominator of PMUSIC(θ) in Eq. (6.16) can be expressed
as a polynomial P(z) such that

P(z) = aH (θ)U NUH
N a(θ) (6.17)

where

a(θ) = [
1 z1 z2 . . . zM−1

]T
(6.18)

and

z = e− j2πd
λ

sin(θ). (6.19)

We can therefore expand P(z) into a polynomial of the form
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P(z) =
M−1∑

k=−M+1

Ckz
k . (6.20)

Under ideal conditions, the roots of P(z) would be on the unit circle, with angles
corresponding to the DOA of the received signals. In real situation, the presence of
noise results in a shift of the amplitudes from the unit circle. Therefore, the roots
of P(z) that lie closest to the unit circle can be taken to be the poles of the MUSIC
pseudo-spectrum. The roots can be written as

zk = |zk |earg(zk ). (6.21)

From the roots with magnitude closest to 1, the DOA can be estimated as

θk = sin

(
λ

2πd
arg(zk)

)
, k = 1, . . . , K . (6.22)

Properties

The Root-MUSIC has similar performance to MUSIC. It could give better perfor-
mance in some certain situations where phase noise is a concern. As with other
subspace algorithms, it is still necessary to know the number of sources in advance.
In severe situations of noise and clutter, the magnitudes of the roots could fall far
from the unity circle, making it difficult to extract the roots of interest.

Estimationof SignalParameters viaRotational InvarianceTechnique (ESPRIT)

ESPRIT is a subspace method that takes a different approach from MUSIC in that
it decomposes the array into two sub-arrays, displaced by a known vector, from
which the DOA can be estimated without the computationally expensive peak search
procedure [10]. An illustration of the displacement of a single array into two sub-
arrays is shown in Fig. 6.2. It should be noted that physically a singleULAarray exists
from which sub-arrays are created. ESPRIT also places less burden on calibration
task by relaxing antenna geometry in that the sub-arrays need not be of identical
antenna elements and that their physical positions can be arbitrarily chosen [1].

For the two sub-arrays of size M denoted by x and y, the received data vectors
can be formulated by the following equations

x(t) =
K∑
i=1

a(θi )si (t) + nx (t) = As(t) + nx(t)

y(t) =
K∑
i=1

a(θi )e jγi si (t) + nx (t) = A�s(t) + ny(t) (6.23)

where γi = ω0�
c sin θi , 	 = diag

(
e jγ1 , . . . , e jγK

)
, c is the speed of light, ω0 is the

center frequency and � is translational displacement between the two arrays. The
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(a) Original array. 

(b) Two sub-arrays.   

Fig. 6.2 An illustration of two four-element sub-arrays with displacement 2d formed from a six-
element ULA with an element spacing is of d

diag(·) operator converts the sequence into a diagonal matrix. The manifold matrix
A is of size M × K. ESPRIT aims to estimate the DOA from the rotation operator
	. This can be accomplished by first defining a 2M × 1 vector z(t) such that

z(t) =
[
x(t)
y(t)

]
=

[
A
A�

]
s(t) +

[
nx(t)
ny(t)

]
= Az s(t) + nz(t). (6.24)

The covariance matrix of z(t) is given by

Rz = E
[
z(t)z(t)H

] = AzRs A
H
z + σ 2 I . (6.25)

Eigen-decomposition of Rz results in eigenvectors with signal subspace of size
K and noise subspace of size 2N − K. Assuming K ≤ M , and denoting the denot-
ing the 2N × K signal subspace eigenvectors as Es, it is known from generalized
eigen-decomposition that Es and Az have the same span. There exists a nonsingular
transformation matrix T such that

Es = AzT . (6.26)

In addition, Es can be partitioned into Ex and E y of rank K as follows

Es = AzT =
[

A
A�

]
T =

[
AT
A�T

]
=

[
Ex

E y

]
. (6.27)

Defining a matrix of Exy = [
Ex E y

]
of size N × 2K and rank K, there exist a

2K × K matrix F such that
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0 = ExyF = [
Ex E y

][ Fx

F y

]

Ex Fx + E yF y = AT Fx + A�TFy = 0

A�T = −AT Fx F−1
y . (6.28)

The above expression means that F spans the null-space of
[
Ex E y

]
since we are

working on the assumption that K ≤ M . Since T is full column rank, its inverse
exist, leading to

A� = −AT Fx F−1
y T−1

� = T Fx F−1
y T−1 = TψT−1 (6.29)

where ψ = −Fx F−1
y .

The eigenvalues of ψ are equal to the diagonal elements of � from which the
DOA can be estimated. The presence of noise and calibration errors in measurements
usually leads to the TLS method being used for DOA estimation from �.

TLS ESPRIT

The TLS algorithm can be summarized by the following steps.

1) Compute an estimate of Rz from measurements.
2) Perform generalized eigen-decomposition of Rz to get RzEz = 
zEz�z .

3) Estimate the signal subspace size K.
4) Estimate Es and decompose into Ex and E y.
5) Define the matrix ED and perform eigen-decomposition as follows:

ED =
[
EH
x

EH
y

][
Ex E y

] = E�EH (6.30)

6) Partition the E into 4K × K matrices as follows

E =
[
E11 E12

E21 E22

]
(6.31)

7) Calculate the eigenvalues of ψ = −E12E
−1
22 to obtain

φ̂k = λk(−E12E22), k = 1, . . . , K (6.32)

8) The DOA estimates are obtained using

θ̂k = sin−1

⎛
⎝c

arg
(
φ̂k

)

ω0�

⎞
⎠ (6.33)
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where the eigenvalues are extracted from ψ as explained above.
Several variations and improvements of the ESPRIT algorithm such as unitary

ESPRIT and Beamspace ESPRIT exist in the literature and whose details can be
found in [1].

Properties

As outlined above, ESPRIT has advantages associated with not requiring the exhaus-
tive peak search in order to determine the DOAs. Therefore, it is more attractive in
terms of computational complexity. However, the requirement of additional sensors
could result in noisy DOA estimates. As with all algorithms, the key to performance
lies in the ability to accurately estimate the covariance matrix. The covariance esti-
mate can be improved with the availability of more sensors.

6.3.3 Spatial Smoothing

As can be observed from the above algorithms, estimation of the covariance matrix
R is a key component of the DOA estimation process. The size of the correction
relation matrix is determined by the size of the received data vector size which in
turn depends on the length of the receive antenna array. For example, in automotive
radar applications, receive antenna array sizes of less than 10 elements are commonly
used due to limitations placed on the radar sensor size. Typically, the number of
the antenna elements can be small as four elements. The data received from these
elements is the input to the covariance matrix estimation method. In most cases,
in order to reduce computational complexity, the received signal is transformed to
the frequency domain by discrete Fourier transformation which is almost always
implemented by FFT algorithm.

For eigen-based algorithms, the DOA estimation is only possible if the covariance
matrix is nonsingular, whichmeans the signals are non-coherent or uncorrelated [11].
The source of coherence is due to natural propagation characteristics like multipath,
or it could be a result of artificial signals like jamming.Onemethodused todecorrelate
the signals is spatial smoothing (SS). Spatial smoothing is accomplished by first
dividing the antenna array into sub-arrays from an average covariance matrix can be
computed. Assuming that the array can be divided into M sub-arrays and denoting
the covariance matrix computed from each sub-array as R f

m , m = 1, …, M, and
the superscript indicates computation in the forward direction, i.e., in increasing
element number as shown in Fig. 6.3, we can compute the covariance matrix using
the following expression.

R f
SS = 1

M

M∑
m=1

R f
m . (6.34)



6.3 Approaches to DOA Estimation 75

Fig. 6.3 Illustration of sub-array construction for spatial smoothing processing

The spatially smoothed covariancematrix R f
SS can be used to compute eigenvalues

and eigenvectors for DOA estimation. If the number of elements in the sub-array is
p, then the number of sub-arraysM = N – p+ 1. In order to detect K sources, pmust
be greater must be at least K + 1. The minimum number of elements required will
be 2K. Therefore, spatial smoothing effectively reduces the number of detectable
targets by half. For an N-element array, up to N − 1, targets can be detected without
spatial smoothing in the non-coherent case compared to N /2 for the coherent case.
This means that for a fixed number of array elements, a trade-off has to be made
between the number of sub-arrays and detectable targets.

As an improvement on spatial smoothing the target detection problem, for-
ward–backward spatial smoothing (FBSS) was proposed in [12]. As the name sug-
gests, the FBSS method averages the covariance matrices computed in the forward
direction as described in the SS method, and covariance matrices computed from
N th element back to the first element. The backward computation can be efficiently
accomplished by using the exchange matrix, J. The overall covariance matrix RFBSS

is calculated using the following expression.

RFBSS = R f
SS + J(R f

SS)
H J

2
(6.35)

where

J =
⎡
⎢⎣
0 · · · 1
...

. . .
...

1 · · · 0

⎤
⎥⎦. (6.36)

For an N-element array, the number of coherent sources that can be detected
increases to 2N/3.

Example As examples of DOA estimation, we consider three of widely used meth-
ods: DBF, Capon, and MUSIC.
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The following system parameters are used:

Speed of light, c: 3.0e8 [m/s]
Center frequency, f0: 77.5e9 [Hz]
Number of ULA antenna elements, N: 5
Antenna separation, d: 0.5 * λ, (λ is the wavelength)
Number of sources, N: 2
Direction arrival of source 1, theta1: −10 [deg], −2 [deg]
Direction arrival of source 2, theat2: +10 [deg], +2 [deg]
Noise variance: 0.015.

Spatial smoothing is applied to the covariance matrix using sub-arrays of four-
element length.

This gives two sub-arrays in total for averaging. The simulation results are shown
in Figs. 6.4, 6.5 and 6.6.

The results illustrate that the subspace approach, MUSIC, gives sharper spectral
picks than the more conventional DBF and Capon methods. When the sources are
closer together at−2 [deg] and +2 [deg],MUSIC resolves them better than both DBF
and Capon as shown in Figs. 6.7, 6.8 and 6.9.

Fig. 6.4 DOA estimation by the DBF method with sources two at −10 [deg] and +10 [deg] using
a five-element ULA antenna
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Fig. 6.5 DOA estimation by the Capon method with sources two at−10 [deg] and +10 [deg] using
a five-element ULA antenna

6.3.4 Other DOA Algorithms

Besides the algorithms given above, some other algorithms such asML, LP, andWSF
exist [1]. However, the stability and computational complexity issues make them
difficult to apply in automotive applications. This does not necessarily mean that
these algorithms are inferior but they are limited by currently available technology
to be used in real-time situation. Some recent methods like propagator method avoid
eigen-decomposition altogether and instead employ least squares methods which
makes them worth exploring [13, 14]. We briefly explain some of these algorithms
below.

Minimum Norm Method

The minimum norm method is one of the oldest high-resolution methods for DOA
estimation [15]. From the estimated covariance matrix R, singular value decompo-
sition (SVD) is performed to obtain the matrices U, S, and V. The noise subspace
eigenvectors are extracted as EN = U (:, K + 1 : N ), which means all columns of
U from the (K + 1)-th to the N th column. The spectrum is constructed based on the
minimum norm vector lying in the noise subspace whose first element equals 1. The
spectrum is computed from the following expression:
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Fig. 6.6 DOA estimation by the MUSIC method with sources two at −10 [deg] and +10 [deg]
using a five-element ULA antenna

PMinNorm(θ) = 1∣∣a(θ)EN EH
N u

∣∣2 , (6.37)

where u = [1 0 0 . . . 0]T and a(θ) is the steering vector as previously defined.
Since the minimum norm method belongs to eigen-based approaches, it can-

not be used to reliably estimate the power of source signals. It is primarily used
for DOA of estimation. Information about the number of sources must be known
beforehand. Estimation of DOA in degraded environments is possible, but there is
an increased tendency of obtaining spurious peaks in the spectrum.

Maximum Entropy Method (MEM)

The MEM is spectral estimation method based on the extrapolation of the auto-
correlation function that aims at maximizing the signal entropy (“uncertainty”), by
using autoregressive (AR) coefficients [16]. The AR coefficients, a, minimize the
prediction error, i.e.,

a = argmin
{
aH R

}
, (6.38)
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Fig. 6.7 DOA estimation by the DBF method with sources two at −2 [deg] and +2 [deg] using a
five-element ULA antenna

subject to the constraint that aHe1 = 1 where e1 = [1 0 . . . 0]T. Details of other
noise-robust methods of estimating AR parameters can be found in [17]. Using
Lagrange method, the AR coefficients can be computed as

a = R−1e1
eT1 R

−1e1
. (6.39)

The spectrum estimation is performed using

PMEM(θ) = 1∣∣a(θ)HC j

∣∣2 , (6.40)

whereC j represents the jth columnof the inverse of the covariancematrix.The choice
of j is arbitrary and affects performanceof theMEM.The relationship between theAR
parameters and spectral estimates is based on the assumption that the autocorrelation
function exists and that the extrapolation is valid. There are some issues with the
validity of these assumptions which have been outlined in [16]. The MEM could be
very difficult to extend to multi-dimensional DOA estimation problems.
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Fig. 6.8 DOA estimation by the Capon method with sources two at −2 [deg] and 2 [deg] using a
five-element ULA antenna

Linear Prediction

The linear prediction (LP) method is widely used in audio and speech processing
[15, 18]. The idea behind LP is the minimization of mean output power subject to
the constraint that the weight of an arbitrarily selected element of the array is unity.
The array weight vector is given by

w = R−1u

uH R−1u
, (6.41)

where u is ith column vector of an N × N identity matrix which corresponds to the
ith selected element of the array. The power spectrum can be computed using the
expression

PLP(θ) = uH R−1u∣∣uH R−1a(θ)
∣∣2 . (6.42)

The LP method’s performance is degraded by the presence of noise and usually
works well when SNR to high.
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Fig. 6.9 DOA estimation by the MUSIC method with sources two at −2 [deg] and 2 [deg] using
a five-element ULA antenna

Propagator Method

The propagator method (PM) is based on a linear operator which can be easily
extracted from the receiver data matrix by partitioning the manifold matrix. It is not
necessary to apply eigen-decomposition or SVD to the covariance matrix in order to
estimate the DOA. The direction of arrival estimation can be formulated as follows.
The manifold matrix is partitioned such that we have

A = [A1 A2]
T, (6.43)

where A1 is an K × K matrix and A2 is an (N − K) × K matrix. The matrix A2 is a
linear transformation of A1 and it is assumed that A1 is non-singular. The relationship
between the sub-matrices is given by

A2 = PH A1 (6.44)

where P is referred to as the projector matrix. From the projector matrix, a matrix Q
can be constructed such that

Q = [
PH − I N−P

]
(6.45)
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where I is identity matrix. Since QH A = 0, a pseudo-spectrum can be extracted as
from the relationship below:

P(θ) = 1∣∣a(θ)QQHa(θ)
∣∣ . (6.46)

As in MUSIC, the peaks in the pseudo-spectrum correspond to angles of arrival
of the received signals.

The projection matrix P is estimated from the covariance matrix R = E
[
XXH

]
.

The covariance matrix is then portioned into two matrices such that

R = [R1 R2]. (6.47)

In the case of zero-noise received signal, the projection matrix is computed from

R2 = PH R1. (6.48)

In the presence of noise, which is the normal case, the least squares method can be
used to estimate the projection matrix by minimization of the from Frobenius norm
‖R2 − PH R1 F‖. This results in the expression:

PH = R2
(
RH
1 R1

)−1
RH
1 . (6.49)

Weighted Subspace Fitting (WSF)

In subspace methods like MUSIC, the covariance matrix R has to be estimated from
limited data. This results in the violation of the orthogonality assumption between
signal and noise subspace. The weighted subspace tries to overcome this limitation
by using least squares approach for subspace estimation.

The weighted subspace fitting framework can be expressed as [19, 20]

[
Â, T̂

]
= argmin

A,T

∥∥MW 1/2 − A(θ)T
∥∥2

F , (6.50)

whereW is a positive-definite weightingmatrix, the subscript “F” denotes the Frobe-
nius norm. After some manipulation, the problem reduces to

θ̂ = argmax
θ

Tr{P A(θ) ÊsW Ê H
s }, (6.51)

where P A = A
(
AHA

)−1
AH is the projection matrix that projects on the column

space of A, Tr denotes trace of the matrix, and Ês is an estimate of the signal
subspace eigenvectors. The matrix M representations of the data can be chosen in
different ways leading to different cost functions. T represents a measure the degree
of matching between A and M. For example, the choice M can lead to the WSF,
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multi-dimensional MUSIC, weighted ESPRIT, etc. For WSF, the M is chosen to be
ÊsW

1/2
opt , where the optimumweighting matrix is computed via eigen-decomposition

of the covariancematrix into the signal and noise subspaces resulting in the following
expression

R = Es�sEH
s + En�nEH

n . (6.52)

The estimate of W opt is given by

W opt =
(
�̂s − σ̂ 2 I

)2
�̂−1

s , (6.53)

where σ̂ 2 is an estimate of the noise variance which can be computed by averaging
the noise subspace eigenvalues. For further details, refer to [20].

6.3.5 Multi-dimensional DOA Algorithms

In this chapter, we have mainly focused on one-dimensional (1D) algorithm for DOA
estimation. In automotive applications, it is normally of great interest to perform
multi-dimensional DOA estimation for a number of reasons. These include among
others the increasing necessity to measure the height of on-road objects and road
infrastructure such as pedestrian, vehicles and bridges in a dynamic way. Normally,
it is sufficient to estimate azimuth DOA by 1D technique outlined in the preceding
sections in order to fix the object position. With the need for elevation angle added,
it becomes necessary to employ 2D DOA estimation algorithms. There are two
approaches available. The first approach is to perform 1D DOA separately in both
the azimuth and elevation directions as illustrated in Fig. 6.10. The advantage of this

Fig. 6.10 Illustration of 1D approach to 2D DOA estimation
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Fig. 6.11 Illustration of 2D approach 2D DOA estimation

approach is that already tested and trusted 1D algorithms can be handily used. The
downside is that it becomes necessary to perform pairing of the estimated azimuth
and elevation angles, which is not a trivial task and could lead to mispairing and
wrong position estimation, which could in turn result to be fatal accidents. On the
other hand, the second available option is to use 2D DOA algorithms from which
direct extraction of both azimuth and elevation angles is possible without pairing as
illustrated in Fig. 6.11. These algorithms already exist in the form of 2D DBF, 2D
MUSIC, 2D ESPRIT, etc. The downside is the increased computation load required
by the algorithms. The increased computation complicates real-time implementation
and antenna design as well. However, given the choice, one would prefer the 2D
algorithm and find strategies to optimize computation.

6.3.6 Recent Approaches to Estimation

The number of targets that can be reliably separated is limited by the array aperture,
or simply stated, by the number of antenna elements. However, increased aperture
increases the size of the antenna, which is undesirable from cost and vehicle integra-
tion point of view. To overcome the aperture problem, virtual array processing has
been recently studied as a possible solution [21]. The idea is to use multiple transmit
antenna to expand the array aperture as illustrated in Fig. 6.12. By appropriate choice
of transmit antenna separation based on the receiver antenna element spacing, the
number of virtual array antenna elements can be increased to Ntx ∗ Nrx , where Ntx

is the number of transmit antennas elements and Nrx is the number of receive array
antenna elements. For a ULA, the transmit antenna spacing is given by dtx = d ∗Nrx ,
where d is the receive antenna spacing. In Fig. 6.12, we get a virtual array of six
receive antennas from two transmit antennas and three receive antennas.

The advantage of virtual arrays or MIMO radar as it is sometimes referred to,
is the ability to expand the aperture with small-size physical antennas. Applying
high-resolution algorithms to the resulting virtual arrays can result in considerable
increase in the number of targets that can be separated.

In addition, the virtual array approach can be applied to sparse arrays where the
aim is to reduce the number of receiver antenna elements. The missing elements in
the sparse array can be inserted as virtual elements.
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Fig. 6.12 Illustration of
virtual array construction
from two transit and three
receive antennas elements to
get a six-element virtual
array antenna
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Chapter 7
Target Filtering and Tracking

7.1 Introduction

Up to this point, we have presented methods for detection of target properties, specif-
ically, range, velocity, and DOA. Although this information representing instanta-
neous target state could be the main objective of radar processing, in automotive
radar processing, tracking moving targets is of paramount importance. The process-
ing of detected radar targets using filtering and tracking methods for the purpose of
capturing target motion dynamics is the goal of this chapter. Among the key meth-
ods, Kalman filtering has been widely used as the conventional approach to target
tracking [1]. However, Bayesian approaches have recently gained attention due to
the fact they address some of the shortcomings of Kalman filtering [2]. We will give
an overview of these approaches and also indicate some of the points that present
challenges in practical applications. This chapter is not meant to be a substitute for
excellent and detailed treatment of these topics that is widely available the literature
but to expose the reader to challenges involved in radar tracking. Somemore detailed
treatment of these topics can be found in [3, 4].

7.2 Kalman Filter

Basic Concepts

The Kalman filter is a computationally efficient recursive filter based on linear
dynamic system theory that estimates the state of a discrete-time linear dynamic
system from noisy measurements [2, 4, 5]. Since its inception, Kalman filter (KF)
has been extensively researched for a wide range of applications.

The KF considers a discrete-time linear dynamic system described by the follow-
ing process model:

x(k) = F(k − 1)x(k − 1) + G(k − 1)u(k − 1) + v(k − 1), (7.1)
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where x(k) is the state vector at time k, F(k − 1) is the state transition matrix,G(k −
1) the input-control matrix, u(k − 1) the control input, and v(k − 1) the zero-mean
white Gaussian process noise. The covariance matrix of the process noise at time k
is defined by E

(
v(k)v(k)H

) = Q(k).
The measurement equation is given by

z(k) = H(k)x(k) + w(k), (7.2)

where z(k) is the measurement vector and w(k) is zero-mean white Gaussian noise.
The covariance matrix of the measurement noise is defined by E

(
w(k)w(k)H

) =
R(k).

To put the above into the automotive radar processing perspective, x(k) is
unobserved and has to estimated using z(k). z(k) is obtained from target state
measurements, i.e., range, velocity, and angle (DOA). For the filtering and tracking
problem, the vector x(k) consists of target position, velocity, and acceleration in
the x- and y-directions. For position only tracking [x y]T, x(k) is two-dimensional
vector

[
x y vx vy

]T
, for position and velocity tracking it is a four-dimensional vector,

while for position, velocity, and acceleration tracking, it is a six-dimensional vector[
x y vx vy ax ay

]T
.

ThematricesF,G,Q,H, andR are assumed to be known. AlthoughG(k) and u(k)
are important in control applications, they are less relevant is automotive applications.

The KF operation requires that the a priori P(k|k − 1) and the a posteriori P(k|k)
estimates of the error covariance matrices based on respective state estimates. The
a priori state estimate x̂(k|k − 1) is a state estimate at time k based only on the
available measurements up to k − 1, without taking the current measurement z(k)
into account.

On the other hand, the a posteriori state estimate x̂(k|k) is an estimate of the
system at time k calculated taking into consideration the current measurement z(k).
Form these values, the error covariance is estimated.

P(k|k − 1) = E[(x(k) − x̂(k|k − 1))(x(k) − x̂(k|k − 1))T] (7.3)

P(k|k) = E[(x(k) − x̂(k|k))(x(k) − x̂(k|k))T] (7.4)

After initialization, the KF computation proceeds in two distinct steps which are
prediction and update and described below.

Initialization

Initialize the state estimate and covariance estimates as x̂(0) and P
∧

(0).

Prediction

State prediction (a priori estimate):

x̂(k|k − 1) = F(k − 1)x̂(k − 1|k − 1) (7.5)
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Error covariance prediction (a priori estimate):

P(k|k − 1) = F(k − 1)P(k − 1|k − 1)F(k − 1)T + Q(k − 1) (7.6)

Update

Measurement z(k) is assumed to be available.
Kalman gain computation:

K(k) = P(k|k − 1)H(k)T
(
H(k)P(k|k − 1)H(k)T + R(k)

)−1
(7.7)

Update state estimate (a posteriori estimate):

x̂(k|k) = x̂(k|k − 1) + K(k)
(
z(k) − H(k)x̂(k|k − 1)

)
(7.8)

Update error covariance estimate (a posteriori estimate):

P(k|k) = P(k|k − 1) − K(k)H(k)P(k|k − 1) (7.9)

The optimal Kalman gain K(k) in the above formulas minimizes the a posteriori
error covariance. Detailed derivation can be found in [3, 6]. Postprocessing can be
applied to x̂(k|k) to get smoothed estimates.

The KF algorithm filter outlined above has several shortcomings when applied
to radar measurements. The first well-known problem is the assumption that the
underlying process is linear. However, not all practical systems obey this linearity
requirement. Additionally, the assumption that both process and observations noise
areGaussian is not always true. TheKalmanfilter also fails to effectively track rapidly
accelerating or decelerating targets. This calls for improvements in the underly-
ing assumptions. Based on the above facts, the extended Kalman filter (EKF) and
unscented Kalman filter (UKF) have been proposed in the literature [7–12]. In
the automotive radar context, nonlinearities can be introduced by the underlying
transformation of range and DOA estimates into Cartesian coordinates for position
estimation.

Example Consider as an example tracking by Kalman filter using the model x(t) =
1+2t+2t2 to generate 2000-point test position data. Themeasurement noise variance
is assumed to be 0.01, the process noise variance of 0.18. The sampling period is set
to 1. The tracking result is shown in Fig. 7.1.

The prediction error is illustrated in Fig. 7.2. For this example, the tracking error
can be considered to be small.

Extended Kalman Filter

TheEKFmodels both the state transition andmeasurement as differentiable functions
of the state that are not explicitly linear as follows [8, 9, 11].
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Fig. 7.1 Example of tracking by the Kalman filter

x(k) = f (x(k − 1), u(k)) + v(k),

z(k) = f (x(k)) + w(k). (7.10)

Instead of using linear state transition matrix F(k) in the model, a more general
function f (x(k − 1), u(k)) is used. The assumptions on the noise are similar to the
KF. The prediction and update steps of the filter proceed as described below.

Prediction

State prediction (a priori estimate):

x̂(k|k − 1) = f
(
x̂(k − 1|k − 1), u(k − 1)

)
(7.11)

Error covariance prediction (a priori estimate):

P(k|k − 1) = F(k)P(k − 1|k − 1)F(k)T + Q(k − 1) (7.12)

where F(k) is defined by the Jacobian matrix of f
(
x̂(k − 1|k − 1), u(k − 1)

)
eval-

uated at x̂(k − 1|k − 1).

F(k) = ∂ f
∂x

∣∣x̂(k − 1|k − 1) (7.13)
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Fig. 7.2 Example of prediction error by the Kalman filter

Update

Measurement z(k) is assumed to be available.
Kalman gain computation:

K(k) = P(k|k − 1)H(k)T
(
H(k)P(k|k − 1)H(k)T + R(k)

)−1
(7.14)

where H(k) is defined by the Jacobian matrix of h
(
x̂(k|k − 1)

)
evaluated at

x̂(k|k − 1)

H(k) = ∂h
∂x

∣∣x̂(k|k − 1) (7.15)

Update state estimate (a posteriori estimate):

P(k|k) = P(k|k − 1) − K(k)H(k)P(k|k − 1) (7.16)

Although the EKF has been applied to navigation and GPS tracking for a long
time, it has known implementation issues. One is that the state estimate is not optimal
in the minimum-mean-squared error (MMSE) sense.
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Wrong initial state estimates could lead to divergence of the filter. In addition,
the computational complexity associated with Jacobians is high for most applica-
tions, especially automotive ones. Finally, the Gaussian assumption on process and
measurement models still remains, which as for KF could be violated in practice.

Unscented Kalman Filter

The unscented Kalman filter (UKF) is an attempt to deal with problems associated
with the EKF while keeping KF ideas in place. It utilizes the nonlinear unscented
transformation as a substitute for the linearization operation of the EKF.

Unscented Transformation (UT)

The unscented transformation (UT) is a method for calculating the statistics of a
random variable which undergoes a nonlinear transformation [10]. The motivation
behind the UT is to use an exact nonlinear function applied to an exact approximating
probability distribution of the state instead of a Jacobian approximation used in the
EKF. Consider propagating a random variable x (dimension L) through a nonlinear
function, z = f (x). Assume x has mean x and covariance Px. The next step computes
what are referred to as sigma vectors or sigma points (in L-dimensional space) χi as
follows.

χ0 = x

χi = x +
(√

(L + λ)Px

)

i
, i = 1, . . . , L

χi = x −
(√

(L + λ)Px

)

i−L
, i = L + 1, . . . , 2L (7.17)

where λ = α2(κ + L) is a scaling factor with α representing the spread of the
sigma points around x, and κ is a tuning parameter normally set to 3-L. The notation
(·)i denotes the ith column the matrix. The matrix square root can be computed by
Cholesky factorization. The nonlinear function that propagates the sigma points is
given by

Zi = f (χi ), i = 0, . . . , 2L (7.18)

From (7.18), the mean and covariance of z can be calculated using the following
equations.

z ∼=
2L∑

i=0

W (m)
i Zi (7.19)

Pz
∼=

2L∑

i=0

W (c)
i (zi − z)(zi − z)T, (7.20)
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where the weights for computing the mean, W (m)
i , and those for computing the

covariance, W (c)
i , are given by

W (m)
0 = λ

L + λ
,

W (c)
0 = λ

L + λ
+ 1 − α2 + β,

W (m)
i = W (c)

i = λ

2(L + λ)
, i = 0, . . . , 2L (7.21)

where β incorporates prior knowledge of distribution and is set to 2 for Gaussian
assumption. The UT is applied to the UKF as described below.

System equations:

x(k) = f (x(k − 1),u(k)) + v(k), (7.22)

z(k) = h(x(k)) + w(k). (7.23)

Use this for algorithm:

Define a vector of concatenated state and noise vectors as xa(k) = [
xT(k) vT(k)

]T
.

Initialize:
Initialize the state estimate and covariance estimates as x̂(0) and P(0).

x̂(0) = E[x(0)]

P(0) = E
[(
x(0) − x̂(0)

)(
x(0) − x̂(0)

)T]

x̂a(0) = [
x̂T(0) E

[
vT(0)

]]T

Pa(0) = E
[(
xa(0) − x̂a(0)

)(
xa(0) − x̂a(0)

)T]
(7.24)

Predict:

x̂a(k − 1) = [
x̂T(k − 1) E

[
vT(k − 1)

]]T
(7.25)

Pa(k − 1) =
[
P(k − 1) 0

0 Q(k − 1)

]
(7.26)

Generate sigma points

χ0(k − 1) = x̂a(k − 1)

χi (k − 1) = x̂a(k − 1) +
(√

(L + λ)Pa(k − 1)
)

i
, i = 1, . . . , L
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χi (k − 1) = x̂a(k − 1) −
(√

(L + λ)Pa(k − 1)
)

i−L
, i = L + 1, . . . , 2L (7.27)

The weights W (m)
i and W (c)

i are computed as described above.
Propagate the sigma points, state, and covariance:

χi (k|k − 1) = f (χi (k − 1)), i = 0, . . . , 2L

x̂(k|k − 1) =
2L∑

i=0

W (m)
i χi (k|k − 1)

P(k|k − 1) =
2L∑

i=0

W (c)
i

[(
χi (k|k − 1) − x̂(k|k − 1)

)(
χi (k|k − 1) − x̂(k|k − 1)

)T]

(7.28)

Update:

xa(k|k − 1) = [
x̂T (k|k − 1)E

[
vT(k)

]]T

Pa(k|k − 1) =
[
P(k|k − 1) 0

0 Q(k)

]

χ0(k|k − 1) = xa(k|k − 1)

χi (k|k − 1) = xa(k|k − 1) +
(√

(L + λ)Pa(k|k − 1)
)

i
, i = 1, . . . , L

χi (k|k − 1) = xa(k|k − 1) −
(√

(L + λ)Pa(k|k − 1)
)

i−L
, i = L + 1, . . . , 2L

(7.29)

Project the sigma points through the measurement model:

γ i (k) = h(χi (k|k − 1)), i = 0, . . . , 2L (7.30)

From (7.30), compute the predicted measurement and its covariance.

ẑ(k) =
2L∑

i=1

W (m)
i γ i (k), (7.31)

Pz(k)z(k) =
2L∑

i=1

W (c)
i (γ i (k) − ẑ(k))(γ i (k) − ẑ(k))T. (7.32)

Compute the cross-covariance for the computation Kalman gain.

Px(k)z(k) =
2L∑

i=1

W (c)
i

(
χi (k|k − 1) − x̂(k|k − 1)

)
(γ i (k) − ẑ(k))T (7.33)
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Kalman gain:

K(k) = Px(k)z(k)P
−1
x(k)z(k) (7.34)

State update:

x̂(k|k) = x̂(k|k − 1) + K(k)
(
z(k) − ẑ(k)

)
(7.35)

Covariance update:

P(k|k) = P(k|k − 1) − K(k)Pz(k)z(k)K(k)T (7.36)

Other KF Variants

Other variants of the KF such as the ensemble KF and fast Kalman filter exist,
but the current state of the art in terms of Kalman filtering is the UKF. The UKF has
been shown to perform better than its predecessor, EKF, but still has issues related
to parameter selection. In some cases, better performance by EKF has been reported
[13].

7.3 Bayesian Filtering (Sequential Monte Carlo)

Basic Concepts

Particle Filter

When the system dynamics and measurement models are linear, the KF gives the
optimal minimum-mean-squared error (MMSE) state estimate. However, the KF is
not suitable for nonlinear/non-Gaussian systems. To circumvent this limitation, EKF
and UKF have been proposed [7–12]. However, the EKF has already been shown
be difficult to implement [10], and thus, the UKF is the recommended practical
solution for tracking and navigation systems. Although the UKF provides a better
KF-based performance, it still relies on base KF assumptions. To deal completely
with nonlinear/non-Gaussian systems, an alternative approach is required. This is
the motivation behind Bayesian filtering approaches and in particular the particle
filter [2]. The driving factor comes from the known and painful fact that in most
real situations, the desired linear/Gaussian model is rarely obeyed by systems under
consideration. The Bayesian approach relaxes the assumptions on system dynamics
and thus leads towider applicationfields covering linear/nonlinear andGaussian/non-
Gaussian processes. In this section, we give an overview of the Bayesian approach to
filtering with emphasis on automotive applications. Excellent treatment of this topic
in detail can be found in [4, 14].
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Recursive Bayesian Estimation

The Bayesian filtering approach recursively generates an approximation of the state
probability density function using a set of random samples as opposed to the func-
tional approaches of EKF and UKF [2]. The system model can be expressed as

x(k) = f (x(k − 1), v(k − 1)), (7.37)

where f (·) is a transition function and v(·) are is zero-mean, white noise of known
PDF.

The measurement equation is given by

z(k) = h(x(k),w(k)), (7.38)

where h(·) is a transition function and w(·) are is zero-mean, white noise of known
PDF. The PF algorithm approximates the posterior PDF p( x(k)|z(1:k)) by a set of
weighted random samples, referred to as particles. The initial prior distribution of the
state p(x(0)) is assumed to be known. It is also assumed that the probability density
function p(x(k − 1)|z(1:k − 1)) at previous time instant k − 1 is available. The PDF
p( x(k)|z(1:k)) can be computed as follows:

p( x(k)|z(1:k − 1)) =
∫

p( x(k)|x(1:k − 1))p( x(k − 1)|z(1:k − 1))dx(k − 1)

(7.39)

The prior (or prediction) can be updated using the current measurement y(k) based
on Bayes theorem:

p( x(k)|z(1:k)) = p( y(k)|x(k))p( x(k)|z(1:k − 1))

p( z(k)|z(1:k − 1))
(7.40)

where p( y(z)|z(1:k − 1)) is considered as normalizing constant (independent of
state). The above Eqs. (7.37)–(7.40) form the basis of optimal Bayesian estimation.
Using the MMSE criteria as an example, the optimal state estimate can be obtained
as

E[ x(k)|z(1:k)] =
∫

x(k)p(x(k)|z(1:k)dx(k). (7.41)

Alternatively, the maximum a posterior (MAP) estimate that maximizes
p(x(k)|z(1:k) can be computed.
The biggest drawback of the above approach is that the indefinite integrals are

computationally intractable, and hence, approximations are necessary. These approx-
imations include the sequential Monte Carlo methods (SMC) that form the basis of
the particle filter.
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The Particle Filter (PF)

The PF represents the posterior PDF by using a set of random samples (particles)
xi (k), i = 1, . . . , N , where N is the number of particles, associated with weights
wi (k) in order to obtain state estimates [14–21]. In most case, importance sampling
in conjunction with a resampling strategy is utilized to determine the weights [4].
In particular, some of the resampling strategies include multinomial resampling,
stratified resampling, systematic resampling, and residual resampling [19, 20].

The weights are normalized such that their sum equal to 1. If it is assumed that
samples can be generated from a density q(x) that is similar to p(x), then the posterior
density is approximated by

p( x(k)|z(1:k)) ∼=
N∑

i=1

wi (k) δ(x(k) − xi (k)), (7.42)

where δ(x) is the Dirac delta function and

wi (k) ∝ p( xi (k)|z(1:k))
q( xi (k)|z(1:k)) = wi (k − 1)

p( z(k)|xi (k))p( xi (k)|xi (k − 1))

q( xi (k)|xi (k − 1), z(k))
, (7.43)

where p( z(k)|x(k)) is the likelihood function defined by the measurement model,
and p( xi (k)|xi (k − 1)) is a transitional function of the process model.

A common problem with PF is that of particle degeneracy where the weight is
concentrated in one particle, with other particles having weights close to zero and
thus contributing nothing to the posterior distribution. The degeneracy is measured
by effective sample size (ESS) given by

Neff = 1
∑N

i=1 w2
i (k)

. (7.44)

Resampling strategies use Neff by setting a threshold such that resampling is
performed whenever Neff falls below the threshold.

The bootstrap PF algorithm can be summarized as follows.

Bootstrap Filter:

Thebootstrapfilter is themost basicPFalgorithm. It canbedescribedby the following
steps.

Step 1: Initialization, k = 0
For i = 1, . . . , N , sample xi (0) ∼ p(x(0)).

Step 2: Importance sampling
For i = 1, . . . , N :

(i) Sample x
∧

ι(k) ∼ p(xi (k)|xi (k − 1)) and make x
∧

ι(0:k) =[
x
∧

ι(0:k − 1), x
∧

ι(k)
]
.
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(ii) Compute importance weights

w
∧

ι(k) = p
(
z(k)|x∧ι(k)

)
(7.45)

(iii) Normalize the weights

w
∧

ι(k) = w
∧

ι(k)
∑N

i=1 w
∧

ι(k)
(7.46)

Step 3: Resampling

(i) Compute the effective sample size (ESS) given by

Neff = 1
∑N

i=1 w2
i (k)

(7.47)

(ii) If Neff is less than a predetermined threshold, resample with replace-
ment N particles [xi (0:k), i = 1, . . . , N ] set (x

∧

ι(0:k), i = 1, . . . , N )
according to the importance weights.

Step 4: Increment to the time step and repeat the procedure from Step 2.

For resampling step (Step 3), methods detailed in [19, 20] can be applied. Among
these methods, systematic resampling is the simplest and commonly used method.
Figure 7.3 illustrates computations performed in the bootstrap filter.

Fig. 7.3 Illustration of particle computation flow using N = 10 particles



7.3 Bayesian Filtering (Sequential Monte Carlo) 99

Variants of PF:

Some of the variants of the PF include the auxiliary PF [4], Rao-Blackwellized
[21], parallel partitioned particle filter [18], and unscented PF (UPF) [2, 17]. These
approaches and others provide a glimpse of the level of research activity related to
PFs.

7.4 Data Association in Multi-target Tracking

Inmulti-target tracking environments,where new targets appear and disappear during
the observation period, data association is an important topic [3, 22]. In automotive
radar tracking, associating measurements with targets is more challenging due to
the presence of obstacles (clutter), false alarms, ambiguous measurements, and in
some cases loss of continuous measurements. By definition, the main task of data
association is to associate measurements with either existing targets or new targets.
The general flow of multi-target processing is shown in Fig. 7.4. Using initial track
or existing data, the prediction is performed so that the expected measurement data
space can be determined.With the availability of newmeasurements, data association
can be carried out.

When the association with existing targets is decided, the existing targets tracks
are updated.On the other hand,when no targets can be associatedwithmeasurements,
new target tracks are created. In the process, targets that cease to exist have to be
removed from the tracking list. As an example, suppose we have two target tracks
and three measurements are validated. Then, the relationship between target tracks
and measurements can be illustrated in Fig. 7.5.

Fig. 7.4 General flow of
multi-target processing
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Fig. 7.5 Relationship between target tracks and measurements

Various methods have been proposed in the literature in order to achieve the
above task of data association. These include nearest neighbors, generalized nearest
neighbors (GNN), probabilistic data association (PDA), multiple hypothesis testing
(MHT), assignment algorithm, etc. Detailed treatment of these topics is beyond the
scope of this section, but we will instead give an outline of some of the main methods
that can be considered for automotive radar tracking.

Generalized Nearest Neighbor (GNN)

The GNN uses a distance measure, such as the Mahalanobis distance or Euclidean
distance, to associate tracks with measurements. This leads to a minimization prob-
lem of the form

minimize
∑

d2
jkw jk subject to

∑

j

w jk = 1,
∑

k

w jk = 1,

where d2
jk is the distance measure between track j and measurement k, and w jk can

be considered as associated weights.
The advantage of the GNN approach is that it is very simple to implement. The

GNN shows poor performance when ambiguities exist in the measurements and
sometimes lead to local minima.

Joint Probabilistic Data Association Filter (JPDAF)

The PDAF is used for single target tracking where for each valid measurement, the
probability βi that it comes from the considered track is computed. The computation
of βi incorporates the probability of detection and false alarm rate. Using the com-
puted probabilities, the target data can be updated. The JPDAF is an extension of
this single target concept to multiple target tracking. In this case, the probability βi j
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that a measurement i comes from target track j is computed. Details of this approach
can be found in [22].

Multiple Hypothesis Testing

The multiple hypothesis filter generates a hypothesis tree by considering three pos-
sible associations where a measurement either belongs to an existing track or is due
to false alarm or is new. Based on Bayes rule, the probability of each hypothesis
can be evaluated. Finally, the likelihood of each possible association is computed
[3]. Although it can be considered as the most general approach to data association,
the MHT approach is computationally expensive and complex to implement in real
time. Additionally, only approximate probabilities can be computed increasing the
possibilities of tracking errors.

Assignment Algorithms

The assignment algorithms originated from operations research where the objective
is to optimize in terms of cost the assignment of jobs to available resources. The
optimum solution is one that minimizes the total cost. The Hungarian algorithm
is one of the representatives and well-known algorithm that solves the assignment
problem. It was originally developed by Kuhn [23] and the further refined James
Munkres to become the Munkres algorithm [24]. Other algorithms that address the
same problem includeMurty’s algorithm [25] and Jonker–Volgenant algorithm [26].
Since the Hungarian algorithm is well understood and easily applicable to the target
assignment problem in data association, we will give a brief description of the steps
involved in the algorithm followed by a simple example.

The Hungarian algorithm is used to find an optimum target track assignment for a
given cost matrix. The cost matrix consists of elements Ci j , which represent the cost
of assigning measurement i to target track j. For the Hungarian algorithm, the cost
matrix Cmust be a square matrix. The elements of the cost matrix are normally com-
puted from the likelihood function. These exact values of the likelihood function are
determined taking into consideration sensor properties such as measurement noise,
probabilities of detection and false alarms, density functions for track initialization,
and the likelihood that a measurement among other tracking algorithm and target
characteristics [26].

Based on an N × N cost matrix, the Hungarian algorithm proceeds according to
the following steps [27, 28]:

(1) Row reduction: Subtract the smallest entry in each row from all the entries of
its row.

(2) Column reduction: Subtract the smallest entry in each column from all the
entries of its column.

(3) Zero assignment: Draw lines through appropriate rows and columns so that all
the zero entries of the cost matrix are covered and the minimum number of such
lines is used.

(4) Test for Optimality: (i) If the minimum number of covering lines is N, an
optimal assignment of zeros is possible and we are finished. (ii) If the minimum
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number of covering lines is less than n, an optimal assignment of zeros is not
yet possible. In that case, proceed to step (5).

(5) Determine the smallest entry not covered by any line. Subtract this entry from
each uncovered row, and then, add it to each covered column. Return to step
(3).

Example Considering an idea case where we have three valid measurements and
three valid target tracks and the following cost matrix, C.

C =
⎡

⎣
0.81 0.91 0.28
0.90 0.63 0.55
0.13 0.09 0.95

⎤

⎦ (7.48)

Applying the above steps in the cost matrix, C, we obtain the matching matrixM

M =
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ (7.49)

where 1 indicated the assignment. If the rows represent target tracks and columns
represent measurements, then measurement 3 is assigned target 1, measurement 2 is
assigned target 2, and measurement 1 is assigned target 3. The minimum cost can be
computed as Cost = 0.13 + 0.63 + 0.28 = 1.04.

The same idea can be extended tomore than three targets andmeasurements. A lot
of practical issues arise from this seemingly simple and straight forward approach.
The first is that the number of observations or measurements are not always equal
to the number of tracks. One reason could be missing detections. Another is a new
detections. It is also possible to have multiple detections for a single target and so
forth.

When there aremoremeasurements than target tracks or vice versa, the costmatrix
is first converted to a square matrix before the matching is performed.

When missing data or noisy measurements are obtained, the algorithm has to be
modified by, for example, using gating functions or thresholding methods.

7.5 Challenges in Target Filtering and Tracking

The particle filter offers some of the best filtering results when dynamics and statistics
of the process under investigation are not accurately known. As outlined in the intro-
duction of this section, it results in better target tracking in many applications. This is
also true for automotive radar tracking where sudden maneuvers can present serious
challenges to the KF approaches. One of the challenges associated with the practical
use of the PF includes the choice of the proposal distribution for importance sampling
which is non-trivial. An effective approach that has shown promising results is UPF,
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which applies the UKF to generate the proposal distribution [21]. However, the com-
putational complexity is excessive formost automotive target tracking applications. It
also carries the baggage of the UKF to particle filtering, thereby further complicating
initialization and parameter selection. On more issue of practical significance is data
association. Although various methods are available for consideration, accuracy and
computational load problems arise among other challenges. In most cases, algorithm
parameters have to be tuned in order to be useful to the available data. Although not
peculiar to PF, target state update and data association present a huge percentage of
the filter processing making it necessary to find innovative approaches. However, for
pedestrian detection, the PF has recently been seen as one of the feasible approaches
[29, 30]. This could be attributed to its ability to track nonlinear dynamics.
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Chapter 8
Target Recognition and Classification
Techniques

8.1 Introduction

Target recognition is increasingly becoming an important part of radar processing for
automotive applications [1]. The reason for this development is that the environment
in which the automotive radar operates is highly cluttered which makes it essential to
distinguish targets of interest with a high degree of precision. Additionally, there is a
growing demand to improve the ability to recognize pedestrians on the roads [2–4].
For the above reasons, target recognition could be utilized to distinguish and classify
detected objects. After the recognition is performed, it becomes possible to optimize
signal processing algorithms for a particular type of target. For example, different
tracking and filtering algorithms could be applied to for passenger cars and pedes-
trians. The general flow of radar processing involving target recognition is depicted
in Fig. 8.1. In order to recognize targets, various machine learning algorithms are
available. There are two major categories of machine learning: supervised machine
learning and unsupervised machine.

A supervised machine learning algorithm uses labeled input data to learn a map-
ping function which generates an appropriate output when given new unlabeled
data. The term supervised learning comes from the fact that the process of algorithm
learning uses training dataset can be viewed as an instructor supervising the learning
process. Supervised learning can be divided into classification and regression. The
classification process results in discrete or categorized outputs such as car, bicycle,
pedestrian, or truck. The output class can be labeled as an integer. On the other hand,
regression results in real-valued outputs such as height or width.

An unsupervised machine learning algorithm utilizes input data without using
explicitly provided labels. This is in contrast to supervised learning where training
data is required.

In this chapter, we explore/summarize some of the algorithms that can be used
for target recognition and classification, mainly focusing on supervised learning. It
is not the intention of this chapter to cover all machine learning algorithms but to
provide to the reader an insight into some of the methods that may find utility in
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Fig. 8.1 Signal flow of radar
processing involving target
recognition

automotive radar processing. There is a vast amount of reference material online and
in the literature on recognition/classification that is applicable to statistics, image
processing, among other fields [5–7].

8.2 Methods of Target Recognition

K-Nearest Neighbors (KNN)
The k-nearest neighbors (KNN) algorithm is a very well-established, simple and
widely used nonparametric supervised machine learning algorithm that can be
applied to both classification and regression problems [8]. Figure 8.2 illustrates the
concept of KNN. It uses a distance metric, such as the Euclidean distance, to classify
given data.

For classification, the KNN can be performed by the following simple steps.

1. Set the parameter K, which is the number of nearest neighbors.
2. Calculate the distance between the query instance and all the training sample

data.
3. Sort the distances in ascending order, keeping the indices from the training sample

data.
4. Select the first K entries from the sorted distances.
5. Extract the labels of the selected K entries.
6. Calculate the mode of the K labels.
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Fig. 8.2 Illustration of the concept of KNN shows the calculation of distances for some selected
samples. Distance calculation must be performed for all samples

TheKNNalgorithm is advantageous for its simplicity, places no assumptions on data,
has relatively high accuracy, and can be used for both classification and regression.
However, on the downside, the KNN requires storage of all training data which could
become expensive in terms of computational complexity and memory requirements
for large datasets. It is also known to be sensitive to noise, which could be challenging
for automotive radar data. Below we give a simple example to illustrate the KNN
algorithm.

Example Consider two class problemswith Class 1 and Class 2 data centered around
(x1, x2) = (2, 3) and (x1, x2) = (3, 4), respectively. Using this as training data, we
wish to classify query points p1 = (2.4, 3.4) and p2 = (2.8, 3.8). This is illustrated
in Fig. 8.3 where the Classes 1 and 2 are shown as red squares and black circles,
respectively, while query points are marked in blue (asterisk). These query points
are classified by KNN. The result of using K = 3 is shown in Fig. 8.4.

As shown in Fig. 8.4, the KNN algorithm is able to classify the query data
correctly, i.e., the lower query point with Class 1 and the upper query point with
Class 2. Problems arise when classes are not well separated, which could result in
misclassification.

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA)
In general, there are three classes of discriminant functions which result in three
corresponding methods. LDA is based on a linear discriminant function; quadratic
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Fig. 8.3 Data used in the example to illustrate KNN classification

discriminant analysis (QDA) is based on a second-order discriminant function, while
nonlinear discriminant analysis (NDA) is based on a nonlinear discriminant function.
We will mainly focus on LDA and QDA since they are commonly used in practice.

Linear Discriminant Analysis (LDA)
LDA is one of the simplest and well-known methods of classifying objects. It was
originally proposed by Fisher [9] and is therefore also referred to as Fisher’s linear
discriminant analysis in the literature. Basically, LDA operates on the principle of
orthogonality as shown in Fig. 8.5. It is a linear classifier that can be used to sep-
arate two or more classes from observed data. LDA is especially known to work
very effectively for two-class problems although extension to more than two classes
is possible giving rise to what is referred to as multiple discriminant analysis.

Based on Bayes’ classifier, the LDA discriminant function maximizes the proba-
bility of assigning a class given feature measurements.

f (x) = argmax j=1,...,K P(C = j |X = x) (8.1)

C is the class variable, and x represents featuremeasurements. The idea is to select
the class j which maximizes the conditional probability. The LDA assumes that the
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Fig. 8.4 Result of classification by KNN. Classified nearest neighbors are circled blue

Fig. 8.5 Illustration of the operating principle of LDA
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class data follows Gaussian distribution. While each class is to have a different mean
μ j , all classes are assumed to have a common covariance matrix �.

With some mathematical manipulation, it can be shown that the discriminant rule
d̂ j (x) can be expressed as

d̂ j (x) = xTΣ̂−1μ̂ j − 1

2

(
μ̂T

j Σ̂
−1μ̂ j

)
+ log

(
p̂ j

)

= a j + bTj x . (8.2)

f̂ (x) = argmax j=1,...,K d̂ j (x), (8.3)

where p j if the probability of class j. The “hat” on the variables denotes estimate
values since these have to be computed from data. To use this model as a classifier,
we just need to estimate from the training data the class prior probabilities which are
normally calculated by taking the proportion of each class in the training data. For
example, if an equal number of training data used for each class in a 2-class problem,
then the prior probabilities for each class will be 0.5. Similarly, the class means can
be estimated from data.

It can be seen that the f (x) is a linear function of the feature measurements x.
A practical approach to perform LDA is through eigenvalue decomposition of the
common covariance matrix. Classification then follows the following steps [10].

1. Estimate the prior class probabilities p̂ j , class mean μ̂ j , and common covariance
�̂.

2. Perform singular value decomposition of the covariance �̂ = UDUT, where D
is diagonal, and U is an orthogonal matrix.

3. Transform class centroids such that μ̃ j = D−1/2UTμ̂ j

4. Transform query points using the relation x̃ = D−1/2UTx

5. Classify according to the rule: min j

(
1
2

∥∥x̃ − μ̃ j

∥∥2
2 − log

(
p̂ j

))
.

Using the above procedure, the performance of LDA can be evaluated.

Example Consider a simple example of two classes, which are well separated
(within-class covariance is small and between-class covariance is large). The ran-
domly generated data for the two classes is shown in Fig. 8.6.

The result of the classification of the data by LDA can be summarized in the
confusion matrix in Table 8.1.

The results show that LDA can accurately classify the data. In this case, it is
possible to find a discriminant line that separates the two classes.

Although LDA can perform well for well-separated classes, it cannot handle non-
linear decision boundaries. The data distribution assumption also limits the applica-
tion of LDA to a subset of problems.
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Fig. 8.6 LDA example data, where the Classes 1 and 2 are shown as red squares and black circles,
respectively

Table 8.1 Confusion matrix
showing classification results
by LDA

Actual Predicted

Class 1 (%) Class 2 (%)

Class 1 100 0

Class 2 0 100

Quadratic Discriminant Analysis (QDA)
Due to the inability ofLDA to separate classes correctly for the nonlinear problem, the
QDA was formulated. An example of such class separation is shown in Fig. 8.7. The
only difference between the two classifiers is that QDA uses a quadratic discriminant
function instead of the linear one used by LDA.

d̂ j (x) = −1

2
∗ log

(∣∣∣∣Σj
∣∣∣∣
)

− 1

2
∗ (

x − μ j
)T −1

Σ
j

(
x − μ j

) + log
(
p̂ j

)
(8.4)

Σ
j

= 1

n j
∗

∑
k∈C j

(
xk − μ j

)T(
xk − μ j

)
(8.5)
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Fig. 8.7 Example of nonlinear separation between classes that can be solved by using QDA

BesidesQDA, the nonlinear functions can be used as discriminant functions resulting
in what is referred to as nonlinear discriminant analysis (NDA). Table 8.2 gives a
comparison of the characteristics of discriminant analysis methods.

Support Vector Machine (SVM)
Support vectormachines (SVMs) aremachine learning algorithmsbasedon statistical
learning theory, which perform classification by constructing hyperplanes in a multi-
dimensional space [11, 12]. TheSVMalgorithmswere introduced to solve supervised
classification and regression problems [13, 14].While the roots of SVMs are in image
recognition, to date they have since been expanded to other areas including remote
sensing [15, 16]. In general, SVMs select the decision boundary from an infinite
number of potential ones, leaving the greatest margin between the closest data points
to the hyperplane (Fig. 8.8), which are referred to as “support vectors.” SVMs employ

Table 8.2 Comparison of the
properties of discriminant
analysis methods

Property Method

LDA QDA NDA

Discriminant
function

Linear 2nd order Nonlinear

Class covariance Common Distinct Distinct

Data distribution Gaussian Gaussian Mixed Gaussian
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Fig. 8.8 Linear separating hyperplanes for the separable case, where solid circles belong to Class 1,
while the white circles belong to Class 2. The optimum hyperplane separating the classes is shown
by the thick black line, while support vectors are the circles on the dotted lines

a kernel function to transform the training data into higher dimensional feature space
for nonlinear classification problems [17]. In this regard, SVMs are considered as
belonging to kernel methods since kernel functions are used to maximize the margin
between classes.

From Fig. 8.8, it is desirable to maximize the distance from the decision boundary
wTx + b = 0 to either of the two classes. This can be achieved by maximizing the
margin m = 2/‖w‖. The approach to this maximization utilizes a constrained opti-
mization theorywhere the underlying problem can be formulated as follows. Suppose
the dataset {x1, . . . , xn} is available, and two class labels for the data are defined by
yi = {−1, 1}. Then, the decision boundary that classifies all points correctly is given
by:

yi
(
wTxi + b

) ≥ 1 ∀i (8.6)

where ∀i denotes “for all i.”
The constrained optimization problem can be formulated as follows:

minimize : 1
2
||w||2 (8.7)

subject to : yi
(
wTxi + b

) ≥ 1 ∀i . (8.8)
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The above problem can be formulated by first defining the following Lagrangian:

L = 1

2
||w||2 +

n∑
i=1

αi (1 − yi
(
wTxi + b)

)
(8.9)

where αi are the Lagrange multipliers. The Lagrangian defines the necessary condi-
tions for the solution to the optimization problem to exist. Each constraint is weighted
by a Lagrange multiplier, and the task is to find the Lagrange multipliers that mini-
mize the functionL. Taking derivatives ofLwith respect to 1

2‖w‖2 and b, and equating
the result to zero, we obtain the solutions

w =
n∑

i=1

αiyixi
n∑

i=1

α iyi = 0. (8.10)

Substituting w into L, it can be shown that

L =
n∑

i=1

αi yi − 1

2

n∑
i=1

n∑
i=1

αiα j yi y jxTi x j . (8.11)

The original constrained optimization problem can now be stated as follows:

maximize :
n∑

i=1

αi yi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y jxTi x j (8.12)

subject to :
n∑

i=1

αi yi = 0, αi ≥ 0 (8.13)

All the variables in the above problem are known except for αi . If αi can be found,
thenw can also be determined, and hence, the marginm = 2/‖w‖ can be computed.
The Lagrange multipliers αi can be obtained through quadratic programming (QP)
methods [14, 18]. Except for the support vectors shown in Fig. 8.8, the Lagrange
multipliers for the all the other samples will be zero.

The abovementioned procedure works well when the hyperplane is linear and the
classes are completely separable. However, in practice this is not always the case,
making it necessary to modify the optimization criterion in order to handle linear
non-separable and nonlinear problems. This modification can be achieved by intro-
ducing slack variables and kernel functions. Firstly, for the linear non-separable case
(Fig. 8.9), a slack variable ξ can be introduced. The slack variable takes into account
misclassified samples. Although the majority of samples can still be correctly clas-
sified linearly, only a few samples (noise) fall into the wrong class. The optimization
problem can now be stated as:
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Fig. 8.9 Illustration of the linear non-separable case. The slack variable ξ adds a penalty for
violating the optimization constraints

minimize : 1
2
‖w‖2 + C

n∑
i=1

ξi (8.14)

subject to : yi
(
wTxi + b

) ≥ 1 − ξi , ξi ≥ 0 (8.15)

The regularization parameter C controls the trade-off between the complexity of
SVMs and the number of non-separable points, which is determined through cross-
validation as an error penalty. Thus, C controls the trade-off between maximizing
the margin and minimizing the training error. A small C-value tends to emphasize
the margin while ignoring the outliers in the training data, whereas a large C-value
may overfit the training data.

Following the steps outlined for the linear separable case, the optimization prob-
lem becomes:

maximize : L(α) =
n∑

i=1

αiyi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y jxTi x j (8.16)

subject to :
n∑

i=1

αi yi = 0, C ≥ αi ≥ 0 (8.17)

As with the linear separable case, the non-separable case can also be solved using
QP methods.

For the nonlinear separable case (Fig. 8.10), kernel functions can be used to
obtain an acceptable solution. Kernel functions allow the separating hyperplane to
be transformed to the linear domain, where computations can then be performed.
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Fig. 8.10 Nonlinear separable case. The decision boundary can be approximated by a nonlinear
function

However, explicit transformation is computationally expensive, so the “kernel trick”
is employed, where transformation into the inner product space is possible without
explicit computation. The kernel function is assumed to satisfy Mercer’s theorem
[19]. Mercer’s theorem states that a symmetric function K (x, y) can be expressed as
an inner product K (x, y) = �(x)�(y) for some � if and only if K (x, y) is positive
semi-definite. This implies that the n by n kernel matrix in which the (i, j)-th entry
is K

(
xi , x j

)
which is always positive semi-definite, which in turn guarantees the

existence of a solution to the optimization problem.
The kernel functions for the nonlinear case are generally defined by the following

equation:

K
(
xi , x j

) = �(xi )�
(
x j

)
. (8.18)

The nonlinear optimization problem can then be expressed as follows:

maximize : L(α) =
n∑

i=1

αi yi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y j K
(
xi , x j

)
(8.19)

subject to :
n∑

i=1

αi yi = 0, C ≥ αi ≥ 0 (8.20)

Besides the regularization parameter C, the problem now involves the choice of
an appropriate kernel function K

(
xi , x j

)
. Examples of typical kernels include the

polynomial, radial basis function (Gaussian), inverse multi-quadratic, and to some
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extent sigmoid functions. A detailed analysis of kernel-based approaches is beyond
the scope of this section, but it suffices to say that low-degree polynomial or radial
basis functions (RBF) could be a good starting point when selecting kernel functions.

While SVMs were originally meant to be binary classifiers, several approaches
can be used to address multi-class problems that are standard for the classification
of radar sensor data. The first approach, which is the most common and simplest,
is referred to as one-against-all (OAA). This approach uses one binary SVM for
each class and training. The second approach is known as one-against-one (OAO)
or pairwise. In this approach, each classifier is trained to separate a pair of classes,
and all classification results are combined into one final result. The third approach
is known as multi-class ranking SVM (or structured SVM).

8.3 Challenges and Trends in Target Recognition Based
on Radar

There are several challenges in target recognition. In this section, we briefly summa-
rize some of these challenges and give a snapshot of current trends that are focussed
on finding practical solutions.

8.3.1 Challenges

Feature selection
Feature selection is one of the big challenges for radar-based recognition. Some of
the examples of features that can be considered are found in [1]. The variance and
standard deviation of data extracted multiple ranges and velocity detections around
the targets can be used as features. However, received data is usually corrupted by
both noise and clutter, and hence, intricate and diligent preprocessing is required.
Another source of feature is to use the micro-Doppler signature from radar reflection
[2–4]. The features of interest are mean velocity (mean Doppler frequency), funda-
mental gait frequency, stride length, and radar cross section (RCS). Extraction of
these features is normally accomplished via short-time Fourier transformation. This
approach is effective when pedestrians have to be recognized among the targets [20].

Recognition rates
For automotive applications, the recognition rates by most machine learning algo-
rithms can sometimes be lower than 70%. These levels are unacceptable, especially
when one of the targets under consideration is vulnerable road users like pedestri-
ans. Misclassification could, for example, result in unpredictable system behavior
and increase the probability of collision with objects. Therefore, recognition rates
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greater than 99%will be demanded in such cases. This is especially true for autopilot
systems where near-perfect recognition rates are required.

Processing requirements
The nature of the radar sensor places stringent requirements on processing require-
ments. The choice of radar parameters have has a great impact on performance [21].
For short-range radar, the radar data memory is normally less than 1 MB [22]. In
addition, the processing time is normally limited to between 50 and 100 ms. These
radar requirements demand careful considerationwhen selecting the processing algo-
rithm. This means memory-intensive algorithms cannot be easily implemented with
current radar architectures.

8.3.2 Current Trends

In order to solve the problems associated with machine learning algorithms such as
low recognition and need retrain for new objects, deep learning has recently been
intensively investigated as one of the candidate solutions [23–26]. To understand the
origins of deep learning, it is instructive to give some insight into the position of
these algorithms in the broader picture of artificial intelligence. The field of artifi-
cial intelligence encompasses both machine learning and deep learning. Artificial
intelligence has a multitude of definitions, but the common point is the desire to
make machines which have some level of human intelligence. Thus, computer scien-
tists and engineers define artificial intelligence as the ability of computer systems to
perform intelligent tasks. Some notable examples include computer vision, natural
language processing,machine learning, pattern recognition, robotics, expert systems,
and neural networks.

On the other hand, machine learning (ML) is concerned with the study of com-
puter algorithms and statistical models that can accomplish intelligent tasks. As
previously mentioned, these algorithms can be categorized into supervised learn-
ing, semi-supervised learning, and unsupervised learning. Finally, deep learning has
roots in artificial neural networks which in turn are modeled along human neurons,
referred to as perceptrons [5]. Details of neural networks are beyond the scope of
this section, but a perceptron takes several binary inputs and produces a single binary
output as illustrated in Fig. 8.11. The output can be computed using the following
expressions:

output =
⎧⎨
⎩
0,

∑
i=0

wi xi ≤ θ0

1,
∑
i=0

wi xi > θ0
(8.21)

where x0 = 0 and θ0 is a predetermined threshold.
The concept can be extended tomultiple layers of perceptrons to produce complex

decisions as shown in Fig. 8.12.



8.3 Challenges and Trends in Target Recognition Based on Radar 119

Fig. 8.11 Simple perceptron model

Fig. 8.12 Example of a multilayer perceptron model

Deep learning networks differ from neural networks by the number of node lay-
ers used which brings in the concept of depth. Neural networks normally have one
to two hidden layers and are used for supervised prediction or classification. Deep
learning networks can have several hidden layers with the possibility of unsuper-
vised training. Figure 8.13 illustrates one example of such a network. Examples of
widely used deep learning architectures include deep neural networks (DNN), deep
belief networks (DBF), and recurrent neural networks (RNN). The main advantage
of DNN over traditional neural networks is the ability to learn complex tasks in an
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Fig. 8.13 Example of a deep neural network model

unsupervised manner. However, this advantage comes at no cost. Large amounts of
data are required for building the network, high computational complexity is a big
burden, and difficulties arise when attempting to analyze the algorithms and also
inability to predict the output precisely, among other challenges. For automotive
applications, DNN has a promising future although direct application to automo-
tive radar is still currently in its research phase [27]. The obvious reason being the
computational intensiveness of the algorithms and also the complexity of automotive
radar environments.

For the interested reader, further details about DBM and RNN can be found in
[28, 29], respectively. It should be noted that RNNs have found better success in
natural language process (NLP).
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Chapter 9
Automotive Radar Applications

9.1 Introduction

Key Applications Background

This chapter gives some important current and future automotive applications that
utilize the radar as a sensor. In automotive applications, the signal to be processed can
be acquired byultrasonic sensor, radar sensor, camera, LIDAR,GPS, andother engine
control unit sensors. Audio, image, and array processing techniques can be applied to
the acquired signals in order to extract information that can be used to automatically
control vehicle dynamics or alert the driver of impending dangers around the vehicle.
Although there are multiple ways to look at automotive applications, automotive
safety applications that apply radar signal processing will be the main focus of
this chapter. Safety is fast becoming a very important component of automotive
performance metrics. Safety can be passive, such as safety belts, or active, such as
automatic emergency braking. We will mostly be concerned with active safety as
it is directly related to future driving technology such a driverless or autonomous
driving that uses radar sensing technology. In fact, most of this section will deal with
autonomous driving-related applications.

It is predictable that in the future, autonomous driving systems will utilize radar,
imaging, and optical sensors as key components of active safety systems. Although
imaging and optical sensors can be a part of the sensor fusion approach, radar has
distinctive advantages over these technologies. The advantages include the ability to
detect both range and velocity simultaneously, ability to detect objects during the day
andnight, ability to operate in adverse conditions such as rain and snow, and the ability
to be installed behind the front bumper fascia, thereby maintaining vehicle esthetics
intact. Additionally, with fewer small-sized sensors, millimeter-level accuracy in
range detection is possible with the radar sensor for both long-range and short-range
applications.

In most automotive applications, the main idea is to sense the imminent future and
warn or assist the driver in mitigating dangerous situations. With regard to vehicles,
applications can be broadly divided into short-range and long-range categories. In the
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short-range category, there is blind spot detection, rear cross-traffic detection for rear-
looking sensors and cut-in warning, front cross-traffic, pedestrian/cyclist detection,
and side impact warning for the front- and side-sensors. In these applications, the
sensor acquires the reflected signal from objects by the use of a single or an array
of sensors. Through signal processing means, the distance, speed, and angle of the
detected objects can be estimated. This information can then be used to determine
whether the detected objects pose any danger in the path of the vehicle. In case of
danger, automatic avoidance systems are activated and if the driver is not responsive,
the measure can be taken to reduce the impact of the danger. In one driver assistance
application such as pedestrian detection, fatalities can be avoided by warning the
driver of pedestrians in the vehicle’s path. Therefore, signal processing plays a key
role in extracting moving object information. Typically, the short-range radars cover
ranges up to 30 m and speed up to 150 km/h. They are characterized by a wide field
of view (FOV) of more than±40° and large bandwidth of up to 5 GHz for high-range
resolution.

In the long-range applications, automatic cruise control (ACC), forward colli-
sion warning, and pedestrian collision warning are essential. In most markets, it is
expected that new vehicle’s models will be able to reliably detect pedestrians from
2020 onwards. In contrast to the short-range radar sensors, long-range radars typi-
cally cover ranges up to 250 m and speed up to 250 km/h. They are characterized by
narrow FOV of less than ±10° and narrow signal bandwidth of less than to 1 GHz.
Due to the narrow FOV, long-range radars cannot detect objects in short distance and
away from the radar’s center of measurement.

Key Players and Contributors

The automotive industry is going in rapid developments. There are a lot of players
promoting and advancing applications for comfort and safety. These developments
take a global perspective to such an extent that almost every part of the automotive
industry is involved. At the government level, the key player in Europe is Germany.
Europe takes the lead in assessment efforts via Euro-NCAP and associated auto
industry consortia. In North America, the USA takes the leading effort through the
DoT, NHTSA, and various support groups from the auto industry. In Asia, Japan
is at the forefront of advancing automotive applications through MLIT, JNCAP,
among others. Governments provide the necessary regulatory framework on which
all automotive technologies operate. It is also the governments that set standards
for requirements that would otherwise be ignored by automotive industry such as
pedestrian protection.

The auto industry is also very active since it implements these applications. Start-
ing from Japan, Toyota, Honda,Mazda, Nissan, Subaru, and all othermajor automak-
ers are involved in the development of advanced driver assistance systems (ADAS)
that use radar technology in conjunction with other technologies. The applications
range from simple blind spot detection to autonomous driving-oriented applications
such as auto-parking. In other parts of the world, Daimler (Mercedes-Benz), Audi,
Ford, GM, Tesla, and other international automakers are pushing technology to the
limits. Of course, automakers cannot accomplish the task alone, so auto-suppliers
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such Continental, Bosch, Denso, Fujitsu-Ten, Autoliv, and Valeo are making enor-
mous effort to realize the goal of zero fatalities through innovative automotive appli-
cations. As stated above, pedestrian protection is one of the key elements of these
applications as we move toward autonomous driving. Besides the auto industry and
auto-suppliers, the IT and technology industry is becoming a powerful competitor in
the field. Notable companies involved in recent research and development activities
include Google’s driverless car project, Uber’s ride-sharing, Lyft working with GM
on autonomous driving, Apple, Amazon, and robotics development entities. In addi-
tion, ISO, through its various working groups, such as ISOWG-14, is promoting the
standardization efforts of these applications.

This chapter gives some important current and future automotive radar application.
The main idea behind these applications is to sense the immediate condition, predict
the future, and warn or assist the driver in mitigating dangerous situations. The
applications dealt with in this chapter can be broadly divided into short-range and
long-range categories. While long-range applications are now very well established
in the automotive industry, short-range applications are still actively under research
and development. In the following sections, accuracy and resolution of the measured
parameter will be given where appropriate. The sensor resolution is defined as the
minimum necessary condition that allows the discrimination of two adjacent objects
of equal size and reflecting characteristic. The reflecting characteristics are normally
defined by the radar cross section (RCS). On the other hand, accuracy refers to the
standard deviation of the measured quantity relative to the expected value.

The next section summarizes some of the key applications and corresponding
radar requirements. Due to the diversity of sensors provided by radar manufacturers,
typical values for the radar parameters in data sheets will be given.

9.2 Short-Range Radar (SRR)

Rear Detection
Blind Spot Detection (BSD)

A side-looking radar sensor detects vehicles in the blind zone which is not visible
from the rear-view minor as depicted in Fig. 9.1 [1, 2]. Upon detection, a warning
is provided to the driver to avoid collision,especially when making lane change
maneuvers.

The radar requirements for BSD are shown in Table 9.1.

Rear Cross-traffic Alert (RCTA)

The technology is similar to blind spot detection except that it is applied to low-speed
situations where the radar sensor detects vehicles at the rear zone as shown in Fig. 9.2
[3, 4]. This is especially important in parking areas where the possibility of collision
with crossing vehicles is high.

The radar requirements for RCTA are shown in Table 9.2.
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Fig. 9.1 Illustration of blind spot detection scenario

Table 9.1 Radar
requirements for BSD

Radar parameter Requirement

Range (m) 1–50

Range accuracy (m) ±0.1

Range resolution (m) 0.75

Velocity (m/s) −70 to +70

Velocity accuracy (m/s) 0.1

Velocity resolution (m/s) 0.25

Azimuth (deg) ±75

Azimuth accuracy (deg) ±5

Azimuth resolution (deg) 15

Elevation (deg) ±6

Elevation accuracy (deg) 0.1

Elevation resolution (deg) –

Note “–” denotes not required or optional

Front Detection
Front Cross-traffic Alert (FCTA)

The front cross-traffic uses the same concept as the rear cross-traffic except that radar
sensors detect vehicles in the front zone [5]. An example is given in Fig. 9.3.

The radar requirements for FCTA are shown in Table 9.3.

Cut-in Warning (CIW)

In this case, the radar sensor detects high-speed vehicles that attempt to cut into own
vehicle’s lane from both sides as shown in Fig. 9.4. The driver is warned if there is
danger of collision due to cut-in maneuver.

The radar requirements for CIW are shown in Table 9.4.
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Fig. 9.2 Illustration of RCTA scenario

Table 9.2 Radar
requirements for RCTA

Radar parameter Requirement

Range (m) 2–60

Range accuracy (m) ±0.20

Range resolution (m) 1.0

Velocity (m/s) −70 to +70

Velocity accuracy (m/s) ±0.1

Velocity resolution (m/s) 0.3

Azimuth (deg) ±40

Azimuth accuracy (deg) ±5

Azimuth resolution (deg) 15

Elevation (deg) ±10

Elevation accuracy (deg) ±5

Elevation resolution (deg) –

Note “–” denotes not required or optional
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Fig. 9.3 Illustration of FCTA scenario

Table 9.3 Radar
requirements for FCTA

Radar parameter Requirement

Range (m) 2–60

Range accuracy (m) ±0.20

Range resolution (m) 1.0

Velocity (m/s) −70 to +70

Velocity accuracy (m/s) ±0.1

Velocity resolution (m/s) 0.3

Azimuth (deg) ±40

Azimuth accuracy (deg) ±5

Azimuth resolution (deg) 15

Elevation (deg) ±10

Elevation accuracy (deg) ±5

Elevation resolution (deg) –

Note “–” denotes not required or optional

Side Detection
Side Impact Warning (SIW)

Using the radar sensor to detect vehicle speed and distance, the driver can be warned
of impending side impact from areas as shown in Fig. 9.5. High-range accuracy and
resolution are required in order to achieve the desired goal [6].

The radar requirements for SIW are shown in Table 9.5.
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Fig. 9.4 Illustration of CIW scenario

Table 9.4 Radar
requirements for CIW

Radar parameter Requirement

Range (m) 50

Range accuracy (m) 0.02

Range resolution (m) 0.1

Velocity (m/s) ±70

Velocity accuracy (m/s) 0.1

Velocity resolution (m/s) 0.6

Azimuth (deg) ±80

Azimuth accuracy (deg) 0.1

Azimuth resolution (deg) 1.0

Elevation (deg) ±10

Elevation accuracy (deg) 0.1

Elevation resolution (deg) –

Note “–” denotes not required or optional

Fig. 9.5 Illustration of SIW scenario
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Table 9.5 Radar
requirements for SIW

Radar parameter Requirement

Range (m) 20

Range accuracy (m) 0.02

Range resolution (m) 0.1

Velocity (m/s) ±70

Velocity accuracy (m/s) 0.1

Velocity resolution (m/s) 0.6

Azimuth (deg) ±45

Azimuth accuracy (deg) 0.5

Azimuth resolution (deg) 2

Elevation (deg) ±10

Elevation accuracy (deg) ±0.5

Elevation resolution (deg) –

Note “–” denotes not required or optional

Cyclist Warning (CW)

Cyclists are generally classified as vulnerable road users (VRUs) [7–9]. The radar
detects cyclists and warns the driver of their presence. Cyclists are not easily visible
to the driver and appear unexpectedly in some driving situations. Figure 9.6 is an
example of such a scenario.

Fig. 9.6 Illustration of CW scenario
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Table 9.6 Radar
requirements for CW

Radar parameter Requirement

Range (m) 0.5–50

Range accuracy (m) 0.3

Range resolution (m) 1.0

Velocity (m/s) ±40

Velocity accuracy (m/s) ±0.25

Velocity resolution (m/s) 0.15

Azimuth (deg) ±30

Azimuth accuracy (deg) 1.0

Azimuth resolution (deg) 6.0

Elevation (deg) ±6

Elevation accuracy (deg) ±1.0

Elevation resolution (deg) –

Note “–” denotes not required or optional

The radar requirements for CW are shown in Table 9.6.

9.3 Long-Range Radar (LRR)

Rear Detection
Rear-End Collision Warning (RCW)

The radar detects and initiates warning to drivers of the possibility of collision, such
as during lane changemaneuvers or deceleratingwhile other vehicles are approaching
from behind as shown in Fig. 9.7. RCW is considered as a part of pre-crash systems
[10, 11].

The radar requirements for RCW are shown in Table 9.7.

Fig. 9.7 Illustration of RCW scenario
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Table 9.7 Radar
requirements for RCW

Radar parameter Requirement

Range (m) 1–60

Range accuracy (m) ±0.1

Range resolution (m) 0.5

Velocity (m/s) 0 to ±70

Velocity accuracy (m/s) ±0.3

Velocity resolution (m/s) 3

Azimuth (deg) ±40

Azimuth accuracy (deg) 0.1

Azimuth resolution (deg) 5

Elevation (deg) ±5

Elevation accuracy (deg) 0.1

Elevation resolution (deg) –

Note “–” denotes not required or optional

Front Detection
Automatic Cruise Control (ACC)

The radar detects a range of preceding vehicles and automatically adjusts the inter-
vehicle distance for comfortable driving as depicted inFig. 9.8.Automatic emergency
braking can be incorporated into the ACC function [12].

The radar requirements for ACC are shown in Table 9.8.

Pedestrian Collision Warning (PCW)

The radar detects the presence of pedestrians in the vicinity of the vehicle and initiates
warning to the driver as depicted in Fig. 9.9. Pedestrian protection is a key component
of autonomous driving and has received as a lot of attention from both regulators
and manufacturers [13, 14].

The radar requirements for PCW are shown in Table 9.9.

Fig. 9.8 Illustration of ACC scenario
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Table 9.8 Radar
requirements for ACC

Radar parameter Requirement

Range (m) 10–250

Range accuracy (m) ±0.1

Range resolution (m) 0.5

Velocity (m/s) −70 to +70

Velocity accuracy (m/s) ±0.3

Velocity resolution (m/s) 2.25

Azimuth (deg) ±8 to ±10

Azimuth accuracy (deg) ±0.5

Azimuth resolution (deg) 5

Elevation (deg) 4

Elevation accuracy (deg) 0.1

Elevation resolution (deg) –

Note “–” denotes not required or optional

Fig. 9.9 Illustration of PCW scenario
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Table 9.9 Radar
requirements for PCW

Radar parameter Requirement

Range (m) 0.75–60

Range accuracy (m) ±0.2

Range resolution (m) 0.15–0.75

Velocity (m/s) −70 to 70

Velocity accuracy (m/s) ±0.3

Velocity resolution (m/s) 0.06 to 0.15

Azimuth (deg) ±70

Azimuth accuracy (deg) 0.5–2

Azimuth resolution (deg) –

Elevation (deg) 4–8

Elevation accuracy (deg) ±5

Elevation resolution (deg) –

Note “–” denotes not required or optional

Forward Collision Warning (FCW)

The radar detects an imminent frontal crash and initiates safety systems to reduce
the severity of the crash, warning the driver in the process. Such situations arise if
the preceding vehicle suddenly decelerates. An accurate estimation of the range is
important for the effectiveness of this function [15]. Figure 9.10 shows an example
of one such scenario.

The radar requirements for FCW are shown in Table 9.10.
The range and sophistication of automotive radar applications are increasing with

every new vehicle model. Therefore, the above applications can be considered as part
of the basic applications available on the market. The list should not be considered
as exhaustive.

Fig. 9.10 Illustration of FCW scenario
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Table 9.10 Radar
requirements for FCW

Radar parameter Requirement

Range (m) 0.75–200

Range accuracy (m) ±1.0

Range resolution (m) 0.75

Velocity (m/s) −70 to 70

Velocity accuracy (m/s) ±0.25

Velocity resolution (m/s) –

Azimuth (deg) ±10

Azimuth accuracy (deg) 0.1

Azimuth resolution (deg) 1.5

Elevation (deg) 4–8

Elevation accuracy (deg) ±5

Elevation resolution (deg) –

Note “–” denotes not required or optional

9.4 Trends in Automotive Applications

9.4.1 Future Roadmaps Automotive Applications

All involved governments have their own visions for the future of automotive appli-
cations. However, the actual implementation will depend on the speed at which
automakers, and in turn auto-supplier, can produce the necessary supporting sensor
technology. For example, lane detection systems would not be realized without the
necessary image acquisition technologies. Even with the sensor technology avail-
able, the reliability of the processed sensor data is critical. A system that produces a
lot of false alarms will be unacceptable to most drivers.

The general consensus now is to move from ADAS to autonomous driving in the
next 10–20 years. As outlined in Chap. 1, Society of Automotive Engineers (SAE)
defines six levels of automation, including no automation, which are now seen as
the best way to advance this technology. As a quick recap, these are Level 0 (No
Automation) where the human driver is in control all the time. Level 1 applies colli-
sion mitigation braking that automatically brakes if a collision is imminent. In Level
2 automatic acceleration/deceleration, braking and steering assistance is possible
while Level 3 driving system executes steering and acceleration/deceleration opera-
tion includingmonitoring of the driving environment. The human driver takes control
of the system’s request. Level 4 extends the autonomous capabilities and can handle
all driving responsibilities, even if a human driver fails to respond appropriately to
request for intervention. Levels 1–4 apply to some driving modes, but Level 5 takes
full control of the vehicle for all driving modes. A human driver is not required.

https://doi.org/10.1007/978-981-13-9193-4_1
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Roadmaps: Japan, Europe, USA

With the above levels of automation as a general guideline, the roadmaps for Japan
[16], Europe [3], and USA [4] are shown in Figs. 9.11, 9.12 and 9.13.

As shown in the roadmaps, full automation can be expected on the roads in the
2030s.

Roadmaps by Automakers: Japan, Europe, USA

With the vision outlined by respective governments, automakers and suppliers are
also racing to make autonomous driving a reality.

Table 9.11 shows the general known directions of some key automakers world-
wide. Details can be found in [5].

(a) A general road map according to the level of automation.

(b) A detailed roadmap up to year 2030. 

Fig. 9.11 Japan autonomous driving roadmap
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Fig. 9.12 Europe’s autonomous driving roadmap

In Japan, Toyota is promoting the Highway Teammate concept; Honda the Honda
Sensing concept, Nissan the Mobility concept, Mazda the Intelligent Transport Sys-
tem, and Subaru is advancing the Eyesight concept.

9.4.2 Future Contributions of Automotive Applications

Benefits of Autonomous Driving to Society

Autonomous vehicleswill improve our lives inmanyways.Here, some of the benefits
of autonomous vehicles often cited as justification for putting resources in this field
are given. Although the contents outlined here are not exhaustive, they give an insight
into why research and development in autonomous driving is important to the future
generation. Like when transportation changed from horses to cars, there will always
be winners and losers, but society, in general, stands to benefit very greatly from
autonomous vehicles.
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Fig. 9.13 USA autonomous driving roadmap

1. Roads will become safer

By reducing the number of accidents through active sensing, thousands of lives can
be saved. In the USA, it is estimated at 90% autonomy level for vehicles on the
road, and accidents can be reduced by 80% resulting in 66% reduction of fatalities
[17]. Introduction of autonomous vehicles will automatically eliminate drunk and
drugged drivers off the steering wheel. Moreover, sensory technology could poten-
tially perceive the environment better than human senses, seeing farther ahead, better
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Table 9.11 Estimated targets for autonomous driving levels by the marker

Maker Level 2 Level 3 Level 4

Audi 2016 2018/2020 2020

BMW 2016 2021

Ford 2019

Honda 2016 2020

Mercedes-Benz 2016

Nissan 2016 2018 2020

Tesla 2015 2018

in poor visibility, detecting smaller and more subtle obstacles, are more reasons for
less traffic accidents [18].

Difficult vehicle maneuvers such as parking and lane change would be simplified
making them less stressful and require no special skills. Voice instructions could be
used to command to the car.

2. Improvement in traffic and fuel efficiency

Automated vehicleswill result in less probability of accidents caused by human error,
leading to less traffic congestion. In general, an increase in autonomous service such
that offer Uber will help increase the number of self-driving taxis and in turn help
decrease the total number of cars on the road, alleviating the overall traffic. Since
autonomous vehicles are designed to optimize efficiency in acceleration and braking,
they will also help improve fuel efficiency and reduce carbon emissions. It is thought
that the adoption of autonomous cars could reduce CO2 emissions produced by cars
by as much as 300 million tons per year.

3. More free time will be available

It can be imagined that, with cars doing most or all of the driving, drivers will be
free to make better use of their time spent in the vehicle. Instead of spending all the
time being vigilant about the vehicle’s surrounding, if at all, drivers will only take
control of only when necessary or when they choose to do so.

Moreover, due to the expected decrease in traffic congestion, it will likely take less
time to get to the intended destination,whichwill lead to the creation ofmore valuable
time for other things besides commuting. In the long run, commutersworldwide could
save a combined 1 billion hours every day once autonomous vehicles become the
main means of transport.

Among other benefits that come with autonomous vehicles, it is possible to sleep
during long journeys and thereby reducing fatigue due to driving. Driverless vehicles
will eliminate arguments between drivers on the road resulting in the reduction of
road rage incidents. The list of such minor benefits that sum to the overall well-being
of society is endless.
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4. Increased speed limits

With well-planned and sophisticated autonomous driving infrastructure available,
speed limits on major highways can be increased to reflect the safer driving and
thereby shortening journey times.

5. Improved way of life

People who traditionally have difficulties with driving, such as disabled persons,
older citizens, as well as the very young people, would be able to experience the
freedom of car travel. No assistance will be needed for people with physical disabil-
ities such a vision. The requirement to take drivers’ licenses before using vehicles
or driving tests will be a thing of past. This will lead to reduce time required to use
vehicles and hence improved lifestyle.

6. Reduction in insurance premiums

Autonomous vehicles could bring about a massive reduction in insurance premiums
for car owners resulting in great savings.

7. Self -aware cars would lead to a reduction in car theft

Thieves will have no incentive to steal automated vehicles since they can be easily
tracked.

8. New job opportunities for all sectors of society

With autonomous vehicles, new job opportunities will be created in the software
design and engineering. More players can also join the automotive industry leading
to competition and reduction in the cost of cars.

With all the above benefits and others, some downsides all exist with autonomous
vehicles. In the beginning, driverless cars would likely be out of the price range of
most ordinary people but with mass production, prices will go down in the coming
20 years. Truck drivers and taxi drivers will lose their jobs, as autonomous vehicles
take over but they can take the role ofmanaging vehicles.A computer fault or software
bug could cause a severe crash as was the case with Tesla where the autonomous
system failed to recognize a crossing truck at an uncontrolled intersection. Invasion
of privacy is another issue since cars would rely on the collection of location and user
information. There is also the possibility that hackers could get access to the vehicle’s
software and controls the vehicle operation remotely. These issues are currently being
addressed through the use of secure protocols.

Although there are still areas to be addressed as outlined above, society stands
to benefit greatly from the introduction of autonomous vehicles. Like every new
technology, challenges will always exist but the benefits by far outweigh the disad-
vantages. Investment in sensing technology, road infrastructure, and security will be
important looking in the future.



9.4 Trends in Automotive Applications 141

9.4.3 Future Directions and Conclusion

Asoutlined in this section, the automotive industrywill experience rapid growth in the
coming 20–30 years. Some of the advanced technologies are already on the market,
although in limited driving situations, such as highways.One of the key aspects of this
growth will be to introduce sensing technology that will both save lives and enhance
driving comfort. The growth will result in more complex radar signal processing
application, especially for object detection, tracking, and recognition systems for
autonomous driving. The ability to sense and predict the dynamics of the immediate
surrounding of the vehicle will be crucial in all automated driving systems.
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