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Preface to Volumes 1 and 2

The title ‘Novel Radar Techniques and Applications (NRTA)’ suggests that the
content of these two volumes are twofold. On the one hand, the team of editors
together with the authors aimed at presenting a variety of radar techniques that have
not yet found their way into operational use. Techniques such as MIMO, com-
pressive sensing, cognitive radar operation, radar management, radar networks and
waveform diversity are presented in these volumes as well as tracking, data fusion,
passive radar operation and new imaging techniques.

Moreover, a large number of applications demonstrate the usefulness, the
potential and the limits of performance of the presented techniques. In order to
reach this multifold goal, a large number of authors have been invited from uni-
versities, research laboratories and industry, so as to cover as many different
aspects arising between theory, practice and operational use as possible.

These volumes are subdivided into five parts, each of them including a number
of chapters. Each part is dedicated to a specific area: Vol. 1: Part I. Array Radar
(interference and clutter cancellation, target parameter estimation, etc.); Part II.
Imaging Radar; Part III. Passive and Multistatic Radar; Vol. 2: Part IV. Waveform
Diversity; Part V. Data Fusion and Tracking. Each part has been taken care of by a
co-editor, typically a renowned expert in the respective area. Each part starts with
an introduction written by the associated co-editor. In their introductions, the co-
editors give overviews of the current state of the art in the respective area and point
out the relevance of the subsequent chapters.

These volumes would never have been completed without the enthusiastic effort
of a large number of persons. First of all I have to thank the five co-editors Ulrich
Nickel, Germany; Christoph Gierull, Canada; Pierfrancesco Lombardo, Italy; Hugh
Griffiths, UK and Wolfgang Koch, Germany for their outstanding co-operation on
this project. Based on the expertise in their respective fields, they assisted me in
composing the contents of these volumes and identifying potential authors and
reviewers who were selected according to their expertise in the specific fields. In this
way an important feature of these volumes is the multiplicity of facets of modern
radar technology and associated applications. It makes these volumes a deep source
of information and inspiration for teachers, students, researchers and system design-
ers, in summary all people involved in the development of the radar of tomorrow.

I would like to thank the authors for their excellent work over a long period of
time and the reviewers whose critical comments contributed to the quality of the
book. Finally the excellent cooperation with Jennifer Grace, Nikki Tarplett, and
Paul Deards of IET Publishers as well as Vijay Ramalingam of MPS Ltd. is
gratefully acknowledged.

Richard Klemm, Editor NRTA
08.09.2017, Bonn, Germany
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Introduction to waveform diversity
and cognitive radar

Hugh Griffiths1

1 Introduction

This chapter serves as an introduction to Part I of Volume 2 of the book, on the
subjects of Waveform Diversity and Cognitive Radar. These are relatively recent
concepts, and twenty years ago the terms would hardly have been recognized. Now,
though, they can both be regarded as mainstream subjects in radar research, with
entire sessions at radar conferences devoted to them.

Both subjects have been enabled by enormous advances in technology and
processing power. The seminal publication by Gordon Moore in 1965 [1] predicted
that computing power would double every 18 months – and that has proved to be
remarkably accurate. In fact, the very last word of that paper is ‘radar’, showing that
Moore well understood the impact that this would have on the development of radar.

A two-day event held at University College London in November 2015 had as
its goal to identify future directions in radar technology and techniques [2]. The
event included sessions on Waveform Diversity, Bistatic Radar and Cognitive
Radar. Several of the authors of the chapters in this part participated in that event,
and several of the issues discussed are included in these chapters.

In addition, the topics in this part of the book have benefitted greatly from
some NATO task groups and lecture series, including the SET-233 Lecture Series
Knowledge-Based Radar Signal & Data Processing, the SET-119 Lecture Series
Waveform Diversity for Advanced Radar Systems and the SET-216 Lecture
Series Cognition and Radar Sensing, as well as the associated books, journal
special issues and special sessions at conferences that have resulted from them.

2 Waveform diversity

Waveform Diversity has been defined in the IEEE P686 Radar Terminology
Standard [3] as ‘Adaptivity of the radar waveform to dynamically optimize the
radar performance for the particular scenario and tasks. May also exploit adaptivity
in other domains, including the antenna radiation pattern (both on transmit and
receive), time domain, frequency domain, coding domain, and polarization

1University College London, UK



domain’. In other words, the advances in digital processing now allow us to gen-
erate precise, wide-bandwidth radar waveforms and to vary them adaptively,
potentially even on a pulse-to-pulse basis [4,5]. This opens up huge possibilities
and is also one of the cornerstones of cognitive radar.

It is also interesting to realize that the ambiguity function, which is the clas-
sical tool used by radar engineers to evaluate the properties of radar signals [6],
says nothing about the spectral properties of the signal. It is natural, therefore to
look for new tools in waveform analysis and design.

3 From adaptivity to cognition

Adaptive radar processing began to be introduced in the 1960s, as a means to
automate the radar operator’s control settings. Probably the first aspect of this was
the development of Constant False Alarm Rate (CFAR) processing, to auto-
matically set a detection threshold to give a fixed probability of false alarm.
Various developments of the basic cell-averaging scheme were able to deal with
self-masking, mutual masking and clutter edges.

Next, adaptive antenna array techniques were developed to suppress jamming
and interference, first in the form of analogue sidelobe cancellers, then in the form
of digital fully adaptive arrays. The 1973 publication of Brennan and Reed [7]
represents a notable milestone here. These concepts were further developed to form
the basis of Space-Time Adaptive Processing (STAP): two-dimensional adaptive
filtering, in both angle and Doppler.

Whilst these techniques have provided a huge increase in radar performance
against a wide range of target, clutter and jamming environments, they are imple-
mented in the receiver. The next stage is to consider adaptivity in the transmitted
signal as well, thereby incorporating a degree of intelligence into the radar.

Devising a satisfactory definition of cognitive radar has not proved easy.
Although a significant number of papers and books have been published, there is no
clear agreement on a definition of Cognitive Radar. Haykin [8] is keen to empha-
size the Perception-Action Cycle (Figure 1) and that a cognitive radar possesses
memory, which is updated by the information gained by the radar from the target
scene. Another important criterion is stated to be that the radar should dynamically
adapt its transmitted waveform in response to its perception of the target scene.

Actuator
Feedback information

Perceptor

Observables
(measurements)The  environment

Control
signals

(stimuli)

Perception
of the

the environment

Action
to illuminate

the environment

Figure 1 The perception–action cycle of cognitive radar � 2006 IEEE.
Reprinted with permission from [8]
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Guerci’s approach [9] owes much to earlier work on knowledge-based signal pro-
cessing [10–12]. Yet another factor is that a cognitive radar should demonstrate
‘learning’, which implies that a cognitive system presented with a dynamically
changing target scene would be able to improve upon a previous encounter with the
same target scene by virtue of the experience learned.

It is possible to test some of the well-established radar signal processing techni-
ques against these criteria to see to what extent they might be regarded as cognitive.
Some, such as adaptive antenna arrays and CFAR detection do not meet the criterion of
adapting the transmitted waveform so cannot be considered to be cognitive. The way
in which an HF Over-The-Horizon Radar (OTHR) radar dynamically selects its
frequency and its waveform in response to the prevailing spectrum occupancy and
ionospheric conditions might well be regarded as cognitive, as might the waveform
selection of an airborne HF/VHF SAR such as CARABAS [13–15]. The CARABAS
SAR operates over the band 20–90 MHz, and it is necessary to adaptively design the
waveform to avoid interference with the other users within that band. Another example
is the way in which a phased array radar might dynamically adjust the dwell time and
update rate in tracking a particular target according to the signal-to-noise ratio and
degree of manoeuvre of the target [16] (Figure 2).

Equally, we may look at the behaviour of a bat in detecting, identifying and
intercepting an insect target [17]. There can be no doubt that the bat is employing
cognitive processing in these operations, since it is clearly sensing the target scene
and dynamically adapting its emitted signal in response to the information that it
has and the information that it seeks to acquire.

To date, most of the work on cognitive radar has been theoretical or by means
of simulation. There is a pressing need to undertake experimental work to
demonstrate the benefits practically, and the Cognitive Radar Experimental
Workspace (CREW) that is being developed at the Ohio State University repre-
sents an important step in this direction [18].

The term ‘fully adaptive radar’ has been used by some authors instead of cognitive
radar, perhaps to emphasize the origins in classical adaptive processing (Figure 3).

4 The spectrum problem

Another significant factor in this overall subject area is the ever-increasing congestion
of the RF electromagnetic spectrum [19–21]. This spectrum, extending from below
1 MHz to above 100 GHz, is a precious resource. It is used for a wide range of purposes,
including communications, radio and television broadcasting, radionavigation and
sensing. Radar represents a fundamentally important use of the EM spectrum, in
applications which include air traffic control, geophysical monitoring of Earth
resources from space, automotive safety, severe weather tracking, and surveillance for
defence and security. Nearly all services have a need for greater bandwidth, which
means that there will be ever-greater competition for this finite resource.

As an indication of the financial value attached to the RF spectrum, Table 1
lists the prices paid in various countries when the 3G and 4G spectrum was sold to
telecommunications companies. These parts of the spectrum are of the order of a
few tens of MHz – so clearly the RF spectrum has a substantial monetary value.

Introduction to waveform diversity and cognitive radar 5



The issues of spectrum congestion and competition with radar from other ser-
vices currently occur mainly in the frequency bands below 5 GHz (C-band). In the
higher frequency bands, the use of bandwidth is still strictly regulated to prevent
interference, especially to critical services such as air traffic control and aircraft
landing aids. Since its inception in the 1950s, HF radar has always competed for
spectrum with the primary users of HF communications and the amateur radio world.
Since the late 1970s, the world’s communication industries have shown greater
interest in the UHF part of the spectrum, and in 1979 the World Administrative Radar
Conference (WARC) took the decision to downgrade the primacy of radar in portions
of the UHF band, specifically 420–430 and 440–450 MHz, to secondary status, which

Radar
scheduler TX

Adaptive
receiver

Radar
products

(SAR, GMTI, etc.)
RX

(a)

Radar
scheduler

TX

EDDB KA
coprocessor

Adaptive
receiver

Radar
products

(SAR, GMTI, etc.)
RX

(b)

Figure 2 (a) Conventional adaptive radar; (b) cognitive radar (after Guerci
� 2010 Artech House. Reprinted with permission from [9])
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means that radars can operate only as long as they do not interfere with primary
users. Over the last 10 years, wireless industries have lobbied their member nations
within the International Telecommunications Union (ITU) to downgrade radar in the
3.4–3.7 GHz band to secondary status as well. At present, the big competitor for the
3.4–3.7 GHz band is 4G wireless communications [WiMAX or Long Term Evolution
(LTE), though all indications are that the latter will dominate].

There are several ways in which the techniques of waveform diversity and
cognitive radar may address this problem.

4.1 Spectrally clean waveforms
Most waveforms, of all kinds, are spectrally quite ‘dirty’ – in other words they
radiate significant energy outside of the intended bandwidth. Figure 4 provides an
extreme example of this, showing the spectrum of an X-band magnetron over the
band from 7.5 to 11.5 GHz. Although the bulk of the energy is concentrated around
9.4 GHz, there is substantial energy radiated outside of the desired band, which has

Table 1 Prices paid by telecommunications companies
for 3G and 4G spectrum (Figures from GSM
Association – other sources vary)

3G (UK) $38.2 bn (2000)
4G (Germany) $4.9 bn
4G (Italy) $7.0 bn
4G (Spain) $1.9 bn
4G (France) $4.9 bn
4G (USA) $20.4 bn

Figure 3 Transmitter/receiver of the Cognitive Radar Experimental
Workspace (CREW) at The Ohio State University
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the potential to interfere with other services in this band. There is clearly strong
motivation to be able to generate waveforms with much better spectral purity, so
that signals can be accommodated closer together without mutual interference. The
techniques of digital waveform generation and of power amplifier linearization can
provide substantial improvement here.

As an example of power amplifier linearization, Figure 5 shows an open-loop
feedforward technique. To understand its operation, consider an input signal con-
sisting of two tones. The main amplifier produces an amplified version of these
(shown in blue), plus distortion (intermodulation) products (shown in red). Direc-
tional couplers are used to sample the input signal and the output signal, and with
suitable weighting these are combined to give the distortion signal alone. This is
amplified and added back into the main signal path, adjusted in amplitude and
phase to cancel the distortion in the main signal path. This would require careful
adjustment in setting up, and the performance would be likely to degrade as a
function of time. Closed-loop architectures would give better performance in this
respect, but would be more complex.

Another approach is to pre-distort the signal to take out the distortion that is
introduced by the amplifier stage. This, too, can be adaptive, and lends itself well to
the high-speed digital waveform generation techniques that form the basis of
waveform diversity.

A third technique is to vary the load impedance into which the power amplifier
works, to minimize the distortion introduced. The tool used in this design is the
Smith Tube, which is the well-known Smith Chart, also plotted as a function of the
duration of the transmitted pulse [22–25] (Figure 6).
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4.2 Waveforms with dynamically variable spectral nulls
Modern military radars may require wide bandwidths to give high resolution, and
may need to operate in spectrally congested environments with multiple other
signals, interference and jamming which change dynamically. It may therefore be
desirable to radiate signals with spectral nulls whose frequencies may be adapted
according to the prevailing interference, at the same time as maintaining low range
sidelobes. Jakobosky et al. [26] have demonstrated a Pseudo-Random Optimized
FMCW (PRO-FMCW) waveform which achieves this. Figure 7 shows the measured
spectrum of a waveform of this kind.

It is further proposed that such a spectrum gap could be used to hide an
embedded communications signal, whose frequency could be hopped in a known
pattern which would be very difficult for an adversary to discover.

4.3 Passive radar
Since passive radar makes use of transmissions that are already present (broadcast,
communications, radionavigation, . . . ) it requires no additional spectrum and no
additional licensing, and has even been called ‘green radar’ [27].

If such transmissions are to be used for radar purposes, as well as for their
primary purpose, there is potentially an opportunity to attempt also to optimize them
as radar illuminators. This has been termed ‘commensal radar’ (literally ‘at the same
table’), and the term is due to Professor Mike Inggs of the University of Cape Town,
South Africa1. It will mean devising efficient waveform modulation and coding
schemes that also give good ambiguity function performance for radar purposes [28].

Another important aspect is the coverage of such illuminators. In general, the
radiation patterns of broadcast and communications transmitters are optimized so

1 The term commensal radar has also been used by researchers in South Africa as a synonym for passive
radar, especially with non-cooperative illuminators.
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that energy is directed only towards regions where users are located. This often
means constraining the elevation-plane patterns so that energy is not wasted above
the horizontal. However, if the source is to be used as an illuminator to detect and
track air targets, this is precisely where the energy should be directed.

Figure 8 shows measured vertical-plane radiation patterns corresponding to two
VHF FM transmitters (red and green traces) and an 8-bay DVB-T transmitter (blue
trace), plotted as a function of the sine of the elevation angle. The peak sidelobe level
of the VHF FM patterns are approximately �15 dB below the peak, though the nulls
are as low as �30 dB. For the DVB-T pattern, the sidelobes are somewhat lower.

The effect of these patterns of passive radar detection performance can be
evaluated from the radar equation for the passive radar signal-to-noise ratio:

S

N
¼ PtGtGrl2sbGp

4pð Þ3R2
T R2

RkT0BFL
(1)

in which Pt is the transmit power, Gt is the transmit antenna gain, l is the wave-
length, sb is the target bistatic RCS, Gp is the processing gain, RT is the transmitter-to-
target range, RR is the target-to-receiver range, k is Boltzmann’s constant, T0 ¼ 290 K,
B is the receiver noise bandwidth, F is the receiver noise figure and L includes the
system losses.

This can be re-arranged in the form:

RRmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PtGtGrl2sbGp

4pð Þ3R2
T S=Nð ÞminkT0BFL

s

(2)
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Figure 7 Measured spectrum of PRO-FMCW waveform with a static
rectangular spectrum gap � 2016 IEEE. Reprinted with
permission from [26]
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which shows that for every 10 dB reduction in PtGt the maximum detection range
RR for a given target is reduced by a factor of 3.3 (Figure 9). Even at the peaks of
the elevation-plane lobes the effect is significant, but in the nulls in between the
lobes it is even more so.

4.4 Intelligent, cognitive processing
It has been remarked that actual spectrum occupancy at a given point, as a function of
frequency, time, direction and polarization, . . . may be quite low. This can be visua-
lized in terms of what has been called the ‘Radio Frequency Transmission Hypercube’
[29]. This indicates that, with suitable real-time sensing of the spectrum occupancy
and control of the emitted signals, it should be possible for multiple signals to co-exist,
dynamically minimizing their mutual interference by disposing their energy in the
available domains. This may also include the coding domain, so that different signals
may occupy the same bandwidth provided they are orthogonally coded, and recent
work in MIMO radar has prompted the study of orthogonal codes of this kind.

1
DVB-T, 98 MHz & 108 MHz Antenna Power vs.Sin(x)

0.9
0.8
0.7
0.6
0.5
0.4

0.3
0.2
0.1

0
–60 –50

DVBT
108 MHz
98 MHz

–40 –30

Power (dB)

–20 –10 0

Figure 8 Measured vertical-plane radiation patterns of BBC VHF FM radio
transmitter at 98 MHz, 108 MHz and 8-bay DVB-T transmitter.
The vertical scale is the sine of the elevation angle at the transmitter
� 2015 IEEE. Reprinted with permission from [27]
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Figure 9 The effect on detection range of the elevation-plane pattern of the
source can be substantial � 2015 IEEE. Reprinted with permission
from [27]
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4.5 Regulatory approaches
The other side of the coin is the regulatory framework for spectrum allocation. For
radar, regulation is particularly complex due to the variety of different radar modes,
their necessary power outputs (which dictates the nature of the specific transmitter)
and the induced spectral emissions. Many, but not all, countries adopt the ITU
emission standard. In the United States, emission standards are determined by two
organizations: the National Telecommunications and Information Administration
(NTIA), the governing body for all U.S. federal government spectrum use; and the
U.S. Federal Communications Commission (FCC), the regulatory authority on
spectrum use by non-federal entities such as the commercial broadcasting industry.
The ITU has published their manual of radio regulations since the dawn of
wireless in 1906. Today the regulations cover the frequency range from 9 kHz to
1000 GHz for 40 different radio services, including radar (which falls under the
classification of radiodetermination or radiolocation services), in a 1000þ page
publication [30]. These regulations can only be changed by agreement at
the World Radiocommunication Conference.

These regulations tend to adopt a rather conservative approach. However, we
argue that there is a pressing need for a more intelligent approach to regulation, in
which the degree of interference of one kind of signal with another is understood
in a quantitative manner, via models which are supported by experimental mea-
surements, and the regulations framed accordingly. This represents a substantial
amount of work.

5 Bistatic, multistatic and networked radar

Bistatic and multistatic radar, including passive radar, have already been covered in
Part III of Volume 1 of this book, but certainly bistatic techniques provide another
domain in which diversity can be exploited.

5.1 Origins and properties
Bistatic radar systems have been studied and built since the earliest days of radar.
As an early example, in WW2 the Germans used the British Chain Home radars as
illuminators for their Klein Heidelberg bistatic system [31,32]. Bistatic radars have
some obvious attractions. The receiving systems are passive, and hence undetect-
able. The receiving systems are also potentially simple and cheap. Bistatic radar
may also have a counter-stealth capability, since target shaping to reduce target
monostatic RCS will in general not reduce the bistatic RCS. Bistatic operation is
very compatible with the use of UAVs, so the transmitter (which may be heavy and
require high power) may be located on a platform at stand-off range, while the
receivers can be carried by multiple smaller, lighter UAVs. Furthermore, bistatic
radar systems can utilize VHF and UHF broadcast and communications signals as
‘illuminators of opportunity’, at which frequencies target stealth treatment is likely
to be less effective.
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Bistatic systems also have some disadvantages. The geometry is more com-
plicated than that of monostatic systems. It is necessary to provide some form of
synchronization between transmitter and receiver, in respect of transmitter azimuth
angle, instant of pulse transmission and (for coherent processing) transmit signal
phase. Receivers which use transmitters which scan in azimuth will probably have
to utilize ‘pulse chasing’ processing [33].

Over the years, a number of bistatic radar systems have been built and eval-
uated. However, rather few have progressed beyond the ‘technology demonstrator’
phase. Willis [34] has remarked that interest in bistatic radar has tended to vary on
a period of approximately fifteen years, and that currently we are in the ‘third
resurgence’. Arguably now the interest is continuing unabated, since now there are
applications in which bistatic operation provides a genuine advantage, and many
of the obstacles that in the past meant that bistatic operation was too difficult (such
as processing power and synchronization) have now largely been overcome.

5.2 Passive radar
Passive radar has already been mentioned in the previous section as one approach
to address the spectrum congestion problem. Figure 10 shows the basic principle.
The history goes back a long way, and some of the very earliest radar experiments
were based on broadcast transmissions [35].

Passive radar has a number of significant attractions, which are listed in [27]:

● Broadcast and communications transmitters tend to be sited on high locations
and hence achieve broad coverage.

● Since the system makes use of existing transmitters, the cost of a passive radar
is likely to be much lower than a conventional radar.

broadcast
transmitter

broadcast
transmitter

broadcast
transmitter

PBR
receiver

Figure 10 Passive bistatic radar – basic principle
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● Similarly, there are no licensing issues.
● It allows the use of frequency bands (particularly VHF and UHF) that are not

normally available for radar purposes. Such frequencies may be beneficial in
detecting stealthy targets, since the wavelength is of the same order as the
physical dimensions of the target, and forward scatter gives a relatively broad
angular scatter.

● Since the receiver emits no signal of its own, and as long as the receive antenna
is inconspicuous, the passive radar receiver may be undetectable and hence
completely covert.

● It is difficult to deploy counter-measures against passive radar. Any jamming
will have to be spread over a range of directions, diluting its effectiveness.

● Passive radar does not require any additional spectrum. For this reason it has
been termed ‘green radar’.

● There is an enormous range of transmissions that may be used. In practice,
almost any emission can be used as the basis of a passive radar.

However, there are also some significant disadvantages:

● The waveforms of such transmissions are not optimized for radar purposes, so
care has to be used to select the right waveforms and to process them in the
optimum way.

● In many cases the transmit source is not under the control of the passive radar.
● For analogue signals, the ambiguity function (resolution in range and in Doppler)

depends on the instantaneous modulation, and some kinds of modulation are
better than others. Digital modulation does not suffer from these problems, so is
likely to be preferred.

● The waveforms are usually continuous (i.e. a duty cycle of 100%), so sig-
nificant processing has to be used to suppress the direct signal and multi-path
in order to detect weak target echoes.

● In common with all bistatic radars, the resolution in range and Doppler is poor
for targets on or close to the baseline between transmitter and receiver.

Passive radar systems have been built and evaluated by many workers over the past
three decades. It has been a particularly suitable subject for university research,
since the receiver hardware is relatively low cost. But in the last 5 years or so there
has been a marked change in maturity of the subject, as several commercial com-
panies have developed systems with greater reliability and performance (Figure 11),
many of which exploit modern digital transmissions such as DVB-T. Passive radars
are now being seriously considered for applications as diverse as Air Traffic
Management, border or harbour surveillance and even indoor monitoring in
eldercare/assisted living [27]. A recent defence business website has predicted that
the military and civil aviation market for passive radar for the decade 2013–2023 is
likely to be worth more than US$10 billion [36].

Further, it is reported also that China and Iran have operational passive radar
systems, and that a Russian company is developing a passive radar system for drone
detection [37].
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6 Structure of Part I of Volume 2

The chapters within this part of the book cover a range of topics within the overall
theme.

In Chapter 1 some of the practical aspects of design and generation are described.
An important result is that the distinction should be drawn between a code, which is
a sequence of phase values (bi-phase or polyphase), a waveform, which is the result
of modulating the code onto a carrier, including the effects of the transition from
one phase to the next, and the emission, which is the result of passing the waveform
through upconversion and amplification stages, including the phase and amplitude
distortion introduced by such stages.

Figure 11 An example of the new generation of passive radar systems,
due to FHR in Germany � 2016 FHR. Reprinted with permission
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Many modern digital communications schemes make use of Orthogonal
Frequency Division Multiplex (OFDM). In order to combat multi-path propagation,
the digital bitstream is multiplexed into a number of parallel channels, each with a bit
length much longer than the maximum multi-path delay These parallel channels are
then modulated onto a set of carriers spaced at frequencies equal to 1/(bit length), so
that the carriers are orthogonal. The signals corresponding to each carrier are
received, demodulated, and then combined to reconstruct the original bit stream.
OFDM is used in LTE, 802.11 (WiFi), 802.16 (WiMAX) and DVB broadcasting. Its
widest use is in the fourth-generation (4G) mobile systems based on LTE. Chapter 2
explores the use of OFDM waveforms as radar signals, and particularly how they
may be designed and optimized adaptively.

Some of the issues associated with the spectrum problem have been mentioned
earlier in this chapter. Chapter 3 takes this further by showing how waveforms may
be designed using cognitive techniques, to dynamically adapt to a changing spec-
trum environment.

Noise radar has some significant attractions in respect of low probability of
intercept, ambiguity functions which approach the ‘thumbtack’ ideal and the
possibility of multiple quasi-orthogonal waveforms for MIMO radar. The ideas
date back to the 1950s and 1960s [38], but at that time it was very difficult to
perform the required cross-correlation in analogue circuitry, and digital processing
was still in its infancy. Nowadays digital processing power has advanced to the
point where cross-correlation of wide-bandwidth waveforms is feasible, which
opens up a range of possibilities and applications, which are described in Chapter 4.

Chapter 5 focuses on the topic of management and control of radar systems
based on cognitive techniques. The rapid configurability and agility of a multi-
function phased array radar makes phased arrays an enabling technology for the
types of cognitive algorithms described in the chapter. The work builds on a rich
history of techniques that have been applied in experimental and operational radar
systems over many decades, notably in Germany [16,39], the United Kingdom
[40–42] and in the United States [43–45]. The chapter extends this history of radar
management methods by introducing the cognitive processes of attention and
anticipation. Attention is manifested by solving the resource management problem,
which is formulated as a constrained multi-objective optimization problem.
Anticipation is manifested by performing radar management based on predictions
of how the scenario will evolve in the future. Both processes are dependent on
knowledge, either estimated or learnt from encountered radar data or from external
information sources.

Chapter 12 of Part III of Volume 1 has described the properties of bistatic
radar clutter, and showed in particular that the amplitude statistics of bistatic clutter
may be shorter-tailed (less spiky) than the equivalent monostatic clutter. This
leads to the idea of ‘clutter diversity’, which means understanding the way in
which the properties of clutter and of targets depend on the bistatic geometry,
and hence being able to choose the most suitable bistatic or multistatic confi-
guration to optimize detection and tracking, and these ideas are developed in
Chapter 6.
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Some mammals (notably bats and dolphins) use acoustic signals for echolo-
cation, and there are some obvious parallels with radar. The signals used by
different species of bat have been studied in some detail, and it is found that the
signals are sophisticated and that they are used in an adaptive and intelligent
manner, providing examples of cognitive behaviour that we might study and
emulate in our cognitive radar systems. These signals and the associated processing
will have been optimized over millions of years through the process of evolution
(natural selection – the ‘survival of the fittest’) [46], but also learned by an indi-
vidual bat by mimicking the behaviour of its parents and then optimized empiri-
cally. The extension of these ideas to cognitive radar systems is described in
Chapter 7.

In the final chapter, many of these concepts are brought together to introduce
the intelligent, adaptive radar network. Present-generation military surveillance
sensor systems tend to be based on single platforms carrying conventional sensors,
including monostatic radars, which are expensive and inflexible. There is therefore
an imperative to think in new ways about sensor systems and to devise concepts that
are more flexible, of higher performance, and at the same time more affordable.
The advent of practical UAV platforms forms part of this thinking, but introduces
new and significant challenges. Such a scheme has a number of attractions, including
flexibility, inherent robustness and potentially lower cost. At a simplistic level, it can
be appreciated that multistatic operation should increase sensitivity, since more of the
energy scattered from a target is intercepted, and that it should provide more infor-
mation on which to base detection, tracking and identification.
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Chapter 1

Radar emission spectrum engineering

Shannon D. Blunt1, John Jakabosky1

and Christopher Allen1

Abstract

The spectral containment of active radar emissions is of growing concern due to
continued erosion of allocated radar spectrum and the increasing congestion driven
by consumer demand for bandwidth-gluttonous wireless video applications. Strict
new emission requirements are forcing the careful consideration of how to achieve
radar spectral containment within the context of the ever-present pressure for
enhanced sensing performance. It is thus imperative that a holistic perspective be
taken that addresses the characteristics of the physical signal launched from the
radar, inclusive of electromagnetics, systems engineering and signal processing
attributes. This chapter introduces recent developments on the design and imple-
mentation of physical radar waveforms for spectral containment, including
experimental results for various new emission schemes.

1.1 Introduction

The topic of radar waveform design has been investigated for decades [1] and
includes myriad contributions including various forms of frequency modulation
(FM), binary and polyphase coding, recent multiple-input–multiple-output
schemes and more. However, the impact of the radar transmitter is generally not
considered as part of the waveform design process. Given the impact the trans-
mitter has on the waveform, particularly for high-power systems and in light of
stricter radar emission requirements [2,3], it has become necessary to address the
actual physical signal that is launched from the antenna along with all the factors
that contribute to the generation of this signal.

A holistic perspective for radar emission design necessitates a mathematical
representation of the intended waveform that permits physical generation. Speci-
fically, this representation must be continuous and relatively well contained
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spectrally (noting that, in theory, an idealized pulse is not bandlimited). Further, it
is useful if this representation provides the means with which to parameterize the
waveform for optimization of the resulting physical signal according to attributes
such as range sidelobes and Doppler tolerance.

It is well known that a waveform should have a constant envelope to mitigate
some of the distortion induced by the transmitter power amplifier (PA) as well as to
maximize ‘energy on target’ for subsequent detection sensitivity. However, a
waveform must also be differentiable, and thus continuous, with sufficient spectral
containment to minimize the spectral shaping that is imposed by the transmitter,
which can compound distortion. As they inherently meet these criteria, FM wave-
forms such as the well-known linear FM (LFM) chirp have been widely used.

Of course, LFM is also known to possess rather high range sidelobes, which
has led to the development of various non-linear FM (NLFM) waveforms that
necessitate the identification of a suitable continuous phase/frequency function of
time (see Section 5.2 of [1] for an overview). Many such methods are based on the
principle of stationary phase [4–6], which relates the power spectral density (PSD)
and the chirp rate at each frequency as a means to shape the waveform spectral
content. Another class of NLFM is hyperbolic FM (HFM), otherwise known as
linear period modulation [7,8], that is used in sonar and by many echo-locating
mammals due to its Doppler invariance property. Further, HFM provides a rela-
tionship between peak sidelobe level (PSL) and the waveform time-bandwidth
product (BT) that serves as a useful performance benchmark [8] for all constant
amplitude waveforms. Other design approaches include higher order polynomials
[9], use of the Zak transform [10], application of Bézier curves [11] and hybrid
methods that also employ amplitude tapering on receive [12,13] (though such
tapering also yields a signal-to-noise ratio, or SNR loss).

With the intent to obtain greater design freedom than could previously be
achieved for NLFM, the notion of phase coding was also developed in which large-
scale, parallelizable computing power can be applied to search for optimal codes
having high dimensionality. This extensive litany of contributions includes Barker
codes [14], P-codes [15,16], minimum peak sidelobe codes [17] and many others
(see [1, Chapter 6]), with the goal of discovering ever longer codes with lower
autocorrelation sidelobes (e.g., [18,19]).

Phase codes can be separated into the classes of binary codes and the more
general polyphase codes, both of which have a structure involving a discrete
sequence of phase values modulated onto rectangular subpulses (or chips). The the-
oretically instantaneous transitions between adjacent chips corresponds to infinite
bandwidth, thus requiring some practical means with which to implement codes on a
physical radar system. For binary codes, the most common techniques with which to
convert the code into a constant envelope, continuous waveform are derivative phase
shift keying (DPSK) [20] and the biphase-to-quadriphase transformation [21], which
is a form of minimum shift keying (MSK). Of the two, the latter is superior from a
spectral containment standpoint [20], though both are still somewhat limited in
design freedom due to being constrained to a binary phase constellation.
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An alternative approach proposed to limit the spectral spreading of coded
waveforms is to replace the rectangular chips with windowed (and thereby trun-
cated) sinc kernel functions [20,22]. While this approach achieves excellent spec-
tral containment (in [20] out-of-band suppression of as much as 100 dB was
achieved), the sinc kernel also produces amplitude modulation (AM) that requires
linear amplification. To generate these waveforms with non-linear amplification,
and thus high power efficiency, the Chiriex out-phasing configuration comprising
dual non-linear amplifiers followed by a summer was used [20], which represents a
form of Linear amplification with Nonlinear Components (LINC) [23,24]. It has
been experimentally demonstrated that high transmit power may be achieved for
this type of configuration as long as adequate cross-calibration can be maintained
between the two PAs.

More recently, an implementation meeting the criteria for the generation of
physical waveforms was developed that facilitates the realization of arbitrary
polyphase coding as a new NLFM waveform class denoted as polyphase-coded FM
(PCFM) [25,26]. This implementation is a modified form of the continuous phase
modulation (CPM) scheme [27] that is commonly used for aeronautical telemetry
[28,29], deep-space communications [30] and forms the basis of the BluetoothTM

wireless standard [31]. What these applications have in common are the dual
requirements of power efficiency and spectral efficiency. The former is obtained by
ensuring constant amplitude so that the transmitter PA can be operated in satura-
tion, while the latter is achieved by bounding the instantaneous rate of phase
change, both of which are inherently provided by the CPM structure.

By establishing the connection between phase coding and a resulting
physically realizable waveform, the PCFM framework also provides the means
with which to optimize the continuous waveform by searching over the high-
dimensional space represented by the coding parameterization [32,33]. By direct
extension, the underlying coding can likewise be optimized to account for the
distortion the waveform encounters in the transmitter (via a transmitter model or
actual hardware-in-the-loop) so as ultimately to optimize the physically emission
[33,34]. In Section 1.2, this framework for generation and optimization of the
physical emission is discussed along with a summary of various ways in which
even greater design freedom can be achieved for the optimization of physical
waveforms to contend with the potentially conflicting requirements of the
sensing mission and spectral containment.

When addressing the physical radar emission it is observed that, with the use of
spectrally efficient waveforms, the pulse rise/fall-times become the limiting factor
on spectral containment due to the rather abrupt on/off nature of pulsed radars,
specifically the high efficiency PAs that effectively behave like switches. As such,
it becomes necessary to address the waveform and transmitter design jointly. In
Section 1.3, recent work [35] is presented on the incorporation of a LINC archi-
tecture into optimization of the PCFM-based physical emission so as to design the
waveform within the context of pulse shaping for spectral containment while still
maintaining high power efficiency.
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In Section 1.4, another recent emission implementation/optimization scheme
is described that relies on the relationship between the PSD and autocorrelation of
the waveform to realize pulsed [36] and continuous wave (CW) [37] modalities,
respectively, that achieve both good spectral containment and low range sidelobes
with little to no SNR loss. As with PCFM-based approaches, experimental
measurements demonstrate the efficacy of these spectral shaping methods. This
formulation also permits joint optimization of the waveform with a low-loss
amplitude taper, and it is likewise shown how in-band spectral gaps (avoidance
regions) can be generated without incurring the sensitivity degradation that other-
wise generally arises.

1.2 Polyphase-coded FM

While considerable research has focused on polyphase code design, the physical
implementation of such codes has received far less attention. Consider the mathe-
matical representation of a continuous, baseband code consisting of a set of con-
tiguous, constant amplitude, rectangular chips (or subpulses), each of which is
modulated by an associated phase value of the code (see Figure 1.1). This idealized
representation is the model used by nearly all search strategies seeking to determine
an optimal sequence of code phase values (e.g., [18,19,38]). However, the abrupt
phase changes between consecutive chips in the code produce extended spectral
sidelobes with a sin(x)/x envelope [1, pp. 145–155]. A radar transmitter, comprised
of driver amplifiers and an exciter, will not pass this extended spectral content due
to inherent bandlimiting of the system. This linear distortion, combined with the
non-linear characteristics of the transmitter (predominantly resulting from the PA),
produces a distorted version of the idealized model of the code. Bandlimiting
effects are offset by spectral regrowth arising from non-linear intermodulation
products, often measured by the adjacent channel power ratio (ACPR) [3,24,39],
that further complicate spectral containment. This distortion also translates into
range straddling (cusping) effects for the received echoes [26,40].

In light of the description above, in [26], the nomenclature for radar waveforms
is clarified since the terminology tends to be used rather loosely in the literature. A
code is defined as the finite sequence of phase values q0; . . .; qN½ � corresponding to
the sequence of chips in Figure 1.1, noting that such a structure is not physically

Constant
amplitude chips

Time

q0 q1 q2 qN–1 qN

Figure 1.1 Idealistic representation of a polyphase-coded waveform
(�2014 IEEE, reprinted with permission from [26])
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realizable. In contrast, a waveform is a continuous physical signal, such as the well-
known LFM chirp [1, pp. 57–61]. Finally, the emission is the transmitter-distorted
version of the waveform that is launched into free space, including effects such as
rise/fall-time ringing and distortion caused by undesired conversion of phase
modulation (PM) into AM.

The purpose of the PCFM implementation is to convert an arbitrary polyphase
code into a continuous FM waveform that is amenable to the bandlimiting/
non-linear effects of the transmitter, the deleterious impact of which can be reduced
but not eliminated. By extension, the selection of an underlying code implemented
with the PCFM framework can subsume the transmitter distortion effects so as
ultimately to optimize the physical radar emission launched into free space. In
doing so, the spectral content may likewise be addressed for this physical emission,
to the degree that the transmitter-distorted spectral response can be controlled by
the underlying code. Total control over the emission necessitates joint design of the
waveform and transmitter [2].

1.2.1 PCFM implementation
To provide a suitable implementation for the length N þ 1 polyphase code
q0 q1 � � � qN½ �T , a modified version of the CPM framework [27] was proposed

for the radar application [26]. Figure 1.2 illustrates this scheme where a train of
N consecutive impulses with time separation Tp are formed to yield a total pulse-
width T ¼ NTp. The nth impulse is weighted by an; which is the phase change
between successive chips of the polyphase code as determined by

an ¼ Y ~anð Þ ¼ ~an

~an � 2p sgn ~anð Þ

(

if ~anj j � p
if ~anj j > p

(1.1)

where

~an ¼ qn � qn�1 for n ¼ 1; . . .;N (1.2)

and sgn(•) is the sign operation.
The shaping filter g(t) in Figure 1.2 is the same as that used for communica-

tions, with the most common examples being rectangular and raised cosine [27].
The requirements on the shaping filter are: (1) that g(t) integrates to unity over the

∑ an d(t – (n–1)Tp)

(·)∫ dt + q0 exp{ j(·)} s(t;x)

x = 

g(t)

N

t

0

n=1
a1 a2 aN... T

Figure 1.2 Modified CPM implementation to generate polyphase-coded
FM (PCFM) radar waveforms (�2014 IEEE, reprinted with
permission from [26])
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real line and (2) that g(t) has time support on [0, Tp]. The integration stage in
Figure 1.2 is initialized to q0 and the sequence of phase changes are collected into
the vector x ¼ a1 a2 � � � aN½ �T , which parameterizes the complex baseband
PCFM waveform

s ðt;xÞ ¼ exp j

Z t

0
gðtÞ �

X

N

n ¼ 1

an d t� ðn � 1ÞTp

� �

" #

dtþ q0

 !( )

(1.3)

Note that (1.1) and (1.2) provide for the conversion of an existing polyphase code
q0 q1 � � � qN½ �T into the ‘phase change’ code x parameterizing the PCFM

waveform. However, optimization of a PCFM waveform can be performed directly
by selection of the values in x, for �p � an �þp and with q0 from (1.3) an
arbitrary phase offset that does not affect the goodness of the waveform. The
selection of the shaping filter g(t) also impacts the waveform and it could likewise
be made a free parameter for optimization (though such is not considered here).

To demonstrate the physical attributes of the PCFM scheme, consider the four
waveforms described in Table 1.1 that represent different implementations of a
P4 code [1, Section 6.2] with N ¼ 64. A discretized version of each waveform is
represented with 150 samples/chip and a pulsewidth of 64 ms that is then loaded
onto an arbitrary waveform generator (AWG) for measurement in a loopback
configuration (the transmitter connected directly to the receiver) using an S-band
testbed. The testbed includes a mixer, preamplifier, bandpass filter and a class AB
solid-state GaN PA.

Figure 1.3 shows the pulse shapes for each of the four loopback measurements.
The waveform denoted as ‘Ideal Chip’ represents the closest approximation
possible to an idealized code given the sampling rate of 150 samples/chip. This
waveform exhibits an amplitude null each time a chip transition occurs. Such
significant deviations from constant amplitude can produce problems for a PA that is
operated in saturation, including voltage-standing-wave-ratio (VSWR) fluctuations,
increased phase noise and possibly even damage to components since a significant
portion of the delivered power may not be radiated.

The ‘10% Transition’ waveform partially alleviates this problem by performing a
linear phase interpolation between adjacent chips, though the amplitude nulls are still
clearly visible. Interestingly, the PCFM implementation using a rectangular (RECT)

Table 1.1 Waveform implementations and their characteristics

Implementation Waveform characteristics

Ideal chip Fastest phase transition possible given AWG
limitations

10% Transition Linearly interpolated phase transitions over
10% of each chip width

PCFM-RECT Uses a rectangular filter for g(t); approximates
LFM with piecewise linear phase transitions

PCFM-RC Uses a raised-cosine filter for g(t)
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filter for g(t), which is a piece-wise linear phase approximation of the LFM waveform
from which the P4 code is derived [1, Section 6.2], can be viewed as extending the
10% Transition case to a full 100% Transition with linear interpolation. Of course,
instead of just being an ad hoc fix to the limitations of generating codes, the PCFM
implementation provides a new design framework via the determination of the an

parameters and the flexibility to select different shaping filters such as demonstrated
by use of the raised-cosine (RC) filter in Figure 1.3.

Denoting AWG waveform as the version of each of the four waveforms that is
loaded onto the AWG and loopback emission as the resulting version captured by
the receiver of the S-band testbed, Figures 1.4–1.7 illustrate this ‘before-and-after’
spectral content for each of the four implementations. The distortion induced by the
transmitter is most clearly evident for the Ideal Chip and 10% Transition wave-
forms in Figures 1.4 and 1.5, respectively. While it might appear for these cases
that the transmitter is providing needed improvement in spectral containment, this
distortion actually produces mismatch effects that translate into SNR losses on
receive [26]. In Figures 1.4 and 1.5, the mismatch starts to appear just below �10 dB
relative to the peak.
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Figure 1.3 Pulse shapes for four loopback emissions after transmitter distortion [26]
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Figure 1.4 Spectral content of Ideal Chip waveform before (top) and
after the transmitter (bottom) (�2014 IEEE, reprinted with
permission from [26])
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Figure 1.5 Spectral content of 10% Transition waveform before (top) and
after the transmitter (bottom) (�2014 IEEE, reprinted with
permission from [26])
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Figure 1.6 Spectral content of PCFM-RECT waveform before (top) and
after the transmitter (bottom) (�2014 IEEE, reprinted with
permission from [26])
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Figure 1.7 Spectral content of PCFM-RC waveform before (top) and
after the transmitter (bottom) (�2014 IEEE, reprinted with
permission from [26])
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In contrast, the transmitter-induced mismatch for the two PCFM implementa-
tions (Figures 1.6 and 1.7) starts to appear below �30 dB relative to the peak,
meaning these waveforms are much more amenable to the physical attributes of the
transmitter. Also note that between the two PCFM waveforms, the one using the
rectangular (RECT) shaping filter demonstrates better spectral containment, where
the RC shaping filter produces a pair of close-in spectral sidelobes.

1.2.2 PCFM optimization
Inclusion of the PCFM implementation from Figure 1.2 into a comprehensive
design framework permits optimization of the actual continuous waveform, and
ultimately the physical free space emission inclusive of any distortion by the
transmitter. Figure 1.8 provides a notional representation of this all-inclusive
optimization paradigm.

The PCFM implementation defined in (1.3) and Figure 1.2 can be expressed
compactly as the operator

s ðt;xÞ ¼ TPCFM xf g (1.4)

that generates the continuous-time PCFM radar waveform associated with the
phase-change code x. The distortion induced by the transmitter may likewise be
represented by the operation

uðt;xÞ ¼ TTx sðt;xÞ½ � ¼ TTx TPCFM xf g½ � (1.5)

where the resulting signal uðt;xÞ is the physical emission launched from the radar.
For an idealized transmitter (no distortion) this latter operation simply yields

idealized Tx : uðt;xÞ ¼ TTx sðt;xÞ½ � ¼ sðt;xÞ (1.6)

The most common metrics for waveform (or here emission) optimization are peak
sidelobe level (PSL) and integrated sidelobe level (ISL). Spectral containment to
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Figure 1.8 Notional representation of the optimization of physical
radar emissions [33]
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minimize the transmission of out-of-band spectral content and the incorporation of
in-band spectral avoidance regions are emerging metrics driven by growing spec-
tral congestion. Define F uðt;xÞ½ � as the generic evaluation of the physical emission
according to some metric.

The optimization problem then becomes one of determining the parameters in
x ¼ a1 a2 � � � aN½ �T that yield a sufficiently optimal solution, noting that the
rather high dimensionality of the problem for a useful time-bandwidth product (BT)
likely precludes determination of global optimality.

The goodness of a waveform (emission) is generally based on the delay-
Doppler ambiguity function defined as

cðt;wÞ ¼
Z þT

t¼�T
ejw t uðt;xÞ u�ðt þ t;xÞ dt (1.7)

where t is delay, w is Doppler and T is the pulsewidth. Clearly the w¼ 0 cut of this
function is the waveform autocorrelation, which is worth noting, relates directly to
the PSD of the waveform through a Fourier transformation.

The PSL [1] is thus usually defined for the zero-Doppler cut as

FPSL cðt;w ¼ 0Þ½ � ¼ max
t

cðt; 0Þ
cð0; 0Þ
�

�

�

�

�

�

�

�

(1.8)

for t 2 tm; T½ �; in which the interval �tm; tm½ � corresponds to the autocorrelation
mainlobe and �T ; T½ � is the time support of cðt; 0Þ due to finite pulsewidth. The
PSL metric provides a worst-case perspective on the sidelobe interference induced
by a waveform/matched filter pair. Likewise, the ISL metric [1] for the zero-
Doppler cut can be defined as

FISL cðt;w ¼ 0Þ½ � ¼
R T
tm

cðt; 0Þj jdt
R tm

0 cðt; 0Þj jdt (1.9)

In contrast to PSL, the ISL metric provides a measure of the aggregated sidelobe
interference that could be encountered due to distributed scattering such as clutter.

Given the trend toward tighter restrictions on out-of-band radar spectral con-
tent, frequency-domain metrics are of growing importance. While it might at first
seem that such a metric may be in conflict with the commonly used PSL and ISL
metrics that are used to optimize for low range sidelobes, the relationship between
PSD and autocorrelation reveals the fact that a PSD that decreases towards the band
edges corresponds to an autocorrelation with low range sidelobes [12]. As such, it
is possible to achieve both good spectral containment and low range sidelobes by
employing an appropriate frequency-domain metric.

One such metric was recently defined as the frequency template error (FTE)
in [33] as

FFTE U ð f ;xÞ½ � ¼ 1
fH � fL

� �

Z fH

fL

�

�

�
U ð f ;xÞj jp � W ð f Þj jp

�

�

�

q
df (1.10)
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where fL and fH denote the ‘low’ and ‘high’ edges of the frequency interval of
interest, U ð f ;xÞ is the frequency response of the emission and W ð f Þ is a frequency
weighting template (e.g., a Gaussian window). The values p and q permit control
over the degree of emphasis placed at different frequencies. For p ¼ 1 and q ¼ 2,
(1.10) realizes a frequency-domain mean-square error metric. Alternatively, p > 1
overly emphasizes in-band (higher power) frequencies while p < 1 overly empha-
sizes out-of-band (lower power) frequencies.

The notional emission design framework of Figure 1.8 is formalized in
Figure 1.9 specific to the case of PCFM waveforms defined in (1.1)–(1.3). Alter-
natively, with small modifications one could likewise specify the design scheme for
binary codes implemented with DPSK or MSK [20,21] or even orthogonal fre-
quency division multiplexing (OFDM) [41], though the latter is not necessarily
recommended for radar applications due to the significant AM exhibited by OFDM.
The design problem exemplified by Figure 1.9 is of particular interest because
polyphase codes provide greater freedom than binary codes and the associated
PCFM implementation yields FM waveforms that are spectrally well contained and
that are amenable to a high-efficiency, PA. The design problem thus becomes one
of determining the sequence x ¼ a1 a2 � � � aN½ �T that provides a subsequent
physical emission to achieve a specified degree of performance according to a
specified metric F.

If each phase-change parameter an for n ¼ 1, 2, . . . , N can be one of L possible
values from a discrete, equally spaced constellation on [�p, þp], then there exist
LN different coded emissions that could possibly be generated via (1.3) for a given
shaping filter g(t). Clearly L and N need not be very large before the number of
possibilities becomes too unwieldy to determine the global optimum via evaluation
of all LN candidate waveforms. As such, a search strategy is needed to identify
locally optimum waveforms that are ‘good enough’.
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Figure 1.9 Formal representation of the optimization of physical radar
emissions resulting from PCFM waveforms (�2014 IEEE,
reprinted with permission from [33])
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Many search strategies exist for this type of problem (e.g., Tabu search,
simulated annealing, genetic algorithms, particle swarm optimization). Such
strategies can generally be classified as either a single point (or local) search or as a
population-based search [42]. The former rely on various heuristics to avoid local
minima during the search while the latter employ a distributed sampling of the
search space that is perturbed to discover new regions of the search space.

Within the context of radar waveform design, consider that the range-Doppler
ambiguity function integrates to a constant for an arbitrary continuous, constant
amplitude waveform [1] � meaning that sidelobes can only be moved around but
not eliminated. As such, the consolidation of ambiguity into the range-Doppler
ridge, as realized by chirp-like waveforms, provides an excellent initialization from
which to search for optimal waveforms since the existence of the ridge effectively
‘absorbs’ much of the ambiguity. In other words, one can expect to obtain quite low
range sidelobe levels by performing a local search on x in the vicinity of phase-
change codes whose associated PCFM waveforms possess a chirp-like structure.

The difficulty with a local search is the prospect of ‘getting stuck’ in a local
minimum. Well-known heuristics such as simulated annealing and Tabu search
[42] were thus developed as means to escape from these local minima in the hopes
of discovering the global minimum (or at least a better local one). For the problem
of optimizing a physical radar waveform, a new approach was devised in [33] that
relies on the complementary nature of the waveform metrics of PSL, ISL and FTE
as defined in (1.8), (1.9) and (1.10), respectively. Denoted as performance diver-
sity, this search strategy exploits the fact that each of these metrics differently
measures the same fundamental property of ‘how large are the range sidelobes
relative to the mainlobe’ for the zero Doppler cut (with possible simple extension to
non-zero, yet small, Doppler as well). As such, an improvement in one metric tends
to be an improvement in the others. An important exception, however, is that local
minima are not necessarily the same across these different metrics, thus providing a
way to escape some local minima by simply changing the metric being evaluated.
While a local minimum shared by all three is certainly possible (though more rare),
it is also likely to be a rather good local minimum, thereby likely achieving the
design goal.

For example, using a phase-change code that closely approximates an LFM
chirp as the initialization and assuming an idealized transmitter (i.e., no distortion),
Figure 1.10 illustrates the autocorrelation obtained after optimization using the
individual metrics of PSL, ISL and FTE, along with the result from using all three
combined within this performance diversity paradigm. Table 1.2 quantifies the per-
formance for each according to how the emission was optimized. Interestingly, the
performance diversity approach yields the best performance for all three metrics,
which stands to reason since this approach is not a multi-objective optimization in
which competing goals are sought, but instead exploits the fact that these metrics are
actually complementary to one another.

Relative to the LFM waveform, it is also observed in Table 1.2 and Figure 1.11
that all of the optimized waveforms involve a small degradation in range resolution.
This effect is to be expected for NLFM waveforms since the more gradual spectral
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roll-off (relative to LFM), which provides for the achievement of lower range
sidelobes, also slightly reduces the 3 dB bandwidth. It is interesting to note that the
better performing NLFM waveforms in terms of sidelobe reduction realize a
slightly greater trade-off in resolution (also to be expected given the conservation
of range-Doppler ambiguity). Finally, these waveforms retain the chirp-like struc-
ture and thus also retain much of their Doppler tolerance [33].

In short, it is possible to optimize an FM radar waveform by using a para-
meterized search in the neighbourhood of chirp-like waveforms. In so doing,
the goals of spectral containment and low-range sidelobes can both be met.
Now consider how the distortion induced by the radar transmitter can likewise be
addressed.
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Figure 1.10 Autocorrelation of the optimized ideal emissions using the PSL,
ISL and FTE metrics individually and the performance diversity
paradigm (�2014 IEEE, reprinted with permission from [33])

Table 1.2 Quantified performance for optimization of emissions for an idealized
transmitter (�2014 IEEE, reprinted with permission from [33])

Optimization metrics

LFM PSL ISL FTE Performance
waveform only only only diversity

Final PSL value (dB) �13.5 �21.1 �27.0 �31.3 �40.2
Final ISL value (dB) �9.8 �6.7 �20.0 �15.6 �24.9
Final FTE value (dB) �17.0 �16.6 �22.4 �30.1 �32.1
Relative 3 dB resolution 1.00 1.06 1.11 1.26 1.28
Relative 6 dB resolution 1.00 1.08 1.13 1.30 1.33
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1.2.3 Optimizing physical radar emissions
With the establishment of a framework to optimize the physical attributes of a
waveform, it is possible to now consider the inclusion of transmitter distortion
effects to optimize the physical emission launched from the radar. Generally
speaking, there are two approaches one may take: model-in-the-loop (MiLo) opti-
mization in which the linear/non-linear distortion is represented as a mathematical
model in simulation and hardware-in-the-loop (HiLo) optimization in which the
actual physical transmitter is used in the optimization process [33]. The MiLo
approach has the benefit of permitting a fast search of this high-dimensional space,
such as by using general purpose graphics processing units (GPGPU), though even
the best model cannot exactly characterize the hardware it is intended to represent.
In contrast, the HiLo approach optimizes the emission specific to the very trans-
mitter that will use it, though the latency involved with uploading a waveform onto
an AWG and subsequently capturing it for evaluation can slow down the search
process considerably.

Figure 1.12 again depicts the autocorrelation of the performance diversity wave-
form from Figure 1.10 that was optimized under the idealistic transmitter condition
(distortion free). In addition, Figure 1.12 reveals the autocorrelation of this waveform
after being distorted by the solid-state amplifier model from [43]. Relative to the
idealistic case, the distorted waveform results in 4.6 dB degradation in PSL and 2.8 dB
degradation in ISL [33]. However, when MiLo optimization is used (Figure 1.12),
4.4 and 2.2 dB of lost PSL and ISL sensitivity is recovered, respectively.
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Figure 1.13 repeats the procedure of Figure 1.12, albeit for HiLo optimization
involving an L-band ( fc ¼ 1.842 GHz) test bed in an anechoic chamber. Here a Class A
PA is used that is driven 5 dB beyond the 1 dB compression point. Each candidate
waveform is converted to in-phase and quadrature-phase (I/Q) components and loaded
onto an AWG. The transmit antenna is a quad-ridge horn. A separate receiver captures
the emitted signal via a standard-gain horn, performs attenuation, downconversion,
and digitization and then passes the captured emission back to Matlab running on a
laptop for evaluation and selection of the next waveform.

As observed in Figure 1.13, the transmitter hardware degrades the waveform
by 2.7 dB in terms of PSL. Subsequent HiLo optimization is able to recover 1.5 dB
of this lost sensitivity. Note that this Class A amplifier is not very severe in terms of
distortion. It is expected that more power-efficient amplifiers (e.g., tube-based
amplifiers that may be Class C or higher) would induce greater distortion, thus
providing greater impetus for HiLo optimization. However, this proof-of-concept
experiment does demonstrate the potential for optimization of the physical radar
emission that is launched into free space.

For these tests, the MiLo arrangement realized in excess of 500,000 waveform
evaluations per second. However, when the same process was performed in a HiLo
arrangement on the radar testbed the search speed dropped to 1 waveform evaluation
every 1.5 s, many orders of magnitude slower than for MiLo.

Further, note that the nature of PA distortion is rather complicated, being
composed of both static and dynamic characteristics (the latter arising from mem-
ory effects in the device). As such, many different general models for PA behaviour
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have been proposed [44] as a means to estimate the properties of a given device to
perform subsequent predistortion compensation.

Such models may thus provide the means to hybridize the MiLo and HiLo
approaches such that the transmitter distortion is accurately estimated for a particular
system (updated as needed) and then used to emulate the distortion for fast search of
the physical emission. This notion of an ‘introspective radar’ represents a form of
autonomic cognition that can be likened to the development of proprioception in
infants, wherein a sense of the disposition of arms, legs, etc. is gained. To the degree
that the interaction between the waveform and transmitter distortion has an impact
on spectral regrowth, this manner of physical emission design may permit improved
spectral containment. In Section 1.3, the notion of joint waveform/transmitter design
is also examined.

1.2.4 Further expansion of design freedom
For the PCFM waveform structure defined by (1.1)–(1.3), BT is well approximated
by N, the length of the phase-change code x. Put another way, a PCFM waveform
has N design degrees of freedom with which to realize a waveform that achieves
low-range sidelobes and, to the degree to which it is affected by waveform coding,
address transmitter distortion effects.

In [45], however, a modification to the PCFM structure was introduced that,
while maintaining the same BT (for B specifically the 3 dB bandwidth), the design
degrees of freedom can be increased significantly. This modification was denoted
generally as waveform over-coding and consists of two attributes: (1) subtransitions
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for phase changes to permit greater freedom in the phase trajectory and (2) over-
phasing to permit the instantaneous phase-change to exceed the previous bound
of �p. The former provides finer granularity of phase changes as a function of time
while the latter provides greater utilization of the available spectral content, albeit
with the additional requirement of a constraint on the overall spectral envelope to
avoid expanding the specified bandwidth.

Figure 1.14 illustrates the over-coded PCFM implementation where the phase-
change parameter an for n ¼ 1, 2, . . . , N from Figure 1.2 has been replaced with
aL;n where n ¼ 1, 2, . . . , LN to account for the dividing of each original phase
transition into L subtransitions. Also, the previous phase-change bound defined as
�p � an � þp has been replaced with �Mp/L � aL;n � þMp/L, so that with-
out a means of constraint the bandwidth could increase by a factor of M. The FTE
metric from (1.10) can readily provide this constraint.

Figure 1.15 demonstrates the capability of these new degrees of freedom in
terms of waveform autocorrelation for different values of L and M. The (L ¼ 1,
M ¼ 1) case is simply the ‘performance diversity’ waveform from Figure 1.10.
Using L ¼ 8 along with either M ¼ 1 or M ¼ 2 enables significantly lower range
sidelobes via the same form of optimization search as that described above (and the
use of a GPGPU processor to handle the increased computational burden due
to higher dimensionality). Specifically, the PSL value has decreased by 2.7 and
10.6 dB, respectively, for these two over-coding cases relative to the original.
Likewise, ISL has decreased by 1.9 and 10.8 dB, respectively. Noting that the
(not shown) case of (L ¼ 1, M ¼ 2) yields only 0.5 dB PSL improvement, it is clear
that it is the combination of both subtransitions and over-phasing (with spectral
constraint) that facilitates such significant sidelobe reduction.

It is interesting to consider the spectral content for over-coded waveforms
(Figure 1.16). Relative to the original baseline case of (L ¼ 1, M ¼ 1), the two over-
coded waveforms depicted here, (L ¼ 4, M ¼ 2) and (L ¼ 8, M ¼ 2), realize a
marginal increase of spectral content in the roll-off regions. While still adhering to
the spectral shape dictated by the FTE metric (again using a Gaussian window
here), a ‘spectral fuzz’ arises due to the collection of small perturbations introduced
by over-coding. Ongoing work is exploring how, within the MiLo/HiLo paradigm,
over-coding may provide further control over the spectral spreading induced
by transmitter distortion, particularly in the presence of memory effects [44].

∑ aL,n d(t – (n–1)Ts)

(·)∫ dt + q0 exp{ j(·)}
s(t)

g(t)

NL

t

0

n=1

Figure 1.14 PCFM implementation using over-coding (�2014 IEEE,
reprinted with permission from [45])
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Additional physically realizable degrees-of-freedom for waveform design that have
recently been investigated include spatial modulation [46], polarization modulation
[47] and higher order PCFM [48]. Further, optimal mismatch filtering and adaptive
pulse compression receive processing have also recently been experimentally
demonstrated for arbitrary FM waveforms [49].

1.3 LINC-optimized waveforms

In [2], one of the proposed challenge problems for spectrum engineering and
waveform diversity is joint waveform/transmitter design. Instead of the usual
component-wise perspective often taken in engineering, this holistic perspective
presents the opportunity to exploit synergistic attributes of the waveform and
transmitter akin to what is observed in nature (e.g., [50]), with the potential to
realize new combinations and capabilities.

For instance, it is well known that the ability to modulate the amplitude of a
radar waveform provides greater design freedom to achieve enhancements such
as reduced range sidelobes (e.g., via tapering of LFM [1]) and better spectral
containment (e.g., weighted series expansion of a binary-coded waveform [1]).
However, AM effects are rather difficult to maintain through a saturated PA,
necessitating the means to linearize this non-linear device [24,44]. There are
many different ways to achieve this goal, including outphasing, envelope track-
ing, the Doherty technique, the Kahn technique, feedback linearizers, feedfor-
ward linearizers and predistortion [24], along with numerous variants. As such,
one can envision the transmitter architecture as being comprised of a set of
parameters that, collectively with the parameterization of the waveform such as
in (1.1)–(1.3), represent a rich design space from which to consider the notion of
joint optimization.

As a pertinent example, linearization techniques could be used to slow down
the rapid rise-/fall-time of a radar pulse which, for a spectrally well-contained
waveform (e.g., most FM waveforms), is the limiting factor for spectral contain-
ment of the overall emission (Figure 1.17). In principle, this task can be readily
addressed by applying an amplitude taper onto the transmitted pulse. However, for
a high-power radar in which the operation during the pulse rise/fall can be likened
to the operation of a switch, such a task becomes more complicated.

To address this problem, consider the outphasing approach, otherwise known
as linear amplification using non-linear components (LINC) [24]. Figure 1.18
illustrates the LINC architecture using a 180	 hybrid coupler in which the sum (S)
output terminal provides the addition of the two input signals and the difference (D)
output terminal realizes the subtraction of one input signal from the other. Mathe-
matically, the application of an amplitude taper onto a desired waveform s(t) can be
represented as [35]

s1ðtÞ ¼ sðtÞ (1.11)

s2ðtÞ ¼ sðtÞexp jfðtÞf g (1.12)

42 Novel radar techniques and applications – volume 2



where

fðtÞ ¼ cos�1 2w2ðtÞ � 1
� �

(1.13)

is the phase adjustment between the two input waveforms needed to generate the
real-valued amplitude taper w(t). The resulting output waveform on the sum (S)
channel is thus

sSðtÞ ¼ s1ðtÞ þ s2ðtÞ ¼ sðtÞwðtÞexp jyðtÞf g (1.14)

in which

yðtÞ ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � w2ðtÞp

w2ðtÞ

 !

(1.15)

is the residual phase response that results from combining the two waveforms in
this LINC configuration. The signal produced on the difference (D) terminal can
either be directed into a matched load or may be recycled to improve overall power
efficiency [51].
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It is important to note that, because the weighting and associated residual phase
response modify the underlying waveform sðtÞ it is necessary to optimize the
resulting emission sSðtÞ to account for these effects along with any other transmitter
distortion. In [35] an LFM waveform with BT ¼ 64 has a Tukey taper applied via
this LINC method such that the pulse rise/fall effectively occur during the first
and last quarter of the pulse. The hardware setup is the same as for the results in
Figure 1.13 from the previous section, aside from the addition of the 180	 coupler
and a second AWG. Per Figure 1.19 that was captured with a real-time spectrum
analyzer (RSA), the taper provides about 15 dB of additional spectral containment
in the out-of-band region. Of course, the Tukey taper is convenient to use because
its amplitude rolls off to zero at the edges, but this taper is actually not well-suited
for LFM, with the tapered waveform yielding a PSL of only �16.4 dB.

It was shown in [35] that performing HiLo optimization for this hardware
configuration, initialized with the tapered LFM waveform, can reduce the PSL to
�42.8 dB, an improvement of 26.4 dB. Figure 1.20 depicts the associated RSA
captured spectrum when HiLo optimization is performed, both with and without the
Tukey taper. It is thus observed that a significant reduction in PSL can be achieved
while still preserving the roughly 15 dB improvement in out-of-band suppression.

Using the associated matched filter, this particular taper resulted in an SNR loss
of 3.2 dB, which clearly is not feasible for many sensing applications. Further, to
realize the substantial tapering at the rise/fall edges of this 64 ms pulse, where better
than �30 dB suppression was achieved, picosecond level timing calibration was
needed to ensure sufficient synchronization between the two AWG-generated pulsed
waveforms. Without this degree of timing calibration the HiLo optimization could
not converge due to drift (as determined in preliminary experimentation using lower
fidelity AWGs). However, this proof of concept does demonstrate the potential for

Figure 1.19 LFM spectrum with (lower trace) and without (higher trace)
Tukey taper, vertical increments are 10 dB (�2014 IEEE,
reprinted with permission from [35])
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enhanced control over radar emissions, as a means to realize better spectral con-
tainment and to start realizing the practical potential of waveform diversity.

1.4 Spectrally shaped optimization

This final section of the chapter considers a different form of waveform design that
specifically addresses spectral content. This approach relies on an iterative spectral
shaping procedure that is essentially a form of alternating projection [52]. In one
manifestation of this approach a pulsed waveform is designed jointly with a low-
loss amplitude taper to achieve ultra-low range sidelobes. In another, a non-repeating
FMCW waveform is realized as an instantiation of FM noise radar. Both cases
demonstrate good spectral containment and good sensing performance based on
experimental measurements.

1.4.1 Ultra-low sidelobe emissions
In [36], a method was developed to enable joint optimization of an FM waveform
and a low-loss amplitude taper. As discussed for the FTE metric in (1.10), a
Gaussian PSD translates into a Gaussian autocorrelation, meaning low range
sidelobes in practice. The previous waveform optimization based on the PCFM
structure inherently constrained the optimization to one of adjusting the FM aspects
of the waveform while the pulse shape was fixed (either as a constant or, like in
Section 1.3, to adhere to a predefined amplitude taper). Here, both FM and AM
attributes are jointly optimized, with the additional degrees of freedom provided by
joint inclusion of AM yielding tremendous improvement in sidelobe suppression
while maintaining good spectral containment.

Figure 1.20 Hardware-optimized spectrum with (lower trace) and without
(higher trace) Tukey taper, vertical increments are 10 dB
(�2014 IEEE, reprinted with permission from [35])
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Given an initial waveform p0ðtÞ, a desired PSD |G( f )|2, and a desired ampli-
tude taper w(t) to serve as a soft constraint to minimize SNR loss, the first stage of
the optimization process [36] involves the iterative application of

riþ1ðtÞ ¼ F �1 Gð f Þj jexp jffF piðtÞf gð Þf g (1.16)

and

piþ1ðtÞ ¼ wðtÞexp jffriþ1ðtÞð Þ; (1.17)

where F is the Fourier transform, F�1 is the inverse Fourier transform and ∠(�)
extracts the phase of the argument. These steps are repeated I times to generate the
first stage output waveform pIðtÞ that possesses both FM and AM attributes.

Setting q0ðtÞ ¼ pI ðtÞ as the initialization for the second stage, the iterative
application of

qkþ1ðtÞ ¼ xðtÞF�1 Gð f Þj jexp jffF qkðtÞf gð Þf g (1.18)

is then performed K times to produce the final waveform qKðtÞ, with x(t) a rec-
tangular window having the same length as the pulsewidth T which serves to limit
the temporal extent of qkþ1ðtÞ: Both stages can be efficiently implemented using
FFT and IFFT processing on a GPGPU.

As an example, a joint waveform/taper optimization is performed for BT¼ 128,
where bandwidth B ¼ 80 MHz and pulsewidth T¼ 1.6 ms. The PSD |G( f )|2 is
a Gaussian shape and the initial taper w(t) is a Tukey taper with amplitude
roll-off occurring during the first and last 50 ns. The waveform/taper is optimized for
I ¼ K¼ 5,000 iterations in each of the two stages. The initial waveform p0ðtÞ is the
(L¼ 8, M¼ 2) over-coded waveform from Section 1.4 having BT¼ 64 that has been
interpolated up to BT¼ 128 using polynomial fitting. Note that this initial waveform
from [45] is still rather chirp-like, albeit with the time-frequency dithering that arises
when optimizing physical FM waveforms.

Figure 1.21 depicts the resulting amplitude envelope after joint waveform/
taper optimization in which the associated SNR loss is only 0.26 dB. The trade-off
for this small SNR loss can be observed in Figure 1.22 in which the autocorrelation
is shown for the intermediate stage as well as the final stage, with and without
inclusion of the taper. While the intermediate stage achieves a PSL of �59.9 dB,
the joint waveform/taper optimization attains a PSL of �108.1 dB, far exceeding what
would often be needed for many sensing applications. Interestingly, if the taper is
removed the PSL degrades by more than 60 dB. Further, Figure 1.23 shows that
removal of the amplitude taper likewise results in significant degradation in terms of
spectral containment, thus emphasizing the important linkage between waveform
performance for sensing and the spectral containment of the radar emission.

Finally, Figure 1.24 illustrates the matched filter response for a loopback mea-
surement when this jointly optimized emission is implemented on the radar testbed
used in the previous sections. This response includes the effect of a Least-Squares
based compensation of linear artifacts that were generated by the spectrum analyzer
and LINC architecture. The loopback measurement without using LINC yields a PSL
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Figure 1.21 Pulse amplitude envelope after optimized joint waveform/taper
optimization with BT ¼ 128 (�2015 IEEE, reprinted with
permission from [36])
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Figure 1.22 Waveform autocorrelation of intermediate design stage, and with
and without jointly optimized amplitude taper (�2015 IEEE,
reprinted with permission from [36])
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Figure 1.23 Spectral content of waveform with and without jointly optimized
amplitude taper. The case that includes the taper closely matches
the desired Gaussian PSD (�2015 IEEE, reprinted with
permission from [36])
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Figure 1.24 Matched filter response using an experimental loopback
measurement (�2015 IEEE, reprinted with permission from [36])
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of�83.2 dB while the use of LINC realizes a PSL of �81.8 dB, thus demonstrating the
potential to implement these AM effects at high power. The difference between these
measured results and simulated performance is most likely due to the 10-bit resolution
of the AWG. The measured waveform also maintains the same spectral containment as
demonstrated in Figure 1.23. In [36] it is shown how this ultra-low sidelobe emission
provides dynamic range greater than 70 dB for free-space measurements.

1.4.2 Non-recurrent nonlinear FMCW emissions
The spectrally shaped design approach from the previous section addressed joint
waveform/taper optimization to obtain a particular ultra-low sidelobe radar emis-
sion that is repeated during a coherent processing interval (CPI). Here we consider
a similar design approach but focus instead on the development of a non-repeating
structure for which sidelobes do not coherently combine [37]. As such, the
following can be viewed as a form of FM noise radar [53] that is designed on a
segment-wise basis.

Denoted as pseudo-random optimized (PRO) FMCW, this formulation relies
on the same strategy as (1.16) and (1.17), with two important differences. First,
because a constant amplitude is desired to simplify transmitter requirements and
mitigate SNR loss, w(t) in (1.16) is now a rectangular window of length T, which
corresponds to the length of each waveform segment. Second, each segment is
initialized with a new randomly generated FM waveform (generally not chirp-like)
that, via iterative application of (1.16) and (1.17), is imbued with the desired
spectrum shape (Gaussian is still used). The mth optimized waveform segment is
then phase rotated as

smðtÞ ¼ exp jfend;m�1

� �

pK;mðtÞ (1.19)

where fend;m�1 is the ending phase value for the (m�1)th segment, to avoid phase
discontinuities. As such, each segment is optimized to provide low autocorrelation
range sidelobes, yet does not repeat, thereby avoiding range ambiguities via low
crosscorrelation with other segments. The varying structure also prevents sidelobes
from combining coherently when performing subsequent Doppler processing
across the segments on receive.

As an example, consider a bandwidth of B ¼ 80 MHz and a total length of 200 ms
comprised of 104 segments of 20 ms each. Thus, each segment has BT¼ 1,600 and the
total processing gain is 1.6� 107, or 72 dB. Each segment was optimized for K¼ 500
iterations, with the initialization a random sequence of 1,600 phase values drawn from
a uniform distribution on [�p, p] and subsequently implemented using the PCFM
framework of [26].

Figure 1.25 depicts the RMS average autocorrelation responses for the initi-
alization and optimized measurements across the 104 segments. On average, the
PSL per segment is improved by 10 dB by using the spectral shaping approach.
In contrast, the RMS average crosscorrelation between adjacent segments increa-
ses by 1.5 dB (see Figure 1.26) for the optimized measurement relative to the
initialization. This result is to be expected since the optimization imposes greater
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Figure 1.25 RMS average autocorrelation responses for initialization and
measurement of optimized (�2015 IEEE, reprinted with
permission from [37])
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using initialization and measurement of optimized (�2015 IEEE,
reprinted with permission from [37])
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spectral containment and thus naturally introduces somewhat greater similarity
between different optimized segments (Figure 1.27).

In Figure 1.27, the desired PSD is again a Gaussian spectrum. The alternating
projection optimization procedure is found to attain this desired PSD fairly well
given the initial random FM waveform segments (that possess a greater bandwidth
due to being unconstrained). Note that at the edges (just beyond �B) the measured
optimized spectral response is truncated by the 160 MHz analysis bandwidth of the
spectrum analyzer.

When Doppler processing is performed over the set of 104 segments, the
range sidelobes do not combine coherently since the PRO-FMCW waveform does
not repeat. Figure 1.28 illustrates the resulting zero-Doppler integrated auto-
correlation response where it is observed that nearly 40 dB improvement is
achieved relative to the RMS average autocorrelation. A similar improvement is
observed is Figure 1.29 for the zero-Doppler integrated crosscorrelation response
between adjacent segments. In [37], it is shown how this emission scheme pro-
vides the means to detect moving targets more than 75 dB below the dominant
scattering in free-space measurements.

1.4.3 Hopped spectral gaps
Given the relationship between the PSD of a waveform and the sidelobe level
in the associated autocorrelation, one can draw the logical conclusion that
the introduction of spectral gaps into the PSD will generally result in an increased
sidelobe level for an otherwise optimized waveform (e.g., [54–56]). In [57],
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Figure 1.27 Spectral content for initialization, desired PSD and measurement
of optimized (�2015 IEEE, reprinted with permission from [37])
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the PRO-FMCW waveform [37] described above is modified to provide for gaps in
the emitted spectrum to avoid other spectrum users or potentially to enable
embedding of another RF function such as communications or navigation.

Figure 1.30 illustrates the mean PSD realized for cases involving 1 and
2 spectrum gaps that are stationary over the total waveform length of 200 ms
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Figure 1.28 Integrated autocorrelation response of PRO-FMCW emissions
(�2015 IEEE, reprinted with permission from [37])
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Figure 1.29 Integrated crosscorrelation response of PRO-FMCW segments
(�2015 IEEE, reprinted with permission from [37])
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(same bandwidth B ¼ 80 MHz and 104 segments as used in the previous section).
The simulation results in Figure 1.31 clearly show how the associated range side-
lobe responses (zero-Doppler integrated over the 104 segments) have degraded
relative to the previous measured result from Figure 1.28 due to the introduction of
these stationary spectral gaps.
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Figure 1.30 Mean PSD for 1 spectral gap and 2 spectral gap cases
(�2015 IEEE, reprinted with permission from [57])
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However, if the spectral gaps are hopped during the CPI, their deleterious
impact on the PSD is significantly reduced. Figure 1.32 shows the mean PSD for
each of 10 different spectral gaps that occur sequentially during the 200 ms interval.
Overall, this hopping produces the PSD in Figure 1.33 in which the impact of any
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Figure 1.32 Mean PSDs for each of 10 sequentially hopped spectral gaps
(�2015 IEEE, reprinted with permission from [57])
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single spectral gaps has been virtually eliminated, thus producing the improved
Doppler integrated autocorrelation in Figure 1.34.

Further, when 100 spectral gaps are randomly hopped over the same time
interval, the smoother overall PSD in Figure 1.33 is achieved which realizes
the associated Doppler integrated autocorrelation in Figure 1.34 that is approaching
the same performance as when no gaps are present at all. Ongoing work is inves-
tigating how to implement these hopped spectral gaps when transmitter distortion
induces spectral regrowth effects.

1.5 Conclusions

Within the context of waveform diversity, radar spectrum engineering can
be posed as a spectral containment (or spectral shaping) optimization problem.
To be meaningful, however, this framework must account for the transmitter
induced distortion that may be mathematically modelled or measured using
actual hardware so that the ultimate physical emission yields the desired sensing
performance while also maintaining the required spectral containment/avoidance.
Ongoing work is exploring different approaches to optimize physical emissions
and to develop a formulation for the joint optimization of the waveform and
transmitter.
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Chapter 2

Adaptive OFDM waveform design for
spatio-temporal-sparsity exploited STAP radar

Satyabrata Sen1

Abstract

In this chapter, we describe a sparsity-based space–time adaptive processing
(STAP) algorithm to detect a slowly moving target using an orthogonal frequency
division multiplexing (OFDM) radar. The motivation of employing an OFDM
signal is that it improves the target-detectability from the interfering signals by
increasing the frequency diversity of the system. However, due to the addition of
one extra dimension in terms of frequency, the adaptive degrees-of-freedom in an
OFDM-STAP also increases. Therefore, to avoid the construction a fully adaptive
OFDM-STAP, we develop a sparsity-based STAP algorithm. We observe that
the interference spectrum is inherently sparse in the spatio-temporal domain, as the
clutter responses occupy only a diagonal ridge on the spatio-temporal plane and
the jammer signals interfere only from a few spatial directions. Hence, we exploit
that sparsity to develop an efficient STAP technique that utilizes considerably
lesser number of secondary data compared to the other existing STAP techniques,
and produces nearly optimum STAP performance. In addition to designing the
STAP filter, we optimally design the transmit OFDM signals by maximizing
the output signal-to-interference-plus-noise ratio (SINR) in order to improve the
STAP performance. The computation of output SINR depends on the estimated
value of the interference covariance matrix, which we obtain by applying the sparse
recovery algorithm. Therefore, we analytically assess the effects of the synthesized
OFDM coefficients on the sparse recovery of the interference covariance matrix by
computing the coherence measure of the sparse measurement matrix. Our numer-
ical examples demonstrate the achieved STAP-performance due to sparsity-based
technique and adaptive waveform design.

1Center for Engineering Science Advanced Research, Computational Sciences and Engineering Division,
Oak Ridge National Laboratory, USA



2.1 Introduction

The problem of detecting slowly moving targets using airborne radars, particularly
in the presence of background clutter and hostile electronic countermeasures or
jamming, has led to the development of the space–time adaptive processing
(STAP) algorithms in the radar community. Since the publication of a seminal
paper by Brennan and Reed [1], the STAP techniques have been extensively
researched and well documented in the literature over the last few decades [2–6];
interested readers may refer to [7–9] and references therein for a comprehensive
survey of different STAP methodologies.

Conventionally, STAP involves the design of a two-dimensional spatio-
temporal filter in order to cancel out the interference effects from the measurements
of the primary range gate [also commonly known as the cell-under-test (CUT)] that
contains a target. Assuming that the secondary range gates adjacent to the CUT are
target free and have the same statistical characteristics of the interference returns as
in the CUT [2], they are used to estimate the interference covariance matrix
required for the computation of the STAP filter weights. The estimation accuracy
of the interference covariance matrix, and consequently the effectiveness of the
STAP filter, depends on a number of homogeneous secondary measurements used
(given by the Reed-Mallett-Brennan (RMB) rule) [10]. Unfortunately, in a fully
adaptive STAP, the number of required secondary measurements is so large that
they do not satisfy the essential homogeneity property due to the intrinsic non-
stationarity of the interference statistics.

To overcome such practical limitations of a fully adaptive STAP, several
partially adaptive STAP algorithms are proposed. Popular among them are various
rank-reduction techniques that assume the dominant interferences to be confined
within a low-dimensional subspace. In general, these methods transform the STAP
filtering process from its original high-dimensional space to a lower dimensional
subspace, for example, by applying eigen-decomposition on the interference cov-
ariance matrix [11–13]. The data-dependent rank-reduction algorithms, such as the
principal components [14,15], relative importance of eigenbeam [6, Ch. 5], cross-
spectral metric [16], parametric adaptive matched filter [17,18] and multistage
Wiener filter [19], are shown in [20] to provide improved STAP performance at the
expense of higher computational cost when compared with the data-independent
methods, such as the joint-domain localization [9,21].

While the radar community continued the development of various partially
adaptive STAP methods (and also recently knowledge-aided or knowledge-based
STAP techniques [22–27]), the research efforts have been primarily biased toward
the improvement of receiver signal processing algorithms, which can intelligently
utilize the secondary measurements to estimate the interference covariance matrix
required for the computation of the STAP filter weights. However, the measure-
ments collected at the receiver are mere representations of the interactions of the
transmitted signal with the operational scenarios. Therefore, if the transmit signal is
kept fixed (non-adaptive), then depending on the variabilities in the environmental
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conditions, the STAP performance may heavily deteriorate. This is why we propose
to operate the transmitter and receiver of a STAP radar in a closed-loop fashion via
an adaptive waveform design module.

With the recent technological advancements in the fields of flexible waveform
generators and high-speed signal processing hardware, it is now possible to gen-
erate and transmit sophisticated radar waveforms that are dynamically adapted to
the sensing environments on a periodic basis (potentially on a pulse-by-pulse basis)
[28–32]. This dynamic transmit-signal adaptation becomes possible due to the
proper utilizations of relevant information fed back by the receiver regarding the
target and interference characteristics. Consequently, the radar systems can poten-
tially achieve a significant performance gain by appropriately reciprocating to any
changes in the target and interference responses, particularly in the defence appli-
cations involving fast-changing scenarios.

Now, to obtain the full benefits of the adaptive waveform design techniques, it
is necessary for us to employ such a waveform whose parameters can be easily
modified in accordance to the system objectives. To fulfil this goal, in this work, we
use an orthogonal frequency division multiplexing (OFDM) radar signal [33–36] to
detect a target using a STAP technique; see also [37,38]. The motivation of
employing an OFDM signal is that it offers a very efficient way to optimally tailor
its spectrum as each of the designed OFDM coefficients determines the transmit
energy at a particular subchannel. Therefore, depending on the frequency vari-
abilities of the target and interference responses, we adaptively synthesize the
OFDM spectral parameters in order to improve the system performance. In addition,
the OFDM signalling technique increases the frequency diversity of the system by
providing additional information about the target, as different scattering centres
resonate at different frequencies [39,40], and thus improves the target-detectability
from the interfering signals.

However, due to the addition of one extra dimension in terms of frequency, the
use of an OFDM signal for the STAP applications also causes one disadvantage by
increasing the adaptive degrees of freedom from MN to LMN , where M denotes
the number of antenna-array elements, N is the pulse repetition periods and L is
the number of OFDM subcarriers. Thereby, the construction of a fully adaptive
OFDM-STAP becomes practically impossible because of the requirement of a
larger number of homogeneous secondary data and the computational burden of
a bigger matrix inversion [1,10]. To circumvent these challenges, we propose a
sparsity-based STAP algorithm. We observe that the target and interference spectra
are inherently sparse in the spatio-temporal domain, as the clutter responses occupy
only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere
only from a few spatial directions. Hence, we exploit that sparsity to develop an
efficient OFDM-STAP technique requires considerably lesser number of secondary
data compared to the other existing STAP techniques and produces a near-optimum
STAP performance. Similar spatio-temporal sparsity-exploited STAP techniques,
but without the OFDM signalling scheme, are lately proposed in [41–54]. It is also
to be noted here that an OFDM-STAP filter operates on the received data as a
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whole, in contrast to the subband STAP approach which partitions the data among
different subchannels by assuming frequency independence [55,56].

We first develop a sparsity-based STAP technique by formulating a realistic
sparse-measurement model for OFDM radar that accounts for measurements over
multiple frequencies. Though both the spatial and temporal frequencies are con-
tinuously varying parameters, the superiority of sparse signal processing can still be
availed by just discretizing the spatio-temporal plane into a finite number of spatio-
temporal frequency grids [57]. Then, the sparse nature of the target and interference
spectra on this spatio-temporal grid structure is exploited by the standard sparse-
recovery techniques to produce an estimate of the clutter covariance matrix. In
particular, to design the STAP filter, we use the secondary range gate data and
estimate the interference-only covariance matrix in two steps: (i) apply the LASSO
estimator [58] as a sparse-recovery technique to obtain the clutter response from the
secondary measurements and (ii) premultiply the sparsely recovered clutter
responses with the known sparse-measurement matrix to compute the clutter cov-
ariance matrix. One additional benefit of this approach is that the estimated clutter
support provides the necessary information to form a masking matrix [44], which is
used in the sparse-recovery of target response from the primary gate measurements,
and thus, we can avoid the explicit estimation and inversion of the interference
covariance matrix.

In addition to designing the STAP filter, we propose to optimally design the
transmit OFDM signals by maximizing the output signal-to-interference-plus-noise
ratio (SINR) in order to improve the STAP performance. However, in practical
scenarios, the computation of output SINR depends on the estimated value of the
interference covariance matrix, which we obtain by applying the sparse recovery
algorithm. Obtaining good estimates of the interference covariance matrix heavily
influence the achievable improvement of output SINR via adaptive waveform
design. Therefore, we investigate the effects of different choices of the transmit
signal parameters on the accuracy of sparse recovery technique by computing the
coherence measure [59–61] of the sparse-measurement matrix. Subsequently, we
provide a closed-form expression of the optimal OFDM coefficients by reasonably
considering that the estimation accuracy of the interference covariance matrix
insignificantly depends on the signal parameters.

We present several numerical examples to demonstrate the OFDM-STAP
performance obtained by employing spatio-temporal sparsity framework, and the
achieved performance gain due to adaptive OFDM waveform design. We analyze
the performance in terms of the SINR-loss measure and the receiver operating
characteristics (ROCs) and make comparative characterizations with respect to the
ideal STAP technique which has the full knowledge about the target and inter-
ference characteristics. Our analyses include both the idealistic and non-idealistic
[including the presence of temporal decorrelation effects caused by the intrinsic
clutter motion (ICM) [6, Ch. 4, 62]] STAP scenarios with a Doppler-unambiguous
clutter characteristic. The scattering coefficients of the target are also varied to
construct two scenarios having different target-energy distributions across different
subchannels. We show that the spatio-temporal sparsity-based OFDM-STAP
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approach yields near-optimum performances by utilizing a substantially small
number of secondary measurements. For example, in the ideal scenario, only two to
five secondary data are found to be enough to produce a near-optimum perfor-
mance. In the presence of temporal decorrelation, although we get a wider main-
beam clutter notch, the near-optimum SINR-loss performance is still attained
by using only two to five secondary measurements. A significant amount of
improvement in performance due to the use of adaptive OFDM waveform is
demonstrated by computing the ROCs for two different target responses. For
example, in the presence and absence of temporal decorrelation effects, we
respectively observe approximately 3 and 6 dB of improvement in detection
performance.

The rest of the chapter is organized as follows. In Section 2.2, we first develop a
parametric sparse-measurement model for OFDM-STAP radar. Then, in Section 2.3,
we describe a sparse recovery technique to estimate the interference covariance
matrix and to design the STAP filter weights. An adaptive OFDM waveform design
algorithm is proposed in Section 2.4. We discuss the numerical results in Section 2.5.
Conclusions and possible future work are given in Section 2.6.

2.1.1 Notations
We present here some notational conventions that are used throughout this chapter.
We use math italic (a) for scalars, lowercase bold (a) for vectors and uppercase
bold (A) for matrices. For a matrix A 2 Ck�m, AT , AH and tr Af g denote the
transpose, conjugate transpose and trace of A, respectively. Ik represents an iden-
tity matrix of dimension k. blkdiag � � �ð Þ forms a block-diagonal matrix with non-
zero submatrices only on the main diagonal. Re �f g is the real part and j � j is the
magnitude of a complex quantity. Among different types of vector norms, we
consider the ‘1 and ‘2 norms, expressed as k �k1 and k �k2, respectively. In addition,
h ; i, � and � are the inner product, Kronecker product and point-wise Hadamard
product operators, respectively. For a random variable a, EðaÞ and varðaÞ, respec-
tively, denote the mean and variance of a.

2.2 Sparse-measurement model

Figure 2.1 presents a schematic representation of the problem scenario. We con-
sider a radar system residing on an airborne platform [5, Ch. 2], and having an
M-element uniformly spaced linear array (ULA) antenna with interelement spacing d.
Without loss of generality, we assume that the array elements are identical and
have omnidirectional radiation patterns. The axis of the ULA is oriented along the
direction of the platform movement (this is commonly known as the sidelooking
array configuration). The platform is flying at a fixed height H and with a constant
velocity vR along the y-direction. The chosen coordinate system is also depicted in
Figure 2.1. We define the x-direction as the zero azimuth (i.e., y ¼ 0�) and the
xy-plane as the zero elevation (i.e., y ¼ 0�). Therefore, a unit vector k pointing
toward a patch on the ground at the ðy; qÞ direction can be expressed as
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kðy; qÞ ¼ cosy cos q x̂ þ siny cos q ŷ þ sin q ẑ, where x̂, ŷ and ẑ are the unit
vectors of the Cartesian coordinate system.

In the following, we first describe the OFDM signal model and then develop a
sparse-measurement model for a target located at a specific range gate and direc-
tion. We also discuss in detail the effects of the interfering signals (clutter and
thermal noise) on the received signal.

2.2.1 OFDM signal model
We consider a wideband OFDM signalling system with L active subcarriers, a
bandwidth of B Hz, and a pulse duration of Tp seconds. Let a ¼ ½a0; a1; . . .; aL�1�T
represent the complex weights transmitted over the L subcarriers and satisfy
PL�1

l¼0 jalj2 ¼ 1. Then, the complex envelope of the transmitted signal can be
represented as follows:

sðtÞ ¼
X

L�1

l¼0

al e j2plDft; for 0 	 t 	 Tp (2.1)

where the subcarrier spacing is D f ¼ B=ðL þ 1Þ ¼ 1=Tp. Denoting fc to be the
carrier frequency, a coherent burst of N transmitted OFDM pulses [in a particular
coherent processing interval (CPI)] is given by

esðtÞ ¼ 2Re
X

N�1

n¼0

sðt � nTÞe j2pfc t

( )

(2.2)
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Figure 2.1 A schematic representation of the problem scenario
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where T is the pulse repetition interval (PRI). We point out here that, during the
adaptive waveform design, we choose the spectral parameters of the OFDM
waveform, al, in order to improve the STAP performance.

2.2.2 Sparse measurement model
We develop the OFDM-STAP measurement model similar to that in [2]. The only
difference is that we use OFDM signalling technique, which gives rise to slightly
different STAP models across different subchannels depending on the corre-
sponding subcarrier frequencies. We consider that the target is at a far-field dis-
tance r0 and along a direction yT ; qTð Þ and is moving with velocity vT . The
distance r0 corresponds to a specific range gate, denoted by a round-trip delay
t ¼ 2r0=c, where c is the speed of propagation. We further assume that the target
has multiple scattering centres that resonate variably at different transmitted
frequencies.

Then, the complex envelope of the received signal at the output of the l th
subchannel is expressed as follows:

yðlÞ ¼ zT;l
al f al; nlð Þ þ eðlÞ (2.3)

where zT;l
is the target-scattering coefficient at the lth subchannel;

f al; nlð Þ ¼ f D nlð Þ � f S alð Þ (2.4)

is an MN � 1 space–time steering vector at the lth subchannel with

f D nlð Þ ¼ 1; e j2pnl ; . . .; e j2pðN�1Þnl

h iT
(2.5)

f S alð Þ ¼ e�j2pflt0 � 1; e j2pal ; . . .; e j2pðM�1Þal

h iT
(2.6)

representing the Doppler and spatial steering vectors, respectively; and eðlÞ repre-
sents the interference along the lth subchannel. Here, the normalized spatial and
Doppler frequencies are, respectively, defined as follows:

al ¼ fl 1 þ bÞDt and nl ¼ fl bTð (2.7)

where fl ¼ fc þ lDf is the lth subcarrier frequency; ð1 þ bÞ accounts for the
stretching or compressing in time of the reflected signal due to the relative motion
between the radar and target; b ¼ 2h vR � vTð Þ; ki=c is the relative Doppler shift;
and t ¼ hdŷ; ki=c is the interelement time delay. However, note that, in most of the
practical scenarios, j bj 
 1, and therefore 1 þ b � 1.

Now, suppose instead of a specific pair of al; nlð Þ, we consider all the possible
combinations of al;i; nl;j

� �

for i ¼ 1; 2; . . .;Ga and j ¼ 1; 2; . . .;Gn. In other words,
we discretize the spatio-temporal domain into G ¼ GaGn grid points (see
Figure 2.2), where Ga and Gn are the number of grids along the spatial and tem-
poral axes, respectively. Then, a non-zero content from any such grid point would
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suggest the presence of a scatterer at that particular spatial and temporal fre-
quencies. Hence, we can rewrite the measurement model as follows:

yðlÞ ¼ alFl xT ;l þ eðlÞ (2.8)

where

● Fl ¼ fl 1; 1ð Þ fl 1; 2ð Þ � � � fl Ga;Gnð Þ½ � is an MN � G matrix containing all
the possible combinations of spatial and Doppler steering vectors (for nota-
tional simplicity, we write fðal;i; nl; jÞ as flði; jÞ); and

● xT ;l is a G � 1 sparse vector having only one non-zero entry corresponding to
the target response at the true spatial and Doppler frequencies, i.e.,

xT ;lði; jÞ ¼
z

T ;l
; if al;i ¼ al and nl;j ¼ nl

0; otherwise

(

Then, stacking all yðlÞs, we get the sparse-measurement model as

y ¼ YxT þ e (2.9)

where

● y ¼ ½yð0ÞT ; . . .; yðL � 1ÞT �T ;
● Y ¼ blkdiag ða0F0; . . .; aL�1FL�1Þ is an LMN � LG sparse spatio-temporal

measurement matrix;
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Figure 2.2 Spatio-temporal sparsity of the target and interference spectra
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● xT ¼ ½xT
T ;0; . . .; x

T
T ;L�1�T is an LG � 1 sparse vector having only L non-zero

entries that are equal to the actual target-scattering coefficients
½zT ;0; . . .; zT ;L�1�T ; and

● e ¼ ½eð0ÞT ; . . .; eðL � 1ÞT �T is the interference vector.

The interference vector e contains not only the thermal noise at the sensors but also
the clutter returns. For an airborne radar, the main contribution to the clutter ori-
ginates due to the ground reflections from all the azimuth directions. Though the
ground has zero velocity, the ground-clutter is spread in both the angle and Doppler
frequency due to the platform velocity vR. We represent the clutter returns (from a
particular range gate) as a coherent summation of a large number (Nc) of clutter
patches evenly distributed in azimuth angles yk ; k ¼ 1; 2; . . .;Nc. Then, ignoring
the effects of any ambiguous range gates and noticing that the target and clutter
returns are affected in a similar way by the radar transmission, we construct a
sparse representation of the interference model as follows:

e ¼
X

Nc

k¼1

YxC;k þ n ¼ YxC þ n (2.10)

where

● xC;k is an LG � 1 sparse vector having L non-zero entries that correspond to
the clutter returns from a specific azimuth angle yk ;

● xC is another LG � 1 sparse vector with sparsity level LNc, and it represents
the overall clutter response; and

● n is the additive thermal noise component.

The construction of this type of interference model makes it explicit here that we
are dealing with the signal-dependent clutter model (i.e., transmit signal parameter
a affects the interference vector e through the matrix Y), which is a more realistic
representation than to assume uncorrelated clutter returns with the transmitted
signal.

2.2.3 Statistical assumptions
To complete the description of our measurement model, we assume that the target
is a small manmade object for which xT is deterministic and unknown. On the other
hand, the clutter returns from a particular patch at yk ; qð Þ can be considered to be
originated from a large collection of incoherent point scatterers, and hence applying
the central limit theorem, we model the clutter returns as a circularly symmetric,
zero-mean complex Gaussian process with unknown covariance matrix RC;k .
Conventionally, the clutter returns from different patches are assumed to be
uncorrelated to each other. Hence, overall, the clutter covariance matrix is
expressed as RC ¼ PNc

k¼1 RC;k . Next, we consider that the thermal noise compo-
nents among different subchannels are uncorrelated; they are also both spatially and
temporally uncorrelated. So, the noise component n is represented as another
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circularly symmetric, zero-mean complex Gaussian process with covariance matrix
s2

nILMN . Hence, overall, the OFDM-STAP measurements are distributed as follows:

y � CN yT ;RIð Þ (2.11)

where yT ¼ YxT and RI ¼
PNc

k¼1 RC;k þ s2
nILMN .

2.3 STAP filter design

In STAP, the received data are first processed with a linear filter having weights w
to yield a scalar output:

z ¼ wH y (2.12)

The primary objective of designing the STAP-filter weights w is to maximize the
SINR at the filter output:

SINR ¼ EðzÞj j2
varðzÞ ¼ wH yTj j2

wH RI w
	 yH

T R
�1
I yT (2.13)

Next, z is fed to a detector that chooses one of the two possible hypotheses: the null
hypothesis (target-free hypothesis) or the alternate hypothesis (target-present
hypothesis), which are mathematically expressed as follows:

H0:
yp ¼ ep

ys ¼ es; s ¼ 1; 2; . . . ;Ns

(

H1:
yp ¼ y

T
þ ep

ys ¼ es; s ¼ 1; 2; . . . ;Ns

(

8

>

>

>

>

>

<

>

>

>

>

>

:

(2.14)

where subscript ‘p’ suggests the primary range gate measurements, subscript ‘s’
denotes the secondary measurements, and Ns is the number of secondary range
gates considered. Based on the statistical assumptions of the previous section, we
know that the optimum detector compares jzj with a predefined threshold [1]. The
threshold is determined to achieve a specified probability of false alarm (PFA) of
the decision problem. Now, for a fixed value of PFA, the probability of detection
(PD) of such a detector is given by [1]

PD ¼ Q
ffiffiffiffiffiffiffiffiffiffiffi

SINR
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 ln PFA

p

� �

(2.15)

where Qð�; �Þ is the Marcum Q-function of order 1.
Following [1,10], we know that the maximum SINR and consequently max-

imum value of PD are attained when the optimal STAP-filter weight is

wopt / R�1
I yT (2.16)
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In practical scenarios, since the knowledge of RI is unknown, we have to estimate it
using the measurements of the secondary range gates. To efficiently estimate RI ,
we first employ the sparse-recovery technique to obtain the estimates of xC and
then premultiply it with the known sparse-measurement matrix Y . We explicitly
denote the secondary measurements as ys ¼ YxC;s þ ns, for s ¼ 1; 2; . . .Ns.

We employ a LASSO estimator [58] on these secondary measurements to obtain

bxC;s ¼ arg min
xC;s

kys �YxC;sk2
2 þ eCkxC;sk1 (2.17)

with eC ¼ s2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cC lnðLGÞp

and cC being a tuning parameter. Then, we estimate the
clutter covariance matrix as follows:

bRC ¼ 1
Ns

X

Ns

s¼1

X

g2bCs

x̂C;s;g

�

�

�

�

2Y g YH
g

2

6

4

3

7

5

(2.18)

where cCs is the non-zero support-set of the estimated clutter response from the sth
secondary data; and Y g denotes the gth column of Y . Hence, the estimate of the

overall interference covariance matrix is given by bRI ¼ bRC þ hILMN , where
h ¼ 10s2

n is chosen as 10 times the white noise level, similar to the approach of [63].

2.4 Optimal waveform design

From the discussion of the previous section, we notice that we can improve the
STAP performance by maximizing the optimal SINR. Therefore, we formulate an
optimization problem to design the OFDM spectral coefficients a as

aopt ¼ arg max
a2CL

yH
T R�1

I yT ; subject to aHa ¼ 1 (2.19)

Rewriting the expression of yT as yT ¼ eYXTa, where eY ¼ blkdiag F0;F1; . . .;ð
FL�1Þ and XT ¼ blkdiagðxT ;0; . . .; xT ;L�1Þ, we have the optimization problem as

aopt ¼ arg max
a2CL

aH ½XH
T
eY

H
R�1

I
eYXT �a; subject to aHa ¼ 1 (2.20)

Now, from Section 2.2, we notice that the interference covariance matrix RI is also
a function of a as we modelled the clutter return as a signal-dependent quantity.
Therefore, considering the true RI , we cannot obtain a simple closed-form
expression of aopt.

However, in practice, we estimate RI from the secondary range-gate mea-
surements, and consequently, we aim to actually solve an optimization problem as
follows:

aopt ¼ arg max
a2CL

aH XH
T
eY

H
bR
�1

I
eYXT

h i

a; subject to aHa ¼ 1 (2.21)
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Now, since we calculate cRI using a sparse recovery procedure, it is important to
investigate how different choices of the transmit signal parameters a affect such an
estimation procedure.

We characterize the accuracy of sparse recovery algorithm by computing the
coherence of sparse-measurement matrix as [59–61]

m ¼ max
g;g 6¼g0

jfY g
H
gY g0 j (2.22)

and we want this metric to have as small a value as possible. Here, fY g denotes the
gth column of Y which is normalized to have unit magnitude. Noticing the block-
diagonal construction of Y , we have

m ¼ max
l

max
g;g 6¼g0

alj j2 fH
l;gfl;g0

�

�

�

�

�

�

MN alj j2 (2.23)

Denoting the grid points g and g0, respectively, with ði; jÞ and i0; j0ð Þ, we get

fH
l;gfl;g0 ¼ e jðM�1Þpal;De jðN�1Þpnl;D

sinðMpal;DÞ
sinðpal;DÞ

sinðNpnl;DÞ
sinðpnl;DÞ (2.24)

where al;D ¼ al;i � al;i0 , nl;D ¼ nl;j � nl; j0 . Therefore, the absolute value

fH
l;gfl;g0

�

�

�

�

�

�
¼ sinðMpal;DÞ

sinðpal;DÞ
sinðNpnl;DÞ
sin pnl;D

� � (2.25)

is maximized when the distinct grid points are chosen adjacent to each other, i.e.,
i ¼ i0  1 or j ¼ j 0  1, and then

max
ði; jÞ;ði0; j0Þ:i 6¼i0; j 6¼j0

jfH
l;ði;jÞfl;ði0; j0Þj � MN (2.26)

Consequently, we have

m ¼ max
l

max
g;g 6¼g0

jfH
l;gfl;g0 j
MNð Þ � 1 (2.27)

Therefore, we can reasonably assume that the estimation accuracy of RI does not
significantly depend on a.

Hence, ignoring any explicit dependence of the estimation of RI on a in the
optimization problem

aopt ¼ arg max
a2CL

aH XH
T
eY

H
bR
�1

I
eY XT

h i

a; subject to aHa ¼ 1 (2.28)

we recognize that the optimization problem is in the form of an eigenvalue-
eigenvector formulation and its solution aopt is the eigenvector corresponding to the

largest eigenvalue of ½XH
T
eY

H
bR
�1

I
eYXT �.
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2.5 Numerical results

In this section, we present the results of several numerical examples to illustrate the
OFDM-STAP performance obtained by utilizing the spatio-temporal sparsity
approach, and the achieved performance gain due to adaptive OFDM waveform
design. First, we provide a description of the simulation setup and then discuss
different numerical results.

Radar parameters—We considered a radar moving with a speed of
vRj j ¼ 100 m=s along the y-direction (see Figure 2.1). It used a linear array with

M ¼ 10 sensor elements having interelement spacing d ¼ lc=2 ¼ 0:33 m, and a
CPI having N ¼ 8 temporal pulses to collect the spatio-temporal measurements.
The transmitted waveform was an L ¼ 4 subcarrier OFDM signal with the fol-
lowing parameters: carrier frequency fc ¼ 450 MHz, bandwidth B ¼ 5 MHz,
subcarrier spacing Df ¼ B=ðL þ 1Þ ¼ 1 MHz, pulse width Tp ¼ 1=Df ¼ 1 ms and
PRI T ¼ 1:67 ms. This ensured an unity Doppler foldover factor (i.e.,
c ¼ 2 vRj jT=d ¼ 1) for the clutter ridge on the spatio-temporal plane.

Interference parameters—We modelled the thermal noise covariance matrix
as s2

nILMN with s2
n ¼ 1. The clutter responses were assumed to be equally spaced in

azimuth angles with Nc ¼ 72 over the entire range gate. We simulated the clutter
responses of each kth patch from an independent complex Gaussian distribution
CN 0;RC;k

� �

and scaled RC;k to satisfy the required clutter-to-noise ratio (CNR),
defined as

CNR ¼
PNc

k¼1 tr RC;k

� �

LMNs2
n

(2.29)

For all the results presented in this section, we kept the CNR fixed at 40 dB.
In addition, to represent the non-idealistic real-world STAP scenario, we

considered the effects of temporal decorrelation (or ICM) on our sparsity-based
OFDM-STAP method. Various natural environmental variations, such as wind
blowing over foliage, motion of ocean waves, induce pulse-to-pulse fluctuations in
clutter reflectivity, which is commonly referred to as ICM [6, Chapter 4, 62]. In
general, the temporal-only decorrelation can be modelled with a modified clutter
covariance matrix as

fRC ¼ RC � blkdiag TD;0 � 1M ; . . .;TD;L�1 � 1M

� �

(2.30)

where TD;l is an N � N temporal correlation matrix at the lth subcarrier and 1M

is an M � M matrix having all the entries to be one. In this work, we constructed
the temporal decorrelation for a water scenario with TD;l ¼ toeplitzðrD;lð0Þ;
rD;lð1Þ; . . .; rD;lðN � 1ÞÞ, where the temporal autocorrelation of the fluctuations
had a Gaussian shape [2]:

rD;lðnÞ ¼ exp
�8p2s2

vT2n2f 2
l

c2

� 	

(2.31)
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with s2
v representing the variance of the clutter spectral spread. In the simulations,

we used s2
v ¼ 0:5.

Target parameters—The target was simulated at an azimuth direction of yT¼ 0�,
and it was moving with a speed of jvT j ¼ 20 m=s. The scattering coefficients of the
target, zT ¼ ½zT ;0; . . . ; zT ;L�1�T , were varied to construct two scenarios having dif-

ferent target-energy distributions across different subchannels, i.e., Scenario I with

zðIÞ
T ¼ ½1; 2; 3; 1�T and Scenario II with z ðIIÞ

T ¼ ½1; 5; 1; 0:5�T . To create various signal-
to-noise ratio conditions, these target scattering vectors were further scaled to satisfy

SNR ¼ kz
T
k2

2

Ls2
n

(2.32)

Simulation parameters—The spatio-temporal sparsity-based STAP problem
was solved following the LASSO formulation after constructing the dictionary
matrix with Ga ¼ Gn ¼ 144 grid points by equally partitioning the azimuth angle y
with an interval of 2:5�. The LASSO estimator was implemented using CVX [64].
It was first operated separately on each secondary data s ¼ 1; 2; . . .;Ns, and then the
recovered clutter responses were used to construct bRC . Finally, an estimate of the
interference covariance matrix was obtained as bRI ¼ bRC þ hILMN with h ¼ 10s2

n.
Performance metrics—To analyze the performance of the sparse-STAP tech-

nique, we examined its characteristics with respect to the ROCs and SINR-loss
measure. The evaluation of ROCs was essential as the STAP algorithms are mainly
used in the detection problems. To compute the ROC curves, we used the rela-
tionship between PFA and PD as PD ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi

SINR
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 ln PFA

p� �

[1].
The SINR-loss performance metric characterizes the STAP performance rela-

tive to what could be obtained in the absence of interference (clutter). In our case, if
only thermal noise is present, i.e., RI ¼ ILMN , then the noise-only SINR value is
equal to LMN . When clutter was present and we estimated the interference covar-
iance matrix as bRI , the output SINR was computed as a function of target Doppler as

SINRðnÞ ¼
�fTðnÞH

bR
�1

I
�fT ðnÞ

�

�

�

�

�

�

2

�fT ðnÞH
bR
�1

I RI
bR
�1

I
�fT ðnÞ

(2.33)

where �fT ðnÞ ¼ ½ð f Dðn0Þ � f Sða0;T ÞÞT ; . . .; ð f DðnL�1Þ � f SðaL�1;T ÞÞT �T repre-
sented a steering vector with fixed target angle and varying target Doppler. Then,
the SINR-loss measure at the output of the proposed STAP filter was calculated as
SINRlossðnÞ ¼ SINRðnÞ=LMN .

2.5.1 Sparsity-based STAP performance
Figure 2.3 depicts the spatio-temporal spectrum of the estimated clutter response by
applying the proposed sparse recovery algorithm on a single secondary range gate
measurement (i.e., Ns ¼ 1). In the ideal scenario (without any temporal decorrela-
tion), we could clearly observe the diagonal clutter ridge of the estimated spectrum
along with extremely few non-zero off-diagonal elements. In the presence of tem-
poral decorrelation, we still saw a prominent diagonal ridge characteristic, but with
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Figure 2.3 Estimated clutter spectra (at L ¼ 4 subcarriers) of the sparsity-based
STAP method in the (a) ideal scenario (no decorrelation) and
(b) presence of temporal decorrelation [the colorbar is in linear scale]

Adaptive OFDM waveform design for STAP radar 75



a slight increase in the number and strength of the off-diagonal elements. We want
to mention here that, because of the inherent randomness of the clutter returns, the
estimated spectra would look different when obtained from a different set of sec-
ondary measurements.

The SINR-loss performance of the sparsity-based STAP technique is demon-
strated in Figure 2.4. In this setup, we employed a conventional (non-adaptive)
OFDM signal with equal magnitude spectral coefficients (i.e., al ¼ 1=

ffiffiffi

L
p 8 l). In

the ideal scenario of Figure 2.4(a), it is clearly evident that we achieved within
�3 dB of optimum SINR-loss by using only Ns ¼ 2 secondary measurements
(to estimate the interference covariance matrix). Furthermore, use of about Ns ¼ 5
secondary data resulted into a near-optimum performance. In the presence of
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Figure 2.4 SINR-loss performance of the sparsity-based STAP method with
fixed (non-adaptive) OFDM signalling in the (a) ideal scenario
(no decorrelation) and (b) presence of temporal decorrelation
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temporal correlation of Figure 2.4(b), the optimum SINR-loss performance showed
a much wider mainbeam clutter notch and a smaller maximum value when com-
pared with the ideal scenario without any decorrelation. As before, we could still
attain the near-optimum SINR-loss performance by utilizing only Ns ¼ 2�5 sec-
ondary data. Therefore, irrespective of whether any temporal decorrelation was
present or not, our sparsity-based STAP approach employed considerably lesser
number of secondary data to produce a near-optimum SINR-loss performance.

The ROC curves in Figure 2.5 show the detection performances of the sparsity-
based STAP approach for two targets z ðIÞ

T and zðIIÞ
T , both in the absence and in the

presence of temporal decorrelation effect. The resulting ROCs, obtained by utiliz-
ing the interference covariance matrix estimated via sparsity-based STAP
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Figure 2.5 Receiver operating characteristics of the sparsity-based STAP method
with fixed (non-adaptive) OFDM signalling in the (a) ideal scenario
(no decorrelation) and (b) presence of temporal decorrelation
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approach, were compared with their counterparts that assume the complete
knowledge of the interference covariance matrix. ROCs of the sparsity-based STAP
method were approximately within 1:2 dB of the optimum performance limit for
both the target scenarios.

2.5.2 Performance improvement due to adaptive
waveform design

Figures 2.6 and 2.7, respectively, demonstrate the SINR-loss and ROC perfor-
mances when we used the adaptively designed OFDM coefficients aopt. The SINR-
loss performances of Figure 2.6 show that, both in the absence or presence of the
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Figure 2.6 SINR-loss performance of the sparsity-based STAP method with
adaptive OFDM signalling in the (a) ideal scenario (no decorrelation)
and (b) presence of temporal decorrelation
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temporal decorrelation, the change in the transmit signal parameters did not affect
the SINR-loss performance in a significant way. In Figure 2.6(a), we observe
that the SINR-loss of the sparsity-based STAP approach remained within �1 dB of
the optimum performance by using only Ns ¼ 5 secondary measurements, whereas
when temporal decorrelation was present, we achieved within �2 dB of the opti-
mum performance by utilizing the same number of secondary data.

The improvement in detection performance due to the adaptive waveform
design is clearly noticeable when we compare the ROC plots in Figure 2.7 with
their equivalents in Figure 2.5. For example, in the ideal scenario with no
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Figure 2.7 Receiver operating characteristics of the sparsity-based STAP
method with adaptive OFDM signalling in the (a) ideal scenario
(no decorrelation) and (b) presence of temporal decorrelation
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decorrelation effect, we observed almost 5.5 dB improvement in detection perfor-
mance for z ðIÞ

T and approximately 6 dB for z ðIIÞ
T when PD ¼ 0:5. On the other hand,

when temporal decorrelation was present, the detection performance was improved
by approximately 3 dB for both the targets at PD ¼ 0:5.

2.6 Conclusions

In this paper, we exploited the spatio-temporal sparsity of the interference spectra
to develop a sparse-STAP algorithm for an OFDM radar. The use of OFDM signal
not only improved target-detectability by increasing the frequency diversity of the
system but also allowed us to efficiently design the transmit signals by maximizing
the output SINR in order to further enhance the STAP performance. In addition,
since the computation of SINR depends on the estimated value of the interference
covariance matrix, which we calculated by using a sparse recovery algorithm, we
analytically investigated effects of different choices of the designed OFDM para-
meters on the accuracy of sparse recovery technique by computing the coherence
measure of the sparse-measurement matrix. This led us to formulate a closed-
form solution of the optimal waveform design problem in terms of the OFDM
spectral coefficients. We demonstrated with numerical examples the achieved
near-optimum STAP performance by utilizing substantially small number of sec-
ondary data, and the improvement in detection performance due to adaptive OFDM
waveform design.

In future, we will extend our model to incorporate more realistic physical
effects, such as the antenna array misalignment and channel mismatch. This will
help us to understand how robust our algorithm is with respect to different practical
considerations. At the same time, a comprehensive analysis will also be carried out
to analyze the effects of a mismatched grid-position on proposed sparse-STAP
algorithm. In addition, we will validate the performance of our proposed technique
with real data.
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Chapter 3

Cognitive waveform design for
spectral coexistence

A. Aubry*, A. De Maio*, A. Farina†,‡ and M. Piezzo*

Abstract

Radar signal design in a spectrally dense environment is a very challenging and
topical problem due to the increasing demand of both defence surveillance/remote
sensing capabilities and civilian wireless services. This chapter describes an
optimization theory-based radar waveform design to deal with the spectrum
congestion problem. Cognition provided by a radio environmental map paves the
way for an intelligent dynamic spectrum allocation. It pushes for dynamic spectral
constraints on the radar waveform which is thus the result of a constrained
optimization process aimed at improving some radar performance (such as detec-
tion, classification and tracking capabilities) while ensuring spectral compatibility
with the surrounding radio frequency licensed systems. Finally, some spectrally
crowded illustrative scenarios are analyzed to show the effectiveness of the con-
sidered optimization theory-based approach.

3.1 Introduction

The radio frequency (RF) electromagnetic spectrum is a limited natural resource
necessary for an ever-growing number of services and systems. It is used in several
applications, such as mobile communications, radio and television broadcasting, as
well as remote sensing. Together with oil and water, nowadays, the RF spectrum
represents one of the most important, significant, crucial and critical commodities
due to the huge impact of radio services on the society. Both high-quality/high-rate
wireless services (4G and 5G) and accurate and reliable remote-sensing capabilities
(air traffic control, geophysical monitoring of Earth and defence and security
applications) call for increased amounts of bandwidth [1,2]. Besides basic

*Università degli studi di Napoli ‘‘Federico II’’, Dipartimento di Ingegneria Elettrica e delle Tecnologie
dell’Informazione, Italy
†ELETTRONICA S.p.A., Italy
‡Selex ES (retired), Italy



electromagnetic considerations, such as good foliage penetration [3], low path loss
attenuation and reduced size of the devices push some systems to coexist in the
same frequency band [4] (for instance very high frequency and ultra high fre-
quency). As a result, the RF spectrum congestion problem has been attracting the
interest of many scientists and engineers during the last few years and is currently
becoming one among the hot topics in both regulation and research field [5,6].

RF spectrum assignment and regulation is coordinated worldwide through
the International Telecommunications Union (ITU) and it is reviewed every three to
four years at the World Radiocommunication Conference (WRC) [6,7]. Specifically,
the scope of the WRC is to review and, if necessary, revise the radio regulations that
form the international treaty ruling the use of the RF spectrum, as well as geosta-
tionary-satellite and non-geostationary-satellite orbits. Revisions are performed on
the basis of an agenda determined by the ITU Council, which accounts for recom-
mendations made by previous WRCs. Significantly, the trend of the actual regula-
tions is to relax the original conservative, static and possibly inefficient strategy in
which ‘‘nothing should ever interfere with anything else’’ allowing some levels of
‘‘acceptable interference’’ among coexisting systems. This is because experimental
evidences have revealed the substantial underutilization of the instantaneous spec-
trum at a given spatial location, as a function of direction, frequency, time and
polarization, which should be reduced as much as possible, via a more flexible,
dynamic and intelligent spectrum usage [6,8]. Of course, this process will require
a quantitative and rigorous study of what can be accepted as tolerable level of
disturbance so as to suitably formulate the regulations.

Starting from the above considerations, during the last year’s several approa-
ches have been proposed in both radar and communication research field to deal
with the spectrum congestion problem and allow a more efficient spectrum use.
In this context, passive bistatic radar (PBR) represents a reasonable strategy to
handle this critical issue [6,9] for low/medium range applications. In fact,
this sensing system, also known as ‘‘Green Radar’’, is able to detect, track and
classify objects of interest without additional RF emissions but exploiting
non-cooperative high-power illuminators of opportunity, i.e., radio FM, GSM,
Universal Mobile Telecommunications System, GPS, Digital Video Broadcasting,
other radar, satellite transmission, etc., as sources [10–12]. In this context, the main
research activity concerns the design of advanced receiver structures able to pro-
cess the direct path signal (from the selected emitter) and the received echoes from
the surveillance area [13–16]. Evidently, this technology avoids the need of trans-
mit licences and, as a by-product, offers a high level of covertness to the monitoring
system, which may be advantageous for defence applications. Nevertheless, this
approach may suffer significant performance degradation, in terms of detection
and tracking capabilities, with respect to conventional monostatic radars as the
employed waveforms are not devised to fulfil radar requirements and also exhibit
time-varying features due to their information content sensitivity [6,17,18].

A possible means to overcome the above PBR shortcomings is represented by
the so-called commensal radar (literally ‘‘from the same table’’) [19,20]. The key
idea behind this approach is to synthesize the waveforms associated with broadcast,
communications, or navigation services so that they not only satisfy their primary
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goals but also share some features making them appealing as radar sources [21].
In this respect, in [21], it is highlighted that there are several parameters of the long
term evolution (LTE) modulation and signal format that can be optimized.

A dual perspective to PBR and commensal radar approaches is represented by
radar-embedded communication strategies [22,23]. Therein, covert communica-
tions are established embedding the information in the environmental reverberation
induced by the radar probing waveforms [24,25]. Otherwise stated, the commu-
nications’ signals are devised so that the information signal looks like a clutter
return. By doing so, such communication link does not require additional spectrum
resources and indirectly provides spectrum coexistence. Nevertheless, the achiev-
able data rate is usually low.

Last but absolutely not least, an important solution to the spectrum congestion
problem is provided by the waveform design and diversity (WDD) paradigm,
pioneered by Dr. Wicks [26–29]. It refers to the radar waveform adaptation aimed
at dynamically optimizing the radar performance for the particular scenario
and tasks. This amazing and powerful feature is enabled by the new computing
architectures, high-speed and off-the-shelf processors, arbitrary digital waveform
generators, solid-state transmitters, active phased arrays, etc. and represents a
viable tool to improve spectrum-usage efficiency. Relying on real-time spectrum
occupancy awareness, it is possible to dynamically [30–32] select the probing
waveforms in response to changing conditions so as to enhance radar performance
while controlling its impact on the other surrounding RF systems. Specifically,
WDD can enable an intelligent and agile spectrum management. Significantly, the
underlying optimization process can also benefit from multiple degrees of freedom,
including spatial, temporal and polarization’s domains, to further improve the
achievable performance.

The research in this field has been quite fertile. A plethora of papers have
addressed the problem of designing radar waveforms with a smart frequency
allocation [33], so as to control the interference brought on overlaid wireless
networks (communication and navigation systems), while enhancing radar perfor-
mance requirements in terms of range-Doppler resolution, low range and Doppler
sidelobes, detection and tracking capabilities. In [34], a waveform design techni-
que is introduced to confer some desired spectral nulls to the radar signal. The idea
is to perturb a stepped frequency modulated pulse forcing an additional fast time
polyphase code. The approach is extended in [35] to the case of continuous phase
waveforms that place nulls at specific frequencies. The effectiveness of both the
aforementioned methods is considered in [36], via an experimental analysis. An
alternate projection algorithm for the construction of chirp-like constant-modulus
signals with a single spectral null is proposed in [37], whereas in [38], its extension,
addressing the production of multiple notches, is established. Some iterative algo-
rithms are introduced in [39] for the joint design of the transmit signal and the
receive filter achieving frequency stop-band suppression and range sidelobes
minimization. A genetic algorithm to design sparse waveforms for high-frequency
surface wave radar systems is investigated in [40]. In [41], a fast coding technique
based on alternate projections and successive fast Fourier transforms is developed
to obtain sparse waveforms with a controlled peak sidelobe level (PSL). In [42] and
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[43], sparse frequency constant modulus radar signals with a low integrated
sidelobe level (ISL) are built optimizing a suitable combination between the ISL
metric and a penalty function accounting for the waveform frequency allocation. In
[44], a spectrum-centric signal design is developed based on the minimization of
the transmitted energy on a set of disjoint stop-band frequencies under a unim-
odularity constraint and autocorrelation function (ACF) masking. In [45], a friendly
spectral shaped radar waveform design is considered to allow the coexistence of the
radar with one or more communication systems. Finally, in [46], the design of
sparse frequency waveform with low ISL values is addressed.

In this chapter, following the WDD paradigm, we provide a unifying and
systematic approach that summarizes some recent results on waveform optimiza-
tion with spectral compatibility requirements [47–49]. Specifically, we present an
optimization theory-based waveform design framework that attempts to enhance
the target detection probability while controlling both the amount of interfering
energy produced in the licensed bands and some desirable features of the trans-
mitted waveform. It is supposed that the radar system has the ability to predict the
behaviour of surrounding licensed RF systems, for instance using a radio envir-
onmental map (REM) [50], containing geographical features, available wireless
services and their spectral regulations and locations and activities of the trans-
mitters. This is the key to an efficient adaptation as the aforementioned information
allows an intelligent spectrum utilization in a spectrally crowded environment.
More in details, the described approach considers as figure of merit the signal to
interference plus noise ratio (SINR) and jointly optimizes the radar code and the
receive filter constraining the amount of interference energy on crowded/reserved
frequency bands. Both signal-dependent and signal-independent interference
scenarios are addressed. To manage some relevant features of the probing signal,
other than an energy constraint, a similarity constraint is enforced on the transmit
sequence, so as to control significant characteristics of the waveform, such as
range-Doppler resolution, variations in the signal modulus, and PSL.

Significantly, the similarity and the spectral compatibility constraints are
generally competing requirements that may lead to an unfeasible design problem.
Hence, the feasibility of the resulting waveform design is analyzed by means of the
interference/similarity (I/S) achievable region, namely the set of the admissible
interference and similarity levels. Then, solution techniques leading to optimized
waveform both in the presence of signal-independent and signal-dependent
interference are presented. Finally, some interesting case studies are reported
highlighting the trade-off among the achievable SINR, spectral shape, and ACF
features of the synthesized signals. The results illustrate the effectiveness of the
considered waveform design framework and show that high SINR values and
enhanced interference suppression capabilities can be traded off with a partial
degradation in terms of autocorrelation properties, in both signal-dependent and
signal-independent interference scenario.

The remainder of the chapter is organized as follows. In Section 3.2, the model
for the radar transmitted signal, the description of coexisting wireless systems, and
the formulation of the waveform design problem are reported. In Section 3.3, the
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joint design of the transmit code and receive filter in the presence of signal-
independent disturbance is addressed, and the performance of the described algo-
rithm analyzed. In Section 3.4, the signal-dependent interference environment
is considered, and the effectiveness of the described procedure assessed. Finally,
Section 3.5 is devoted to conclusions and proposals for possible future research
tracks.

3.2 System model and problem formulation

Let cðtÞ be the baseband equivalent of the transmitted radar pulse modelled as the
superposition of N linearly modulated unitary energy sub-pulses complying
with some specific regularity conditions [47]. The code element associated with the
ith sub-pulse is denoted cðiÞ and the vector c ¼ ½cð1Þ; . . . ; cðNÞ�T 2 CN represents
the fast-time radar code. The waveform at the receiver end is down-converted
to baseband, undergoes a sub-pulse matched filtering operation, and then is
sampled [47].

As a result, the N -dimensional column vector v ¼ ½vð1Þ; . . . ; vðNÞ�T 2 CN of
the fast time observations from the range-azimuth cell under test can be expressed as

v ¼ aTcþ n (3.1)

with aT a complex parameter accounting for channel propagation and backscattering
effects from the target within the range-azimuth bin of interest and n the N -dimensional
column vector containing the filtered disturbance signal samples. Specifically, the
vector n accounts for both signal-independent and signal-dependent interference and it
is modelled as a complex, zero-mean, circularly symmetric Gaussian random vector
with positive definite covariance matrix E½nny� ¼ MðcÞ, possibly depending on c.
In Sections 3.3 and 3.4, further details about these interference models as well as their
practical relevance are provided.

Concerning the licensed systems coexisting with the radar of interest, it is
supposed that each of them is operating over a frequency band Wk ¼ ½ f k

1 ; f k
2 �,

k ¼ 1; . . . ;K , where f k
1 and f k

2 denote the lower and upper normalized frequencies
for the kth system, respectively. To ensure spectral compatibility with the sur-
rounding licensed telecommunication services, the radar has to properly shape its
transmitted waveform to manage the amount of interfering energy produced on the
shared frequency bands. Indeed, from an analytical point of view, the energy
transmitted in the kth band can be essentially computed as

ðf k
2

f k
1

Sc fð Þdf ¼ cyRk
I c (3.2)

where

Sc fð Þ ¼
X

N

i¼1
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is the energy spectral density (ESD) of the fast-time code c and

Rk
I ðm; lÞ ¼

f k
2 � f k

1 m ¼ l

e j2pf k
2 ðm�lÞ � e j2pf k

1 ðm�lÞ

j2pðm � lÞ m 6¼ l

8

>

<

>

:

ðm; lÞ 2 1; . . . ;Nf g2 (3.4)

Thus, denoting by EI , the amount of allowed interference, to overlay the radar with
K coexisting telecommunication networks, the transmitted waveform has to fulfil
the constraint

cyRIc � EI (3.5)

where

RI ¼
X

K

k¼1

wkR
k
I (3.6)

Significantly, different weights and importance can be given to the coexisting
wireless networks, for instance based on their distance from the radar, their relative
angular positions with respect to the actual radar boresight, and their tactical
importance (i.e., navigation systems, military communications, public services,
etc.), by suitably choosing the coefficients wk � 0; k ¼ 1; . . . ;K.

3.2.1 Code design optimization problem
In this subsection, a waveform design approach that attempts to enhance the target
detection probability while controlling both the amount of interfering energy
produced in the licensed bands and some desirable features of the transmitted
waveform is introduced. To this end, recall that in a Gaussian interference environ-
ments, the detection probability is maximized by jointly designing the radar code c
and the receive filter w 2 CN so as to optimize the SINR; defined as

SINR c;wð Þ ¼ jaT j2jwycj2
wyM cð Þw (3.7)

To control some relevant features of the probing signal, other than an energy
constraint, a similarity constraint is enforced on the transmit sequence,
kc� c0k2 � e, where the parameter 0 � e � 2 rules the size of the trust hypervo-
lume and c0 is a suitable reference code. There are several reasons that motivate
the use of this constraint. In a nutshell, an unconstrained optimization can lead to
signals with significant modulus variations, poor range resolution, high PSL and
more generally with an undesired ambiguity function response. These drawbacks
can be partially circumvented forcing the solution to be similar to a known code c0

ðkc0k2 ¼ 1Þ, which shares some nice properties such as constant modulus and a
reasonable PSL.
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Summarizing, leveraging on the aforementioned guidelines, the waveform
design problem of interest can be formulated as the following non-convex opti-
mization problem

P

max
c;w

SINR c;wð Þ

s:t: kck2 ¼ 1

cyRIc � EI

kc� c0k2 � e

8

>

>

>

>

>

<

>

>

>

>

>

:

(3.8)

3.2.2 Cognitive spectrum awareness
To quantify and control the amount of interference induced on coexisting tele-
communication networks, the radar needs to know the number K of coexisting
licensed systems, their bandwidth (referred to as stop-band in the following and
defined by the lower and upper normalized frequencies f k

1 and f k
2 ), and the penalty

weights wk’s to assign to each competing system [see Equation (3.6)]. It is thus of
paramount importance for the sensing radar to have an accurate, reliable and
comprehensive radio environment awareness. REM [50] represents the key to gain
the aforementioned spectrum cognizance that is at the base of an intelligent and
agile spectrum management. First introduced by the Virginia Tech team [51] as the
main foundation for a novel approach to CR networking, REM can be considered
as an abstraction of real-world radio scenarios and can be considered as an inte-
grated database digitizing and indexing the available e.m. information.

Figure 3.1 illustrates some REM multidomain knowledge sources represented
by geographical features, available services and spectral regulations, locations
and activities of telecommunication networks and previous sensing acquisitions
(radio experiences and measurements) [52,53]. Indeed, the idea behind REM is to
store and process a variety of data, so as to make possible the inference of a mul-
titude of environmental characteristics, such as locations of transmitters, prevailing
propagation conditions and estimates of spectrum usage over time and space.
Thus, REM offers a suitable vehicle of Cognitive Radio (CR) system support,
which can be exploited by cognitive engines for most cognitive functionalities,
such as situation awareness, learning, reasoning, planning and decision support.

To populate and update the REM, both a priori knowledge as well as spectral
sensing techniques (like feature-based signal detectors) can be used [53]. Further-
more, as depicted in Figure 3.1, a dedicated sensor network could be also employed
to improve the quality of the scenario monitoring. Obviously, the better the
characterization and modelling of the radio environment, the more the system can
benefit by a priori information and past experiences and adapt to the operational
environment. Summarizing, exploiting the REM, the radar can become aware of
the surrounding e.m. environment; hence, it can intelligently use the available data/
information/knowledge sources to make an agile transmission suitably diversifying
the probing waveform [29]. In addition, a prediction of the overlaid networks
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coverage can be obtained and used together with the radar antenna pointing
direction, to select a suitable weight wk for each stop-band.

3.2.3 Feasibility issues
The similarity and the spectral compatibility constraints are generally competing
requirements that may lead to an unfeasible design problem. For instance, assuming
e ¼ 0 Problem P is infeasible whenever c0

yRIc0 > EI . This motivates the study of
the I/S achievable region for any fixed similarity code c0, namely, the set of the
admissible interference and similarity levels. It is defined as

F ¼ EI ; eð Þ : EI � lminðRI Þ; 0 � e � 2; problem P is feasiblef g (3.9)

and represents the set of pairs EI ; eð Þ defining a feasible Problem P. As shown in
[47], F shares some important features, reported below for completeness:

● Each point on the boundary of F can be computed in a polynomial time;
● F is a convex set. From a practical point of view, this allows to control its

accuracy description. In fact, the convex hull of the I/S levels EIi; eið Þ
i ¼ 1; . . . ;Na, associated to an arbitrary set of Na admissible radar codes, is
contained in the I/S region;
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Figure 3.1 A pictorial representation of the REM and its usage in a cognitive
radar
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● Each point on the boundary of F (with EI > lðRIÞ) is uniquely associated to a
radar code (under some mild technical conditions). Hence, it is possible to
associate to the boundary of the feasible region some important radar performance
metrics, such as ISL, PSL and, obviously, the produced interference power.

A graphical example of I/S achievable region is given in Figure 3.2. Therein, it
is assumed that the overlaid licensed radiating systems, spectrally coexisting with
the radar of interest, are working over the following normalized (according to the
sampling frequency fs ¼ 810 kHz) frequency bands [54]:

W1 ¼ 0:0000; 0:0617½ �; W2 ¼ 0:0988; 0:2469½ �; W3 ¼ 0:2593; 0:2840½ �;
W4 ¼ 0:3086; 0:3827½ �; W5 ¼ 0:4074; 0:4938½ �; W6 ¼ 0:5185; 0:5556½ �;
W7 ¼ 0:9383; 1:0000½ �

(3.10)

As reference waveform c0, a unitary norm complex linear frequency modulated (LFM)
pulse with a duration of 200 ms and a chirp rate Ks ¼ ð750 � 103Þ= 200 � 10�6Þ�

Hz/s
is considered; moreover, wk ¼ 1 for k ¼ 1; . . . ; 7. Further details about the
considered simulation setup can be found in Section 3.3.

Before concluding this section, it is worth pointing out that the radar
designer can choose the pair EI ; eð Þ, referred to in the sequel as operative point, to
reasonably trade off spectral coexistence, desirable radar waveform characteristics
and achievable SINR of the system. For instance, with respect to Figure 3.2,
considering EI ; eð Þ equal to the point A, the frequency coexistence of the radar with
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Figure 3.2 I/S achievable region for chirp similarity code and K ¼ 7 overlaid
licensed wireless systems
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the overlaid telecommunication networks is emphasized, with respect to choosing
EI ; eð Þ equal to the point B. In the last case, other radar features, such as low PSL

and/or ISL, are privileged.
The interested reader may refer to Appendix 3.6.1 for all the analytical details

concerning the study of the I/S achievable region.

3.3 Signal-independent interference scenario

In this section, the joint design of the transmit code and receive filter is addressed
assuming that signal-independent disturbance impairs the useful target return. This
is a useful and meaningful model to describe radar scenarios where the main
sources to the overall disturbance are represented by white internal thermal noise,
hot clutter, interfering signals due to unlicensed and possibly hostile jammers, as
well as licensed overlaid telecommunication networks sharing the same frequencies
as the radar of interest.

In Appendix 3.6.2, the non-convex optimization Problem P is studied for
MðcÞ ¼ �M , showing that an optimal pair ðc�;w�Þ can be devised with a polynomial
time procedure [47]. Specifically, exploiting the closed form expression of the opti-
mal filter for fixed transmit signal, Problem P can be recast as a quadratically con-
strained quadratic programming problem that is, in general, difficult to solve [55].
Hence, some hidden convexities of the resulting problem can be exploited to get
the transmit signal and receive filter maximizing the SINR with a polynomial
complexity. From a technical point of view, P is equivalent to a Semidefinite
Programming (SDP) convex problem whose optimal solution C� allows the design of
c� and w� resorting to a specific rank-one decomposition procedure [55]. Figure 3.3
summarizes the main steps involved in the optimal design. Therein, it is highlighted
that the Capon filter associated with the resulting optimal code and the perceived
interference environment provides the optimal receiver.

The performance of the waveform design technique described in Appendix
3.6.2, i.e., Algorithm 1, is now shown in terms of achievable SINR value, spectral

 Non-convex
optimization problem

Concentration
&

relaxation
Convex optimization

problem
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convexity
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procedureOptimal
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Figure 3.3 Block scheme of the optimization procedure leading to the optimal
transmit code receive filter pair
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shape and autocorrelation features. Hereafter, a radar whose baseband equivalent
transmitted signal has a two-sided bandwidth of 810 kHz and a Nyquist sampling
frequency are considered. In addition, the interference is composed of unlicensed
narrowband continuous jammers, white interference and licensed coexisting tele-
communication networks spectrally overlaid to the radar of interest. Specifically,
the disturbance covariance matrix is modelled as:

�M ¼ s0I þ
X

K

k¼1

sI ;k

Dfk
Rk

I þ
X

KJ

k¼1

sJ ;kRJ ;k (3.11)

where s0 ¼ 0 dB is the thermal noise level; K ¼ 7 is the number of licensed
radiating systems; sI ;k accounts for the energy of the kth coexisting tele-
communication network operating on the normalized frequency band ½ f k

2 ; f k
1 �

(sI ;k ¼ 10 dB, k ¼ 1; . . . ;K); D fk ¼ f k
2 � f k

1 is the bandwidth associated with the
kth licensed system, for k ¼ 1; . . . ;K; KJ ¼ 2 is the number of active and unli-
censed narrowband jammers; sJ ;k , k ¼ 1; . . . ;KJ , accounts for the energy of the
kth active jammer (sJ ;1 dB ¼ 50 dB, sJ ;2 dB ¼ 40 dB); RJ ;k , k ¼ 1; . . . ;KJ , is the
normalized disturbance covariance matrix of the kth active unlicensed jammer,
defined as RJ ;k ¼ rJ ;kr

y
J ;k ; with rJ ;kðnÞ ¼ e j2pfJ ;k n=fs , where fJ ;k denotes the Doppler

shift of the kth jammer ( fJ ;1=fs ¼ 0:7 and fJ ;2=fs ¼ 0:75).
Concerning the overlaid licensed radiating systems, the baseband equivalent radar

stop-bands given in (3.10) are considered. Furthermore, all the licensed/foreseen
overlaid systems are assumed with the same relevance, namely, wk ¼ 1 for
k ¼ 1; . . . ; 7. Based on the assumed stop-bands (3.10) and weights wk’s, the inter-
ference energy constraint on the transmitted radar waveform can be now enforced.
Notice that, the matrix RI does not depend on the frequencies of the unlicensed jam-
mers and is the only function of the spectral bands (3.10) and weights associated to the
licensed networks. Finally, the LFM pulse in Section 3.2.3 is used as reference
waveform c0; it results in N ¼ 162 samples due to the considered sampling frequency.
The I/S achievable region for the considered scenario is represented in Figure 3.2.

For comparison purpose also, the transmit sequence ~c0 and the receive filter ~g0

devised according to the procedure in [39] are considered. Specifically, with
reference to the soft-power constraint transmit waveform design technique [39], the
code c0 is used as starting sequence, and d ¼ 0:9, lT ¼ 10�5 and Rð2Þ ¼ RI .
Moreover, b ¼ 0:05, lT ¼ 10�5, Dn ¼ 10 and Rð2Þ ¼ M are used for the receive
filter design. The interested reader may refer to [39] for additional details about
Lindenfeld’s algorithms, the aforementioned parameters and their setting [39].

In Figure 3.4, the ESD, the squared modulus of the ACF, and the
normalized SINR of the waveforms devised for three operative points (red dot,
black star and cyan hexagram in Figure 3.2) are reported. Specifically, the points
ð�EI ; eiÞ, i ¼ 1; 2; 3, with �EI ¼ 0:066, e1 ¼ 0:264, e2 ¼ 0:444, e3 ¼ 0:654 are con-
sidered, where ð�EI ; e1Þ corresponds to the point A in Figure 3.2, and the results are
compared with those achievable by the signal/receiver pair ð~c0; ~g0Þ. In Figure 3.4(a),
the ESD of the synthesized signals versus the normalized frequency, together
with that of the reference code is shown. The stop-bands in which the licensed systems
are located are shaded in light grey. The curves highlight the capability of Algorithm 1
to suitably control the amount of energy produced over the shared frequency bands.
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In fact, for each e, the energy transmitted in the stop-bands is lower than the allowed
level, thus ensuring the coexistence with the other transmitting systems.

Significantly, for the considered simulation setup, the transmit signal ~c0 is
capable of ensuring an even greater suppression of the interference at the stop-
bands than the devised codes. Nevertheless, this behaviour is quite expected as the
signal design technique of [39] only focuses on the coexistence problem. Otherwise
stated, the figure of merit is represented by the interference reduction, and no
additional constraints are forced neither on the shape of the sought waveform
(whose autoambiguity properties are unpredictable) nor on the SINR at the receiver
side. On the contrary, the aim of Algorithm 1 is to maximize the attainable SINR,
providing at the same time a control over the total amount of interference produced
at certain frequencies as well as on the resulting signal shape.

In addition, it can be observed that increasing the similarity parameter e,
smarter and smarter distributions of the useful energy are achieved. Indeed, a
progressive reduction of the radar emission in correspondence of the shared fre-
quencies as well as an enhancement of the unlicensed jammer rejection capabilities
is highlighted. As a result, higher and higher SINR values can be achieved. This is
actually shown in Figure 3.4(c), where the SINR normalized to jaT j2 is plotted
versus e, assuming EI ¼ 0:066. As expected, a proper choice of the design para-
meters enables good interference rejection properties as well as high SINR values.
It is worth pointing out that, starting from e ¼ 0:72, with reference to Algorithm 1,
the maximum normalized SINR of the system is achieved.

In Figure 3.4(b), a performance analysis in terms of autocorrelation properties
of the designed waveforms is provided. Better SINR values, spectral compatibility,
and interference rejection are traded-off for worse and worse range resolutions and/
or ISLs/PSLs. It can also be observed that the waveform devised through [39]
exhibits worse range-sidelobe profiles than those associated with Algorithm 1,
reflecting the fact that the algorithm in [39] does not directly control the auto-
ambiguity properties of the sought waveform. Nevertheless, the smoother behaviour
of the signals synthesized according to Algorithm 1 agrees with the design criterion
P. In fact, the optimization problem itself involves a compromise between the
desire of lowering the transmitted energy in the stop-bands as well as in corre-
spondence of the jammer central frequencies, and the need of keeping under control
the ambiguity features of the sought signals.

3.4 Signal-dependent interference scenario

In this section, a radar operating in a highly reverberating environment is considered
and the design Problem P is solved in the presence of signal-dependent interference.
This self-induced interference is due to reflections of the signal transmitted by the
radar from objects without tactical importance (clutter) located in the surveillance area
and, if not properly accounted for at the design stage, can seriously impair the radar
performance. Specifically, the overall interference covariance matrix is modelled as

M cð Þ ¼
X

N�1

k¼�Nþ1;k 6¼0

bkJ kcc
yJT

k þ �M (3.12)
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where J k , k ¼ �1; . . . ;�ðN � 1Þ, denotes the shift matrices1 [49], bkf gk 6¼0 repre-
sents the mean scatterer powers of the adjacent range cells and �M is the signal-
independent contribution as in Section 3.3. Notice that the prediction of the actual
scattering scenario can be accomplished by means of the cognitive framework, i.e.,
exploiting a dynamic environmental database including a geographical information
system, previous scans, meteorological data, some theoretical (or possibly empirical)
e.m. reflectivity and spectral clutter models [56,57].

In Appendix 3.6.3, it is shown that in the presence of signal-dependent inter-
ference, Problem P boils down to a non-convex quadratically constrained fractional
quartic problem that is, in general, very hard to solve [58,59]. Hence, an alternating
optimization procedure for the transmit signal and the receive filter design that
monotonically improves the SINR is devised. Each iteration of the algorithm, whose
convergence is analytically proved, requires the solution of both a convex and a hidden
convex optimization problem. In detail, exploiting the Charnes–Cooper [60] transfor-
mation and a specific rank-one matrix decomposition procedure, it is shown that the
optimal code for a fixed filter can be obtained based on the optimal solution to a
specific SDP problem. The resulting computational complexity of the devised algo-
rithm is linear with the number of iterations and polynomial with receive filter length.
Figure 3.5 depicts the block diagram of the optimization procedure adopted to handle
Problem P when the radar system operates in signal-dependent interference.

Let us now assess the performance of the waveform design technique
described in Appendix 3.6.3, i.e., Algorithm 3. The same simulation setup as in
Section 3.3 is considered, but with K ¼ 2 licensed radiating systems
(W1 ¼ 0:05; 0:08½ � and W2 ¼ 0:4; 0:435½ �), a duration of 148 ms for the reference
chirp waveform (resulting in N ¼ 120 samples) and sJ ;1 ¼ 25 dB, sJ ;2 ¼ 30 dB.
Besides, as to the signal-dependent interference, a uniform clutter environment with
bk ¼ 8 dB, k ¼ �1; . . . ;�ðN � 1Þ is assumed and a signal-to-noise power ratio
jaT j2=js0j ¼ 10 dB is supposed.

In Figure 3.6(a), the SINR behaviour versus the number of iterations is provided,
for the operative points ð�EI ; eiÞ, i ¼ 1; 2; 3, with �EI ¼ 0:0017, e1 ¼ 0:1, e2 ¼ 0:15
and2 e3 ¼ 0:3. As expected, increasing e, the optimized SINR value improves as the

1Jkði;mÞ ¼ 1 if i � m ¼ k and Jkði;mÞ ¼ 0 otherwise, ðl;mÞ 2 f1; . . . ;Ng2, k ¼ �1; . . . ;�ðN � 1Þ.
2As starting sequence cð0Þ to the iterative procedure, the one corresponding to the boundary point
�EI ¼ 0:0017, e0 ¼ 0:089 is considered.

Radar transmitter
optimization

fixed the receiver

Radar receiver
optimization

fixed the transmitter

c(n)

w(n)

Figure 3.5 Block scheme of the considered transmit-receive optimization
procedure in the presence of signal-dependent interference
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feasible set of the optimization problem becomes larger and larger (with performance
gains up to approximately 1.6 dB). In Figure 3.6(b), with reference to the same
operative points of Figure 3.6(a), the ESD of the synthesized signals versus
the normalized frequency is reported, together with that of the reference code c0.
The stop-bands in which the licensed systems are located are shaded in light grey.
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Figure 3.6 (a) SINR; (b) ESD (stop-bands shaded in light grey); brown curve:
reference code c0; blue curve: starting sequence c(0); red curve:
Algorithm 3, EI ¼ 0:0017, e ¼ 0:1; magenta curve: Algorithm 3,
EI ¼ 0:0017, e ¼ 0:15; black curve: Algorithm 3, EI ¼ 0:0017, e ¼ 0:3
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The curves show that Algorithm 3 is capable to suitably control the amount of energy
produced over the shared frequency bands. In addition, increasing the similarity
parameter e, namely increasing the available degrees of freedom, smarter and smarter
distributions of the useful energy are achieved. In fact, as in Figure 3.4(a), both a
lower and lower radar radiated energy in correspondence of the shared frequencies
and improved jammer rejection capabilities are experienced.

Finally, in Table 3.1, the ISL and the PSL for the cross-correlation functions
(CCFs) of the radar codes and receive filters, corresponding to the operative
point ð�EI ; e3Þ ¼ ð0:017; 0:3Þ, for different values of the iteration number
(n ¼ 1; 10; 30; 50) are provided. The values in the table reflect the capability of the
considered joint transmit-receive optimization procedure to iteratively achieve
better and better signal-dependent disturbance suppression levels.

3.5 Conclusions

The challenging spectrum congestion problem has been addressed through an
optimization theory-based radar waveform design approach. Cognition provided by
a REM represents the key to an intelligent, dynamic and optimized spectrum
allocation. In fact, REM information induces dynamic spectral constraints on the
radar waveform that is thus the result of a constrained optimization process aimed
at enhancing some radar performance measures, such as detection capabilities and
ambiguity function properties, while keeping the mutual interference on frequency
overlaid licensed systems to acceptable level. The concept of I/S achievable region
has been introduced to control the feasibility of the formulated waveform design
optimization problem. Moreover, polynomial computational complexity algorithms
leading to optimized radar waveforms, both in the presence of signal-independent
and signal-dependent interference, have been presented.

The reported case studies have highlighted the effectiveness of the described
procedures to allow a dynamic spectrum-usage optimization. Indeed, the devised
waveforms are able to ensure both spectral coexistence with the overlaid RF sys-
tems and reasonable detection performance at the possible expense of other radar
signal features (as for instance, low sidelobe levels).

The spectrum congestion problem is far from being completely solved due to
the ever increasing demand of bandwidth and the presence of technological lim-
itations. In this respect, some open issues involved in the WDD paradigm concern

Table 3.1 ISL and PSL of the CCFs for the transmit waveform
cðnÞ and the receive filter wðnÞ, for iteration number
n ¼ 1; 10; 30; 50 and ð�EI ; e3Þ ¼ ð0:0017; 0:3Þ

n 1 10 30 50

ISL [dB] �7:91 �10:84 �11:24 �11:28
PSL [dB] �19:03 �21:53 �22:02 �22:05
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the control of the transmitted energy on each specific stop-band to fulfil spectral
mask regulations, the development of robust frameworks to contrast transmitter
impurities, as well as the fully exploitation of the available multiple dimensions,
i.e., spatial, temporal and polarizations, to further enhance systems capabilities.
Further research activity is necessary toward the synthesis of new advanced adap-
tive receivers in PBR with improved interference suppression capabilities, the
development of commensal radar strategies with enhanced control of the LTE
modulations parameters, and the design of radar-embedded communications able to
exploit multiple domains to increase data rates.

3.6 Appendix

3.6.1 Feasibility of P
In this appendix, the properties of the set F are determined. To this end, let us
introduce the following optimization problem:

ðQPÞEI

min
c

kc� c0k2

s:t: cyRIc � EI

kck2 ¼ 1

8

>

>

<

>

>

:

(3.13)

whose solution and optimal value depend on the variable EI . It is evident that
ðQPÞEI is solvable3 if and only if lminðRI Þ � EI , as the feasible set of problem
ðQPÞEI is a compact set and the objective function is a continuous function.
Moreover, for any fixed EI , the pair EI ; eð Þ 2 F if and only if e � vððQPÞEI Þ;
notice that for EI � c0

yRIc0, vððQPÞEI Þ ¼ 0, thus the focus is mainly on
lminðRI Þ � EI � c0

yRIc0. As a consequence, defining the function

eðEI Þ : EI 2 lminðRI Þ; c0
yRIc0

� � ! vððQPÞEI Þ 2 0; 2½ � (3.14)

it holds true that

F ¼ F1 [F2 (3.15)

with

F1 ¼ EI ; eð Þ : lminðRI Þ � EI � c0
yRIc0; eðEIÞ � e � 2

� �

(3.16)

and

F2 ¼ EI ; eð Þ : EI � c0
yRIc0; 0 � e � 2

� �

(3.17)

Remarkably, the key portion of the I/S achievable region is provided by F1.
Based on (3.15), characterizing the I/S achievable region F is tantamount to

3By ‘‘solvable’’, it is meant that the problem is feasible and bounded, and the optimal value is attained,
see [61, p. 13].
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determine the properties of the function eðEI Þ given in (3.14). To this end, it can
be proved that

Proposition 3.6.1. For any EI , eðEI Þ can be evaluated solving the following SDP
problem

ðQPÞEI

max
C

trðCC0Þ
s:t: trðCÞ ¼ 1

trðCRI Þ � EI

C ≽ 0

8

>

>

<

>

>

:

(3.18)

namely eðEI Þ ¼ 2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvððQPÞEI
Þ

q

.

Proof. See Section 3.6.1.1. &

The above proposition implies that eðEIÞ can be evaluated in polynomial time.
Moreover, the function eðEI Þ shares the following properties.

Proposition 3.6.2. The function eðEI Þ is a strictly decreasing and convex function.

Proof. See Section 3.6.1.2. &

Notice that, through Proposition 3.6.2, it can be claimed that the I/S achievable
region F is a convex set, and that the function eðEIÞ is invertible, with its inverse
function EIðeÞ defined as the optimal solution to the optimization problem

ðQPÞe
min
c

cyRIc

s:t: kc� c0k2 � e
kck2 ¼ 1

8

>

<

>

:

(3.19)

In addition, as the I/S achievable region is a convex set, from a practical point of
view, its accuracy description can be controlled. In fact, the convex hull of the I/S
levels EIi; eið Þ i ¼ 1; . . . ;Na, associated to an arbitrary set of Na admissible radar
codes, is contained in the I/S region.

The following important property, regarding the I/S achievable region, char-
acterizes the radar codes belonging to the boundary of the I/S achievable region.
Precisely, it can be proved that

Proposition 3.6.3. Let U diagðlÞU y ¼ RI be the eigenvalue decomposition of RI ,
with U a unitary matrix and lð1Þ � lð2Þ � . . . � lðNÞ > 0 (where the eigenvalues
are not all equal), and let x0 ¼ U yc0 the transformed reference code. Assuming
x0ðNÞ 6¼ 0 and lðNÞ < c

y
0RIc0, the optimal solution to (3.19) is unique for any

0 � e < eðlðNÞÞ, namely each point on the boundary of the I/S achievable region,
is uniquely associated to a radar code.

Proof. See Section 3.6.1.3. &

Based on Proposition 3.6.3, some important radar performance metrics, such as
ISL, PSL and, obviously, the produced interference power can be associated to the
boundary of the feasible region. Whenever these metrics are computed, the designer
can look at the boundary of the feasibility region and determine the operating point
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sharing the desired radar features. Hence, the designer can select a proper pair ðe;EI Þ
and optimize the SINR by moving in a neighbourhood of the selected operating point.

3.6.1.1 Proof of Proposition 3.6.1
As kc� c0k2 ¼ 2 � 2Reðcyc0Þ, problem ðQPÞEI is equivalent to problem

ðQPÞ0EI

max
c

jcyc0j2

s:t: cyRIc � EI

kck2 ¼ 1

8

>

>

<

>

>

:

(3.20)

Indeed, any optimal solution to ðQPÞEI is an optimal solution to ðQPÞ0EI
and vice

versa, given an optimal solution c0 to ðQPÞ0EI
, c0e jargðc0yc0Þ is an optimal solution

to ðQPÞEI . Furthermore, v ðQPÞEIð Þ ¼ 2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vððQPÞ0EI
Þ

q

. Let us now observe that

problem ðQPÞEI
is the SDP relaxation of problem ðQPÞ0EI

. Moreover, the feasible

set of problem ðQPÞEI
is a compact set; thus, it admits an optimal solution, say �C .

As a consequence, resorting to the rank-one matrix decomposition theorem
[55, Theorem 2.3], reported as Lemma 3.6.4 in Appendix 3.6.2, with X ¼ �C ,
A1 ¼ C0, A2 ¼ I , A3 ¼ I and A4 ¼ RI , it can be claimed that the relaxation is tight,

namely vððQPÞEI
Þ ¼ vððQPÞ0EI

Þ and conclude that vððQPÞEI Þ ¼ 2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vððQPÞEI
Þ

q

.

3.6.1.2 Proof of Proposition 3.6.2
First of all, let us focus on the convexity of the function eðEIÞ. Consider two points
E

0
I and E

00
I and denote by C 0 and C 00 the optimal solutions to problems ðQPÞE

0
I

and
ðQPÞE

00
I
, respectively. As 8l 2 0; 1½ �, lC 0 þ ð1 � lÞC 00

is a feasible solution to
problem ðQPÞlE

0
Iþð1�lÞE00

I
, exploiting Proposition 3.6.1, it follows that

e
�

lE
0
I þ ð1 � lÞE00

I

	 ¼ 2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
��

QP
	

lE
0
Iþð1�lÞE00

I

	

q

� 2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
�

v
��

QP
	

E
0
I

		þ ð1 � lÞ�v
��

QP
	

E
0
I

		

q

� leðE0
I Þ þ ð1 � lÞeðE00

I Þ (3.21)

Let us now analyze the monotonicity of eðEIÞ. Let E
0
I < E

00
I � c0

yRIc0 be two values
of the allowed interference energy, and let C 0 be an optimal solution to ðQPÞE

0
I
.

As E
0
I < E

00
I , C 0 is a strictly feasible solution of ðQPÞE

00
I
. Let us define the matrix

C
00 ¼ð1 � aÞC 0 þ aC0 (3.22)

with 0 < a � 1. For a > 0 small enough, C
00

is a feasible point of ðQPÞE
00
I
, as

trðC 00 Þ ¼ 1 (3.23)

trðC 00
RIÞ ¼ ð1 � aÞtrðC 0RI Þ þ atrðC0RIÞ � E

00
I (3.24)
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Furthermore, for all a > 0

trðC 00C0Þ ¼ ð1 � aÞtrðC 0C0Þ þ atrðC0C0Þ
¼ trðC 0C0Þ þ a 1 � trðC 0C0Þð Þ
> trðC 0C0Þ (3.25)

where (3.25) follows from the fact that

a 1 � trðC 0C0Þð Þ > 0 (3.26)

as a > 0 and jtrðC 0C0Þj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðC 0C 0Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðC0C0Þ
p � trðC 0ÞtrðC0Þ ¼ 1.

3.6.1.3 Proof of Proposition 3.6.3
Notice that problem ðQPÞe is equivalent to

ðQPÞde
min
x

xydiagðlÞx

s:t: Reðxyx0Þ �
ffiffiffiffiffi

de
p

kxk2 ¼ 1

8

>

>

<

>

>

:

(3.27)

where de ¼ ð1 � e=2Þ2, namely, given an optimal solution c� to ðQPÞe ~x ¼ Uyc�

is an optimal solution to ðQPÞde ; vice versa, given an optimal solution x� to ðQPÞde
~c ¼ Ux� is an optimal solution to ðQPÞe. Hence, let us focus on ðQPÞde and de < 1
as for de ¼ 1, the only optimal solution is x0.

As shown in Proposition 3.6.2, the function eðEIÞ is a strictly decreasing
function; hence, it can be assumed that the optimal solutions to ðQPÞde are different
from gx0; g 2 C. As a consequence, any optimal solution to problem ðQPÞde is a
regular vector.4 Thus, the first-order optimality conditions imply that for any
optimal solution x� there exist Lagrangian multipliers ~m � 0 and ~v such that:

● x� is a stationary point for the Lagrangian function evaluated at ~m and ~n,
namely, it is a stationary point for

f1
�

x; ~m; ~n
	 ¼ xydiagðlÞxþ ~n

�kxk2 � 1
	þ ~m

�

2
ffiffiffiffiffi

de
p

� xyx0 � x
y
0x
	

(3.28)

●
�

2
ffiffiffiffiffi

de
p

� x�yx0 � x
y
0x

�	 � 0 (3.29)

● ~m
�

2
ffiffiffiffiffi

de
p

� x�yx0 � x
y
0x

�	 ¼ 0 (3.30)

● kx�k2 ¼ 1

Let us now observe that all the optimal solutions to ðQPÞde satisfy
ð2 ffiffiffiffiffi

de
p � x�yx0 � x

y
0x

�Þ ¼ 0. To show this, let us assume that there exists an
optimal solution x1 such that ð2 ffiffiffiffiffi

de
p � x1

yx0 � x
y
0x1Þ < 0; this means that Ux1 is

4Given an optimization problem, a feasible point is regular if the gradients of the active constraints are
linearly independent [62].
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also an optimal solution to ðQPÞe0 , with e0 ¼ kx1 � x0k2 < e. This is clearly a
contradiction as, from Proposition 3.6.2, vððQPÞe0 Þ > vððQPÞeÞ.

Differentiating (3.28) with respect to x, the first-order necessary optimality
condition is obtained

diagðlÞ þ ~nIð Þx ¼ ~mx0 (3.31)

In addition, based on [63], any optimal solution to (3.27) has to comply with
the constraint

diagðlÞ þ ~nIð Þ≽ 0 (3.32)

namely its Lagrangian multiplier has to satisfy ~n � �lðNÞ. Now, let us observe
that the condition ~n ¼ �lðNÞ is impossible. In fact, ~m 6¼ 0; otherwise c is an
eigenvector of RI corresponding to lðNÞ. Hence 0 ¼ x0ðNÞ, which is clearly a
contradiction. Hence, the focus is on ~n > �lðNÞ, which also implies that
diagðlÞ þ ~nIð Þ is not singular.

Based on the first-order optimality condition (3.32), it follows that the optimal
solutions share the form:

x~m;~n¼ ~m diagðlÞ þ ~nIð Þ�1x0 (3.33)

Now, as for any optimal solution x�, ð2 ffiffiffiffiffi

de
p � x�yx0 � x

y
0x

�Þ ¼ 0, from (3.33) it
follows that

x~n ¼
ffiffiffiffiffi

de
p

x
y
0 diagðlÞ þ ~nIð Þ�1x0

diagðlÞ þ ~nIð Þ�1x0 (3.34)

with ~m ¼
ffiffiffiffiffi

de
p

x
y
0 diagðlÞ þ ~nIð Þ�1x0

> 0. As a consequence, any optimal solution is

such that

kx~nk2 ¼ de

x
y
0 diagðlÞ þ ~nIð Þ�1x0

h i2 k diagðlÞ þ ~nIð Þ�1x0k2 ¼ 1 (3.35)

namely the solutions ~n > �lðNÞ to the following equation [64] have to be found

x
y
0 diagðlÞ þ ~nIð Þ�2x0

x
y
0 diagðlÞ þ ~nIð Þ�1x0

h i2 ¼ 1
de

(3.36)

Notice that Equation (3.36) can be obtained equating to zero the first-order deri-
vative of the following function:

gð~nÞ ¼ �~n þ de
x
y
0 diagðlÞ þ ~nIð Þ�1x0

¼ �~n þ de
P

N

i¼1

jx0ðiÞj2
lðiÞþ~n

(3.37)

In particular, the left hand side (LHS) of (3.36) is proportional to the first-order
derivative of (3.37) but for constant term.

As (3.37) is a strictly concave function for ~n > �lðNÞ, the LHS of (3.36) is a
strictly decreasing function. Hence, there exists a unique solution ~n to (3.36).
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Notice that the LHS of (3.36) converges to one as ~n ! 1 and to 1
PN

i¼N�Mþ1
jx0ðiÞj2

as ~n ! �lðNÞ (M is the dimension of the eigenspace associated to the smallest
eigenvalue lðNÞ). As the assumption e < eðlðNÞÞ implies that all the eigenvectors
associated to the smallest eigenvalue of RI are not feasible for ðQPÞe,
then

PN
i¼N�Mþ1 jx0ðiÞj2 < de: otherwise, the eigenvector 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼N�Mþ1
jx0ðiÞj2

q

0; 0; . . . ; 0; x0ðN � M þ 1Þ; . . . ; x0ðNÞ½ � would be feasible. Hence, there exists a
unique optimal solution to ðQPÞe.

3.6.2 Waveform design algorithm for signal-independent scenario
In this section, it is formally shown how an optimal solution to the non-convex
optimization problem P can be computed in polynomial time as the radar operates
in the presence of signal-independent interference. First of all, let us observe that
after the filter concentration, the design problem boils down in

P1

max
c

cyRc

s:t: kck2 ¼ 1

cyRIc � EI

Re cyc0

� 	 � 1 � e=2

8

>

>

>

>

>

<

>

>

>

>

>

:

(3.38)

where R ¼ �M�1. Now, an optimal solution to P1 can be obtained from an optimal
solution to the following enlarged quadratic problem (EQP)

P2

maxc cyRc

s:t: kck2 ¼ 1

cyRIc � EI

Re2 cyc0

� 	þ Im2 cyc0

� 	 ¼ cyc0c0
yc � de

8

>

>

>

>

<

>

>

>

>

:

(3.39)

In fact, as the feasible region of P2 is larger than that of P1, every optimal solution
of P2, which is feasible for P1, is also an optimal solution for P1 [65]. Thus, assume
that �c is an optimal solution to P2 and let f ¼ argð�cyc0Þ. It is easily seen that �ce jf is
still an optimal solution to P2. Now, observing that ð�ce jfÞyc0 ¼ j�cyc0j, �ce jf is a
feasible solution to P1. In other words, �ce jargð�cyc0Þ is optimal for both P1 and P2.

Now, an optimal solution to P2 has to be found and, to this end, the following
equivalent matrix formulation is exploited

P2

max
C

trðCRÞ
s:t: trðCÞ ¼ 1

trðCRIÞ � EI

trðCC0Þ � de
C ¼ ccy

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(3.40)
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where C0 ¼ c0c0
y. All the non-convexity of problem P3 is now confined in the

rank-one constraint C ¼ ccy.
Problem (3.40) can be relaxed into a convex SDP optimization problem,

neglecting the rank-one constraint [66]. By doing so, an EQP relaxed (EQPR) is
obtained

P3

max
C

trðCRÞ
s:t: trðCÞ ¼ 1

trðCRIÞ � EI

trðCC0Þ � de
C ≽ 0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(3.41)

Let us now observe that problem P3 is solvable; in fact, the feasible set

trðCÞ ¼ 1

trðCRIÞ � EI

trðCC0Þ � de
C ≽ 0

8

>

>

>

>

<

>

>

>

>

:

(3.42)

is a compact set (closed and bounded) and the objective function of P3 is continuous;
furthermore, as shown in Section 3.6.2.1, assuming that problem P is strictly feasible,
problem P3 is strictly feasible. This property can be of paramount importance from
a numerical point of view, as it guarantees that at any optimal point the com-
plementary conditions are satisfied [61] and interior point methods [65] can be used.

To prove the hidden convexity of problem P2, namely that the relaxation of P2

into P3 is tight, a rank-one optimal solution �c�cy to P3 is constructed starting from an
arbitrary rank optimal solution �C to problem P2. To this end, the rank-one matrix
decomposition theorem [55, Theorem 2.3], which is cited as the following lemma,
is used.

Lemma 3.6.4. Let X be a non-zero N � N (N � 3) complex Hermitian positive
semidefinite matrix and A1;A2;A3;A4f g be Hermitian matrices, and suppose
that ðtrðYA1Þ; trðYA2Þ; trðYA3Þ, trðYA4ÞÞ 6¼ ð0; 0; 0; 0Þ for any non-zero complex
Hermitian positive semidefinite matrix Y of size N � N. Then,

● if rankðXÞ � 3, one can find, in polynomial time, a rank-one matrix xxy such
that x (synthetically denoted as x ¼ D1ðX ;A1;A2;A3;A4Þ) is in rangeðXÞ, and

xyAix ¼ tr XAið Þ; i ¼ 1; 2; 3; 4 (3.43)

● if rankðXÞ ¼ 2, for any z not in the range space of X , one can find a rank-one
matrix xxy such that x [synthetically denoted as x ¼ D2ðX ;A1;A2;A3;A4Þ] is
in the linear subspace spanned by zf g [ rangeðXÞ, and

xyAix ¼ tr XAið Þ; i ¼ 1; 2; 3; 4 (3.44)
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Let us check the applicability of Lemma 3.6.4 to both �C and the matrix
parameters of P3. Indeed, the condition N � 3 is mild and practical (the number of
transmitted pulses is usually greater than or equal to 3). Now, in order to verify

tr YRð Þ; tr YIð Þ; tr YRIð Þ; tr YC0ð Þð Þ 6¼ ð0; 0; 0; 0Þ; for any non-zero Y ≽ 0

(3.45)

it suffices to prove that there is ða1; a2; a3; a4Þ 2 R
4 such that

a1Rþ a2I þ a3RI þ a4C0 	 0 (3.46)

But this is evident for the matrix parameters5 of P3. As a consequence, after con-
structing a rank-one optimal solution �c�cy to P3, an optimal solution to P is given by

c� ¼ �ce jargð�cyc0Þ. Algorithm 1 summarizes the procedure leading to an optimal
solution to P in the presence of signal-independent interference.

The computational complexity connected with the implementation of the
algorithm is polynomial as both the SDP problem and the decomposition of Lemma
3.6.4 can be performed in polynomial time. In fact, the amount of operations,
involved in solving the SDP problem, is OðN4:5 log 1

zÞ [61, p. 250] and the rank-one
decomposition requires OðN3Þ operations.

Algorithm 1: Algorithm for Cognitive Radar Code Optimization in the Presence of
Signal-Independent Interference

Input: c0;R;RI ;EI ; de.
output: An optimal solution c� to P.

1: solve SDP P3 finding an optimal solution C� and the optimal value v�;
2: if rankðC�Þ ¼ 1, then
3: set �c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lmaxðC�Þp

v, with v being an eigenvector associated to the
maximum eigenvalue of C�;

4: else
5: apply the rank-one decomposition theorem [55, Theorem 2.3] to the set

of matrices R; I ;RI ;C
�ð Þ and get �c;

6: end
7: output c�¼ �ce jargð�cyc0Þ.

3.6.2.1 Feasibility of P3

Problem P3 is strictly feasible due to the strict feasibility of P. In fact, let us
assume that cs is a strictly feasible solution of P, i.e., cyscs ¼ 1, cysRIcs < EI

and jcysc0j2 � ðReðcysc0ÞÞ2 > de. Then there are u1; u2; . . . ; uN�1 such that

5In fact, taking a1 ¼ a3 ¼ a4 ¼ 0 and a2 ¼ 1, then a1Rþ a2I þ a3RI þ a4C0: ¼ I 	 0.
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U ¼ cs; u1; u2; . . . ; uN�1½ � is a unitary matrix [67], and for any 0 < h < 1 the matrix

Cs ¼ ð1 � hÞUe1ey1U
y þ h

N � 1
U I � e1ey1

 �

Uy 	 0 (3.47)

with e1 ¼ ½1; 0; . . . ; 0�T is a strictly feasible solution of the SDP problem EQPR.
In fact,

trðCsÞ ¼ 1 (3.48)

trðCsRIÞ ¼ ð1 � hÞcysRIcs þ h
N � 1

X

N�1

n¼1

uynRIun (3.49)

trðCsC0Þ ¼ ð1 � hÞcysC0cs þ h
N � 1

X

N�1

n¼1

uynC0un (3.50)

which highlight that if h is suitable chosen, then Cs is a strictly feasible solution,
i.e., trðCsÞ ¼ 1; trðCsR1Þ > EI and trðCsC0Þ > de.

3.6.3 Waveform design algorithm for signal-dependent scenario
In this section, it is described the polynomial time procedure employed to obtain an
optimized solution to the non-convex optimization problem P in the presence of
signal-dependent interference. In this case, the design problem is given by

�P1

max
c;w

jaT j2 wyc
�

�

�

�

2

wyM cð Þw
s:t: kck2 ¼ 1

cyRIc � EI

kc� c0k2 � e

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(3.51)

Notice that problem �P1 is a non-convex optimization problem, as the objective
function is a non-convex function and the constraint kck2 ¼ 1 defines a non-convex
set. Therefore, following the guidelines in [57], the goal is to derive optimized
solutions to �P1 via a alternating maximization procedure. The idea is to iteratively
improve the SINR, controlling, at the same time, the total amount of energy injected
in the licensed bandwidth, as well as radar waveform features. Specifically, given
wðn�1Þ, an admissible radar code cðnÞ at step n improving the SINR corresponding to
the receive filter wðn�1Þ and the transmitted signal cðn�1Þ is searched. Whenever cðnÞ

is found, the filter wðnÞ that improves the SINR corresponding to the radar code cðnÞ

and the receive filter wðn�1Þ is searched, and so on. Otherwise stated, wðnÞ is used as
starting point at step n þ 1. To trigger the procedure, the optimal receive filter wð0Þ,
for an admissible code cð0Þ, is considered. Notice that the proposed optimization
procedure requires a condition to stop the iterations; to this end, an iteration gain
constraint can be forced, namely jSINRðnÞ � SINRðn�1Þj � z; where z � 0 is the
desired precision.
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From an analytical point of view, wðnÞ can be computed solving the optimi-
zation problem

PðnÞ
w max

w

jaT j2 wycðnÞ
�

�

�

�

2

wyMðcðnÞÞw

(

(3.52)

whose optimal solution, for any fixed cðnÞ, is given by

wðnÞ ¼ MðcðnÞÞ�1cðnÞ

cðnÞyMðcðnÞÞ�1cðnÞ
(3.53)

On the other hand, cðnÞ is an optimal solution to the following non-convex opti-
mization problem

PðnÞ
c

max
c

jaT j2jwðn�1Þycj2
wðn�1ÞyMðcÞwðn�1Þ

s:t: kck2 ¼ 1

cyRIc � EI

kc� c0k2 � e

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(3.54)

It is possible to show that problem PðnÞ
c is a hidden-convex optimization pro-

blem. Precisely, its optimal solution can be computed in polynomial time (resorting
to the rank-one matrix decomposition theorem [55, Theorem 2.3]), starting from an
optimal solution to the SDP problem

�P2

max
C;t

tr QCð Þ

s:t: tr M1ðwðnÞÞC� 	 ¼ 1

tr Cð Þ ¼ t

tr RICð Þ � tEI

tr C0Sð Þ � tde
C ≽ 0

t � 0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(3.55)

with t an auxiliary variable, C0 ¼ c0c
y
0, C 2 H

N , Q ¼ wðn�1Þwðn�1Þy, M1ðwðnÞÞ ¼
PN�1

k¼�Nþ1;k 6¼0 bk JT
k wðn�1Þ wðn�1Þy Jk þ wðn�1Þy �Mwðn�1ÞI and de ¼ ð1 � e=2Þ2.

Algorithms 2 describes the procedure leading to an optimal solution PðnÞ
c .

Algorithm 2: Algorithm for Radar Code Optimization

Input: M1ðwðnÞÞ;Q;RI ; c0; de;EI .
Output: An optimal solution cðnÞ to PðnÞ

c .
1: solve SDP �P2 finding an optimal solution ðC�; t�Þ and the optimal value v�;
2: let C� :¼ C�=t�;
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3: if rankðC�Þ ¼ 1 then
4: perform an eigen-decomposition C� ¼ c�ðc�Þy and get c�

5: else
6: apply the rank-one decomposition theorem [55, Theorem 2.3] to the set

of matrices ðC�;Q� v�M1ðwðnÞÞ; c0c
y
0; I ;RI Þ and get c�;

7: end
8: output cðnÞ :¼ c�e jargðc�yc0Þ and terminate.

Finally, Algorithm 3 summarizes the devised alternating optimization proce-
dure. To trigger the recursion, an initial radar code cð0Þ from which obtaining the
optimal filter wð0Þ is required; a natural choice is cð0Þ ¼ c0.

Algorithm 3: Algorithm for Transmit-Receive System Design in the Presence of
Signal-Dependent Interference

Input: bkf g, �M , RI , EI , e, c0.
Output: A solution c�;w�ð Þ to P.

1: set n ¼ 0, cðnÞ ¼ c0,

wðnÞ ¼ MðcðnÞÞ�1cðnÞ

cðnÞyMðcðnÞÞ�1cðnÞ
;

and the value of the SINR for the pair ðcðnÞ;wðnÞÞ;
2: do
3: n ¼ n þ 1;
4: construct the matrix M1ðwðnÞÞ;
5: solve problem PðnÞ

c finding an optimal radar code cðnÞ, through the use of
Algorithm 2;

6: construct the matrix MðcðnÞÞ;
7: solve problem PðnÞ

w finding an optimal receive filter

wðnÞ ¼ MðcðnÞÞ�1cðnÞ

cðnÞyMðcðnÞÞ�1cðnÞ
;

and the value of the SINR for the pair cðnÞ;wðnÞ� 	

;
8: let SINR(n) ¼ SINR;
9: until jSINRðnÞ � SINRðn�1Þj � z

10: output c� ¼ cðnÞ and w� ¼ wðnÞ.

As to the computational complexity of Algorithm 3, it is linear with respect to
the number of iterations �N , whereas in each iteration, it includes the computation of
the inverse of Sc cðnÞ

� 	þ Rind and the complexity effort of Algorithm 2. The former
is in the order of OðN3Þ. The latter is connected with the complexity of SDP
solution, i.e., OðN 4:5Þ.
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Chapter 4

Noise Radar Technology

Krzysztof S. Kulpa1 and Lukasz Maslikowski1

Abstract

The well-known classical pulse radar has several disadvantages. The high trans-
mitted peak power can be easily detected and warn an enemy, and the ambiguities
in both range and Doppler measurements lead to problems with unambiguous
localization and tracking. For a long time researchers have tended to overcome
these problems and find waveforms that will free the radar from the aforementioned
issues. The design of the frequency modulated continuous wave radar with linear
frequency modulation was an important step; the mean power is equal to the peak
power and it is much harder to detect such radar, but range and Doppler ambiguities
remain due to periodicity in the waveform repetition. The next step was the intro-
duction of the noise radar concept. At first glance it is hard to believe that a noise
signal, without any clear internal structure and well-defined instantaneous fre-
quency, can be used for radar purposes. But thanks to the development of digital
correlators which are able to compute the ambiguity function in real time, it is now
possible to unambiguously estimate the range and radial velocity of the target using
noise illumination. But of course one must pay a price: noise radar is limited not
only by ambiguities in range and Doppler, but also in dynamic range. The strong
return signal from nearby targets, or clutter, can entirely mask a weak and distant
target’s echoes. The second drawback is that signal processing is much more
complex than in classical radars and thus the radar signal processing unit for a noise
radar must have much higher computational power, which is achievable only by
using modern computers equipped with graphical processing (GPU) units.

The potential applications for noise radar can be vast; it is possible to use it for
surveillance, traffic monitoring, and early warning and imaging (SAR, ISAR) pur-
poses as the time on target is usually very long (hundreds of milliseconds to seconds).

4.1 Introduction

The classical radar emits short pulses towards a target and receives the echoes. The
radar’s antenna, used both for transmitting and receiving, forms a narrow beam to
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concentrate the energy on the target. As this same antenna is used for transmission
and reception, the emitted pulse should be short enough to allow switching between
these two functions of the antenna. In cases where an un-modulated pulse is
emitted, the range resolution of the radar is inversely proportional to the pulse
duration, so very short pulses should be used. To achieve 15 m range resolution,
a pulse length of 100 ns should be used. The detection range depends on the energy
transmitted towards the target, so the peak power of these short pulses must be very
high (up to several MW). This leads to several difficulties in designing modern
radars, especially with solid state transmitters. Nowadays, by using semiconductor
components, it is much easier to generate relatively long low power pulses or a
continuous wave rather than powerful short pulses. This fact has led radar engineers
to begin looking for new concepts in the exploitation of low power signal sources
for short and medium range sensing.

The trend in the direction of lowering the peak transmitting power has led to
the continuous wave radar concept. The idea is not new – single tone continuous
wave radars have been used for more than a decade by police to enforce speed
limits. Classical police radar guns emit sine waves and use a homodyne receiver to
detect a vehicle’s echo which has shifted in frequency due to the Doppler effect and
then measure the Doppler frequency of the echo. The disadvantage of this approach
is the lack of range resolution, so in the case of several targets, it is very difficult to
assign the velocity to an individual vehicle.

The problem of range resolution has been solved by using the linear frequency
modulation of the transmitted continuous signal (FMCW – frequency modulated
continuous wave radar) [1,2]. In such a radar, the received echo is mixed with the
transmitted signal in a homodyne receiver, and the beat frequency signal is then
analysed. Since the echo delay is proportional to the range to the target, the beat
frequency is also proportional to the range. The fast Fourier transform then converts
this frequency to the range to the target. The big problem with this type of radar is in
the coupling between range and velocity. As the Doppler effect also changes the beat
frequency of the echo, it is not possible to determine in a single sweep of an FMCW
radar which part of the frequency is caused by the range to the target and which by the
target velocity. For a single target, such a problem can be solved using two mea-
surements, such as up and down chirp (with increasing and decreasing frequencies)
for example, but in the case of several targets, the problem may be ambiguous. Also,
due to the periodicity of the transmitted signal, range and Doppler measurements are
ambiguous in an FMCW radar in a very similar manner to that of pulse radars.

Another problem with continuous wave (CW) radars lies in the feasibility of
conducting simultaneous transmission and reception. To have a long detection range,
it is necessary to emit strong signals, at levels from mW to kW (0 to þ60 dBm). The
echo signals are usually comparable with the thermal noise level floor (�113 dBm
for 1 MHz bandwidth) so the required dynamic range between transmission and
reception is 100–160 dB. With technology in its present state, such a high dynamic
range cannot be achieved using a single antenna system, and it is a technological
challenge to achieve it using separate transmit and receive antennas. Thus, in modern
medium range CW radars, two separate antennas are used, and only very short dis-
tance CW radars (such as police guns) are equipped with a single Rx/Tx antenna.
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The linear chirp is the most natural waveform for a CW radar, and such
waveforms are also used in nature. Bats and dolphins navigate and hunt using
echolocation and chirp signals. But as mentioned above, the sawtooth modulation is
periodic, which leads to ambiguities either in range or range velocity measurement.

For many years, radar engineers have been looking for different waveforms
which will give them more freedom to design a radar able to produce the required
performance. An effective waveform is one with a ‘thumbtack’ ambiguity function
(single sharp peak accompanied with low sidelobes) and no range or Doppler ambi-
guities (no additional peaks in the ambiguity function) as presented in Figure 4.1(a).
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Figure 4.1 The desired shape of radar waveform ambiguity function; (a) ideal
without range and Doppler sidelobes (noise floor), (b) practical – with
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To be able to exploit the transmitters fully a constant amplitude signal is
preferred. As a result, candidates for perfect radar waveforms have been searched
for in the class of phase-coded signals (with constant amplitude). A number of such
waveforms have been developed in the past. One of the first signals of this type is
the binary-phase Barker code [3]. The amplitude of the main peak of the correlation
function of the Barker code is equal to the length of the code, while the peak
sidelobe level is unity. There are Barker codes in existence up to (and including) a
length of 13, so the best possible mainlobe-to-sidelobe ratio is 22.2 dB. More
freedom is given by polyphase codes. An intensive search of polyphase unimodular
Barker codes led to codes to a length of 19 in 1989 [4] and to a length of 65 in 2007
[5]. Other polyphase codes such as Frank codes [6], and P-codes [7], among others,
have also been developed.

All of the above-mentioned codes have some disadvantages. One of the most
important is that the code is pre-defined and usually fixed, so it is easy to detect the
radar and for adversaries to produce false target echoes.

An alternative to pre-defined fixed codes (waveforms) are random waveforms.
They can be generated completely randomly using analogue devices such as a resistor
with a chain of amplifiers or noisy Zener diodes or can be generated digitally using
pseudo-random sequence generators. The waveforms can be generated on-line in real
time or generated off-line and stored in the radar waveform memory. Radars using
random or pseudo-random waveforms can be named noise radars. Such radars can
be used in a relatively wide range of applications [8–16]. It is possible to construct
surveillance [17], tracking, guidance, collision warning, SAR [18–27] ISAR [28],
ground penetrating [29–31] and through-the-wall radars using noise signals.

Noise radars have several advantages over the classical pulse, pulse-Doppler
and FMCW radars. A continuous noise waveform does not have range and Doppler
ambiguity, and the peak power is equal to the mean power and is much lower than
in pulse radars of the same detection range. It also has good electromagnetic
compatibility with other devices sharing the same frequency band. The low peak
power and lack of modulation of the noise waveform also ensures a very good
electronic counter-countermeasure capability: the probability of the interception of
this kind of radar is very low, and even if the emission is detected, it is very difficult
to assign such a signal to a radar waveform class and identify it as the threat.
Furthermore, it is either very hard (in the case of pseudo-random sequences) or
impossible (for true random signals) to predict the future waveform, which is key
for active counter-measuring or spoofing such radars.

As usual, the benefits come at a certain price. In the case of noise radars, the
price that must be paid is the complexity of signal-processing algorithms and the
high-processing noise floor – equivalent to time and Doppler sidelobes known in
deterministic waveforms. As a result, the near-far problem, very well known in
radio communication, has to be mitigated in noise radars.

The first fundamental paper on noise radars was published by Horton in 1959
[32], presenting the concept of a range measuring radar-based system. The idea of
noise radars was further investigated in the 1960s and 1970s [33,34] and at that
time the idea of non-ambiguous velocity measurement was introduced.
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Unfortunately, using analogue circuits made it extremely difficult to build noise
radars with real-time capabilities, as it was necessary to compute the correlation
function in order to obtain the range profile of the radar data and the fast Fourier
transform (FFT) so as to find the Doppler shifts corresponding to range velocities.
In 1961, Grant and Cooper [35] proposed the use of the analogue delay line as a
way to compensate for the time delay of the echo signal and the use of an analogue
multiplier and low-pass filter to calculate the correlation at the selected delay. The
block diagram of their radar is shown in Figure 4.2.

In the presented solution, only stationary or slow targets (with a Doppler
frequency lower than the bandwidth of a low-pass filter) could be detected at a
distance determined by the selected delay line. To build a fully functional analogue
radar working in real time, it is necessary to use a set of delay lines to obtain
measurements at several range gates and use a bank of bandpass filters (the
analogue version of FFT) to obtain velocity measurements, as depicted in Figure 4.3.

Such an approach is feasible, but its complexity and price is very high, so the
idea was not exploited in practice.

Another possible approach was to use pulses with noise modulation, as
proposed by Krehbiel and Brook in 1979 [36]. The radar was used for cloud and
rain detection, but only amplitude data was used. In practice, there were no dif-
ferences between sine-wave pulse radars and that particular noise radar in their
principles, as in both cases a square law amplitude detector was used and no phase
information was retrieved.

The situation changed significantly in the 1990s, when rapid progress in digital
technology took place [37,38] in accordance with Moore’s law, whereby the
number of electronic components in integrated circuits and computational power
doubles approximately every 18 months. The speed of analogue to digital con-
verters has reached the level of 5 Gs/s (109 Gigasamples per second), and powerful
field programmable logic circuitry (FPGAs), together with multi-core graphics
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processing unit (GPU) processors now have a processing power of several TFlops/s
(1012 floating point operation per second). In addition, communication links can
send data at a speed of 10 Gb/s per channel, and thanks to global navigation
satellite systems (GPS, GLONASS, GALILEO, BeiDou, COMPASS), it is easy to
synchronize in time and frequency the remote devices by building wide area
multiple-input–multiple-output (MIMO) systems.

All of these digital technologies can now provide a cost- and performance-
effective platform to build modern noise radars.

4.1.1 Signal processing in noise radars
A monostatic noise radar illuminates the target with a noise waveform and listens to
the echo, as depicted in Figure 4.4. It uses a separate antenna for the transmission of
an illuminating signal (Tx antenna) and a separate antenna for the reception of the
target echoes.

Suppose that the radar transmits the noise signal xtðtÞ. Typically, this is a
band-limited signal of carrier frequency Fc and effective bandwidth B. The emitted
signal is scattered from a point-like target at distance R0 at time T0. The target can
be either a stationary target or a moving target with a position history (range to
target) rðtÞ. The signal received by the receive antenna can be expressed as

xRðtÞ ¼ xT t � 2rðt � trÞ
c

� �

þ xRðtÞ (4.1)
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where xRðtÞ is the receiver noise and tris the time delay between the signal
reflection from the target and the signal reception. In the simplified case, it can
be assumed that tris equal to 0, and for most targets, such a simplification is valid.
For stationary or slow moving targets, it can be assumed that tr ¼ rðtÞ=c and thus
(4.1) can be expressed as

xRðtÞ ¼ xT t � 2rðt � rðtÞ=cÞ
c

� �

þ xRðtÞ (4.2)

Let the assumption be made that the received signal was collected in the time
interval (T0, T0þ ti) where ti is the observation or integration time. To detect the
presence of the echo, a correlation receiver that computes the correlation coeffi-
cient between the transmitted and received signals can be used

yrðrðtÞÞ ¼
ð

T0þti

t¼T0

xRðtÞx�T t � 2rðt � trÞ
c

� �

dt (4.3)

and compared with the pre-defined threshold, or by using the classical constant
false alarm rate detectors described in [39].

Equation (4.3) is the fundamental equation for all noise radars (or more
generally, for all radars, independent of the applied waveform). It should be noted
that for different targets, it is necessary to re-calculate (4.3). If the target position
and motion is unknown, it is necessary to make calculations for all possible
positions and motion models.

Depending on the waveform, target motion model and transmitted signal
model, a different simplification of (4.3) can be applied.
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4.1.1.1 Stationary target model
Consider the simplest case – a stationary target model. In this case, rðtÞ ¼ R0 and
(4.3) hold in the form

yrðR0Þ ¼
ð

T0þti

t¼T0

xRðtÞx�T t � 2R0

c

� �

dt (4.4)

which can be expressed as a correlation function between a transmitted and
received signal

yrðtÞ ¼
ð

T0þti

t¼T0

xRðtÞx�T ðt � tÞdt (4.5)

where t ¼ 2R0=c. Equation (4.5) represents the function of the unknown variable t
which should be calculated for all values in the interval (0, 2RMAX=c), where RMAX

is the maximum detectable range assumed for the radar. The direct calculation of
(4.5) is not computationally effective, so more often it is calculated using FFT
procedures such as

yrðtÞ ¼ FFT�1 FFTðxRðtÞÞFFT�ðxT ðtÞÞð Þ (4.6)

Stationary targets are usually not of great interest for radar engineers, so more
advanced models are considered. Usually, models are based on the Taylor series
expansion of the motion model

rðtÞ ¼ r0 þ v0t þ a0
t2

2
þ � � � (4.7)

All detection schemas for noise radars are derived from (4.3) using an appropriate
order motion model and appropriate signal model.

4.1.1.2 Constant radial velocity model
The most popular detection scheme is based on the linear, constant velocity motion
model rðtÞ ¼ r0 þ v0t and a band limited signal model in the form of low-pass
noise upconverted to a carrier frequency Fc.

xT ðtÞ ¼ xBðtÞexpð j2pFctÞ (4.8)

where xBðtÞ is low-pass (frequency limited) complex value noise, as depicted in
Figure 4.5.

Spectral density

Fc F

Figure 4.5 Transmitted signal spectrum
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Neglecting the tr term in (4.3) one can obtain the equation

yðr; vÞ ¼
ð

Toþti

t¼T0

xRðtÞexpð j2pFctÞx�B t � 2r þ 2vt

c

� �

exp �j2p � 2vFc

c

� �

t

� �

dt (4.9)

This equation can be further simplified by neglecting the stretch effects caused
by target motion.

yðr; vÞ ¼
ð

Toþti

t¼T0

xRBðtÞx�B t � 2r

c

� �

exp �j2p � 2vFc

c

� �

t

� �

dt (4.10)

where xRBðtÞ ¼ xRðtÞexpð j2pFctÞ is the received signal shifted to the baseband.
Again it is possible to change the variable from motion notation (range and

velocity) to signal notation (delay and frequency) and obtain

yðt; f Þ ¼
ð

Toþti

t¼T0

xRBðtÞx�Bðt � tÞexp �j2pftð Þdt (4.11)

where t ¼ 2r=c and f ¼ 2vFc=c.
In addition, to limit the velocity sidelobes, a time windowing function wðtÞ

such as a Hamming, Hanning or Blackman window is usually applied

yðt; f Þ ¼
ð

Toþti

t¼T0

wðtÞxRBðtÞx�Bðt � tÞexp �j2pftð Þdt (4.12)

This is a fundamental equation for noise radar signal processing. It is very similar to an
ambiguity function [40–42] and again can be calculated using different computational
schemas, directly from (4.11) for example, as yðt; vÞ ¼ fft wðtÞxRBðtÞx�Bðt � tÞ� �

or
applying more advanced computational algorithms.

Equation (4.11) has to be calculated for all possible delays and frequency shifts
in the ranges t 2 ð0; 2RMAX=cÞ and f 2 ð�2VMAX=l; 2VMAX=lÞ where VMAX is the
maximum velocity of the target.

An example of target echoes in a noise radar using rectangular and Hamming
windows is presented in Figure 4.6.

The question is, what are the limits of application for the simplified target
motion model? The stationary target model (4.5) can be applied if the phase shift
due to the Doppler component is small, usually smaller than p. Thus, the integra-
tion time is limited to the value

ti <
c

4VMAXFc
(4.13)

These limits can be also expressed in terms of the wavelength l of the transmitted
signal instead of the carrier frequency.

ti <
l

4VMAXc
(4.14)
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The constraint (4.14) has a very clear physical interpretation: the target
displacement during observation time should be smaller than a quarter of
the wavelength. The results are plotted in Figure 4.7. For an L-band noise
radar (l¼ 20 cm) observing aircraft targets with a maximum target velocity of
1000 m/s (Mach 3), the maximum integration time is equal to 50 ms and for humans
with a maximum velocity of 10 m/s the maximum integration time is limited
to 5 ms.

Constraint (4.14) is not applicable for radars working at baseband. Such radars
do not have a carrier frequency and the direct application of constraint (4.14) will
allow infinite integration time. In such cases, the limitation originates from range
walk phenomena. The range resolution of the noise radar, defined as the width of
the correlation peak (4.4), can be expressed as

DR ¼ c

2B
(4.15)

The range resolution versus signal bandwidth is plotted in Figure 4.8.
As the target has to remain in the correlation gate during the observation time,

the second constraint is in the form

ti <
DR

VMAX
¼ c

2BVMAX
(4.16)

The integration time limitation caused by the range walk is presented in Figure 4.9.
For supersonic targets and medium resolution radar (B ¼ 10 MHz), the

maximum integration time is limited to a few ms (15 ms).
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Constraint (4.16) can also be re-written in the slightly modified form

Bti <
c

2VMAX
(4.17)

The term Bti is the integration gain of the processing (the signal-to-noise ratio after
processing to signal-to-noise ratio before processing). This ratio is then limited by
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Figure 4.9 Maximum integration time versus bandwidth – limited by range walk
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range walk phenomena to the value predicted by constraint (4.17), which is
depicted in Figure 4.10.

The application of a simple stationary target model significantly limits the
integration time in a noise radar. The application of a constant velocity model leads
to the significant extension of possible integration time. Now, constraints come
from two phenomena. As using a constant velocity model, noise radar estimates
two parameters – range and range velocity – both the range and velocity walk limit
the integration time.

The target detection is performed in this case using (4.12). For a selected
velocity, this equation is identical to (4.5), so the range resolution for the constant
velocity model is the same as for the stationary target model as described by (4.15).
As a result, the integration time is limited by constraint (4.16).

The target range velocity is calculated using Doppler frequency estimation. For
constant delay formula (4.12) is equivalent to FFT, with frequency resolution
Dfd ¼ 1=ti. As Dfd ¼ 2Dv=l, the velocity resolution defined as the width of the
peak of the ambiguity function (4.10) in the velocity dimension is equal to

Dv ¼ l
2ti

¼ c

2tiFc
(4.18)

The velocity resolution versus integration time for different carrier frequencies is
plotted in Figure 4.11.

The target velocity should remain within the velocity cell during the integra-
tion time. If a more advanced target model was assumed – a constant acceleration
model for example – then the velocity changes linearly with time vðtÞ ¼ vo þ a0t.
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If the target velocity is to remain in the velocity cell, then a constraint appears for
the integration time in the form

ti <
Dv

aMAX
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2aMAX

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

2aMAXFc

r

(4.19)

The integration time constraints due to velocity migration for different accelera-
tions versus carrier frequencies are plotted in Figure 4.12.

It is worth mentioning that (4.9) is simplified as the term tr in (4.3) was
omitted. Additionally, in (4.10), a simplification is made by skipping the time
stretch component so x�Bðt � ð2r=cÞÞ is used instead of x�Bðt � ðð2r þ 2vtÞ=cÞÞ. The
skipped term 2vt=c is responsible for signal stretch, while

x�B t � 2r þ 2vt

c

� �

¼ x�B t 1 � 2vt

c

� �

� 2r

c

� �

(4.20)

The reference signal has to be scaled in time (stretch) by the factor ð1 � ð2vt=cÞÞ
depending on the actual target radial velocity. Linear stretch processing is not a
new idea in radar signal processing. It was introduced in the FMCW radar in [43].
The applications of stretch processing were also presented in [44–47].

In noise radars, stretch processing can be implemented in many different ways.
Among others, the three most popular algorithms that are used are as follows: linear
interpolation between samples, cubic spline interpolation and re-sampling based on
the pairing of chirp transform and inverse FFT. The results obtained by using the
algorithms mentioned above are similar to each other.
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Figure 4.11 Velocity resolution versus integration time for different carrier
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It should be pointed out that stretch processing has to be performed inde-
pendently for each velocity resolution cell. Such an approach, however, requires
very high computational power. In most cases, it is sufficient to stretch the
reference signal not for each Doppler resolution cell but for the group of velocity
cells occupying the velocity strip of width c=2Bti. Thus, in order to calculate the
whole range-Doppler correlation plane, it is necessary to perform N ¼ 4Btivmax=c
stretching operations and calculate the range-Doppler correlation in each
narrow velocity interval. The details of stretch processing and its impact on the
processing gain losses, processing complexity and implementation can be found
in [45].

The application of stretch processing allows for extension of integration time,
while the range migration due to the constant velocity component is mitigated. For
such processing schema limitation (4.16) is not valid, and the integration time is
limited by target acceleration. In such cases, the integration time is limited
by acceleration introduced velocity walk – see constraint (4.19) – and also by
acceleration introduced range walk. Assuming constant target acceleration, the
range walk caused by the acceleration is equal to at2=2, so the integration time is
limited to

ti <

ffiffiffiffiffiffiffiffiffiffiffi

2DR

aMAX

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

aMAXB

r

(4.21)

The time limits introduced by acceleration range walks are presented in
Figure 4.13. It is worth noticing that the constraint (4.21) is less restrictive than
(4.19), while bandwidth is usually smaller than carrier frequency.
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The omitted term tr in (4.3) for the constant velocity model is equal to

tr ¼ r0

c � v0
(4.22)

As a result the full echo model takes the form

xRðtÞ ¼ xT t � 2r0 þ 2v0t � 2r0v0=ðc � v0Þ
c

� �

þ xRðtÞ (4.23)

After straightforward simplification, one can obtain a more convenient expression
in the form

xRðtÞ ¼ xT t 1 � 2v0

c

� �

� 2r0

c
1 � v0

ðc � v0Þ
� �� �

þ xRðtÞ (4.24)

As a result, not only time is scaled by the factor 1 � ð2v0=cÞ but also the range is
scaled by the factor 1 � ðv0=ðc � v0ÞÞ.
4.1.1.3 Constant acceleration model
For longer integration time, it is necessary to apply high order motion models. In
this section, a constant acceleration model will be applied in the form
rðtÞ ¼ r0 þ v0t þ a0ðt2=2Þ.

The received signal (neglecting the tr term) is now in the form

xRðtÞ ¼ xT t � 2r0 þ v0t þ a0t2ð Þ=2
c

� �

þ xRðtÞ (4.25)
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and the processing formula now has the form

yðr; v; aÞ ¼
ð

T0þti

T0

xRðtÞ � x�B t � 2r þ 2vt þ at2

c

� �

� exp
�j2pð2vt þ at2ÞF

c

� �

dt

(4.26)

It is noticeable that in the case of constant acceleration, the output of the corre-
lation receiver is three dimensional. The correlation function (4.26) can be
calculated directly from the equation above or calculated independently for each
acceleration.

Acceleration of the target can also be estimated after estimation of the target
range and Doppler shift. In such cases, for the co-ordinates of the maximum of the
cross-ambiguity function (4.12) the single-dimensional acceleration transform [48]
is calculated for the estimated target range and velocity:

yaðaÞ ¼
ð

ti=2

�ti=2

xRðtÞ � x�T ðt � 2
r0

c
Þ � exp

�j2pð2v0t þ at2ÞF
c

� �

dt (4.27)

The estimated acceleration is a co-ordinate of the maximum of (4.27).
An alternative solution is to apply the set of acceleration filters to the range-

Doppler correlation defined by (4.12). Equation (4.26) can be re-written as

yðr; v; aÞ ¼
ð

T0þti

T0

xRðtÞ � x�B t � 2r þ 2vt þ at2

c

� �

� exp
�j4pvtF

c
exp

�j2pat2F

c

� �

dt

(4.28)

and the term exp �j2pat2F=cð Þ can be treated as the time window. Thus, (4.28) in
the case where envelope time stretch can be omitted (at least in the acceleration
part), the equation can be written as a convolution of the range-Doppler correlation
with the spectrum of the chirp signal related to a given acceleration.

yðr; v; aÞ ¼ yðr; vÞ � fft exp
�j2pat2F

c

� �� �

(4.29)

The idea of acceleration estimation in a radar is not new, and several publications
are available in the open literature, such as [49]. The accuracy of the acceleration
estimation depends on the wavelength and the observation time. The acceleration
resolution is equal to

Da ¼ 2l
t2
i

¼ 2c

Fct2
i

(4.30)

The acceleration resolution versus integration time for different carrier frequencies
is presented in Figure 4.14.
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In classical pulse radars, the illumination time is of the order of a few ms. It
depends on the antenna beamwidth and re-visit time. For example, for an antenna
with a beamwidth of 1.80 and rotation (re-visit) period of 2 s (30 RPM), the illu-
mination time is 4 ms, and for a period of 10 s (6 RPM) is 20 ms. As can be seen
from (4.30), acceleration measurement is almost impossible. In FMCW radars, the
illumination time is usually much longer, of the order of tens or hundreds of
milliseconds, making acceleration measurement possible, as was presented in
[1,2,50]. In a noise radar working with fixed beams, the illumination time can be
virtually infinite, and the integration time is limited only by the selected integration
time. Applying a constant acceleration model, one can increase the integration time
over the limits presented in (19) and estimate radial acceleration using (4.29). The
details of acceleration estimation in noise radars are presented in [48,51,52].

4.2 Clutter and direct signal cancellation

The detection scheme based on the matched filtering concept [39,53], described by
(4.10) for the constant velocity case or (4.26) for the constant acceleration case, is
optimal only in single object cases. In the case where there are more targets visible
in the antenna beam, the signals originating from one target can be treated as
additional noise when the filter is tuned to the second one. The sidelobes originating
from the strong targets can then mask the weak target echo, as shown in Figure 4.15.
If only a weak target echo is present, the noise floor is low and the target echo
is visible. In the case of presence of both weak and strong target echo, only the
strong target peak is visible, and the weak one is masked by processing sidelobes.
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In the case of a single target, the detection range is limited in noise (and other)
radars by receiver thermal noise. In the multi-target cases, the detection range can
be limited by ground clutter or strong echoes, while the direct signal, strong echo
returns, ground clutter echoes and distant targets’ weak echoes are received
simultaneously. Such an effect is not present in pulse radars, as all of these com-
ponents are separated in time, and range gain control can solve the dynamic pro-
blem of noise radar.

4.2.1 Noise radar range equation
The echo power received by the noise radar receiver is equal to

PR ¼ PT GT

16p2R4L
SoSR (4.31)

where PT denotes the effective transmitted power, GT is the transmit antenna gain,
So is the target radar cross-section, SR is the received antenna effective surface, R is
the range to the target and L denotes all the losses in the radar system, including
transmission losses, propagation losses and receiving losses. This expression can be
also presented in the form:

PR ¼ PT GT GRl2

ð4pÞ3R4L
So (4.32)

where GR is the receiving antenna gain, and l ¼ cF is the wavelength of the
transmitted signal.
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In the single target cases, the target echo power has to be detected in the
presence of receiver thermal noise

PN ¼ kTRB (4.33)

where TR is the effective system noise temperature (dependent on the temperature
of the receiver, the receiver’s noise figure, antenna noise and outer space noise),
B – the receiver bandwidth, and k is Boltzmann’s constant (1.380 � 10�23 [J K�1]).
The radar detection criterion can then be written as

PT GT GRl2

ð4pÞ3R4L
So > kTRBDo (4.34)

where Do is the detection threshold, usually having the value of 10–16 dB,
depending on the assumed probability of a false alarm in the Neyman–Pearson
detector. The maximum detection range can be predicted by the equation

Rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PT GT GRl2So

ð4pÞ3LkTRBDo

4

s

(4.35)

For a noise radar, after the matched filtering, the effective receiver bandwidth is
reduced to the value 1=ti which is usually much lower than the original radar
bandwidth B. In a typical case, the radar bandwidth is in the range of 1 MHz to
1 GHz, while the effective receiver bandwidth obtained by coherent integration is
in the range of 0.1–1000 Hz. The effect of reducing receiver bandwidth in
integration processing is called integration gain, which is equal to the time-
bandwidth product Bti. Applying the effective bandwidth to (4.35), one can obtain
the final noise radar range equation as

Rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ET GT GRl2So

ð4pÞ3LkTRDo

4

s

(4.36)

where ET ¼ PT ti is the total energy sent towards the target during the integration
time.

In a multiple target scenario, when the filter is tuned to a distant target, the total
noise power is now equal to

PN ¼ kTRB þ PRN (4.37)

where PRN is the sum of all received echo powers except for the one to which
the filter is tuned. Each echo power is described by (31). If PRN � kTRB, then (4.34)
for a two-target case, taking in consideration the integration gain, takes the form

PT GT GRl2

ð4pÞ3R4L
So >

PT GT GRl2

Btið4pÞ3R4
N L

SN Do (4.38)

where RN is the range to the strongest near target (or clutter), and SN is the radar
cross-section of this target.
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As a result, the radar detection range is shortened to the value of

Rmax ¼ RN

ffiffiffiffiffiffiffiffiffiffiffi

SoBti

SN Do

4

r

(4.39)

Assuming that both the targets are of similar size, the integration gain is at the level
of 50 dB, and the detection threshold is at the level of 10 dB, the noise radar
detection range is limited to 10 RN . The situation can be much worse when a near
target or ground clutter radar cross-section is significantly higher than that of the
target.

Another limitation relates to the total dynamic range of the noise radar
receiver. The power received by the radar is proportional to the integration gain,
equating to 1=R4. If the radar has to observe two identical targets, one at a distance
of 10 m and one at a distance of 10 km, the difference between the near and far
echo power is 120 dB. Adding 10 dB of threshold, the required dynamic of the
radar receiver is equal to 130 dB. This dynamic range requirement is defined after
integration processing, but assuming 50 dB of integration gain, l80 dB of dynamic
range in the analogue part, and an analogue-to-digital converter (ADC) is still
required, which is a high number.

4.2.2 Ground clutter cancellation
In the presence of direct signal interferences and multiple targets, more sophisticated
detection schema has to be used. The optimal solution to the masking problem is to
solve the non-linear equation set for each sampling instance tj, presented by

XRðtjÞ ¼ xðtjÞ þ
X

i

AiXT tj � 2
ri

c

	 


e�4p Ftvit=cð Þtj (4.40)

where Ai, ri, vi are complex amplitudes, ranges and range velocities of all observed
targets, including ground clutter returns, for which vi ¼ 0. The mean-square solution
gives the unknown vectors [ Ai], [ ri] and [ vi]. This approach, although optimal, is
computationally very inefficient and cannot be performed in real time. It requires the
solving of a non-linear equation set. In real time, it is possible to apply a sub-optimal
approach. The received signal consists of three signal groups: receiver thermal noise,
ground clutter echoes and moving target echoes.

Under the assumption that the echo power originating from moving targets is
much smaller than the echo power originating from ground clutter, it is possible to
find the ground clutter parameters by solving the simplified equation set

XRðtjÞ ¼ xeðtjÞ þ
X

i

AiXT tj � 2
ri

c

	 


(4.41)

which is related only to ground clutter. The equation set is still non-linear and
difficult to solve. Further simplification is based on the assumption that the clutter
is placed on an equal-spaced distance grid related to the sampling period
ri ¼ iTs=2c.
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Under such assumptions, the equation set (4.41) becomes linear versus the
unknown clutter amplitude vector [ Ai].

XRðtjÞ ¼ xeðtjÞ þ
X

i

AiXT tð j�iÞ
� �

(4.42)

The estimated clutter echo amplitudes [ Âi] can be further used for ground clutter
attenuation. The attenuation is performed by the subtraction of the modelled clutter
echoes’ signals from the received signal, according to

X rem
R ðtjÞ ¼ XRðtjÞ �

X

i

ÂiXT tð j�iÞ
� �

(4.43)

and the cleaned signal can be used for moving target detection using (4.12) or (4.20).
The direct solution of (4.42) is still computationally inefficient, so several

more computationally effective methods have been devised using an adaptive filter
concepts, e.g. the block lattice filter orthogonalization of the signal base set
{XT ðtð j�iÞÞ} and iterative block ground clutter removal.

Figure 4.16 shows an example of a noise radar observing moving targets on the
road [9]. It also receives strong ground clutter originating from trees. In Figure 4.17,
the cross-section of the zero Doppler beam of the ambiguity function before and after
the application of clutter cancellation is presented. It is easily seen that the residual
fluctuations at the level of Bt¼ 60 dB below the strongest return completely masks
the weak targets. After clutter cancellation, the strongest components are attenuated
by 70 dB, and the noise floor is decreased by more than 40 dB. The cross-ambiguity
function of the received signal is shown in Figure 4.18. The direct signal interferences
and ground clutter are visible out to a range of 150 m. All moving targets are masked
by ground clutter.

Figure 4.16 Experimental noise radar used for the detection of road traffic. Two
antennas of the radar, mounted on a trailer next to the road, is visible
on the right-hand side
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In Figure 4.19, the cross-ambiguity function of the received signal after clutter
cancellation is presented. Clutter was cancelled up to the range of 560 m. Radar
detections at the level of �30 to �10 dB are visible, together with the track of the
co-operating target. The target echoes levels are 70 to 90 dB below the strongest
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received signal component. The ground clutter at the distance of 600 m is also
visible, together with the Doppler spread clutter at a distance of up to 150 m, caused
by trees and canopy motion. The Doppler spread components can also be atte-
nuated, which is described in detail in [54].

4.3 MIMO noise radars

In the last few years, the concept of MIMO radar [55,56] has gained considerable
popularity among radar researchers. The most distinctive feature of such a radar is
the transmission of multiple waveforms from different locations and their reception
at different receivers that can separate captured signals in terms of their origin. This
definition of spatial waveform diversity is true both for statistical MIMO radar with
widely spread nodes [57], known for many years as multistatic radar [58], as well
as for co-located MIMO radar which enables coherent beamforming [59,60]. The
most common technique to allow signal separation is transmission division in time
or frequency domain. Another solution is to maintain waveform orthogonality with
respect to the inner product over the integration period.

The latter approach is perfectly suited for noise radar, whose waveforms, by
definition, are orthogonal to a degree defined by their time-bandwidth product, if
different realizations of random process are used. In such cases, all nodes can
transmit simultaneously in the same band, which allows for a fully continuous
waveform operation mode.
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The following section will focus on co-located MIMO, which means that the
radiators of the antenna array are close enough to each other so that they can
observe the object at the same aspect and, thus, the same phase of its scattering
coefficient. As a result, coherent beamforming is possible. Another assumption is
that the radar works in continuous wave mode. It is not a crucial requirement but it
allows the achievement of good integration gain and to avoid distinctive pulse
modulation.

The definition of MIMO above says nothing about the potential advantages of
this mode over its classical electronically scanned phased-array counterpart which
would justify the computational burden of the correlation between received
waveforms and all transmit templates, instead of one. To derive them, reasonable
criteria for comparison must be set. The following assumptions will be made: there
are K transmit and L receive antennas, each antenna radiates the same power, and
there is a time of N samples for single integration. Another assumption is that at
least K transmit beams must be produced to satisfactorily cover the whole azimuth
sector.

4.3.1 Signal model
For any array radar, the narrow-band signal reflected from a point scatterer and
received by an lth antenna can be described after quadrature de-modulation as

yl t;f0ð Þ ¼ a0e�jwd t
XK

k¼1
xk t�t0ð Þ � e�jwc tk f0ð Þþtl f0ð Þ½ � þ wl tð Þ (4.44)

where a0 is the complex amplitude of target reflectivity, xk is the waveform
transmitted by the kth antenna, t0 is the main time delay, tk and tl are the relative
delays between a target placed at angle f0 and the subsequent antennas, wc is the
carrier angular frequency, wd is the Doppler frequency shift and wl tð Þ is additive
noise or interference.

This can be simplified by the use of vector notation so that the set of received
signals can be described by

y t;f0ð Þ ¼ a0e�jwd tb f0ð ÞaT f0ð Þx t�t0ð Þ þ w tð Þ (4.45)

where

a ¼ e�jwctR�1 fð Þ; . . . ; e�jwctR�K fð Þ
h iT

(4.46)

and

b ¼ e�jwctT�1 fð Þ; . . . ; e�jwctT�L fð Þ
h iT

(4.47)

are the steering vectors of the transmit and receive array.
The distinction between a classical phased array and MIMO lies within the

form of xðtÞ. In the first case, this is the same noise realization x0ðtÞ phase shifted at
following transmitters according to the weighting vector a�ðfT Þ. The weights are
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derived from the steering vector corresponding to the wanted illumination angle
fT . In the case of MIMO, each entry in xðtÞ is an independent noise realization.

The noise radar processing is based on the correlation of the received signal
with a template. In the case of MIMO, that can be synthetically written as follows
(for simplification, further considerations are limited to a single cell of the cross-
ambiguity function):

Z f0ð Þ ¼
ð

T0

0

y tð ÞxH tð Þdt¼ a0b f0ð ÞaT f0ð ÞRxx þ V (4.48)

Z is the measurement matrix for a target placed at angle f0. The Rxx is the matrix
of the spatial correlation of the transmitted signal, while V is post-integration
noise.

When more than one target appears in the examined cell, it is a sum of scaled
steering vectors’ products obtained for subsequent target angles that is multiplied
by the Rxx correlation matrix instead of one. When a classical phased array is
considered, only the correlation with xH

0 tð Þ is needed in practice but the result must
be multiplied by a transmit steering vector to keep the generality of notation.

In the case of MIMO radar, the Rxx is diagonal with respect to residuals at the
level of the time-bandwidth product below the diagonal.

For a classical phased array, the matrix has a form of a�ðfT ÞaTðfTÞ and is
singular. The form of the matrix is crucial to the antenna-pattern comparison.

4.3.2 Beamforming and antenna pattern
To perform beamforming, an appropriate criterion regarding its output must be
formulated. The most commonly used one is to minimize the output noise with
constrained amplitude of the template signal s fð Þ at the output:

min
h

hH fð ÞRh fð Þ (4.49)

with constraint hH fð Þs fð Þ ¼ 1. The solution to such an optimization problem is
given by

h fð Þ ¼ R�1s fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sH fð ÞR�1s fð Þ
p (4.50)

When the MIMO radar is considered, the closed form expression for the output
signal-to-noise power ratio can be derived as a ratio of output signal power to the
power of noise propagating through the filter. In this case, the spatial correlation
matrix of noise R will be replaced with the extended auto-correlation Rvv of the
vectorized post-correlation noise v. The measurement signal will also be in the
vectorized form z.

bPS=N fð Þ ¼ hH fð Þz







2

hH fð ÞRvvh fð Þ (4.51)
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By substituting h with (4.50), assuming Kronecker’s structure of channel, and exploit-
ing the properties of the Kronecker product, (4.51) can be re-formulated as [59]:

bPS=N fð Þ ¼ bH fð ÞR�1
wwZa� fTð Þ







2

aH fTð ÞR�
xxa fTð ÞbH fð ÞR�1

wwb fð Þ (4.52)

where Rww is the spatial correlation matrix of noise and interferences. In this form,
if Z is replaced with a point response template S f0ð Þ, it is simple to derive
theoretical array radiation patterns and quantify the impact of transmitted signal
auto-correlation on the radar performance:

G f;fT;f0ð Þ¼GTx f0ð Þ aH f0ð ÞR�
xxa fTð Þ







2

aH fTð ÞR�
xxa fTð Þ GRx f0ð Þ bH f0ð ÞR�1

wwb fð Þ







2

bH fð ÞR�1
wwb fð Þ (4.53)

When the matrix Rxx is replaced with a diagonal one, which is characteristic for
the MIMO mode, the transmit part of the expression will take the form of
aH f0ð Þa fTð Þj j2=K, while in the phased array mode with a strictly correlated set of

transmitted signals it is aH f0ð Þa fTð Þj j2=1 . This means that in MIMO mode, the
achievable signal-to-noise ratio (SNR) is K times smaller due to beamforming
properties than in its phased array counterpart. This can be explained quite
straightforwardly, since in classical radar, the amplitude of a transmitted signal
grows K times due to coherent summation, while in MIMO only medium power
grows that much. Therefore, under the same conditions, the shape of the angular
response for a single scatterer is exactly the same in MIMO and conventional phase
radar, with K-fold gain in favour of the classical solution. An exemplary angular
radiation pattern of a 10-by-10 array of omni-directional radiators and a reflecting
point placed at the azimuth angle of 0º is presented in Figure 4.20.
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4.3.3 Adaptive beamforming
Depending on the knowledge of the spatial interference distribution, different
beamforming results may be obtained with (4.53). When the interferences are non-
directional and come from receiver noise, the Rww matrix is diagonal, and it is the
conventional beamformer that should be used. When there are directional inter-
ferences and matrix Rww is known, then they can be cancelled. The spatial corre-
lation matrix of the interferences may be known, for example, when they are
stationary and receive-only observation was done. When such a procedure is not
possible, one may use the Ryy matrix instead of Rww. Such a solution is known as a
Capon beamformer or minimum variance distortionless response; however, some
authors use different naming conventions. In this case, apart from the interferences,
the echo signature is also present in the matrix. Due to the constraint in (4.6), the
beamformer does not cancel the useful echo. An example of its use is presented in
Figure 4.21 where two objects and interference were placed on a simulated scene
with SNR equal to �30 dB. The interference was cancelled in both cases but the
phased array suffers slight gain degradation in comparison to MIMO. What is
worth mentioning is that if the SNR before integration was around 0 dB or higher,
the beamformer would allow the separation of two objects with super-resolution for
MIMO and spoil the performance for the phased array.

4.3.4 Virtual Nyquist array
In the MIMO radar bibliography, there is a widely spread concept of virtual aper-
ture resulting from the spatial convolution of transmit and receive radiators [59,61].
Such convolution has an interesting property when one of the arrays – transmit or
receive – is full, which means l/2 spacing preventing the occurrence of prevents
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aliasing and grating lobes, and the second is sparse in a specific way; namely, the
spaces between the radiators are one l/2 slot smaller than the size of the full array.
The resultant convolution produces a uniform dense array of the size KL. Such an
aperture provides much better angular resolution than two dense arrays with the
same number of elements with no grating lobes.

The point is that it is not a feature of the MIMO mode but of the array geo-
metry itself [62]. A classical phased array would behave in exactly the same way.
If proper spacing is maintained, nulls of the full array cancel the grating lobes of the
sparse one. If the transmit array of classical radar is sparse, apart from the main
beam, the energy will be transmitted in unwanted directions according to the
grating lobes, but any return from those angles will be nullified by the receive
pattern. When the receive array is sparse, there will be grating lobes in the receive
pattern but no energy radiated in those directions by the full transmit array. As an
illustration, the gain patterns obtained for a 3-by-3 array according to (4.10) are
presented in Figure 4.22. The shape is the same and the overall level is K times
higher for classical radar, accordingly to the explanation from previous sections.
What is worth mentioning is that such an array configuration works well only for a
diagonal interference matrix, since the cancellation of grating lobes consumes all
degrees of freedom that could be used for adaptive beamforming.

4.3.5 Benefit of MIMO
The MIMO radar gains considerably when not a single angle but an angular sector
observation is performed. The pattern presented in Figure 4.23 is valid for a sce-
nario where a conventional array illuminates a single angle for a given time, equal
to the acquisition of N samples. If it was to cover K angles within the same time, it
would have to divide the integration time by K, thus reducing the integration gain

20

10

0

Object angular position f0 [º]

G
 [d

B
]

–20

–30
–50 500

–10

f, fΤ

Phased
MIMO

Figure 4.22 Radiation-pattern comparison for virtual Nyquist arrays

Noise Radar Technology 147



from the correlation processing. What is gained from transmit beamforming in
comparison to the MIMO is to be lost due to time division between observation
angles. The production of multiple beams on receive is in this case redundant, since
other directions are not illuminated. The MIMO radar constantly illuminates the
whole scene, and a high number of transmit–receive synthetic beams can be pro-
duced. Therefore, if a sector observation scenario is considered, the achievable
SNR is the same, provided the sector observation time is not excessively long, and
target movement does not cause coherency loss.

With equal SNR, there are some undeniable gains from MIMO in the discussed
scenario. The first is the extension of integration time, simultaneous for all beams,
that results in improved velocity resolution which can be crucial in some applica-
tions. The other is the decrease in peak-radiated power and the lack of envelope
modulation due to transmit beam sweeping. In the case of CW operation mode,
where reflections form strong, close scatterers which can saturate the receiver, an
increase in radiated power does not necessarily lead to improved SNR, since the
reflected power grows as well. In MIMO, the lack of such spatial power accumu-
lation allows the use of a more sensitive receiver without the risk of constant
saturation.

There is an interesting analogy between FMCW radar versus CW noise radar
and a conventional array versus a MIMO array. The first pair differs in the time–
frequency distribution of radiated power. In FMCW, the power is focused on one
point of the spectrum at a time, with the point of focus sweeping through the whole
band, while in noise radar it is randomly distributed for the whole integration
period. Similarly, in a classical phased array, the focused beam sweeps through the
spatial domain, while in CW noise MIMO there is a constant spatially spread

Figure 4.23 MIMO noise radar demonstrator
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transmission. To conclude, CW noise MIMO radar is the most energy-spread radar
system one can imagine. This feature makes it less prone to being detected and less
likely to produce disturbances to other devices sensitive to peak power level.

4.3.6 Experimental results
In order to prove some features of noise MIMO radar, a demonstrator based on a
commercial off-the-shelf (COTS) hardware platform and offline processing was
developed. It used an arbitrary waveform generator as a transmitter and a vector
signal analyser as a receiver, with 50 MHz of instantaneous bandwidth. There were
three phase-coherent transmit channels, three receive channels and one reference
waveform input allowing digital synchronization between the transmitter and
receiver. WiFi sector antennas for 2.4 GHz were used, with a simple front end
including amplifiers and a bandpass filter. Each antenna had a width of a single
patch radiator along the array axis equal to 6 cm, which allowed for nearly l/2
spacing. Phase calibration was carried out either using an active corner reflector
with Doppler modulation capability, or allowing only relative angular measure-
ments of the target. Calibration on a stationary corner reflector turned out to be
inaccurate due to the influence of the ground echo from the same range cell. The
radar demonstrator on the test site is presented in Figure 4.23.

The first task of the radar was to perform imaging of the whole scene within a
single integration of 100 ms. The result is presented in Figure 4.24. The empty car
park is marked with a dashed line, the active calibrator placed on a car with a
triangle and the passive corner reflector with a circle. The positions of buildings are
shown with solid rectangles. The seemingly poor quality of the image is fully
justified by the system parameters – range resolution and number of array elements.
What is important is that to produce the equivalent with a classical array, one would
have to sweep through all the angles with a transmit beam. For the given time slot
for the whole scene, the achievable SNR would have been the same.
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Another result was obtained for a moving target – a man with an active signal
repeater running radially towards the radar – in two turns at two different angles. In
this case, the range-Doppler cell containing the target was extracted, and for each
time snapshot range beamforming was done. The echoes from the dominant sta-
tionary scatterers were cancelled using a set of lattice filters. An angular response
of the man for two runs at different azimuth angles is presented against the theo-
retic array response pattern. Since the point-like target was well isolated from the
other ones, the measured pattern nearly overlays the theoretical one in Figure 4.25;
the form of one of the patterns extracted was exactly the same as the recording of
the scene image. In this case, the radar looked in all directions simultaneously,
which allowed multi-angle observation with long integration time and good velo-
city resolution. With a classical array counterpart and the same time assigned for
the whole-scene observation, the velocity resolution would be three times lower,
which in the case of a relatively slow target would cause its overlap by velocity
sidelobes of strong stationary targets.

4.3.7 Conclusions
When the task of the radar is to cover a given angular sector in surveillance or
search mode, continuous wave noise radar in MIMO mode brings several advan-
tages over its phased array counterpart:

● If there are K transmit beams, and a fixed time to scan the whole sector, the
MIMO and phased array achieve the same SNR. The phased array gains on
transmit power concentration whereas MIMO makes it up with longer target
illumination and effective integration.
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● Longer integration gives better velocity resolution for the whole sector at the
same time.

● If the radar is to detect some ephemeral phenomenon at an unknown angle,
simultaneous multi-directional observation MIMO mode prevents the radar
from missing it.

● In MIMO continuous wave radar, due to multi-directional simultaneous illu-
mination, the transmitted peak power and thereby peak power of strong echoes
is statistically K times smaller for the Gaussian waveform, which improves
usage of the vertical range of the radar receiver, resulting in greater obtainable
range.

● Lower peak power and lack of modulation caused by the angular beam sweep
in MIMO mode may be crucial to the LPI properties of the radar.

● Capon beamformers works better for MIMO but only for high input SNR,
barely possible in radar. Otherwise, the spatial resolution is exactly the same in
MIMO as it is in a phased array, unless the influence of transmit beamforming
is neglected for the phased array.

● The ability to form an extended virtual array improving spatial resolution is not
a feature of MIMO but of array geometry itself and can be obtained in a phased
array as well.

● In MIMO, the calibration of the transmit array may be done offline, whereas in
a phased array it must be assured before transmission.

MIMO needs more independent transmit channels, the data throughput of reference
signals is K times larger, and instead of K or L correlations, KL must be calculated.
Moreover, tracking of a single distant object with no masking interference from
close objects is done better with a conventional phased array. Before implementing
a MIMO noise radar to a particular application, one must consider whether the
need for the exploitation of the advantages above is justified.
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[1] A. Wojtkiewicz, M. Nałęcz, K. Kulpa and W. Klembowski, ‘Use of poly-
nomial phase modeling to FMCW radar. Part C: Estimation of target
acceleration in FMCW radars’, in NATO Research and Technology Agency,
Sensors & Electronics Technology Symposium on Passive and LPI (Low
Probability of Intercept) Radio Frequency Sensors, Warsaw, Poland, 23–25
April 2001, paper #40C.

[2] R. Zhang, Y. Huang, J. Yang and J. Xiong, ‘LFMCW radar multi-target
acceleration and velocity estimation method’, in 2004 Seventh International
Conference on Signal Processing, vol. 3, 2004, pp. 1989–1992.

[3] R. H. Barker, ‘Group synchronizing of binary digital systems’, in Commu-
nications Theory, Butterworth, London, pp. 273–287, 1953.

[4] P. Borwein and R. Ferguson, ‘Polyphase sequences with low autocorrelation’,
IEEE Transactions on Information Theory, vol. 51, no. 4, pp. 1564–1567,
April 2005.

Noise Radar Technology 151



[5] P. Borwein and R. Ferguson, ‘Barker sequences’, in CMSMITACS Joint
Conference, Winnipeg, Manitoba, 31 May–3 June 2007.

[6] R. Frank, ‘Polyphase codes with good nonperiodic correlation properties’,
IEEE Transactions on Information Theory, vol. 9, no. 1, pp. 43–45, January
1963.

[7] B. L. Lewis and F. F. Kretschmer, ‘A new class of polyphase pulse com-
pression codes and techniques’, IEEE Transactions on Aerospace and
Electronic Systems, vol. AES-17, no. 3, pp. 364–372, May 1981.

[8] L. Guosui, G. Hong and S. Weimin, ‘Development of random signal radars’,
IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 3,
pp. 770–777, July 1999.

[9] M. Malanowski and K. Kulpa, ‘Detection of moving targets with con-
tinuous-wave noise radar: Theory and measurements’, IEEE Transactions on
Geoscience and Remote Sensing, vol. 50, no. 9, pp. 3502–3509, September
2012.

[10] M. Malanowski and P. Roszkowski, ‘Bistatic noise radar using locally gen-
erated reference signal’, in 2011 12th International Radar Symposium (IRS),
Leipzig, 2011, pp. 544–549.

[11] V. I. Kalinin and V. V. Chapursky, ‘Wideband noise radar for detection of
slow moving objects’, in 2004 14th International Crimean Conference
‘Microwave and Telecommunication Technology’ (IEEE Cat. No. 04EX843),
2004, pp. 695–696.

[12] T. Thayaparan, M. Dakovic and L. Stankovic, ‘Mutual interference and low
probability of interception capabilities of noise radar’, IET Radar, Sonar &
Navigation, vol. 2, no. 4, pp. 294–305, August 2008.

[13] D. D. Garmatyuk and R. M. Narayanan, ‘Ultrawideband noise synthetic
aperture radar: Theory and experiment’, in IEEE Antennas and Propagation
Society International Symposium. 1999 Digest. Held in conjunction with:
USNC/URSI National Radio Science Meeting (Cat. No. 99CH37010),
Orlando, FL, USA, vol. 3, 1999, pp. 1764–1767.

[14] Y. Duan, Z. Yu and Y. Zhang, ‘Research progress of noise radar technolo-
gies’, 2011 3rd International Asia-Pacific Conference on Synthetic Aperture
Radar (APSAR), Seoul, 2011, pp. 1–4.

[15] D. Tarchi, K. Lukin, J. Fortuny-Guasch, A. Mogyla, P. Vyplavin and
A. Sieber, ‘SAR imaging with noise radar’, IEEE Transactions on Aero-
space and Electronic Systems, vol. 46, no. 3, pp. 1214–1225, July 2010.

[16] X. Gu, Y. Zhang and X. Zhang, ‘Stepped frequency random noise UWB
radar signal’, 2011 3rd International Asia-Pacific Conference on Synthetic
Aperture Radar (APSAR), Seoul, 2011, pp. 1–4.

[17] K. S. Kulpa, Z. Czekala and M. Smolarczyk, ‘Long-integration-time noise
surveillance radar’, in First International Workshop on the Noise Radar
Technology NRTW-2002, 18–20 September 2002, pp. 238–243.
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Chapter 5

Cognitive radar management

Alexander Charlish1 and Folker Hoffmann1

Abstract

Cognitive radar is a radar system that acquires knowledge and understanding of its
operating environment through online estimation, reasoning and learning or from
databases comprising context information. Cognitive radar then exploits this
acquired knowledge and understanding to enhance information extraction, data
processing and radar management. In order to make progress to this goal, the topic
of cognitive radar attempts to shift the cognitive processes previously performed by
an operator into automated processes in the radar system. Families of cognitive
processes are well defined in cognitive psychology [1], such as the perceptual
processes, memory processes, languages processes and thinking processes. In this
chapter, we discuss radar management techniques that enable the manifestation of
one or more cognitive processes, with a particular view towards electronically
steered phased array and multifunction radar systems. In particular, this chapter
focuses on two cognitive processes: attention and anticipation. Attention can be
manifested by effective resources management, whereby a quality of service-based
task management layer connects radar control parameters to mission objectives.
Anticipation can be generated using stochastic control that is non-myopic, allowing
the radar system to act with a consideration of how the radar system, scenario and
environment will evolve in the future.

5.1 Cognitive radar architecture

An architecture can be adopted for a cognitive radar system where information
abstraction levels bridge the gap between the operator and the reception and
transmission of radar signals. Abstraction levels for information processing have
been widely discussed, most notably through the Joint Directors of Laboratories
(JDL) model [2] and its revised versions [3,4]. By extending these ideas, the
information abstraction levels of signal, measurement, object, situation and mission
can be identified as relevant for a radar system. These information abstraction
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levels have an inherent structure in that the data volume reduces for each higher
level. For example, multiple signals contribute to a measurement and multiple
measurements contribute to a track on an object. The lower levels execute feedback
cycles with much shorter time horizons, whereas the higher levels execute feedback
cycles over much longer time horizons.

A cognitive radar architecture is illustrated in Figure 5.1, which is based on the
general architecture by Smits et al. [5] and Kester [6]. In the architecture, each of
the previous identified abstraction levels is comprised of an assessment module for
data processing and a management module for control. This stresses the duality
between assessment and management processes [7] and extends the original JDL
model, where sensor management was considered in a stand-alone level called
‘process refinement’. The processes of assessment and management at each level
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exploit knowledge, which can be fixed knowledge from a database or acquired
online. This architecture bears similarity to the general levels described in Haykin’s
cognitive architecture [8, Ch. 2].

Knowledge-based adaptive methods for assessment at varying abstraction
layers are well developed through decades of radar research. For example, at
the signal level, Space Time Adaptive Processing techniques [9] apply two-
dimensional filtering based on learnt statistics of the interference environment
to maximize the signal-to-interference ratio. At the measurement level, learnt
statistics of the current clutter environment aid robust detection in complex
environments [10]. At the task level, multi-hypothesis tracking [11, Ch. 6, 16]
builds hypotheses to explain the measurement data, interacting multiple model
filtering [12] estimates the current target manoeuvre state and context information
can be exploited for improved tracking performance [13].

In comparison to the assessment branch, the management branch is relatively
underdeveloped. This is unsurprising, as the management branch is dependent on
the information from the assessment branch in order to apply radar management.
However, many radar management techniques exist, such as methods for waveform
adaptation, scheduling, task parameter optimization and priority assignment as
covered in Volume 1, Chapter 3. This chapter focuses on techniques for the radar
management branch that enable the manifestation of the cognitive processes of
attention and anticipation.

5.2 Effective QoS-based resources management

Radar resources management (RRM) addresses the two key problems of
deciding how to allocate finite radar resource between numerous radar tasks, as
well as deciding how to optimize the selection of control parameters for each
individual radar task. Examples of radar tasks are tracking a target or searching a
region. Conventional RRM approaches optimize individual radar task control
parameter selection using rules and heuristics, which are tuned by the system
designer. This is done with an implicit assumption that a set of successful tasks
leads to a successful mission. In contrast, effective resources management aims
to manage the radar resource with respect to the mission objectives. This repre-
sents a shift of a cognitive process from the operator to the radar system, as the
attention of the radar is focussed on mission objectives. This section describes
how quality of service techniques can be applied to achieve effective resources
management.

5.2.1 QoS resource allocation problem
Resource management involves allocating resource between competing radar
tasks as well as selecting control parameters for each task. In this subsection, the
problem of resource allocation is considered alone. This problem formulation is
then extended in the following subsection to include control parameter selection,
such as selecting task revisit interval times and waveforms.
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5.2.1.1 Problem formulation
In the resource allocation problem, a set of K independent tasks
T ¼ T1; T2; . . .; TKf g must share the finite resource available. In order to share the
finite resource, a resource allocation r ¼ r1; r2; . . .; rKf g must be found, where rk

denotes the resource allocated to task Tk . For a radar problem, this resource can be a
temporal loading that represents the amount of the radar time-energy budget that is
allocated to the task. Let Rk denote the resource allocation space for task Tk as the
real numbers in the interval 0; 1½ �, and let R denote the K-dimensional resource
allocation space for all tasks.

A resource function g : R 7! �1; 0½ � can be defined based on the summations of
the resources allocated to each task:

gðrÞ ¼
X

K

k¼1

rk

 !

� r̂ (5.1)

where r̂ 2 0; 1½ � is the maximum resource available. The resource function should
satisfy the constraint:

gðrÞ � 0 (5.2)

so that the resource allocated to all of the tasks does not exceed the resource
available for the tasks.

Each task utilizes the allocated resource to provide a quality of service level.
The expected quality level over the considered time horizon is denoted qk 2 Qk for
task Tk . Each task can use a different quality measure, which is relevant to the task
being performed. This formulation is easy to extend if a task has multiple quality
dimensions, for example by taking a weighted sum [14].

The task quality of service is affected by environmental parameters that are not
under control. Examples of the environmental parameters for a radar tracking task
are the target range, target bearing or parameters of the target manoeuvre model.
The set of environmental parameters for task Tk are denoted ek 2 Ek . In practice,
these environmental parameters are not known and must be estimated from the
received measurements.

The quality of service of a resource allocation for task Tk can be calculated
through a task quality function:

qk : Rk � Ek 7!Qk (5.3)

which is a mapping from the environmental parameters and the resource allocated
to the task into quality space.

To formulate an objective function for the resource allocation problem, a
mapping between K task specific qualities to a scalar valued mission effectiveness
is sought. This mapping is based on the mission specific task requirements that are
specified by the situation management module. A task requirement is comprised of
a task utility function, which describes the satisfaction associated with an achieved
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task quality, and a task weighting, which describes the mission relevance of the task
relative to other tasks. The utility of task Tk can be calculated through the task
utility function:

uk : Qk 7!U (5.4)

where U is the task utility space defined on the real numbers in the interval 0; 1½ �.
Models for the quality and utility functions are discussed in Section 5.2.4. The
importance weighting of task Tk is denoted wk and:

X

K

k¼1

wk ¼ 1 (5.5)

The mission effectiveness can be found as a weighted sum across the individual
task utilities:

uðrÞ ¼
X

K

k¼1

wk � ukðqkðrk ; ekÞÞ (5.6)

This mission effectiveness represents the ability of the radar system to meet the
mission specific task quality requirements. This quality of service-based resource
allocation problem can be formulated as a constrained optimization problem:

maximize:
r

uðrÞ ¼
X

K

k¼1

wk � ukðqkðrk ; ekÞÞ (5.7)

subject to: gðrÞ � 0 (5.8)

where: gðrÞ ¼
X

K

k¼1

rk

 !

� r̂ (5.9)

therefore the objective is to maximize the summation of importance weighted task
utilities, given the constraint on the resource available.

The resource allocation problem is dynamic, in that the number of tasks, the
environmental parameters for each task and the maximum resource available can
vary over time. Therefore, it is necessary to iteratively solve this constrained
optimization problem for all time instances, by applying receding horizon control
as illustrated in Figure 5.2. When applying receding horizon control, a resource
allocation plan is sought at the start of the allocation frame that is based on a non-
myopic quality model that extends over multiple frames in the future. Although the
plan is valid over multiple frames, it is executed only for a single frame before the
plan is recomputed. The plan that is generated for a frame is passed to a scheduler,
which schedules antenna jobs. As the resource allocation represents a continuous
plan, many tasks may have been allocated resource but only a subset would be
scheduled in a single frame. The time indexing of each resource allocation frame is
omitted in this work for brevity.
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5.2.1.2 Optimality conditions
If it is assumed that the task utility function ukðqkðrk ; ekÞÞ is a continuous convex
function of the task resource rk , then the problem objective function is also convex.
This assumption is well justified due to the principle of diminishing returns, that is
increasing the resource allocation to a task results in decreasing utility increments.
This principle of diminishing returns is illustrated in Figure 5.3.

As the objective and constraint functions in (5.7) and (5.8) are convex, then the
Karush–Kuhn–Tucker (KKT) conditions [15, Sec. 5.5.3] are sufficient conditions
for the optimal resource allocation r� ¼ r�1; r�2; . . .; r

�
K

� �

. The KKT conditions for
this problem are as follows:

Feasibility: gðr�Þ � 0

Dual Feasibility: m � 0

Complementary Slackness: mgðr�Þ ¼ 0

Stationarity: �ruðr�Þ þ mrgðr�Þ ¼ 0

where m is the KKT multiplier. The feasibility and dual feasibility conditions imply
that the optimal solution must be feasible for both the primal and dual problems
[15, Sec. 5.5.3]. The stationarity condition has an interesting interpretation, as the
tasks are assumed to be independent, uðrÞ in (5.7) is a sum of independent com-
ponents and so:

@uðr�Þ
@r�k

¼ dukðqkðr�k ; ekÞÞ
dr�k

(5.10)

Therefore, the stationary condition can be rewritten as:

wk
duk qk r�k ; ek

� �� �

dr�k
¼ m 8k 2 0; 1; . . .;Kf g
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Figure 5.2 Receding horizon control structure. A resource allocation plan is
constructed based on non-myopic models that extend over multiple
allocation frames
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which implies that the optimum solution is located at a point where the gradients in
resource utility space are equal for all tasks. The complementary slackness condi-
tion is satisfied either when no resource is left (gðr�Þ ¼ 0), or when the further
allocation of resource no longer results in an increase in utility and so the gradients
in resource utility space are zero (m ¼ 0).

An example, optimum resource allocation for two tasks is illustrated in
Figure 5.4, where the gradients in resource utility space are equal. The optimality of
this resource allocation is very intuitive. If the resource allocated to task A were
increased, then the resource allocated to task B must decrease. However, the loss in
utility from task B would be greater than the gain in utility for task A.
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Figure 5.3 Principle of diminishing returns. As the resource allocated to a task
increases, the increment in returned utility decreases
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Figure 5.4 Example optimal resource allocation for two tasks where the gradient
in resource utility space is equal. Any adjustment to the resource
allocation results in a utility loss for a task that is greater than the
utility increase for the other task
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5.2.2 QoS resource management problem
In the previous section, the problem of allocating finite resource to tasks
was considered. However, for radar resource management, it is also possible to
select control parameters which determine how the allocated resource is used.
Consequently, this subsection describes how to extend the resource allocation
problem into a resource management problem where control parameters are also
selected.

5.2.2.1 Problem formulation
The resource allocation problem is coupled to the problem of selecting control
parameters for each task, such that the resource allocated is optimally utilized.
Examples of the control parameters are the task dwell duration, the task revisit
interval time or the transmitted waveform for a track update or search beam
position. The control parameters for task Tk are denoted uk . Again, receding
horizon control is applied and therefore these control parameter selections represent
the current resource management plan for a time horizon extending into the future,
as illustrated in Figure 5.2.

To solve the QoS resource management problem, it is required to select
parameters for all the tasks, to give the set of selections u ¼ u1; u2; . . .; uKf g.
As each control parameter for each task uses a certain amount of resource, a
resource allocation is also generated. The parameter selection uk is itself a set
of parameters with a number of dimensions which depends on the task, i.e.
uk ¼ u1

k ; u2
k ; . . .; u

Mk
k

� �

where Mk is the number of control parameter dimensions for
task Tk . Let uk 2 ^k denote the control parameter space for task Tk and u 2 ^
denote the control parameter space for all tasks.

As with the resource allocation problem, a task quality function is required,
which in this case maps task control parameters and environmental parameters into
quality space:

q̂k : ^k � Ek 7!Qk (5.11)

In the resource management problem, a task resource function is also required,
which maps the task control parameters and environmental parameters into
resource space:

ĝ k : ^k � Ek 7!Rk (5.12)

Based on these functions and the utility function given in (5.4), the resource,
quality and utility of control parameter selections can be evaluated. The evaluation
of control parameters can then be visualized in resource utility space, as illustrated
in Figure 5.5. Each line in Figure 5.5 represents the variation in a single control
parameter dimension, while the other dimension is kept static.

Based on the resource and quality functions, and the utility function from the
resource allocation problem (Equation (5.4)), a constrained optimization problem
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can be formulated for the resource management problem:

maximize:
u

ûðuÞ ¼
X

K

k¼1

wk � ukðq̂kðuk ; ekÞÞ (5.13)

subject to: ĝðuÞ � 0 (5.14)

where: ĝðuÞ ¼
X

K

k¼1

ĝkðuk ; ekÞ
 !

� r̂ (5.15)

5.2.2.2 Optimality conditions
Conditions for the optimal solution of the resource management problem can be
derived by introducing a change of variable, to give an equivalent problem to the
resource allocation problem in (5.7). Alternatively, the KKT conditions can be
applied directly to the problem in (5.13).

Change of variable
The control parameter selection problem can be related to the resource allocation
problem in (5.7) by introducing a change of variable. Consider a one-to-one function
f defined on just a subset of all of the possible control parameter selections ^̂ 	 ^:

f : ^̂ 7!R (5.16)
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Figure 5.5 Visualization of control parameters in resource utility space. Each line
illustrates the variation in one control parameter dimension while the
other control parameter dimension is kept static
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A subset of control parameters must be taken in order for the function f to be one-
to-one. A control parameter selection from the subset ^̂ is denoted as
û ¼ û1; û2; . . .; ûKf g 2 ^̂ .

As the tasks are assumed to be independent, the function f can be broken down
into a one-to-one function for each of the tasks:

fðûÞ ¼
X

K

k¼1

fkðûkÞ (5.17)

where fk : ^̂ k 7!Rk is a mapping from the control parameters for task Tk into
resource space.

Then, the problem of finding the optimal parameter selections û�t from the sub-
set of control parameters can also be formulated as a constrained optimization
problem that is equivalent to the problem formulation for the resource allocation
problem given in (5.7):

maximize:
û

uðfðûÞÞ ¼
X

K

k¼1

wk � ukðqkðfkðûkÞ; ekÞÞ (5.18)

subject to: gðfðûÞÞ � 0 (5.19)

where : gðfðûÞÞ ¼
X

K

k¼1

fkðûkÞ
 !

� r̂ (5.20)

This constrained optimization problem is equivalent to the problem for resource
allocation in (5.7); however, r has been substituted with fðûÞ. As these problems
are equivalent, exactly the same optimality conditions apply to this problem.
Therefore, the optimal parameter selection from û must be primal and dual feasible,
there must be no resource left or no further benefit of further resource allocation
and the gradient in resource utility space at the parameter selections for all tasks
must be equal.

Although this optimization problem is equivalent to the resource allocation
problem (Equation (5.7)), it is not equivalent to the resource management problem
(Equation (5.13)) as it selects control parameters from the reduced subset of control
parameter selections ^̂ and not the complete set of possible control parameter
selections ^. However, reducing the problem to the set of parameter selections ^̂

can be a very useful step as long as the optimal parameter selections from ^ are
contained in ^̂ . A logical choice for the function f is the mapping of the control
parameters that lie on the Pareto frontier in Figure 5.5 into resource, as this subset
ensures that utility is maximized for all resource. However, the subset ^̂ must be
chosen such that the objective function remains convex. Consequently, the concave
majorant is typically taken, which is discussed further in Section 5.2.3.

Application of KKT conditions
Instead of applying a change of variable, the KKT conditions can be directly
applied to (5.13), if it is assumed that the objective function ûðuÞ is a concave
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differentiable function and the resource function ĝðuÞ is a convex differentiable
function, then the following KKT conditions can then be derived:

�rûðu�Þ þ mrĝðu�Þ ¼ 0 (5.21)

ĝðu�Þ � 0 (5.22)

m � 0 (5.23)

mĝðu�Þ ¼ 0 (5.24)

where m is a KKT multiplier.
As shown in [16], the stationarity condition can be rearranged as follows:

m ¼ @lwk � ukðq̂kðu�k ; ekÞÞ
@lĝkðu�k ; ekÞ 8k 2 1; 2; . . .;Kf g

8l 2 1; 2; . . .;Mkf g
(5.25)

where @l denotes the partial derivative with respect to ul�
k , which occurs as u�k is

itself a vector given by u�k ¼ ðu1�
k ; u2�

k ; . . .; uL�
k Þ.

This set of conditions implies that the stationarity condition is satisfied when
the gradients of resource over utility in all dimensions and for all tasks are equal to
a common value, which is the KKT multiplier m. The optimal solution is found
when the stationarity condition is satisfied (Equation (5.21) and Equation (5.25))
and the solution is primal feasible (Equation (5.22)) and dual feasible (Equation
(5.23)) and either all the resource has been allocated or there would be no utility
increase from further resource allocation (Equation (5.24)).

Applying the KKT conditions directly yields the optimality conditions;
however, it must be assumed that the utility and resource functions are concave
functions of the control parameters. Introducing a change of variable demonstrates
that the utility and resource functions do not need to be concave functions of the
control parameters, as long as a subset can be found that is concave in resource
utility space.

5.2.3 Quality of service algorithms
If the resource, quality and utility functions are closed-form expressions, then the
KKT conditions can be solved analytically. However, it is often the case that these
models do not have a closed-form, and instead require numerical evaluation. In the
previous subsection, it was assumed that the resource, quality and utility functions
are defined on a continuous space. However, the control parameters may in fact be
discrete, or it may be desirable to discretize the control parameters due to the need
to perform the numerical evaluations. Figure 5.6 illustrates a quality function
(Figure 5.6(a)) as well as a discretized resource utility space (Figure 5.6(b)) gen-
erated from discretized control parameters. It can be seen that even though
the quality function is a non-convex function of the control parameters, a concave
majorant can still be generated in resource utility space. However, as the concave
majorant does not cover the complete Pareto front, a suboptimal solution could
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be found. Careful design of the performance model and adequate sampling of
the discrete control parameters can ensure that the deviation from the optimal is
small.

Once control parameters are selected by the resource management algorithm,
these selected control parameters are used to schedule radar dwells for each task.
Therefore, it is assumed that a scheduler at the measurement level below has access
to the control parameters at every resource management frame. Schedulers are
discussed in detail in Volume 1, Chapter 3. The scheduler may not be able to
perfectly resolve radar dwell conflicts and therefore the actual behaviour may
deviate from the desired control parameters. However, as the quality of service
management ensures that the resource allocated is matched to the resource avail-
able, the scheduler is never overloaded and therefore the deviation should be small.
It is also assumed that the mission level above provides the utility function and
importance weighting for each task, with respect to the current mission.

This section describes two algorithms for solving the resource management
problem: the quality of service resource allocation method (Q-RAM) and the
continuous double auction parameter selection (CDAPS) algorithm.

5.2.3.1 Quality of service resource allocation method Q-RAM
Q-RAM is a numerical method for satisfying the KKT conditions for discrete
parameter selections. The algorithm starts with no resource allocated to any task,
and then allocates resource increments to tasks in order of the highest marginal
utility. Consequently, when the resource runs out, the marginal utilities will be as
close to equal as possible, thus satisfying the KKT conditions.

Q-RAM [17] generates a solution through the following steps:

1. Evaluate the resource and utility values for all possible control parameter
selections for all tasks.
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Figure 5.6 Example of discrete control parameter selections in resource utility
space for a non-convex utility function on the control parameters.
Grey markers indicate the control parameters that lie on the concave
majorant. (a) Non-convex quality function, (b) discretized resource-
utility space
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2. Apply a convex hull operation [18] to extract the parameter selections that lie
on the concave majorant [19] for each task.

3. Calculate the marginal utility between the parameter selections on the concave
majorant for each task. The marginal utility is the difference in utility over the
difference in resource.

4. Order parameter selections on the concave majorants for all tasks in a single
list with descending order with respect to marginal utility.

5. Iteratively allocate resource to the parameter selection with the highest mar-
ginal utility until no resource remains.

6. Resource allocation frame is complete.

The algorithm achieves a near-optimal solution, as the optimal parameter selections
may not lie on the concave majorant as identified by the suboptimal stopping condi-
tions in [20]. Such a suboptimal stopping condition can be recognized in the example
presented in Figure 5.6(b). If the optimal parameter selection for the task lies on the
Pareto frontier in the resource ranges between 0 and 0.2 or 0.8 and 1.0, then it will not
be on the concave majorant and hence a suboptimal solution will result. However,
large deviations from the optimum can be avoided when a reasonable number of
control parameters are used and the performance model is known to be concave in
resource utility space.

The original algorithm proposed Graham’s scan as the convex hull extraction
procedure, which requires all parameter selections to be evaluated. However,
assuming monotonic resource and utility functions in the parameter dimensions,
then traversal methods can be applied [21,22] which do not require all parameter
selections to be evaluated. This can greatly reduce the number of parameter
selections that are evaluated, which is especially valuable if the performance model
has non-trivial computational complexity.

5.2.3.2 Continuous double auction parameter selection
The CDAPS algorithm [23–25] is an alternative algorithm for solving the
constrained optimization problem in (5.13). CDAPS utilizes a continuous double
auction (CDA) mechanism [26] which settles on a market equilibrium that satisfies
the KKT conditions.

In the CDAPS algorithm, each radar task is represented by a task agent, who
competes with other task agents for the finite radar resource. The competition is
facilitated through a CDA market. Consequently, each agent can hold an amount of
resource rk at any time which may be used for its task and the total resource held by
all agents may not exceed the resource available. Each agent announces offers to
trade comprising of bids to buy more resource or asks to sell resource. Bids are then
matched to asks such that the resource trade results in a net increase in utility.

Each agent calculates its bids and asks based on the utility and resource eva-
luation of control parameters adjacent to the currently active control parameter. As
illustrated in Figure 5.7, the announced bid price pk

b for agent Tk is the possible
increase in utility over the increase in resource:

pk
b ¼ Dub

Drb
(5.26)
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and the announced ask price pk
a is the possible decrease in utility over the decrease

in resource:

pk
a ¼ Dua

Dra
(5.27)

As each trade results in a utility increase, the market settles on an equilibrium that
maximizes utility. As shown in [16], this equilibrium satisfies the KKT conditions.

The key benefit of CDAPS in comparison to Q-RAM is that the solution from
the previous time step can be adapted to the current time step, without a complete
recomputation of the resource allocation. Consequently, the number of parameter
selections that are evaluated per second is significantly reduced [16]. This is useful
when the performance model used to calculate the resource, quality and utility has a
non-trivial computational cost.

5.2.4 Performance models
Quality of service management relies on performance models that relate the control
parameters to the quality that can be achieved. A performance model can be a
forwards model, which calculates the quality a task can achieve given a set of
control parameters. Alternatively, a model can be a backwards model, which cal-
culates the control parameters that are required to achieve a specified quality.
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Figure 5.7 Bid and ask evaluation process in continuous double auction
parameter selection algorithm. � 2015 IEEE. Reprinted, with
permission, from [16]
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Forwards models are generally easier to define and consequently the problem for-
mulation and algorithms in the previous subsections assumed forwards models.
However, using a backwards model can result in a simpler implementation, as it is
not necessary to search over a large number of control parameters for
suitable quality values. Practically, a high fidelity model may be used as a basis for
curve fitting or a look-up table in order to reduce online computation.

A forwards model predictively evaluates the expected resource (Equation
(5.12)) and quality (Equation (5.11)) for a candidate parameter selection, over a
future time horizon but based on the current state of the task. A performance model
for active tracking was given in an application of Q-RAM to radar tracking [21].
This subsection describes alternative performance models that can be used for the
search and tracking functions.

5.2.4.1 Active tracking performance models
Active tracking is the process of maintaining tracks on targets using measurements
from a series of dwells which are dedicated to each target. Control parameters for
waveform and revisit interval selection must be performed such that the quality
requirement of the tracking task is met. In addition, the selection of control para-
meters must consider the beam positioning loss that results from the mismatch
between the target’s true and estimated position. This beam positioning loss
increases as the track estimation error increases and therefore limits the revisit time
between track updates.

Van Keuk and Blackman model
Van Keuk and Blackman [27] describe models that can be used for active tracking.
The Van Keuk and Blackman strategy is described in detail in Volume 1, Chap-
ter 3. In the model, the task control parameters are the track revisit interval and the
received signal-to-noise ratio (SNR), which implies the coherent dwell length. The
quality of the task is the track sharpness, which is the track angular estimation error
in units of the radar 3 dB beamwidth. Van Keuk and Blackman give a backwards
model that enables the track revisit interval tr control parameter to be selected:

tr ¼ 0:4
rts

ffiffiffiffi

Q
p

S

� �0:4
u2:4

v

1 þ 1=2ð Þu2
v

� � (5.28)

where s is the measurement error standard deviation, rt is the target range and Q
and S are the Singer model parameters. uv is the variance reduction ratio, which is
the ratio of the track to measurement angular error [28]. It is also recommended to
select the coherent dwell length to give a received 16–19 dB SNR, based on the
estimated target radar cross-section.

The equations from the Van Keuk and Blackman model can also be used as a
forwards model [16], so that the steady state expected track sharpness can be cal-
culated based on a specified track revisit interval and the coherent dwell length.
However, the Van Keuk and Blackman model is constrained to the use of a Singer
target motion model.
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Posterior Cramér-Rao lower bound
Alternatively, a forwards model for target tracking can be produced by predicting
the posterior Cramér-Rao lower bound (PCRLB) over the future time horizon,
based on the filter predicted covariance at the current time. In this case, the control
parameters can be the revisit interval, dwell time and waveform and the track
quality can be derived from the predicted track, for example the track position error
standard deviation. Such an approach is described in [29] for a radar network;
however, the process is also the same for a single radar.

Predicting the PCRLB involves more computation than the Van Keuk and
Blackman model; however, it is independent of the tracker, and can be used for any
target model, and any task quality that can be derived from the filter predicted error
covariance.

5.2.4.2 Search performance models
A search volume can be served by a number of beam positions as described in
Volume 1, Chapter 3. It is then possible to control the time between revisits as well
as the transmitted waveform and hence dwell time in each beam position. The
tradeoff between the revisit interval and the dwell time is discussed in Volume 1,
Chapter 3. As the objective of search is to detect previous undetected targets,
control parameters should be selected to detect targets as early as possible.
Therefore, a suitable performance criterion is the cumulative detection range.

Cumulative detection range
The cumulative probability of detection is the probability that a target is detected at
least once from a certain number of dwells on a target [30]. The cumulative
detection range is the range at which the cumulative detection probability over
multiple dwells on a target exceeds a specified probability, e.g. 0:9. In order to
calculate the cumulative detection probability or range, the target trajectory and
radar cross-section should be known. As this is not known, an expected or worst
case can be taken, such as assuming an inbound trajectory with radial velocity vr.
An example of the cumulative detection probability over successive dwells is
illustrated in Figure 5.8.

The cumulative probability of detection after n dwells for a target appearing at
range rpu is then:

PCðrtjrpuÞ ¼ 1 �
Y

n

i¼1

1 � PDðrpu � vr � ri � i � DÞ (5.29)

where D is a uniform distributed random variable, between 0 and vr � ri, which is
the distance the target travels between the target’s appearance and the first sched-
uled dwell. PDðtÞ is the probability of detection at range rt.

A simple method to calculate the 90% cumulative detection range from
(5.29) is to successively increase n until the cumulative probability of detection is
greater than 90% and then averaging over the possible arrival time D between the
scans [23].
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Inclusion of pop-up range
Radar search can also be optimized based on known information about the current
operating environment. For example, targets may pop-up at specific ranges instead
of following inbound trajectories from great range. This could be due to for
example targets breaking the horizon, airports, shadowing from terrain or the beam
position intersecting the ground plane for an airborne platform [31].

5.2.5 QoS radar management example
This section presents an example of rule-based management compared with QoS-
based radar management with differing mission requirements.

Simulation description
In the simulated scenario, an airborne radar detects and tracks multiple inbound
targets, as illustrated in Figure 5.9. The platform is equipped with a forward facing
electronically steered phased array antenna that has a maximal field of view of

60� in azimuth and a beam width of 2�. A medium pulse repetition frequency
(MPRF) mode with linear frequency modulated pulses is simulated, with eight
PRFs taken from [32, Sec. 5.3]. A maximum duty factor of 10% is used, which
dictates the uncompressed pulse width for each PRF. The compressed pulse width,
and hence also the pulse compression ratio, is chosen to give a range resolution of
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Figure 5.8 A target appearing at range rpu is regularly covered by dwells, while it
comes nearer to the radar. Each dwell has a certain probability of
detection. The cumulative probability of detection is the probability
that at least one of the dwells detects the target. Because the target can
arrive at any time between two successive dwells, the exact ranges
when the beams are scheduled can vary
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64 m. Tracks are initialized using an alert-confirm process [11, Ch. 14] and an
interacting multiple models tracker is used for target tracking [12].

QoS radar management is applied using the Q-RAM algorithm as described
in Section 5.2.3.1. For this scenario, every beam position in the search lattice
and each track corresponds to a single radar task. The possible control parameters
for each task are evaluated using the performance models described in
Section 5.2.4.2 for each search beam position and Section 5.2.4.1 for each
track. For tracking tasks the quality is taken as the track sharpness [27] and for
search the quality is the 90% cumulative detection range. For both tracking
and search, the utility function is defined linearly between mission specific
worst and best acceptable values. Two mission profiles are defined, one for
engagement with a focus on tracking and the other for surveillance with a focus
on searching. The configurations of these mission profiles are shown in
Tables 5.1 and 5.2.

In the following results, the QoS approach is compared with a rule-based
approach, where the rules dictate the task control parameters that are selected. The
rule-based approach applies adaptive tracking [27,33,34] with a threshold on the
track sharpness of 0.12. It also selects the number of pulses in each MPRF burst to
achieve an expected SNR of 22 dB, based on the estimated RCS of the target. Each
search beam position is revisited as quickly as possible, with a revisit interval time
varying between 3 and 6 s. The number of pulses in each search beam position is
varied to compensate for the loss of effective aperture when scanning off the radar
boresight.
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Results
Figure 5.10(a) plots the track sharpness of the target tracks averaged over 100
Monte Carlo runs. It can be seen that after initializing the tracks at a sharpness of
0:04, Q-RAM with the engagement mission profile improves the track sharpness
whereas Q-RAM with the surveillance mission profile and the rule-based approach
allocate few resources to tracking, which results in a degraded track sharpness.
Consequently, the engagement profile focusses on tracking and achieves the shar-
pest tracks which equates to a low-angular estimation error. The differences in the
track sharpness are also reflected in the average posterior root mean square error
(RMSE), (Figure 5.10(b)) which is the average of the RMSE after each track
update.

The performance of the search function is illustrated by the track completeness
plot in Figure 5.10(c). The track completeness is the fraction of the tracked targets
to the total number of targets in the surveillance region. It can be seen that Q-RAM
with the surveillance profile achieves the greatest track completeness as the search
detects targets and initializes tracks faster. An interesting effect can be seen at the
beginning of the simulation, where the completeness of both Q-RAM configura-
tions is almost equal. This is because at the beginning of the simulation there are
not many detected targets and so Q-RAM with an engagement profile receives most
of its utility due to the search and therefore also focusses on search. It is only later,
when a higher number of targets are initialized, that the search performance is
reduced in favour of the tracking performance.

In Figure 5.10, it can be seen that Q-RAM with a surveillance profile has
similar track sharpness as the rule-based method but achieves a much better track
completeness. This improvement in performance is due to Q-RAM optimizing the
selection of the task control parameters. It can also be seen that the two different
Q-RAM profiles enable the compromise between tracking and search to be managed.
This compromise is based on the quality levels that are required to satisfy the
mission. Although it was not known before the simulation what performance the
rule-based method would achieve, Q-RAM always achieves a performance within
the specified quality limits.

Table 5.1 Q-RAM configuration with a focus on tracking

Profile Weighting Quality Worst Best

Engagement 80% Track sharpness 0.1 0.01
Surveillance 20% Cumulative detection range 40 km 100 km

Table 5.2 Q-RAM configuration with a focus on searching

Weighting Quality Worst Best

Engagement 10% Track sharpness 0.15 0.06
Surveillance 90% Cumulative detection range 40 km 100 km
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5.3 Stochastic control

The previous section described how effective resources management can enable the
cognitive process of attention. This section addresses the cognitive process of
anticipation. Anticipation in cognitive radar can be generated using a partially
observable Markov decision process (POMDP). A POMDP is a framework for
sequential decision making on the selection of actions that trigger stochastic tran-
sitions in a system state that is only partially observable through noisy measure-
ments. In radar applications, the state is the sensed environment and the actions
controlled by the POMDP can be measurement times for radar tasks and the cor-
responding waveforms. As the system state is not fully observable, the controller
constructs a belief state, which is a probability distribution on the state-space. This
belief state can be thought of as a perception of the memory of all previous mea-
surements. Actions, to schedule measurements and waveforms, are taken based on
the belief state, but also based on the expected evolution of the system state over a
time horizon in the future. By taking actions that consider the future system evo-
lution, the radar is able to act with anticipation.
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5.3.1 Partially observable Markov decision process
A POMDP is a sequential decision-making process where actions are sought at
each decision instance, which maximize rewards that are accumulated over a time
horizon in the future. A POMDP consists of the following components:

State Space – The state space X describes the range of possible states of the
system, where a state at time step k is denoted xk . For radar tracking, the
state can be the true positions of the target and the radar platform. For
search, the state can be the location of undetected targets.

Action Space – The action space A describes the range of possible actions that
can be taken, where an action at time step k is denoted ak . The action can be the
scheduling of a measurement at a certain time with a corresponding waveform.

State Transition Probability – The state transition probability function
pðxkþ1jxk ; akÞ gives the probability of transitioning to state xkþ1 from state xk

when taking action ak .
Observation Space – The observation space Z describes the range of possible

measurements that can be observed, where a measurement at time k is
denoted zk .

Observation Likelihood Function – The observation or measurement like-
lihood function describes the probability pðzk jxkÞ of observing measurement
zk given that the system is in state xk .

Reward Function – The reward function rðxk ; akÞ gives the reward received
when action ak is taken when the system is in state xk . This reward must
reflect the radar’s sensing objective.

Given a reward is received for the pairing of the true system state and an action, the
objective of the POMDP is to maximize the cumulated reward VH starting from the
time step k0 up to the end of the time horizon H:

VH ¼ E
X

k0þH

k¼k0

rðxk ; akÞ
" #

(5.30)

At each decision stage, the controller is required to select an action ak , as the first
step in the action trajectory that maximizes (5.30). The selection of an action at
decision step k is based on the set of actions that have been performed and the
measurements that have been observed prior to time step k, which is denoted as the
data set dk ¼ z0; a0; . . .; zk�1; ak�1; zkf g.

As the true state of the system is unobservable, the controller forms a belief b of
the unobservable system state, which is represented by a probability distribution on
the state space X . The belief state bk is conditioned on the prior data:

bk ¼ pðxk jdkÞ (5.31)

The optimal policy function is then sought, which maps the belief on the system
state that the controller currently holds, into the best action to take:

p� : bk 7!A (5.32)
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A POMDP is illustrated in Figure 5.11. As shown in the figure, the true state of the
system is only partially observable through noisy observations/measurements.
Consequently, the controller maintains a belief state b which is used to select the
action a which maximizes the expected reward over multiple future decision stages
up to the specified time horizon H .

In order to make decisions about the best action to perform, it is necessary to
evaluate the expected value of a belief state, which is based on the expected reward
of possible future system states. As the controller has an uncertain belief on the true
system state, let Rðbk ; akÞ be the expected reward with respect to belief-state bk .
Then, the expected value of belief bt is as follows:

VHðbtÞ ¼ E
X

tþH

k¼t

Rðbk ; akÞjbt

" #

(5.33)

The optimal value V �
HðbtÞ of a belief state bt is the expected value when the actions

ak are selected due to the optimal policy p�, i.e. in a way that maximized
above expectation. Using Bellman’s equation, V �

HðbtÞ can be decomposed into
the expected reward Rðbt; aÞ of taking action a from belief state bt and the optimal
value of the subsequent belief state btþ1 that would be reached after the action:

V �
HðbtÞ ¼ max

a
Rðbt; aÞ þ E V �

H�1ðbtþ1Þjbt; a
	 
� �

(5.34)

Based on this, the optimal policy can be defined as the selection of the action that
maximizes the value of being in the belief state bt:

p�ðbtÞ ¼ arg max
a

Rðbt; aÞ þ E V �
H�1ðbtþ1Þjbt; a

	 
� �

(5.35)
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Figure 5.11 Illustration of a partially observable Markov decision process.
A system state x, which is partially observed through noisy
measurements z, is controlled by actions a that trigger Markovian
transitions. Rewards are accumulated over the decision stages
depending on the system state and the action taken. � 2015 IEEE.
Reprinted, with permission, from [35]
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Within this equation, the commonly termed Q-value can be defined as follows:

QHðbt; aÞ ¼ Rðbt; aÞ þ E V �
H�1ðbtþ1Þjbt; a

	 


(5.36)

Using the definition of the Q-value, the optimal policy from (5.35) can then be
rewritten as finding the action that maximizes the Q-value:

p�
t ðbtÞ ¼ arg max

a
QHðbt; aÞ (5.37)

To find the optimal action to take at time step t, it is necessary to evaluate the
Q-value for all possible candidate actions. The Q-value is comprised of two terms,
the instantaneous reward and the possible future reward. Unfortunately, this
Q-value is almost impossible to calculate exactly, which necessitates the use of
approximate methods.

POMDP cognitive processes
The POMDP formulation incorporates the following cognitive processes:

Memory and Perception – The concept of memory and perception is central
to the POMDP, as the belief state bk represents the interpretation of the
partially observable system state. This perception is clearly based on
memory, as bk is conditioned on the entire action-measurement history
dk ¼ z0; a0; . . .; zk�1; ak�1; zkf g.

Decision Making – Decision making to select actions is the core task of a
POMDP. The best action is sought based on the memory of previous actions
and measurements, and the perception of the partially observable system state.

Anticipation – By evaluating the expected rewards over a future time horizon,
a POMDP selects actions based on how the system state is anticipated to
evolve in the future.
The following two cases demonstrate the differentiation between adaptation

and anticipation:
● Case 1 – Time horizon H ¼ 1: (5.30) simplifies to the reward rðxk ; akÞ and

therefore the optimal action is based only on the belief bk of the system
state at the current time k. Action selection based only on the current
belief state can be thought of as adaptive.

● Case 2 – Time horizon H � 1: (5.30) is comprised of a trajectory of future
actions and states; therefore, the POMDP reasons about the rewards it
anticipates to receive in the future. This anticipation of future rewards can
be considered a cognitive process.

The effect of the time horizon in a POMDP is widely discussed in the sensor
management literature as myopic (considering only the present) or non-myopic
(considering also the future) management.

5.3.2 Approximate solutions
Unfortunately, an optimal solution to a POMDP is intractable for all problems
except those involving a small number of finite system states [36]. Therefore, a lot
of research has been dedicated to generating approximate solutions to POMDPs.
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5.3.2.1 Algorithm types
Solution methods for POMDPs can be separated into offline and online algorithms.
Offline algorithms precompute policies for possible belief states before deploy-
ment, whereas online algorithms compute policies online based on the current
belief of the system state.

Offline algorithms
An offline algorithm precomputes policies before deployment. Therefore, an action
is specified for each belief state that could be encountered. These algorithms rely on
the fact that the optimal value function over the belief state is piecewise linear con-
vex [37], and therefore representable with a finite set of vectors, so called a-vectors.

An important breakthrough for offline algorithms came with the introduction
of point-based-value iteration [38]. These algorithms exploit the fact that only a
small set of a-vectors is needed to compute a sufficiently good approximation of
the optimal value function. Therefore, a small subset of belief points is selected and
value iteration is performed over these points. A survey of point-based POMDP
solvers can be found in [39].

Most of the existing research in offline algorithms is based on discrete systems.
As radar systems observe a continuous state space from continuous measurements,
these methods require an additional discretization step. Existing algorithms for
continuous states and measurements [40–43] are computationally intensive and
currently do not scale well for sensor management problems.

Online algorithms
In contrast to offline algorithms, online algorithms compute policies during deploy-
ment. Consequently, it is only necessary to explore belief states that are reachable
from the current system belief state. The belief states which follow the current belief
state build a tree, where the nodes of the tree are the possible future beliefs, connected
by the possible observations and actions. This tree of possible future beliefs is illu-
strated in Figure 5.12. Online algorithms search this tree to effectively approximate
the Q-value in (5.36).

If the measurements were discrete and finite, the tree could theoretically be
exhaustively searched. However for radar, like in most sensor management
applications, measurements are considered as continuous and therefore an
exhaustive search is impossible. Instead, measurements can be stochastically
sampled, deterministically sampled or only the most likely measurement can be
considered. Regardless, the tree is typically too big to allow a complete search
and therefore an approximation is required. Frequently used approximations are
as follows:

Pruning: If it is possible to compute upper and lower bounds for the future
reward of a belief state, several branches of the belief tree can be completely
ignored, if they cannot contain the optimal future decisions.

Rollout: The rollout method [44] assumes that the controller behaves in the
future according to a so-called base policy, which is a heuristic policy for
generating an action from a belief state. Therefore, not every future action
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has to be evaluated, but instead only those actions that are generated from
the base policy. The rollout method is described in detail in Section 5.3.2.2.

Noise Reduction: There are two potentially noisy components in the POMDP:
The state transition and the measurement of the state. An often used
assumption is that the target transition deterministically, i.e. there is no noise
in the state transition. The measurement can be similarly approximated by a
single, nominal measurement [45]. An alternative is to select a specific set of
measurements that optimally approximate the measurement probability [46].

Model Simplification: While the description of the original problem might
require a complex model, the optimization can be done on a simplification
of the model. For example, a particle filter might be too computationally
intensive for repeated evaluation, while using a Kalman filter as approx-
imation might give sufficiently good approximation. Similarly, if the reward
is the error of the estimate, this could be replaced by the Fisher Information.
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Figure 5.12 The possible future belief states of the system form a tree. The future
beliefs are influenced by the actions of the system and the
measurements. The diagram also shows two executions of a rollout
policy, which evaluate the action a1. Although both executions follow
the same base policy, they explore different sections of the belief
space, as the different measurements are sampled during the rollout
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Numerical Optimization: If the action space is continuous and the remaining
parts of the model are sufficiently well-behaved, often techniques from
numerical optimization (e.g. Gradient Descent) can be used. In this case, the
future actions over the horizon are considered as a multi-dimensional vector
and the vector that maximizes the expected reward (or an approximation) is
sought.

A detailed overview about online POMDP solutions can be found in [47].
Approximate POMDP solutions in sensor management are covered in [48].

5.3.2.2 Policy rollout
According to (5.36), the Q-value consists of two values: The immediate reward and
the expected reward in the future. Rollout replaces the expected future value that
would be achieved if the optimal policy were followed, with the expected value
when a base policy is followed. The base policy is a hand crafted policy which
describes a sensible heuristic to generate actions based on an encountered belief
state. The rollout procedure traverses the belief tree, while selecting the actions
according to the base policy. This process of rollout is motivated by the fact that it
is not necessary to calculate the values of each candidate action exactly, it is just
sufficient to know the relative rankings of the candidate actions, for the best action
to be taken.

Given a base policy

pB : b ! a (5.38)

the Q-value is replaced by:

QpB
H ðbt; aÞ ¼ Rðbt; aÞ þ E VpB

H�1ðbtþ1Þjbt; a
	 


(5.39)

where VpB
H�1ðbtþ1Þ is the value of belief btþ1 if the system follows the base policy

pB. As the optimal value V �
H�1ðbtþ1Þ is defined as the value achieved, if the con-

troller follows an optimal policy, VpB
H�1is a lower bound on the optimal value. This

value can be computed for example via Monte Carlo simulation of future belief
states.

Figure 5.12 shows the realization of two rollouts for evaluation of the action a1,
with the same base policy. Computation can be reduced by simplifying the rollout
step, for example, by using the expected measurement instead of multiple Monte
Carlo runs with sampled measurements. In this case, care must be taken that the
simplified rollout still accurately reflects the trade-offs between the different actions.

Parallel rollout
A direct extension to the rollout algorithm, is parallel rollout, which considers
multiple base policies [49]. It is based on the fact that VpB

H�1ðbtþ1Þ is a lower bound
to the optimal value. Therefore, given a set of base policies P, the value:

VP
H�1 ¼ max

p2P
E Vp

H�1ðbtþ1Þjbt; a
	 


(5.40)

is a tighter bound on the optimal value than the simple rollout.
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5.3.3 Anticipative target tracking
POMDPs have been applied in sensor management for active sensing [50–54].
These techniques are applicable for active sensing in general and not just for
radar applications, however, a radar model is frequently adopted. A Markov
decision-process (MDP) approach has been applied to radar problems by Wintenby
[55,56], whereby the partial observability is modelled by a number of discrete
states in an MDP. POMDP approaches have also been applied for alternative sensor
management problems, such as path planning for a unmanned aerial vehicle with a
radar [50,57,58] and waveform scheduling [59–61].

In this section, an example of stochastic control applied to a target tracking
problem is described [35]. The objective is for the controller to select the time
interval between radar measurements for a target track, such that a desired esti-
mation error is achieved and track loss is prevented with the minimum resource
usage. An electronically steered array antenna is assumed, such that measurements
are made by steering the beam to the estimated target position. As a scenario may
dictate that measurements provide different amounts of information, the anticipated
future development of the situation must be taken into account. This is done with a
rollout-based approach.

5.3.3.1 Scenario description
The scenario consists of an airborne radar platform and a Swerling 1 target with
nearly constant velocity motion at 200 m/s, as illustrated in Figure 5.13. In the
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Figure 5.13 The simulated scenario where the airborne radar platform tracks the
target. The target is non-observable for a period of time. � 2015
IEEE. Reprinted, with permission, from [35]
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scenario, the target is unobservable during a certain period of time. This non-
observability could be due to a number of reasons, such as a blockage to the line
of sight, a jammer or the unavailability of a multifunction radar when a different
non-interruptible function is executed. It is assumed that the borders of the
unobservable region are known.

5.3.3.2 POMDP formulation
The problem can be formalized as a POMDP, based on the definition given in
Section 5.3.1.

System state
The system state is a stacked vector comprised of the target and platform
kinematics x ¼ ðxp; xtÞ 2 X 	 R

12 where xp ¼ ðxp; _x p; yp; _y p; zp; _zpÞT 2 R
6 is the

position and velocity of the platform and xt ¼ ðxt; _xt; yt; _yt; zt; _ztÞT 2 R
6 the

position and velocity of the target and T is the transpose operator.
A belief on the system state is estimated by the controller using a Kalman filter

and Interacting Multiple Model filtering. Consequently, the belief state bk at time k
is represented by a Gaussian bk ¼ Nðxt

k ; x
t
kjk ;PkjkÞ. The posterior filter state esti-

mate is denoted xt
kjk and the covariance matrix Pkjk is the filter calculated MSE in

the estimate:

Pkjk ¼ E xk � xkjk
� �

xk � xkjk
� �T jZk

h i

(5.41)

where Zk is the set of measurements received up to and including time k.
Probabilistic data association is applied to accommodate for the possible lack of
measurements and the presence of false measurements.

Actions
In this example, an action is the selection of the time interval until the next
measurement of the target is performed. The action space is a discrete set of
possible time intervals:

A ¼ a ¼ trjtr 2 0:5 : 0:5 : 5:0½ �f g (5.42)

This action space could be extended to include waveform selection, such as the
number of transmit pulses or the intra-pulse modulation.

State transition probability
During the selected time interval, the target is assumed to follow a linear movement
with Gaussian noise whereas the platform follows a linear deterministic trajectory.
Therefore, the state transition equations are as follows:

xt
k ¼ Fkjk�1ðtrÞxt

k�1 þ wkjk�1ðtrÞ (5.43)

xp
k ¼ Fkjk�1ðtrÞxp

k�1 (5.44)

where Fkjk�1 is the transition matrix, and wkjk�1 is a zero-mean white-noise
Gaussian distributed variable, with covariance matrix Qkjk�1. As the selected
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action determines, the time of the next measurement influences the system
state transition matrix, although the target moves irrespective of the selected
action.

Observations
The radar produces measurements of range r, bearing q and elevation f, corrupted
by Gaussian noise. These are converted into Cartesian coordinates [62] to give the
measurement vector zk ¼ ð~xt;~yt;~ztÞT .

Observation likelihood function
The radar measurements are assumed to be corrupted by Gaussian noise with range,
azimuth and elevation standard deviations of sr, sq and sf, respectively. These
measurement errors are SNR dependent [63, Ch. 8], with a higher SNR leading to a
lower standard deviation. The measurement noise in spherical coordinates is then
converted into Cartesian coordinates to give the measurement noise covariance Rk

[62]. Therefore, the observation function is as follows:

zk ¼ Hkxt
k þ vk (5.45)

where Hk is the observation matrix and vk is a zero-mean white-noise Gaussian
distributed variable with covariance matrix Rk . The conversion from spherical into
Cartesian coordinates is geometry dependent and therefore the Cartesian covar-
iance R is dependent on the system state xk .

The observation likelihood function is then:

pðzk jxkÞ ¼ N ðzk ;Hkxk ;RkðxkÞÞ (5.46)

Reward
In this example, it is desired to minimize the tracking error and track loss while
also minimizing the resource usage. These conflicting objectives require a trade-off
to be found. Consequently, the reward is taken as the tracking utility generated
divided by the resource usage. The utility function captures the tracking
performance and is defined on the predicted covariance when using action tr,
u : Pkþ1jkðtrÞ7!U 2 0; 1½ �:

uðPkþ1jkðtrÞÞ ¼
0:0 if s Pkþ1jkðtrÞ

� � � 1
1:0 if s Pkþ1jkðtrÞ

� � � 0:2
1 � s Pkþ1jkðtrÞ

� �

0:8

� �h

otherwise

8

>

>

<

>

>

:

(5.47)

where h is a sensitivity parameter and sðPkþ1jkðtrÞÞ calculates the track sharpness
as defined in Section 5.2.4.1.

The reward of the belief state bk is then a function of the utility and the resource:

Rðbk ; akÞ ¼
uðPkþ1jkÞ � tr

rl
(5.48)
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where rl is the resource loading, which is the fraction of radar time used by this task:

rl ¼ tc

tr
(5.49)

with measurement duration tc, which is assumed constant for all actions.

5.3.3.3 Rollout
To solve the POMDP, the method of policy rollout is applied, as described in Sec-
tion 5.3.2.2. The base policy used in this work is to use the same revisit interval as the
candidate action for a 5 s period in the future, and then to use a 2 s revisit interval for
the rest of the time horizon, which extends over a total of 25 s. The heuristic is
chosen on the intuition that the same revisit interval is necessary for a short duration
before converging to a regular revisit interval. An example of a rollout execution can
be seen in Figure 5.14 for a 0.5 s revisit interval candidate action.

During rollout, expected measurements are generated based on the hypothesis of
the system state generated in the rollout branch, and the state dependent measurement
covariance described in Section 5.3.3.2. The SNR for the expected measurement is
scaled by a beam positioning loss factor that is a function of the track sharpness
[11,27]. This accounts for the inability to correctly direct the radar beam at the target
when the track uncertainty is large. The reduced SNR is used to calculate the prob-
ability of detection, which is incorporated into the Kalman filter update [64].

5.3.3.4 Simulated results
In the following results, the POMDP with policy rollout described in the previous
section is compared against standard adaptive tracking [11,27,34], where the track
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Figure 5.14 Example of a single rollout branch, which represents a hypothesis on
the future system evolution. The candidate action is a revisit interval
of 0.5 s, which is applied for 5 s before adopting 2 s for the remainder
of the time horizon. During the occlusion no measurements are
assumed. �2015 IEEE. Reprinted, with permission, from [35]
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sharpness parameter is set at 0:2. The sensitivity parameter in (5.47) is taken
as h ¼ 4.

Figure 5.15 plots the number of measurements per second that are executed by
adaptive tracking and the POMDP for a 2 km occlusion. It can be seen that both
methods use a high number of measurements at the start of the simulation to
initialize the track. It can also be seen that the POMDP anticipates the occlusion by
scheduling an increased number of measurements just before the target enters the
occluded region. Consequently, the POMDP is able to maintain the tracks during
the occlusion and continue tracking once the target is again observable. In contrast,
adaptive tracking does not anticipate the occlusion and therefore tracks are lost
during the occlusion, which must then undergo a resource expensive track re-
acquisition when the target is again observable.

The track sharpness for adaptive tracking and the POMDP method are shown
in Figure 5.16. As the POMDP method anticipates the occlusion, it sharpens the
track before it enters the unobservable region. In contrast, adaptive tracking does
not anticipate the occlusion, leading to a much larger track sharpness during the
occlusion. The larger track sharpness for adaptive tracking results in track drops
and subsequent resource expensive track reacquisitions.

In Figure 5.17, the probability of a track loss is shown, evaluated over 100
Monte Carlo runs. It can be seen that the probability of a track loss is significantly
reduced by the rollout-based method, because it anticipates the occlusion and
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Figure 5.15 Number of measurements per second for the POMDP with policy
rollout in comparison to adaptive tracking over 100 Monte Carlo
runs. The POMDP anticipates the occluded region which leads to a
spike in the number of measurements before the occlusion. The
adaptive tracking method loses tracks during the occlusion leading
to track initializations when the target is again visible. �2015 IEEE.
Reprinted, with permission, from [35]
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therefore schedules a number of additional measurements shortly before the target
is occluded.

5.4 Summary

A cognitive radar acquires and exploits knowledge and understanding of its
environment to enhance data processing and radar management. This can be seen
as transitioning cognitive capabilities from the human operator into automated
processes in a radar system. In this chapter, it was shown how the cognitive process
of attention can be manifested by effective resources management, whereby a
quality of service-based task management layer connects radar control parameters
to mission objectives. In a simulation example, it was shown that rule-based
methods result in a task quality that varies unpredictably depending on the
environment and scenario, whereas effective radar resource management controls
the task qualities such that mission requirements are satisfied. This chapter also
described how the cognitive process of anticipation can be generated using non-
myopic stochastic control, allowing the radar system to act with a consideration of
how the radar system, scenario and environment will evolve in the future. In an
anticipative target tracking control example, it was shown how a parallel rollout
approximation to a POMDP can significantly reduce track loss by anticipating an
imminent occlusion.

Abbreviations

CDA continuous double auction

CDAPS continuous double auction parameter selection

IMM interacting multiple models

JDL joint directors of laboratories

KKT Karush–Kuhn–Tucker

MDP Markov decision process

MPRF medium pulse repetition frequency

PCRLB posterior Cramér-Rao lower bound

POMDP partially observable Markov decision process

PRF pulse repetition frequency

QoS quality of service

Q-RAM quality of service resource allocation method

RCS radar cross section

RMSE root mean square error

RRM radar resource management

SNR signal-to-noise ratio

STAP apace time adaptive processing
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Chapter 6

Clutter diversity

Hugh Griffiths1 and Riccardo Palamà1

Abstract

Measurements of the properties of bistatic radar clutter have shown that amplitude
statistics of bistatic clutter depend on the bistatic geometry, such that the distribu-
tion of the bistatic clutter may be shorter-tailed (less ‘spiky’) than the equivalent
monostatic clutter. At the same time, the bistatic signature of targets may be sig-
nificantly different from their monostatic signatures. Clutter Diversity may be
defined as: ‘understanding and quantifying these effects, and finding out how best
to exploit them’, and offers a new degree of freedom in the design of radar systems.
This chapter reviews the properties of clutter and of targets as a function of bistatic
geometry, and explores the effects of detection performance.

6.1 Introduction

Multistatic radar systems offer multiple degrees of freedom that can be exploited in
order to improve the radar performance in detecting, classifying and tracking tar-
gets, as well as in reconstructing the image of a radar scene. The multiple receiver–
transmitter pairs yield the capability of either selecting a subset of the best
channels or combining all of them. In general, the increasing complexity of radar
scenes has led to an increasing need for adaptive and cognitive radar systems, with
the capability of reacting to dynamic scenarios. On the other hand, measuring
performance – required during the design and acceptance testing stages – for more
and more advanced complex radar systems is a challenge, as the results are highly
scenario dependent. In order to ensure effective operation of radars and optimize
performance, practical measurements should be supported by computer modelling
and simulation, thus target and clutter models should be studied and continuously
trained, under a wide variety of environmental conditions [1].

Chapter 12 of Volume 1 on bistatic clutter has shown that the properties of
clutter in a bistatic/multistatic radar depend on the bistatic geometry, and that some
geometries are more favourable than others in terms of target-detection performance.

1University College London, UK



The differences between monostatic and bistatic clutter were evaluated in terms of
the mean clutter reflectivity and clutter statistics [2–4]. A definition of Clutter
Diversity is therefore: ‘understanding and quantifying these effects, and finding out
how best to exploit them’. This should take account not only the geometry-dependent
properties of the clutter but also those of the targets.

In order to take advantage of a system with multiple transmitters and multiple
receivers, there is the need to understand how clutter and target signatures vary:
understanding these effects is critical to being able to exploit their diversity and to
make the system robust against a dynamically varying radar scene.

Clutter from land, sea and other sources has been studied since the earliest
days of radar, as clutter can heavily impact the performance of a radar system
due to its high clutter signal level (in particular for land clutter) and non-stationarity
(in particular for sea clutter). Essential parameters that have been used to char-
acterize the clutter are mean radar cross section (RCS) per unit area, amplitude
statistics, Doppler spectrum and temporal and spatial correlation. Sea clutter is
probably the most difficult type of clutter to cope with, due to the fact that, in
maritime environments, a radar target may have small RCS and slow speed, com-
pletely embedding its return within the clutter region. Bistatic clutter is even more
variable than monostatic clutter, as more parameters and degrees of freedom are
involved. Recent work has shown that bistatic clutter distribution is, for some
geometries, shorter tailed than monostatic clutter, which may improve the radar
performance in regulating false alarm. In Figure 6.1, the probability density
function in the upper diagram has a longer tail than the lower one, resulting in two
different values of the detection threshold, VT, to set in order to achieve a fixed
probability of false alarm (PFA). In general, the longer the tail of a distribution, the
higher the detection threshold, thus the target signal should have a higher power to
achieve detection at a satisfactory probability of detection PD – achievable through
shorter range and/or higher target RCS.

Shifting our attention to radar targets, the total RCS of an object results from
the electromagnetic backscattering from the multiple scatterers located on the
object. Key factors to quantify the contribution of each scatterer to the global RCS
are its shape, its dimension relative to the wavelength and its orientation relative to
the radar geometry. In the case of bistatic and multistatic radars, the target RCS is
heavily influenced by the radar geometry, i.e. by the aspect angles of the target with
respect to the transmitter and receiver boresights, and by the bistatic angle.

The forward-scatter geometry can be considered as a particular case of bistatic
geometry, where transmitter, receiver and targets lie on the same line. According to
Babinet’s principle [5], the target RCS is determined by its geometrical silhouette
area, which makes forward-scatter radars suitable to detect radar targets with low
monostatic RCS, such as stealth targets.

The remainder of this chapter is organized as follows: Section 6.2 illustrates the
impact of bistatic geometries on target RCS and Doppler signature, by first discussing
the properties of simple objects, then evaluating the diversity in target signatures for
maritime targets and aircraft – with a particular focus on drones – then the final
subsection deals with the forward-scatter region. Section 6.3 addresses the impact of
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clutter diversity on the radar performance in regulating false alarms and correctly
detecting a target, showing results obtained by applying both single-channel- and
multi-channel-detection algorithms on simulated and real data multistatic radar data.
Section 6.4 summarizes the results and points the way forward.

6.2 Diversity in target signatures

6.2.1 Introduction
A general overview of the impact of system geometry on multistatic target scat-
tering is given by the studies on electromagnetic modelling of bistatic scattering
from simple objects, such as the sphere, cylinder and dihedral corner reflector.

The scattering from a spherical object is a function of the ratio of its radius to
the radar wavelength. The net scattered signal results from the vector sum of the
contribution from the front face of the sphere and a creeping wave contribution that
travels around the circumference of the sphere. There are three different regimes of
the sphere scattering, i.e. the Rayleigh region, the resonance region and the optical
region, as shown in Figure 6.2. In particular, in the optical region, where the radius
of the sphere is much larger than the radar wavelength, the sphere RCS is equal to
the silhouette area of the sphere and is independent from the direction of the

p(R)

p(R)
VT

VT

R

R

Figure 6.1 Examples of long-tailed (top) and short-tailed (bottom) probability
density functions, showing the detection threshold VT for the same
probability of false alarm PFA
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incident wave. The spherical symmetry of the sphere, independent of bistatic angle,
makes it a widely used object for polarimetric calibration for multistatic radars [6].

A cylindrical scattering object offers a higher RCS than a sphere of equivalent
diameter and, if rotated, also high cross-polar components. The RCS of a cylinder
is given by s ¼ 2pL2r=l, where L is the height of the object, r is the radius of its
circular section and l is the radar wavelength. However, the accuracy of the predicted
RCS is heavily influenced by the precision of the alignment of the object. Another
object with interesting bistatic scattering properties is the dihedral corner reflector,
which consists of two facets positioned next to the other, with a fixed angle.

A study of the bistatic scattering of simple objects is relevant not only for antenna
calibration purposes but also because the electromagnetic scattering from complex
objects, such as boats, ships and aircraft, is often considered as the superposition of
multiple scatterers, whose properties are equivalent to those of simple objects.

Practical targets will be more complex, consisting of several scattering centres.
The relationship between the monostatic and bistatic RCS of such targets was
considered by Crispin, Goodrich and Siegel in the 1950s [7] and by Kell [8] in the
1960s. The latter attributed the differences between monostatic and bistatic RCS, as
a function of bistatic angle b, to

● Changes in relative phase between the individual scattering centre contributions,
● Changes in radiation from individual scattering centres,
● Changes in existence of centres – appearance of new scattering centres or

disappearance of hose previously present.
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This led to the ‘bistatic equivalence theorem’, which states that the bistatic RCS
of a target is equal to the monostatic RCS measured at the bisector of the bistatic
angle, reduced in frequency by the factor cos b=2ð Þ (Figure 6.3). This will be true as
long as the targets are sufficiently smooth, that there is no shadowing of one part of
the target by another and that the scatterers persist in angle. In practice, these condi-
tions will not strictly be met, especially for complex targets and at large values of b,
so the theorem should be used with caution, but it provides a good rule of thumb.

6.2.2 Multistatic scattering from maritime targets
This subsection addresses the phenomenology of multistatic scattering from
maritime targets, illustrating the results of measurement campaigns realized and
published by a number of different authors. In the open literature, there
are relatively few publications illustrating measurements of the radar scattering
from civilian and – to an even smaller extent – military targets. One of the first
experimental studies comparing the bistatic RCS of maritime targets with
their monostatic RCS, for different values of the bistatic angle (X-band) is the
work published by Ewell and Zehner [8]. The measurements were realized on
four different ship targets (called Kansas, Hellenic Challenger, Philippean Rizal
and Delaware Sun) using an X-band radar system near grazing incidence,
at horizontal and vertical polarization. The monostatic–bistatic baseline was
1.9 nautical miles (i.e. approximately 3.5 km) and the bistatic angle, b, was varied
between 0.7 and 54 deg. In [8], the results are shown (as in Figure 6.4) as plots
of the ratio of the bistatic to monostatic RCS as a function of the bistatic
angle, whose exact values are also reported within a table. In most of the analysed
cases, bistatic RCS values are smaller than monostatic RCS ones, and the
difference increases with increasing bistatic angle. The only exception of this trend
is the RCS values of the Kansas (VV data) at bistatic angles lower than 10 deg, for
which the bistatic RCS is slightly greater than the monostatic one, with a maximum
difference of 3.2 dB. The values of the Hellenic Challenger RCS (HH data) were
measured for bistatic angles included between 10 and 25 deg, showing a monostatic
RCS higher than the bistatic one with a 3–5-dB difference. In the case of the
Philippean Rizal (HH data), the minimum value of the bistatic-to-monostatic RCS
ratio is about �8 dB, for a bistatic angle of 23 deg, whereas the maximum values is
about �4 dB, for b¼ 7.4 deg. The values of the Delaware Sun RCS (VV data)
reveal the highest difference between monostatic and bistatic data, with a

Transmitter Receiver

ß/2 ß/2

Figure 6.3 The bistatic equivalence theorem [7]
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maximum and minimum differences equal to about �7 dB (b¼ 7.4 deg) and
�14 dB (b¼ 7.4 deg), respectively.

This RCS pattern, where maxima are located in the monostatic and quasi-
monostatic regions, is due to the superstructure of the ships, containing dihedral
and trihedral-type features. These give strong monostatic scattering, but weaker
scattering as b increases.

In addition to the simple RCS analysis, further information about the target
scattering is given by its micro-Doppler signature, which is due to the sea motion
and the target wakes. The general expression for the bistatic Doppler frequency fD
is given by

fD ¼ 2v

l
cos d cos

b
2

� �

(6.1)

where l is the radar wavelength, v is the target speed, d is the direction of the target
velocity relative to the bistatic bisector and b is the bistatic angle. However, the
target velocity is not time-invariant but shows fluctuations depending on the target
micro-motions, due to the pitch and roll of a maritime target, which are even more
accentuated in the case of small boats. These micro-motions generate time-varying
Doppler fluctuations, which are usually referred to as the micro-Doppler signature
[9]. A useful tool for micro-Doppler analysis is the short-time Fourier transform,
which computes the Fourier transform over consecutive temporal sequences of
data, thus producing a map of the amplitude as a function of both time and Doppler
(i.e. a time-Doppler map). The information contained in such maps can be
exploited for target detection and classification purposes.
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Figure 6.4 A plot of the ratio of the median bistatic RCS to the monostatic RCS as
a function of bistatic angle, b for four small ship targets � 1980 IEEE.
Reprinted with permission from [8]
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A preliminary analysis of the multistatic micro-Doppler signature of a rigid
hull inflatable boat (RHIB) is shown in [10], concerning bistatic and monostatic
data collected by the UCL NetRAD system during a measurement campaign
realized in October 2010 and April 2011 in Simon’s Town, South Africa, both in
low sea state conditions. An example of time-frequency representation of this
kind is shown in Figure 6.5, for the monostatic data collected on 14 October 2010.
It can be noted that the target Doppler has a sinusoidal behaviour as a function of
time, which is due to the circular trajectory of the target. In addition, the effect of
the wakes is noticeable, consisting of target-dependent broadening of the Doppler
spectrum, evident at around 40 and 85 s in Figure 6.5. In many cases, the wake may
actually be the dominant feature of the overall signature. These data sets were
collected at small bistatic angles (around 4 deg), thus minor differences are
noticeable between the bistatic and monostatic data. On the other hand, data sets
collected at larger bistatic angles (about 90 deg) highlight greater deviations
between monostatic and bistatic data.

A further analysis is shown in [11], where the multistatic back scattering
and forward scattering from a RHIB are analysed for different target trajectories.
Data sets were collected during a measurement campaign using the UCL NetRAD
system, in February 2015 at Langstone Harbour, United Kingdom.

Figure 6.6 shows the time-Doppler maps of the signal scattered from a RHIB
for one monostatic (node 3) and two bistatic (nodes 1 and 2) geometries. The
Doppler shift is higher for monostatic data with respect to both the bistatic data.

The duration of the micro-Doppler signature of the boat seems to be longer for
the monostatic data than for the bistatic. In the monostatic data, it is noticeable
from the beginning of the recording to about 19 s, whereas in the bistatic data,
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it appears smoothed between 5 and 18 s, with a peak between 13 and 15 s (this
behaviour is similar for both the bistatic nodes). The shorter visibility time
experienced by the bistatic channels is due to the fact that the target is perfectly
visible at the bistatic nodes only when it is located within the intersection area
between the transmitter and receiver antenna patterns.

The main Doppler is approximately 17.5 Hz for the monostatic data, equiva-
lent to 1.1 m/s target speed along the monostatic line of sight, whereas it fluctuates
around the zero-Doppler in both the bistatic channels.

An experiment with a different target trajectory, i.e. a target moving away from
the monostatic node along its line of sight, showed a target spectrum centred on a
negative Doppler frequency, for all the nodes, with similar values of the visibility time.

6.2.3 Multistatic scattering from aircraft and drones
Diversity in aircraft scattering was considered in [12], studying the behaviour of the
bistatic RCS relative to the monostatic RCS of a large civilian jet aircraft at a
frequency of 250 MHz, as a function of the aspect and bistatic angles. Similarly to
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the case of maritime targets – addressed in the previous subsection – the bistatic
RCS is generally lower than the monostatic, and their difference increases with
increasing bistatic angle – for values between 0 and 60 degrees, with a minimum
around 60 degrees. The maximum bistatic RCS is achieved at an aspect angle of
90 degrees and tends to decrease if the value of the aspect angle gets farther from
the maximum point.

A conventional aircraft will consist of several scatterers, i.e. edges, surface
discontinuities and corners (dihedrals and trihedrals), which usually maximize the
back scattering along the monostatic line of sight. In recent decades, stealth
techniques have been developed in order to reduce the target signature and hence
its detection range. Possible stealth techniques consist of covering the target surface
in radio-absorbing material, using RF-transparent composite material, reducing the
presence of the aforementioned scatterers and shaping the target to reflect radiation
in directions other than the monostatic. As a consequence, the behaviour of the
bistatic –to– monostatic RCS ratio of stealthy targets is – in many cases – opposite
to that of conventional targets, showing a bistatic RCS higher than the monostatic,
with increasing bistatic angle. Hence, bistatic radars are often considered a suc-
cessful countermeasure to stealth targets, together with forward-scatter radars that
are the subject of the next subsection.

In addition to conventional aircraft, growing interest has been shown by the
radar community towards drones and micro-drones, whose extremely low RCS
makes them difficult to detect using traditional radar techniques.

On the other hand, the micro-Doppler signature of drones – in particular those
using rotating blades, such as quadcopters – may provide useful information to
extract through proper signal-processing techniques. The diversity in the micro-
Doppler signatures resulting from the use of multiple transmitters and receivers is
again a further degree of freedom to exploit.

Measurements of the micro-Doppler signatures of a drone – with and without a
payload – were realized by using the UCL NetRAD in a multistatic configuration
[13]. Figure 6.7 shows the time-Doppler plots of the signals back scattered by the
drone – with and without payload – for both monostatic and bistatic geometries.
The effect of the rotation of the blades consists of a series of horizontal lines, which
are more straight and associated to higher Doppler frequencies in the case there is a
payload on the drone. This phenomenon is probably due to the higher rotational
velocity needed to sustain the drone with the additional weight due to the payload.
Differences between the monostatic and bistatic micro-Doppler signatures can be
observed on the no-payload data, whereas the monostatic data seem to have a wider
Doppler bandwidth with respect to bistatic.

In [13], target signatures at monostatic and bistatic nodes are used to classify
the different target classes: classification accuracy is shown to increase if multi-
static data are combined together, in comparison with using only monostatic data.

6.2.4 Forward scatter
Forward scatter is often considered as the third bistatic RCS region [14], consisting
of a bistatic configuration with bistatic angle equal or close to 180 degrees. The
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enhancement in RCS can be understood by making reference to Babinet’s principle
from physical optics [5]. Suppose that an infinite screen is placed between the
transmitter and receiver, so that the signal received is zero. Now suppose that a
target-shaped hole is cut in the screen, between the transmitter and receiver.
Babinet’s principle states that the signal that would be diffracted through the target-
shaped hole must be equal and opposite to the signal diffracted around the target,
since the two contributions must add to zero (Figure 6.8).

Calculation of the signal diffracted through an aperture of a given size and
shape is a standard problem in electromagnetics, and for simple shapes the results
are well known. For example, for a rectangular aperture of sides a and b, the pattern
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in each plane has a sinc shape with main lobes whose angular widths are l=a and
l=b, and the peak scattered signal corresponds to a forward-scatter RCS of

sFS ¼ 4pA2

l2 (6.2)

where A is the area of the aperture (A ¼ ab in the case of a rectangular aperture).
Figure 6.9 shows the predicted forward-scatter RCS of an idealized aircraft

whose silhouette area and linear dimension (height or width) are 10 m2 and 10 m,
respectively. It can be noted that, by increasing frequency, the angular width of
the forward-scatter radiation pattern – qB – decreases and the object RCS increases.
A trade-off between the minimum target RCS and the maximum forward-scatter
width should be achieved, as decreasing the parameter qB will require more
directive receive antennas and precise alignment of the target along the baseline.
Therefore, a common choice consists of using low frequencies for forward-scatter
operation. On the other hand, a target that lies exactly on the transmitter–receiver
baseline will give no range information and no Doppler information, and even for a
target slightly off-baseline, the range and Doppler resolution will be poor. Hence,
whilst a forward-scatter radar will be good for target detection, location and
tracking will be more difficult.

In [15], the authors address the modelling of the forward-scatter Doppler phase
signature with a particular focus on configurations where the target crosses the
baseline, i.e. for pure forward scatter. It should be noted that for forward-scatter
geometries, the trajectory of a maritime target is assumed as uniform and linear, as
the visibility time is of the order of seconds. The maximum of the forward-scatter
signal is achieved when the target is exactly on the baseline, giving a p=2 phase
deviation with respect to the direct path signal. In general, the Doppler frequency of
forward-scatter signals is of the order of few Hz at most.

Measurements of the forward-scatter signature of a RHIB were realized
simultaneously with the multistatic ones described in the previous subsection, by
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Figure 6.9 Forward-scatter RCS sFS and angular width of scatter qB for an
idealized small aircraft target with A ¼ 10 m2 and d ¼ 10 m
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using two carrier frequencies, at 7.5 and 24 GHz. Figure 6.10 shows the behaviours
of the signal amplitude and of the Doppler frequency as a function of time, for both
the frequency channels, in the case that the target is crossing the baseline at its
midpoint. It could be noted that different Doppler chirp rates are associated to
the two frequency channels, as well as different visibility times that depend on
the transmitter and receiver antenna beamwidths, as well as the forward-scatter
beamwidth of the object (in turn influenced by the carrier frequency). The measured
visibility time is approximately 30 and 10 s for the 7.5 and 24 GHz channels,
respectively. As previously mentioned, higher frequencies imply smaller forward-
scatter beamwidths, which reduces the visibility time of a target crossing the baseline.

6.2.5 Summary
For many types of conventional targets (such as boats, ships and aircraft), the bistatic
RCS is smaller than the monostatic. But for stealthy targets, and particularly in for-
ward scatter, the bistatic RCS may be substantially greater than monostatic. On the
other hand, forward-scatter radars work if the target of interest lies on the baseline
and low carrier frequencies are preferred in order to increase the visibility time. In
addition, the impact of clutter on forward-scatter radar performance should still be
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studied, as it is likely to be a critical limitation for this technology. This is due the
very large dimension of one clutter cell area in forward-scatter geometry, with one of
the dimensions approximately equal to the baseline.

Micro-Doppler signature analysis can also benefit from the spatial diversity
introduced by multistatic systems, which result in improved classification performance
of radar targets with relevant micro-Doppler signatures. This has been demonstrated
also in the case that targets are drones with rotating blades, carrying a payload.

6.3 Radar target detection

This section addresses the impact of clutter diversity on the performance of a radar
system in detecting a target, based on the signals received by the nodes of a bistatic
or multistatic radar. As illustrated in chapter 12 of Volume 1, the statistical and
spectral properties of clutter depend on the system geometry, thus a crucial feature of
multistatic systems consists of either choosing the best transmitter–receiver pair
or combining all of them, in order to maximize the detection performance.

6.3.1 Introduction
A preliminary analysis of the impact of clutter diversity on detection performance is
addressed by authors in [3], evaluating the difference in detection performance
between the monostatic and bistatic nodes. The probability of false alarm (PFA) was
computed by integrating the values of the empirical probability density function of the
clutter samples, pc xð Þ, as a function of a detection threshold VT, i.e. PFA ¼ Ð1

VT
pc xð Þdx,

then the value of VT was set in order to achieve a PFA of 10�4. The signal associated to a
point target was injected to compute the probability of detection (PD), in order to
evaluate the behaviour of PD as a function of the signal-to-clutter ratio (SCR).
Denoted as pCþT xð Þ, the probability density function of the clutter-plus-target sam-
ples, the PD values, were computed as PD ¼ Ð1

VT
pCþT xð Þdx. The clutter data were

collected by the monostatic and bistatic nodes of the NetRAD system in conditions
of both low and high sea state. Results associated with low sea state and vertically
polarized antennas show that, in order to achieve a PD of 0.8, the bistatic SCR is
15 dB, whereas the monostatic SCR is 17 dB. Hence, the SCR gain is 2 dB, whereas,
accounting for the lower clutter power associated with the bistatic channel, the gain
in the required target RCS is approximately 12 dB. In the case of cross-polarized
data, the SCR gain of the bistatic channel with respect to the monostatic is
approximately 3 dB, whereas in the horizontally polarized data, the gain is 5 dB.

A different trend is revealed by the results obtained from high sea state data –
shown in Figure 6.11. In the case of horizontally polarized data, a PD of 0.8 is
achieved for values of the monostatic and bistatic SCR of 17 and 21 dB, respec-
tively, yielding an SCR gain of 4 dB of the monostatic channel over the bistatic
one. Given that the bistatic -to-monostatic clutter power ratio is 4 dB, the two
channels require the same value of the target RCS. In the high sea state data at
vertical polarization, the SCR gain of the bistatic channel over the monostatic one
is approximately 1 dB, confirming the trend noticed by the results obtained on the
horizontally polarized data.
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6.3.2 Multistatic detection algorithms
Radar detection techniques for multistatic radars can be distinguished between
centralized and distributed ones. In a centralized detection scheme, each receiver
node computes a local statistic, then all the local statistics are transmitted to a
central processor, which in turn computes a global statistic [16] to compare with a
threshold. An alternative detection rule is the decentralized one [17], according to
that each node performs a hard decision then transmits the resulting binary symbols
to a central processor, which executes the final decision. A drawback of centralized
detection techniques is that they require wide (ideally infinite) bandwidth of
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Figure 6.11 Preliminary analysis of the probability of detection as a function of
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the communication network link between the system nodes and the fusion centre.
A consequence of a finite communication bandwidth is that the local statistics –
transmitted by each node to the fusion centre – are distorted, thus decreasing the
detection performance. Solutions to the communication bandwidth bottleneck have
been addressed by several works: in [18], the authors derive a distributed detection
rule under capacity constraint, based on the concept of dependent randomization.

One of the first works dealing with the design of centralized detection
for multistatic radar [16] proposes both optimum- and suboptimum-detection
algorithms in the case of white Gaussian noise. In [19], the authors discuss again
optimum and suboptimum multistatic radar detection techniques in the cases where
clutter and jamming are Gaussian and correlated in both time and space. More
recently, the radar community has devoted great interest towards the concept of
multiple-input–multiple-output radars, with co-located or widely separated antennas.
In [20], the authors discuss the impact of target spatial diversity in radars with a
number of different configurations, such as multiple-input–multiple-output (MIMO),
phased-array, multiple-input–single-output (MISO), by deriving an optimal detection
rule under Gaussian disturbance and evaluating its performance. An operational
definition of diversity order (DO) for radar networks is proposed in [21], where the
authors adapt the concept of degrees-of-freedom in a multi-antenna wireless com-
munication systems to multi-antenna radars. The DO has been defined as the slope of
the probability of detection versus SCR curve at PD ¼ 0.5, for a fixed PFA, i.e.

DO ¼ @PD

@SCR

�

�

�

�

�

PD¼0:5

(6.3)

This is a measure of the ‘steepness’ of the PD-vs-SCR curve, showing the perfor-
mance of the radar system in switching from a low PD to a high PD, for a particular
multistatic detection algorithm. The authors in [19] analyse the DO for different radar
configurations, consisting of K sensors each with N antennas. If the sensors are col-
located, DO is equal to NK (i.e. the upper performance limit), whereas if the sensors
are not collocated, the DO is equal to N

ffiffiffiffi

K
p

if optimal techniques are used, for both
centralized and distributed schemes. In the case that an ‘or’ rule is employed, the DO
is given by N logK. In synthesis, increasing the number of sensors yields an increase
of the DO, whose behaviour (linear, logarithmic or square-root-based) depends on
the configuration and on the detection rule. It should be noted that these results were
obtained by considering Gaussian-distributed clutter.

In the case of non-Gaussian clutter, multistatic extension of the normalized
adaptive matched filter, introduced with the name of MIMO Generalized Like-
lihood Ratio – Linear Quadratic by authors in [22]. The performance analysis
shown in [23] addresses the impact of clutter diversity in both simulated and real
clutter data. Simulations are realized by generating clutter samples according to the
K-plus-noise distribution, with 10 dB clutter-to-noise-ratio (CNR) and 15 dB SCR,
and different values of the shape parameters (n1, n2), both included between 0.04
and 1.2. The threshold values are set in order to obtain a PFA ¼ 10�5, and different
covariance estimation methods are employed, i.e. the normalized sample
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covariance matrix (NSCM) and fixed point (FP) estimator. Figure 6.12 shows 3D
contour plots of the PD values versus (n1,n2).

A peak occurs for both the shape parameters equal to about 0.15, whereas, for
both the shape parameters greater than 0.1, the contour plots are similar to hyperbolas,
meaning that high PD values are obtained for low values of the shape parameters.

Furthermore, the gradient – through which the values of PD decrease with
increasing either one or both the shape parameters – is less steep in the case of
known covariance matrix with respect to the cases of unknown estimated covar-
iance matrix. In addition, the NSCM covariance estimator shows better perfor-
mance than the FP one and a less steep gradient. The contour plots highlight that
identical values of PD are achieved by the multistatic detector for different
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combinations of the shape parameters associated with the two jointly processed
channels, which means that the clutter conditions experienced by each of the two
channels jointly influence the global detection performance.

Real data results are obtained by using sea clutter data collected by the
NetRAD system. The single channel detector is applied separately to the mono-
static and bistatic data, and the multistatic detector is applied by combining them.
Detection performance is evaluated by setting a threshold to achieve a PFA of 10�2.
Figure 6.13 shows the resulting PD values as a function of the SCR, comparing real
and simulated data results. In the case of horizontally polarized real data, for a PD

of 0.8, an SCR of about 3 and 7.5 dB is required by the bistatic and monostatic
channel, respectively, yielding a 4.5 dB gain of the bistatic channel over the
monostatic one. For the vertically polarized real data, the corresponding SCR
values are 6 and 9 dB, thus the bistatic-to-monostatic gain is 3 dB. It can be noted
also that using a multistatic-detection technique yields a gain of about 2 dB (hor-
izontal polarization) and 1 dB (vertical polarization) over the single-channel
detector applied on the bistatic data.

The comparison between real and simulated data results reveals a large
deviation in the detection performance of the multi-channel detector. The statistical
correlation between the real bistatic and monostatic data, simultaneously collected
by the NetRAD nodes, may play an important role in the evaluated behaviour. This
paves the way to further analyses of the degrees of freedom introduced by clutter
diversity of the final performance of radar systems.

6.4 Conclusion

This chapter has explored how a knowledge of the dependence of the signatures of
clutter and of targets on bistatic geometry may be exploited in a bistatic or multi-
static radar to give improved detection performance. This has been named ‘clutter
diversity’.

Some general observations can be made. The mean reflectivity of clutter is
greatest for specular geometries and at low grazing angles. It has been found that,
for many types of clutter the amplitude statistics of bistatic clutter are such that the
clutter pdf is shorter-tailed (less spiky) than for the equivalent monostatic clutter. In
some cases (i.e. urban or forested regions), this may be attributed to dihedral cor-
ner-reflector scatterers, but for sea clutter, the mechanism is not yet fully
understood.

For conventional maritime of airborne targets the bistatic RCS is usually lower
than the monostatic RCS, and the difference increases with bistatic angle b. For
stealthy targets, and particularly in forward scatter, the opposite behaviour is
observed.

In order to exploit these effects, a much fuller understanding of the bistatic
signatures of targets and clutter will be needed, and this will need careful mea-
surement and modelling that may be expected to take several years of work. But the
exploitation of these effects in intelligent, adaptive radar networks – which is the
subject of the next chapter – promises great rewards.
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Chapter 7

Biologically inspired processing of target echoes

Alessio Balleri1, Krasin Georgiev1, Andy Stove2, Hugh
Griffiths3, Chris Baker4 and Marc Holderied5

Abstract

Echolocating bats have evolved an impressive ability to detect and discriminate
targets in highly challenging environments. It is believed that over 50 million years
of evolution have contributed to optimize their echolocation system so that high-
level performance could be achieved within their operating environment. The way
bats interrogate the surroundings present differences, as well as similarities, with
respect to typical signal processing techniques used in synthetic sensors. In iden-
tifying and investigating these differences, useful lessons can be made available to
engineers that can potentially be used to improve radar and sonar systems.

In this chapter, we review some of the strategies that bats are believed to
employ to detect and classify moving and static targets and present a comparison
with the radar and sonar counterparts. We introduce a baseband receiver based on
an existing model of the bat auditory system and apply it to baseband synthetic
ultrasound signals to investigate target detection and resolution performance.

7.1 Introduction

In the natural world, echolocating mammals use waveform diversity as an inherent
component of their normal behaviour. The constantly changing time and frequency
structure, and location and direction of their transmitted signals represent a
proactive approach to interrogation of the surrounding environment. In addition, a
multiplicity of processing streams collectively extracts information from received
echoes to build up an accurate picture that is supplemented by long-term experi-
ential memory. In this way, bats, whales and dolphins are able to perceive and
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understand their environment. Further, bats, for example, are able to do this, such
that they can navigate, feed, socialize and otherwise conduct their lives.

Echolocating mammals such as bats, whales and dolphins have been using
echolocation for over 50 million years and have presumably been using waveform
diversity for nearly as long. In contrast, synthetic systems such as sonar and radar
have been in existence for not much more than 100 years. Echolocating mammals
vary parameters including the pulse repetition frequency, and power and frequency
content of their transmitted waveforms. Modern technology means that it is now
possible to replicate easily such diversity in radar and sonar systems. With modern
digital technology, high-precision, wide-bandwidth waveforms can be generated
and varied even on a pulse-to-pulse basis. If we understand how bats exploit
echolocation for autonomous navigation, collision avoidance and recognition,
perhaps we can build this understanding into our synthetic systems, and potentially,
this can provide a step function change in radar and sonar performance.

In the past few years, the radar and sonar communities have shown particular
interest in understanding the remarkable success of the bat in detecting and clas-
sifying stationary and moving ‘targets’.

7.1.1 Detection and identification of stationary targets – flowers
Nectar-feeding bats, for example, play an important role in the process of polli-
nation of plants, which, with their flowers, represent a very interesting class of
organisms for the study of target classification. First, flowers are motionless and
silent so that bats cannot rely on Doppler information or passive location based on
target sounds, and second, their habitat is often a densely cluttered environment.
Finding and approaching a flower is a gradual process that involves all the bats
senses. Although bats can only use vision at dusk, they can rely on their sense of
smell and on echolocation to search for flowers in darkness. Nectar-feeding bats
have a highly developed sense of smell and they are attracted by the scent of
sulphur compounds which are produced by many plants pollinated by bats [1].
Although the sense of smell certainly plays an important role, and in particular for
long-range attraction, latest research results support the theory that nectar-feeding
bats largely rely on echolocation to plan their approach flight and to detect and
select the flowers in the proximity of the plant. Indeed, it has been shown that bats
are capable of detecting and selecting objects by echolocation only. The flowers of
the bat-pollinated vine Mucuna holtonii release the greatest amount of nectar
reward only on the first visit by the bat. By landing into the flower corolla, the bat
ignites an explosion of the flower’s vexillum which functions as a trigger for the
pollen and nectar release. Behavioural experiments have shown that bats can suc-
cessfully select unvisited flowers within an inflorescence in darkness, and this is a
task that can only be done by echolocation. The scent of the flower, in fact, remains
unchanged before and after the explosion. It has further been shown that by mod-
ifying the acoustic echo properties of these flowers, via insertion of a small pad of
cotton in the cavity of the vexillum (i.e. without altering the scent and visual aspect
of the flower), there is a resulting drop in the rate of successful classification [2,3].
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7.1.2 Detection and identification of moving targets – insects
Bats that emit constant frequency signals can detect and classify fluttering insects
from the amplitude and frequency modulations of the echoes that result from the
movement of the wing of the insect [4,5]. These modulations, called acoustical
glints, provide information about wing-beat rate and flight angle and are very
specific to each species of insect. Glints turn out to be useful not only for the
detection of the prey but also for its identification. Amplitude modulations are the
result of the fact that echo strength is strongest when the insect wings are perpen-
dicular to the sound source and gets weaker as the insect wing moves away from
the perpendicular position. The precise timing of the glint depends on the angular
orientation of the insect [6]. The amplitude modulations give information about the
target elevation and are related to the timing of the glint production [7]. The wing
movement towards and away from the receiver induces Doppler shifts in the
echoes, providing information of wing-beat movement that are important sig-
natures for species identification, since insect wing-beat frequency scales with
body size [8]. As the way in which a given insect species moves its wings is highly
specific, the structure of glints varies across different species and even insects with
the same wing-beat frequency may provide different spectral signature in the echo
[9]. Figure 7.1 shows the spectrogram of four echoes from four different insects:
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Figure 7.1 Short-time Fourier transforms and time-domain signals of the echoes
from four insect species all fluttering at 50 Hz but with different
spectral patterns in echoes from their wing beats. For each insect, the
upper trace represents the spectrogram of the echo and the lower
trace the time oscillation. � 1994 Springer. Reprinted, with
permission, from [9]
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Deilephila elpenor, Scotia exclamationes, Melolontha melolontha and Tipula
oleracea. These were flying with the same wing-beat rate and were illuminated
from 0, 90 and 180 degrees with respect to the sound source.

The figure shows that spectrograms for each species present different char-
acteristics, although the flutter frequency is the same. It also shows that, for the
same insect, the properties of the spectrogram are also dependent on the angle from
which the sound source emanates, confirming that spectral cues provide informa-
tion on angular position [7,10].

7.1.3 Comparison between radar, sonar and biological systems
Indeed, there are a number of similarities with the radar and sonar cases. For
example, the types of waveforms deployed by bats are modulated in a fashion
similar to linear and hyperbolic chirps commonly used by radar and sonar systems
[11]. Also, radar and sonar systems typically use a range resolution which will
separate the target into the order of 30 ‘cells’, and the ratio between the flower size
and the range resolution achieved by bats is similar to this ratio, which appears to
give best performance using radar or sonar sensors. This provides still further cause
for optimism that methods employed by natural systems can be usefully exploited
in synthetic counterparts.

The mechanisms we believe a bat employs to process target-echo signals
present apparent differences with respect to standard radar and signal processing.
Bats exploit spatial and temporal adaptations in the process of target detection and
recognition and adaptive waveform diversity [11], cognitive guidance and control
[11,12] and memory [12,13] are characteristics that are studied in the context of
cognitive sensing. However, work by radar and sonar engineers on target detection
and classification inspired by what is known about how bats perform this task has
generally still assumed that the receiver includes a matched filter, e.g. see [11,14].

The Spectrogram Correlation And Transformation (SCAT) receiver is an
existing model of the bat auditory system that takes into account the physiology and
underlying neural organization in bats which emit chirped signals.

In this chapter, we present a baseband receiver equivalent to the SCAT so to
allow SCAT-like signal processing to be applied to radar signals characterized by a
much larger carrier frequency than their sonar counterpart. We present a theoretical
analysis and highlight potential advantages and limitations of the ‘bat signal
processing’ for the purpose of target detection, localization and resolution. The
equivalence is demonstrated by comparing the output of the original SCAT to that of
our proposed baseband version using both simulated and experimental target echoes.
The results show that the baseband receiver provides comparable frequency inter-
ference patterns to those produced by the SCAT for two closely located scatterers.

7.2 The need for a receiver model

The need of developing an accurate model of the bat receiving chain has arisen as a
result of previous behavioural experiments showing that bats are able to achieve
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performance far better of what would be expected when standard radar and sonar
signal processing is applied to bat-like waveforms. For example, in [15,16], Simmons
showed that the big brown bat (Eptesicus fuscus) can perceive the arrival-time of
virtual echoes with an accuracy of 10–15 ns in quiet ambient laboratory conditions and
an accuracy of 40 ns for a signal-to-noise ratio of 36 dB. He also showed that a typical
two-point resolution falls between 2 and 10 ms with a 85-kHz bandwidth. Schmidt
showed that the bat Megaderma lyra is able to discriminate between two phantom
target echoes delayed of about 1 ms [17] with a bandwidth up to 100 kHz, suggesting
the bat capability to achieve higher range resolution than is possible with conventional
radar processing of the signals at the output of the matched filter (above 10 ms or
1.7 mm at a speed of sound equal to 340 m/s). Discrimination of surface structures was
demonstrated in [18], where some individuals of Glossophaga soricina were trained to
distinguish between a smooth and a coarse surface with a structure depth bigger than
0.38 mm. The emitted waveform recorded in the experiment was an FM down-
chirp characterized by three harmonics between 95 and 55, 150 and 86 and 190 and
140 kHz, respectively. It is worth noting that this is one of the few experiments
deploying real targets that demonstrate the fine-resolution capabilities of the bat.

Different aspects of the way bats process echoes from targets and the sur-
rounding environment have been studied in the literature [19–21]. Although it is not
plausible that these models can exactly replicate all the bat neural processing,
because they only account for range information and have only been applied to the
case of a single receiver with no directional sensitivity, they can offer a good starting
point to understand the origins of the remarkable bat capabilities. Most of the models
available in the literature assume that the emitted call and the received echoes are FM
signals. The cochlea is modelled as a filter bank that generates an auditory spectro-
gram and this is followed by a temporal processing block that models the delay tuned
neurons in the brain. The temporal block is used for ranging the targets. A spectral
processing block follows, that can resolve the mutual interference between targets
which are close together [19,21]. Bat precision in echo resolution is presumed by
some authors to require a fully coherent receiver so these authors try to preserve the
phase of the sound wave in their models to implement coherent signal processing
[19,20,22]. Others argue that a coherent receiver is physiologically implausible [21].
The effect of bandpassed signal smoothing on coherence is explored in [23].

Although the aim of the bat auditory system models is to reproduce the
acoustic images as we believe, from a variety of behavioural experiments, that the
bats perceive them, there is no explanation on what exactly brings the performance
improvement so it could be exploited in a technological system.

7.3 Description of the spectrogram correlation and
transformation model

The SCAT receiver is a model of the auditory system that was proposed by Saillant
et al. in [19] for the bat Eptesicus fuscus. It accounts for the underlying neural orga-
nization in bats which use FM signals, namely FM bats, by special emphasis on the
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physiological correlation of the model. The main modules of the SCAT are the
cochlear block, the temporal block (spectrogram correlation) and the spectral block
(spectrogram transformation). A detailed analytical modelling of the temporal block
was presented by Peremans and Hallam [22]. The closed-form equations approx-
imating the spectral block are derived by Park and Allen [24]. In these analyses of the
SCAT, the outputs of the bandpass filters when excited by a chirp were approximated
with cosines shaped by Gaussian envelopes. The bat auditory system processes both
the emitted call and the received echo through an auditory periphery and then through
some higher level brain structures. The auditory periphery includes the outer, the
middle and the inner ear and provides a time-frequency representation of the input
signal. The frequency content is sampled in a non-linear scale (hyperbolic or loga-
rithmic). The consequent brain processing provides an estimate of the time delay
between the call and the echo and provides cues about the structure of each echo.

A short summary of the SCAT model building blocks based on [19] follows
together with some notes on other alternative models available in the literature.

7.3.1 Cochlear block
The cochlear block is modelled with a bank of 81 Butterworth bandpass filters of
order 10 and each having a bandwidth B ¼ 4 kHz. Each filter is followed by a signal
rectifier and a 3 kHz bandwidth low-pass filter (Figure 7.2) in order to extract the
envelope of the signal. The central frequencies fc of the bandpass filters span the
bandwidth between 20 and 100 kHz and are arranged in a hyperbolic scale as
fc ¼ 1=Tc, where the central period Tc changes linearly from 10 ms to 50 ms with
increments of 0.5 ms. It will be appreciated that in this model the overlap between the

Input
g lh2

g lhi

g lhM

g lh1

Bandpass
filter bank

Rectifiers Low-pass
filters

Figure 7.2 Cochlear block of SCAT receiver. Filter bank of M ¼ 81 bandpass
filters hi with central frequencies from 20 to 100 kHz. Rectifier g and
Butterworth low-pass filter l follow after each bandpass filter
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responses of adjacent filters varies across the bank. Two levels of smoothing of the
envelope have been proposed with the SCAT, namely a high smoothing and a low
smoothing. The high smoothing consists of a full wave rectifier followed by a second-
order low-pass filter, whilst the low smoothing consists of a half wave rectifier
followed by a first order low-pass filter. In both cases, the low-pass filter is an Infinite
Impulse Response (IIR) Butterworth with a bandwidth of 3 kHz. It will be shown
later that the choice of model for the low-pass filtering has a negligible effect on the
behaviour of the processor. The output of the cochlear block is called the auditory
spectrogram or cochleogram. A representative block diagram is shown in Figure 7.2.

In the literature, some modified versions of the original SCAT have been
proposed which differ on how the initial splitting of the signal into frequency
channels is carried out. For example, the bank of constant bandwidth Butterworth
filters is replaced by gammatone filters [21] with frequency-dependent bandwidth
after [25] or Gaussian chirplets with carrier frequencies compatible with the
emission sweep rate [20]. Some models use additional non-linear transformations,
e.g. raising the amplitude of the detected signal to a power of 0.4 to account for the
non-linear interactions in the organ of corti [21].

7.3.2 Temporal block
The purpose of the temporal block is to estimate the time delay between the call
and the echo based on the output of the cochlear block. It consists of a set of tapped
delay lines that implement a cross-correlation function between the call and the
echo. These are triggered by the call signal.

The temporal block processes the output of the cochlear block and converts it
into neural spikes. The neural coding can either be considered as part of the cochlear
block or not. The spike decay period is 4 ms [19]. A spike rise results in an increase of
the threshold and inhibits the same neuron from producing another spike. The spike
activation threshold decays to its initial value over a period of 1 ms.

The temporal block carries out a ‘de-chirping’ of the signal by adding appro-
priate delays to each frequency channel. Figure 7.3 shows an example of the output
from the temporal block when two groups of scatterers are present. Delays are
calculated using the emitted signal as a trigger. Simultaneous activity in multiple
channels is detected by a set of coincidence detection neurons and is a sign of the
target presence. Target detection is implemented by summing the output over all
channels and the target is declared with a peak-detection algorithm.

7.3.3 Spectral block
The spectral block is responsible for extracting the fine structure of the target. It is used
to detect and measure the delay between highly overlapping echoes, which cannot be
resolved by the temporal block. The spectral block exploits the interference pattern
between overlapping echoes, which results in the suppression or amplification of the
power of the output of some of the filters of the cochlear block. It integrates the output
signal of each frequency channel for a specific time interval (about 350 ms [19]). The
interference arises as follows: if we ignore the windowing due to the finite length of
the chirp, the transmitted signal can be considered to be ejat2

. In the simplest case, the
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signal xðtÞ reflected from two equal-sized targets with a separation dt in time and at a
mean time delay t can be considered to be ejaðt�t�dt=2Þ2 þ ejaðt�tþdt=2Þ2

and hence

xðtÞ ¼ ejaðt2�2ttþt2þdt2=4Þ ejadtðt�tÞ þ e�jadtðt�tÞ� �

¼ 2ejaðt2�2ttþt2þdt2=4Þ cosðadtðt � tÞÞ (7.1)

The first term is the conventional return, which when homodyned with the trans-
mitted signal gives a beat frequency proportional to range (ejatt), rotated by a fixed
phase term, and the second term is the modulating frequency. It gives rise to a
sinusoidal amplitude modulation of the return. When the targets are of equal
strength the modulation has a depth of 100%. It can readily be seen that when the
target sizes are different the modulation is still present, but the depth will be
reduced. Likewise, if more than two targets are present the modulation is no longer
a single sinusoid, but is still made of a relatively small number of sinusoids.

De-chirp delays are also compensated so that only the signals coming from the
same target are integrated. The output of the integration represents the frequency
spectrum of the signal. A modified inverse cosine transform is then used to convert the
frequency spectrum back into the time domain. Some studies concentrate on the time
domain re-construction of the target image ([19,20,22]), but others emphasize the
spectral based perception of the target [18,21]. A ‘pattern-matching’ interpretation of
the transformation of spectral interference patterns into fine delays is proposed in [24].

7.4 Baseband equivalent of the spectrogram transformation

In this chapter, we propose a baseband receiver equivalent to the SCAT [19]. It is
denoted as the BSCT (Baseband Spectrogram Correlation and Transformation).
The equivalence of the BSCT to the SCAT will be demonstrated by comparing the
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Figure 7.3 Example of a dechirped output of the temporal block in the presence of
two groups of scatterers
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model output of the original and baseband model using both simulated signals and
laboratory measurements.

This model is developed to allow the processing of target echoes with a
receiver based on the bat auditory system for radar signals that are centred on very
high carrier frequencies. The BSCT significantly simplifies the analytical treatment
of such receivers and hence can be used for further investigations. This will be the
foundation for further studies with the ultimate goal to understand how bat signal
processing differs from matched filtering and investigate its advantages and dis-
advantages for the task of target detection and identification.

The scope of the model as presented here is limited to the spectral part of the
SCAT model. For a group of closely positioned targets the temporal block gives
information about the time-delay (or range) for the group as a whole, and the
spectral block describes the intra-group behaviour either as an interference spec-
trum or as fine delays (that is relative distances). The spectral block is important
because it potentially provides the processing algorithm to allow the fine range
resolution needed for target discrimination [19].

The results are compared by calculating the differences between both model
outputs for different experimental settings.

The baseband equivalent of the spectrogram transformation proposed in this
chapter deals with a complex analytical form of the input signal. A block diagram
of the BSCT is shown in Figure 7.4.

Let us have a filter bank composed of M filters with centre frequencies fi,
i ¼ 0 . . .M � 1, and bandwidth Bi and all having the same shape. In the version of
the model for which the experiments were performed we assumed, following the
basic SCAT model as described in Section 7.3.3, that all filters are with the same
bandwidth B and that the impulse response hiðtÞ of any filter i in the filter bank can
be produced from the same baseband (low-pass) filter with impulse response hðtÞ
by a spectral shift

hiðtÞ ¼ hðtÞej2pfit (7.2)

Integration
block

Filter bank
with M filters

x(t)

y1(t)
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∫

Figure 7.4 BSCT spectral processing diagram. Model input xðtÞ is analytical
signal. It is passed through a filter bank of M complex bandpass filters
hi. The absolute value of each filter output yi is squared and integrated
over time to get the energy E i½ � of the corresponding frequency
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Note that the assumption that the filters all have the same bandwidth is much more
obvious for the radar case than for sonar or acoustic signals. In the radar case, the
signal bandwidth is small compared to the carrier frequency so, when referred to
the transmitted signal, the difference between a constant-Q and a constant band-
width filter will be small.

The response at the output of the ith filter to the signal xðtÞ is the convolution
of the filter impulse response and the signal

yiðtÞ ¼ xðtÞ� hiðtÞ (7.3)

After each bandpass filter the cochlear block contains a rectifier and a low-pass
filter (Figure 7.2). We replace these with ideal amplitude extractors. Therefore, the
envelope of the bandpass filtered signal is produced by taking the amplitude of the
signal (Figure 7.5). This alternative to the signal rectification and low-pass filtering
completely discards the phase information. The envelopes are then converted to an
auditory spectrogram by squaring (Figure 7.6).

In the spectral block the total energy of the output of each filter is computed by
integration (Figure 7.4). Since the aim of the experiment is to investigate the
separation of the spectral signature of multiple groups of scatterers, we may note
that the returned signals are effectively coincident in time (we consider temporal
separations of less than 100 ms with pulse lengths of 2 ms) so the integration may be
performed over a fixed interval around the location of the group of returns under
consideration (Figure 7.6). This way the spectrum is calculated for each group.
Different groups of returns which are more widely separated in time can readily be
resolved by the temporal block.
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Figure 7.5 Bandpass filter bank output, in-phase (real) component and envelope
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The case of a single group of scatterers the spectral block can thus be simpli-
fied by ignoring the output of the temporal block and integrating the whole filter
output. The spectral output of the BSCT can then be written as

E i½ � ¼
ð1

�1
yiðtÞj j2dt (7.4)

Finally, the spectral output (Figure 7.7) can be inverse transformed into the time
domain (space) so both temporal and spectral output can be presented on the delay
(range) axis.
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Figure 7.6 Example of de-chirped squared envelopes for seven filters and
integration interval (red dashed lines) over which the total energy for
each filter is calculated
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7.5 Experimental setup to compare BSCT and SCAT

Computer simulations and real experiments have both been performed using a set
of targets with the same parameters in both cases. Both the simulated and the
measured data have been processed using both the original SCAT algorithm and
our BSCT. The comparison between the two algorithms using simulated data can
be expected to be successful since the behaviour of the algorithms can be predicted
in advance, but this is a useful baseline for the comparison of how the two
algorithms behave with real data with its practical imperfections.

7.5.1 Data collection and digitization
The transmission (or ‘bat call’, xCðtÞ) was a linear chirp from 100 kHz down to
35 kHz with duration of 2 ms. The same call signal is used for both the simulations
and for the experiments. All signals were sampled at 1 MHz rate. In total, 10,000
samples were saved per measurement, which corresponds to a signal duration of
10 ms. Digital to analogue and analogue to digital conversion were carried out with
a TiePie Handyscope HS5-540 dual channel oscilloscope with function generator.

7.5.2 Targets and echo
Two close-spaced point targets were created by producing two time delayed ver-
sions of the emitted calls. The relative position of the targets was varied by using
different values for the delay t (5, 10, 15, 20, 25, 50, 100) ms, corresponding to
separations of (0.85, 1.7, 2.55, 3.4, 4.25, 8.5, 17) mm. With this arrangement, the
impulse response of the targets is

xT ðtÞ ¼ dðtÞ þ dðt � tÞ (7.5)

where dðtÞ is the Dirac delta function.
The received signal (or ‘echo’), xEðtÞ is the reflection of the call signal from

the target. For the simulations it was generated by time shifting the call by
t1 ¼ 3; 740 ms and convolving with the target as

xEðtÞ ¼ xCðt � t1Þ� xT ðtÞ (7.6)

The real measurements were recorded with an ultrasound microphone (type CM16,
Avisoft Bioacoustics, Berlin, Germany). A phantom target was created using an ultra-
sound loudspeaker (type S55/6, Ultra Sound Advice, London, UK). Reflection from
two scatterers was reproduced by emitting not just the call xCðtÞ but the call convolved
with the target xCðtÞ� xT ðtÞ. The delay between the call and the first target t1 was
achieved by putting the speaker at distance 1.272 m from the microphone.

Both simulations and measurements reproduce reflections from the same targets –
two ideal point targets with the specified separations. The measurements however
include the effect of air attenuation, noise and transmitter/receiver imperfections.
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7.5.3 Data processing
All experimental measurements were pre-processed by removing the mean value
from the data. The inputs to the BSCT were first convolved with a Hilbert filter to
create complex values from the real data values and then converted to baseband by
multiplying with the carrier. Figure 7.8 shows the real component of the resulting
baseband signal. Both SCAT and BSCT were implemented in Matlab (release
2015a, MathWorks, Natick Mass., USA). A linear frequency spacing of the filters
in the bandpass filter bank is used to allow processing of a linear chirp. The filter
bank contains 65 bandpass filters with linear frequency spacing from �32 to
32 kHz for BSCT and from 35.5 to 99.5 kHz for SCAT (1 kHz increments). All
other parameters follow the ones previously described in section 7.3 after [19]. Two
versions of the SCAT differing in the level of smoothing are considered, namely,
the SCAT-L for low smoothing and the SCAT-H for high smoothing.

Finally the output of the spectral block for each model is calculated by passing
the call and echo signals through the model and normalizing by dividing by the
maximum value of each output.

7.6 Results

The spectral output of the proposed BSCT is compared with the output of both
versions of the original SCAT (with low and high smoothing) for different delays
between the glints in the target. The difference is measured by using the root mean
square (RMS) error:

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
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Figure 7.8 Baseband model input, real component. The signal frequency is shifted
to baseband. Emitted call has duration 2 ms and spans linearly from
�32.5 to þ32.5 kHz. Received echo comes from two scatterers with
delay 20 ms and equal amplitude
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where ESCAT and EBSCT are the normalized outputs of the models compared and
M ¼ 65 is the number of filters.

The results of the comparison, expressed as the RMS error in % of the maximal
value, are presented for all datasets in Table 7.1. Results show the error is less than
1% for delays below 50 ms and less than 5% up to 100 ms. Figure 7.7 displays the
full outputs of BSCT and SCAT expressed as a function of the frequency for the
case of two simulated targets delayed by 20 ms. We can see that the level of
smoothing in the original SCAT does not influence the spectral output. The same is
valid for the baseband model which gives practically the same results.

In the real measurements, the influence of both the air and the non-perfect
microphone and speaker characteristics modify the target response. The outputs of
the BSCT for the simulated and phantom targets are compared in Table 7.2 and
shown in Figure 7.9. The real experiments introduce significant deformation of the
target spectrum relative to the simulations. Indeed, the difference can be above
10%. This shows that although the real data behaves in a way which is not identical
to the simulated data – as would be expected, the two algorithms are stable to the
imperfections in the data and both still behave in a similar manner.

Looking more closely at the interference patterns for different relative posi-
tions between the scatterers (Figure 7.10) we can see that the general shape and, in
particular, the locations of the zeroes, are preserved between the experiments and
the simulations. These features are likely to be significant for any scheme for
resolving the close-spaced targets and this result indicates that the new algorithm,
like the SCAT algorithm, retains the information which will later be needed to
resolve the targets.

Table 7.1 Difference between proposed BSCT and original SCAT with high
(SCAT-H) and low (SCAT-L) smoothing, expressed as RMS, %

Delay Simulations, % Experiments, %

ms SCAT-H SCAT-L SCAT-H SCAT-L

5 0.20 0.19 0.78 0.81
10 0.54 0.68 0.39 0.42
15 0.34 0.34 0.38 0.39
20 0.67 0.52 0.60 0.59
25 0.41 0.39 0.57 0.55
50 0.94 0.98 0.85 0.90

100 4.4 4.6 2.1 2.1

Table 7.2 Root mean squared difference between simulations and experiments
processed with BSCT

Delay ms 5 10 15 20 25 50 100

Error % 12.3 13.9 16.4 15.1 15.0 20.8 17.4
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7.7 Conclusion

In this chapter, we have presented a baseband receiver equivalent to the SCAT to
allow SCAT-like signal processing to be applied to radar signals that are char-
acterized by a much larger carrier frequency than their sonar counterpart. The scope
of the investigated was limited to the spectral part of the model because that is the
component of the SCAT that can potentially provide the fine range resolution
needed for target detection and discrimination. Results have shown that the
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Figure 7.9 Spectral output of BSCT model, simulated vs measured two targets
separated by 3.4 mm (delay 20 ms)
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proposed baseband spectrogram transformation model gives an output that is
compatible with that of the original SCAT receiver. This implies that

● processing of target echoes with a receiver based on the bat auditory system
can be applied to signals that are centred on very high carrier frequencies, such
as radar signals.

● the output of the spectral block does not depend on the phase information of
the carrier signal and is a form of non-coherent signal processing; the spectral
block will be more robust to loss of signal coherence than the matched filter.

● advanced signal analysis techniques based on complex signal representation
could be used for further understanding of the model.
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Chapter 8

The concept of the intelligent radar network

Hugh Griffiths1

Abstract

Future radar systems are likely to be distributed, intelligent, multistatic and spec-
trally efficient, taking into account many of the concepts developed in this section of
the book, and offering greater flexibility, greater robustness and lower cost than
conventional single-platform monostatic approaches. This chapter describes the
‘intelligent radar network’ and some of the developments that will be necessary for
its realization. In particular, the resource management of a radar network, the means
of communication between the nodes of the network, and geolocation and synchro-
nization between the nodes of the network all represent significant challenges.

8.1 Introduction

Historically, the co-location of a single transmitter and receiver in the conventional
form of monostatic radar has been the basis of almost all radar systems. The rela-
tive simplicity of the monostatic geometry, coupled with high sensitivity, has stood
the test of time extremely well. However, in many cases we are beginning to reach
a point of diminishing returns when attempting to improve target detection and
location, whilst reliable classification, especially of ground targets, has remained
elusive. Removing the monostatic constraint uncovers a large number of design
degrees of freedom. For example, the passive receiver part of the bistatic system
can be located nearer to the target or area of interest, thus inherently improving
sensitivity. By exploiting more than one transmitter, as might be the case for pas-
sive radar that exploits the many illuminators that can be used opportunistically, a
more complete form of spatial diversity can be exploited in the form of an ‘ad-hoc’
network with the potential to improve performance still further.

However, formation and optimal exploitation of such networks requires
improved signal processing consistent with the concepts that are known to be fun-
damental to intelligence and cognition. For example, if the receiver in a passive
network system is made mobile, such as in an airborne configuration, spatial
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diversity becomes a function of time. By means of a thorough understanding of target
and clutter signatures the geometry may be controlled, and through intelligent choice
the most favourable configurations can be adopted. This ensures constancy of lines
of sight as well as favourable target and clutter backscattering geometries.

We can take this concept of applied intelligence much further by applying
processing architectures that take their cue from mammalian cognition. Although
highly complex and currently a long way from being fully understood, we can
‘borrow’ architectures that used sensed data to form a ‘perception’ of the target
scene that is sufficiently accurate to enable the radar itself to make decisions and
initiate ‘actions’. Indeed, it is the ‘perception–action cycle’ together with the use
of memory and other stored information that is at the core of cognition. We can
implement architectures to support the perception–action cycle through adaptive
feedback between the receiver and the transmitter and radar platform. For example,
in an active network this might adapt the transmitted waveforms to maintain target-
tracking performance, or in an airborne passive system might automatically and
autonomously steer the platform to more favourable locations.

In this chapter, we review the features, benefits and challenges of creating radar
networks. We subsequently speculate on aspects of bio-inspired cognitive proces-
sing concepts and architectures that potentially offer both performance improvement
and even wholly new applications. Having said that, we must caution that research
into intelligent adaptive networked radar systems is at the earliest of stages. Indeed,
much remains to be accomplished before such systems offer such high levels of
improvement that they may be genuinely find take-up within the commercial world.

8.2 Towards networks and diversity

8.2.1 Bistatic and multistatic radar
Bistatic radar has a history dating back to the earliest days of radar [1]. Some of the
claimed advantages of bistatic radar include:

● Bistatic radar has potential advantages in detection of targets which are shaped
to scatter energy in directions away from the monostatic;

● the receiver is covert and therefore safer in many situations;
● countermeasures are difficult to deploy against bistatic radar;
● increasing use of systems based on unmanned air vehicles (UAVs) makes

bistatic systems attractive;
● many of the synchronization and geolocation problems that were previously very

difficult are now readily soluble using global positioning system (GPS); and
● the extra degrees of freedom may make it easier to extract information from

bistatic clutter for remote sensing applications.

More recently, a set of trials using the UCL NetRAD multistatic radar have indicated
that bistatic sea clutter may be less ‘spiky’ than the equivalent simultaneously mea-
sured monostatic clutter, and hence that there should be an advantage to the bistatic
configuration in detecting small targets against a sea clutter background [2]. These
results have been described in more detail in Chapter 12 of Part III of Volume 1.
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The magnitude of this advantage depends on the exact geometry, but may be 6 dB or
even more. This has led to the term ‘clutter diversity’: since the properties of clutter in
a bistatic/multistatic radar depend on the bistatic geometry, and since some geome-
tries are more favourable than others. Clutter diversity is attempting to understand
and quantify these effects in order to find out how best to exploit them, and have been
described in more detail in Chapter 6 of Part I of Volume 2.

At the same time, ideas have begun to emerge for the ‘adaptive intelligent
radar network’ [3–5]. These have partly been driven by a realization that present-
generation military surveillance sensor systems tend to be based on single
platforms carrying conventional sensors, including monostatic radars. Such sys-
tems are expensive and inflexible, and there is therefore an imperative to think in
new ways about sensor systems and to devise concepts that are more flexible,
of higher performance, and yet more affordable. The advent of practical UAV
platforms forms part of this thinking, but introduces new and significant challenges.

The radars of the future (Figure 8.1) will therefore be distributed, intelligent,
multistatic and spectrally efficient. There are many challenges, in respect of
understanding and exploiting bistatic operation, exploiting clutter diversity, geo-
location and synchronization and communication between nodes, and intelligent
control of the network.

Such a scheme has a number of attractions:

● It is inherently flexible. The number and the locations of the individual
platforms can be optimized to the particular tasks and varied dynamically.

● The network has the same advantage of ‘graceful degradation’ of a phased-
array radar, in which the failure of one element of the array does not cause
catastrophic failure but only degrades the overall performance slightly. In the
case of the sensor network, not only may the loss of one node of the network be
tolerated, but also the network may be re-configured accordingly in response.

GPS Satcoms

Passive radar
illuminator

Figure 8.1 An intelligent adaptive radar network. In this example, there are four
nodes and communication and control of the network is via satcom
links. The network also exploits passive radar illuminators
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● The platforms and the sensors carried by them need not be homogeneous.
Different types of platform and sensors can be used within the network
according to the requirement.

● The sensors may also exploit ‘illuminators of opportunity’, allowing passive radar
modes of operation and the possibility that some nodes might be totally passive.

● The locations of the platforms can give multiple perspective views of targets
(‘spatial diversity’) to aid in target classification and identification.

Radar sensors can be used multi-statically, giving potential advantages in detecting
stealthy targets, including the enhancement of target signatures that occurs in for-
ward scatter (whilst recognizing that this gives poor range and Doppler resolution).
Some platforms might be receive-only and hence potentially covert, and might
operate closer to the target scene.

Seen in this way, the network has some similarities to a phased-array radar –
except that here the target is actually inside the network. In an analogous way to a
multi-function phased array radar, the waveforms, beam pointing directions and
hence dwell times and update rates for a particular target can be varied dynamically
according to the behaviour of the targets within the scene.

8.2.2 Sensors as robots
A particularly visionary publication in this subject was provided by Wicks, in a
keynote presentation at the 2003 International Radar Conference in Adelaide,
Australia, entitled ‘Sensors as Robots’ [6]:

A . . . scout troop is charged with cleaning the town park. Initially, each boy
is assigned a specific task and timeline. However, soon into the exercise, and
as a result of some minor and perhaps major situational changes, the original
individual marching orders are modified, or perhaps even ignored, on the fly.
In any event, however, each member of the troop does his part to accomplish
the goal of cleaning the park. In the end, the mission is successfully com-
pleted. Independent entities (the Scouts) have operated in an autonomous
manner using cognitive reasoning in responding to real-time changes in the
environment, to accomplish a preassigned mission. The individual Scouts,
by sensing the behavior and activities of their colleagues in response to the
changing environment, and by communicating the necessary data and
information, achieved a collective response that resulted in a ‘successful’
operation. This ‘system’ worked as a result of the autonomous and intelli-
gent interaction between the individual ‘sub-systems’.

This analogy is compelling. The individuals act autonomously, but perceive
the target scene and the progression of the operation, and can communicate with
each other. They may modify their intended tasks on the basis of this information.

Translating these ideas to an intelligent, adaptive radar represents a bold
vision, but there are many issues to be resolved before such a system could genu-
inely be realized. Three particular issues are (i) the control and management of such
networks, (ii) geolocation and synchronization and (iii) communication between
platforms. These are developed in the following sections (Figure 8.2).
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8.3 Resource management

The control of a network of this kind represents a major challenge, especially if the
nodes are on moving platforms. At one extreme the management of the network
might be centralized; at the other extreme the individual nodes might act essentially
autonomously. There is scope for including cognitive techniques which allow the
system to adaptively exploit prior information and to ‘learn’ about the environment
and target scene to optimize performance. This may build upon the ideas described
in Chapter 5 of Part 1 of Volume II.

8.3.1 Examples of networked radar
To illustrate this, Figure 8.3 shows a set of six examples of networked radar, of
progressively greater sophistication, and assessed using a ‘traffic light’ colour
scheme.

Case 1 consists of N conventional monostatic radars in fixed locations. Each
radar performs its own detection and tracking processing, and the tracks from the
radars are combined to form a ‘master’ track, in a de-centralized manner. This does
not require coherence to be maintained between the radars, and since only track
information is exchanged, the communication bandwidth is modest. This is judged
to be straightforward.

The track fusion could be done in a number of ways:

1. Track selection: Generate a track with each radar and choose one of the tracks
as the system track.

2. Average track: Generate a track with each radar and weight according to the
Kalman filters’ covariance matrices, then the individual tracks are used to form
a system track.
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3. Augmented track: Generate a track with each radar, choose one of the tracks as
the system track and use selected detections from the others to update the
system track.

4. Detection to track: Use all the radar detections to update the system track.
Tracks may or may not be initiated by using all detections from all the radar
system.

Case 2 is similar to case 1, but now instead of N individual monostatic radars
the system now consists of one transmitter and N receivers, so effectively N bistatic
radars. The tracks are combined in one of the ways listed above in case 1, and again
it is judged to be straightforward.

Case 3 is similar to case 2, but now the detections from each receiver are
combined rather than the tracks, giving a semi-de-centralized system. This would
require greater communication bandwidth than cases 1 and 2, and is judged to be
challenging.

Case 4 differs from case 3 in two respects. First, the system consists of M
transmitters and one receiver, and second the entire system is now coherent,
requiring a common stable phase reference. The processing is now centralized and
judged to be complex.

Case 5 now includes the possibility that some of the platforms may be moving,
and it is the raw data from each receiver that is combined. Both of these introduce
substantial additional complication. For moving platforms, it is now necessary to
have a knowledge of the instantaneous platform location, and to dynamically
maintain the phase reference for coherent operation, and transmission of the raw
data would require much greater communication bandwidth. This is judged to be
very complex.
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Case 6 now consists of M transmitters and N receivers, forming a dynamically
adaptive multistatic network. This represents the ‘Holy Grail’ and is judged to be
extremely complex.

The resource management of a radar network of this kind has some strong
similarities to the resource management of a monostatic multi-function radar, in
which the various tasks to be undertaken by such a radar (surveillance, tracking of
individual targets, weapon control, . . . ) are prioritized and the overall radar
resource deployed in some optimal manner so that the highest priority tasks are
performed first and the others subsequently within the various constraints. Various
approaches to this problem have been proposed and evaluated, including fuzzy
logic, neural networks and autonomous agents [7–15].

Cognitive approaches have some clear attractions, and these have been
described in detail in Chapter 5 of Part 1 of Volume II of this book. The extension
to a network will involve not only the transmit and receive beam pointing, dwell
times, update times and waveforms, but also the platform locations.

Haykin [16] draws the distinction between:

● Distributed cognition, where the individual radar components as well as the
central base station are all cognitive and

● Centralized cognition, where cognition (including sensor fusion) is confined to
the central base station; in effect, the central base station acts as the brain of
the entire network.

The scout troop analogy mentioned earlier illustrates this distinction nicely. This
distinction has important implications for the nature and bandwidth of the com-
munication between the nodes of the network, which is considered in the next
section.

8.3.2 Biologically inspired approaches to resource management
A potential construct in the form a ‘Distributed Active Control’ (DAC) architecture
has been developed by the bio-inspired computational science community and has
met with some success (e.g. [17]). This provides both a useful starting point for
designing a cognitive processing architecture for radar systems as well as providing
access to a much broader portfolio of research being carried out in the computing
community. A simple block diagram of the DAC architecture is shown in Figure 8.4.

In essence, DAC is both a parallel and simultaneously serial architecture
(sometimes referred to as layers and columns) operating on data to produce infor-
mation from which perception and decision-making can occur. This is in marked
contrast to the linear processing architectures under-pinning almost all current radar
systems. In fact, DAC has been subjected to some experimental verification in both
neurological and robotic domains and found to hold up well [17]. It is an attractive
start point as it appears well suited to providing an environment in which many forms
of adaptive signal processing can be hosted and allowed to interact. The DAC
approach has close parallels with mammalian cognition and should be readily scal-
able between sensor types dependent on the sophistication of the required processing.
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8.4 Communications between platforms

8.4.1 Fixed and mobile nodes
If the nodes of a network are fixed, then in principle the communications can be
achieved by landline (cable or optical fibre) links, allowing reliable high-bandwidth
communications, but in the case of nodes on moving platforms this becomes much
more difficult. The degree of difficulty is a strong function of the data bandwidth,
and also of the range between platforms. Such communications are likely to require
significant power and antenna gain, which implies directionality and beam steering.
In addition, the links would be potentially vulnerable to interception, or to
jamming, or spoofing.

Candidate techniques include satcom links, or free-space RF, or optical links.
The latter offer potentially very high data rate (>1 Gb/s), but would be subject to
the effects of weather. The link budgets of sitcom and free-space RF links can be
established using the standard link equations, in terms of the required range,
transmit power, transmit and receive antenna gains and bandwidth. The use of
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narrow, high-gain beams would reduce the transmit power requirements and the
vulnerability to interception and jamming, but would require intelligent beam
steering to direct the transmit and receive beams in the right directions at the right
times.

8.4.2 Synchronized rendezvous
An interesting example of this kind of network, although in a rather different
context, is provided by a network of autonomous underwater vehicles (AUVs). In
this case, the sensors are imaging sonars, or possibly optical cameras, and the
application considered is mine countermeasures (MCM), which is the detection and
disposal of mines on the seabed (Figure 8.5).

In this way, a number of AUV platforms might carry out a search operation
of a given area of seabed and record the locations of initial detections. These
detections would then be re-visited and re-investigated to confirm the detection (or
not) and if positive, to assess the type of mine. Finally, if appropriate, confirmed
targets would be neutralized.

A significant difference from the above-water radar network considered in the
bulk of this chapter is the difficulty of communications between platforms. The
propagation of RF signals underwater is severely limited, and although blue-green
lasers might be considered, they would require sophisticated beam steering, and the
propagation in shallow water (which is the primary area of interest for MCM) is
somewhat variable. In practice, therefore, communication is likely to be acoustic.
However, the attenuation of acoustic signals through seawater increases rapidly
with frequency (at a frequency of 500 kHz the attenuation is of order 100 dB/km).

Figure 8.5 An underwater intelligent adaptive network. In this case, a surface
vessel is used to oversee the operation
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In addition, variations in temperature and salinity mean that there may be multiple
transmission paths. All of these effects mean that the range, and also the bandwidth
of communications, is severely constrained.

The proposed solution to this is the ‘synchronous rendezvous’ technique
[18,19], in which the individual platforms undertake the first part of the mission in
some prescribed manner, each for example carrying out a fixed ‘lawnmower’
search pattern. At the conclusion of the first phase, the platforms then rendezvous at
a pre-arranged location, exchange information and plan the next phase of the
mission. This might also involve communication with a surface vessel. Following
this rendezvous, the next stage would be undertaken, followed by further stages
of rendezvous, communication and mission. The rendezvous might also be used to
re-synchronize timing and navigation information on the individual platforms.

Figure 8.6 shows a dynamic simulation of this approach, using the MOOS-IvP
package, which is a set of open-source Cþþ modules to investigate autonomy
on robotic platforms, in particular autonomous marine vehicles [20]. In this simu-
lation, there are three AUVs undertaking an MCM mission. Figure 8.7 compares
the resource loss for a baseline case against that with the Rendezvous Point (RP)
method. In the case of RP, the resource loss is the time spent by the vehicles to
travel to the meetings points. In the case of the baseline case, the loss comes from
the lack of adaptation of the system – sometimes there are too few contacts and the
identification vehicle that is tasked to re-acquire contacts for extra data is idle, and
sometimes, there are too many targets and by the end of the mission there are
some that are not identified. In Figure 8.7, the x axis is simulation number – there

Figure 8.6 Dynamic simulation of the synchronized rendezvous technique using
MOOS-IvP. Here, three AUVs are undertaking the first phase of an
MCM mission, and are about to rendezvous
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are 100 runs of the simulation and each produces a point on the graph. The y axis is
the percentage of the loss. The results are sorted in ascending order.

Extension of the Synchronized Rendezvous principle to an airborne radar
network has some evident attractions. The advantage would be potentially a large
reduction in the required transmit power for communications and hence a
lower power burden, higher bandwidth and substantially reduced vulnerability to
interception and jamming. The disadvantage would be the degree to which the
overall mission would have to be disrupted to accommodate the rendezvous. These
ideas are at an early stage but are certainly worthy of deeper investigation.

8.5 Geolocation and synchronization

Establishment of precise timing and phase references across a multi-sensor radar
network presents a very difficult challenge, particularly when the platforms are
mobile or when GPS is denied, either due to shadowing of the platform location or
to deliberate countermeasures. (Strictly, GNSS is the overall term for satellite
navigation and includes the original US NAVSTAR GPS and the Russian
GLObal’naya NAvigatsionnaya Sputnikovaya Sistema. Further, the European
GALILEO system, the Chinese BeiDou and the Indian NAVIC systems are to set
become fully operational by 2020. Here, the term GPS will be used, it being
understood that this includes the other systems as well.)

The overall problem is known as Position, Navigation and Timing (PNT), and the
fact that DARPA and the UK Ministry of Defence (and no doubt several others) have
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substantial research programmes on this shows that it is regarded as a key set of cap-
abilities. The DARPA programme [21], subtitled ‘Beyond GPS: 5 Next-Generation
Technologies for Positioning, Navigation & Timing’ is sub-divided into:

● Adaptable Navigation Systems;
● Microtechnology for PNT;
● Quantum-Assisted Sensing and Readout;
● Programme in Ultrafast Laser Science and Engineering;
● Spatial, Temporal and Orientation Information in Contested Environments

programme.

There are few currently known methods in which the necessary phase references
can be derived and distributed appropriately. One such architecture involves the
utilization of the timing signals communicated by a GPS satellite and decomposing
the information in order to develop a coherent phase reference. This is an attractive
solution as these timing signals are extremely accurate (reported to be at the sub-
nanosecond level if both L1 and L2 frequencies are used [22]), since they are
fundamentally derived from atomic clocks on board each satellite. This has been
the widely accepted method of dealing with this issue, as wide coverage is provided
by the different national systems already mentioned.

In order to provide the degree of coherence necessary for the systems to the
right-hand side of Figure 8.3, we can say that the phase drift must be less than that
which would cause a target to be ambiguously wrapped into adjacent range bins
throughout the time of operation.

A solution to this issue within a spatially diverse network is to provide highly
stable GPS disciplined oscillators (GPSDOs) at each node. These systems combine
the reliability of crystal oscillators with the precision of a periodic GPS synchro-
nization process. In the following section, the development of an experimental
multistatic radar network will be discussed, together with a system which addresses
the issue of coherence within a radar network, by means of a physical realization of
a GPSDO.

8.5.1 NetRAD
The original NetRAD system [23–26] was conceived as a low-cost flexible S-band
networked radar to undertake bistatic and multistatic radar experiments at relatively
short ranges (of the order of a few hundred metres). In its original incarnation, the
nodes were connected by Ethernet cables of length 200 m and had a maximum
transmit power at each node of 200 mW (þ23 dBm). For short-range experiments
(Figure 8.8) the constraint of cable length did not pose any particular problems, but
in experiments involving wider or more complex geometries, this presented sig-
nificant issues.

This led to the development from 2007 onwards, by collaborators at the
University of Cape Town (UCT), South Africa, of GPSDOs for the NetRAD
radar [27–29]. At the same time, a High-Power Amplifier (HPA) was added to one
of the NetRAD nodes, increasing the peak transmit power to 500 W (þ57 dBm).

244 Novel radar techniques and applications – volume 2



This was the configuration of the radar used for the bistatic clutter trials in 2011,
described in Chapter 12 of Part III of Volume 1.

The GPSDOs are described as ‘all-in-view’, in the sense that each GPS
receiver sees the same set of GPS satellites. Each node employs a Motorola
M12þT GPS receiver with an antenna that gives visibility of up to 12 GPS
satellites simultaneously (Figure 8.9). These provide a 1 Hz reference at each node.
Hambly and Clark [30] reported measurements of the stability of examples of the
same M12þT receivers, showing that they provide relative time stability of 4.2 ns
rms over a 21.5 km baseline on a timescale of several days, which is more than
adequate for the NetRAD application.

The GPSDOs themselves are designed to be low cost, based on a 10 MHz
single-oven-controlled crystal oscillator (OCXO) clock reference, and built around
an active control system which tracks a 1 Hz PPS (pulse-per-second) signal
received from GPS. The measured phase discrepancy, between the 1 Hz and

Figure 8.8 One node of the NetRAD radar in its earliest configuration, with the
nodes connected via Ethernet cables

Sawtooth error
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Figure 8.9 Functional block diagram of the GPSDO unit [27]
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10-MHz signals, is sawtooth corrected and fed to the second-order infinite impulse
response loop filter. Averaging at this point may be useful for very stable Rubidium or
Caesium oscillators, updating at intervals of the order of a hundreds of seconds. The
filter output is then used to compensate for the measured error by fine steering of the
OCXO, inherently synchronizing the phase of the PPS signal with that of the oscillator.
Finally, the 10 MHz output is multiplied to 100 MHz by analogue frequency multi-
pliers and conditioned, to provide compatibility with the NetRAD radar [29].

The requirement for stability within this GPSDO system is extremely stringent,
since every nanosecond of jitter correspondingly produces about 15 cm monostatic
range jitter and 30 cm bistatic jitter. The operating bandwidth of the radar signal is
50 MHz, yielding a range resolution of 3 m, so the worst case tolerable timing jitter
is 20 (monostatic) and 10 ns (bistatic).

The measured maximum time interval error of the UCT GPSDOs is better than
7 ns with an Allan Deviation below 3.5 � 10�13 [29].

8.5.2 Atomic clock oscillators
Significant advances in recent years in the miniaturization and commercialization
of atomic clocks have enabled these devices to be obtained as commercial off-the-
shelf units. They provide higher precision than free running crystal-based oscilla-
tors as they exploit the hyperfine transitions of electrons in an excited alkali metal
vapour cloud, achieved by optically pumping the vapour cell and monitoring the
emitted photons through a highly sensitive photodiode. The reference clock is then
phase locked to an appropriate low frequency temperature-controlled crystal
oscillator, enabling the synthesis of an extremely precise reference frequency.

Atomic elements typically used to produce the appropriate frequency deter-
mination are Rubidium-87 and Caesium-110. Such atomic oscillators provide
phase noise figures of the order of �103 dBc/Hz @1 Hz offset [31] and are,
therefore, the prime choice for timing references and synchronization on satellites.

8.5.3 GPS-denied environments
For military operations, the availability of GPS signals cannot be guaranteed, since
an adversary may jam or otherwise prevent GPS reception. This would significantly
disrupt the operation of a coherent radar network (Figure 8.3).

There is however a partial solution to this issue, subject to the condition of
phase discrepancies acceptable by the radar over an extended length of time.
A frequency holdover system may be implemented, whereby measurements of
frequency settings are recorded periodically over time. In the absence of GPS
connectivity, the next appropriate frequency value is predicted based on the pre-
vious frequency samples. The limitation to this technique is that it involves the
approximation of non-linear behaviour and is influenced by unpredictable factors,
which could affect the developed model of frequency deviation.

Another solution proposed by Fisher and Raquet [32] involves the deployment
of ‘pseudolites’, which are air platforms equipped with high power transmitters
which broadcast time reference signals in much the same way as GPS.
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The advantages of such are that the systems should be immune to jamming inten-
ded for GPS communications, as they may operate at different frequencies. In
addition, the high transmit power may allow the signal to ‘burn through’ any low-
level jamming techniques within the local space.

8.5.4 White rabbit timing protocol
The White Rabbit (WR) protocol was developed by researchers at the CERN
European nuclear research facility [33] as an Open-Source, Open-Hardware
approach to meet the stringent timing requirements for coherent synchronization at
the Large Hadron Collider experiment site. It is based on the IEEE Precision Time
Protocol (IEEE 1558-2008), and provides 1 ps timing accuracy via a 1 Gigabit
Ethernet optical fibre data network. Inggs, Sandenbergh and Lewis at UCT, South
Africa, have investigated how this might be extended to synchronization of a radar
network, using RF or free-space optical links. In the specific case of NeXtRAD (the
X-band/L-band successor to NetRAD), they propose to discipline the GPSDO from a
WR PPS instead of the normal satellite PPS [34,35] (Figures 8.10 and 8.11).

Figure 8.10 NetRAD GPS and wireless link antennas. For this particular
experiment the nodes had been placed at different heights to give
vertical-plane bistatic operation, so the wireless link antenna points
slightly downwards
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They have built and evaluated a system based on a two-node WR network kit
supplied by Seven Solutions [36]. The test measurement uses the Dual Mixer Time
Difference technique [37], in which the two oscillators are downconverted using a
common local oscillator (Figure 8.12). The outputs of the two mixers each produce
a beat frequency, of the order of 1–100 Hz, and are compared using zero-crossing
detectors. This method provides a very sensitive way of measuring the time
difference between the zero crossings.

Figure 8.11 The GPSDO unit developed at the University of Cape Town (UCT)
provides a measured maximum time interval error (MTIE) of better
than 7 ns [29]
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Figure 8.12 Dual Mixer Time Difference (DMTD) measurement technique [37]
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Results are presented in [35] which show that a WR Disciplined Oscillator of
this kind has better performance than GPS synchronization, giving a measured
short-term Modified Allan Deviation of 1.61 � 10�11 at 1 s. This must be regarded
as very promising.

8.5.5 Multistatic mobile platforms
An expansion of these ideas to airborne platforms presents a substantial compli-
cation, in that the motion of the aircraft must also be compensated for, taking into
account the time of arrival of such synchronization signals and propagation delays
relative to the radar transmitter. As new radar systems are continually placing
more pressure on timing requirements, it is extremely challenging to achieve
coherence in a configuration like that considered even with modern day technol-
ogy; the number of factors involved and the complexity is substantial. However, the
development of alternative precision timing schemes, such as the WR architecture,
is a fertile area of research with applications to much more than just radar networks.

8.6 Summary

This chapter has described the concept of the intelligent, adaptive radar network.
Such a network is inherently more flexible, robust and potentially lower cost than
conventional single-platform monostatic radars. We can predict that the radars of the
future will therefore be distributed, intelligent, multistatic and spectrally efficient.

However, there are many open challenges, in respect of understanding and
exploiting bistatic operation, exploiting clutter diversity, geolocation and synchro-
nization and communication between nodes, and intelligent control of the network.
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Introductory remarks on tracking-
and fusion-driven

radar systems technology

Wolfgang Koch*

To fulfil their duties even in demanding environments as well as for being able to
protect themselves and others in an increasing number of applications, decision
makers acting on all levels of hierarchies need to be aware of complex and dyna-
mically changing overall situations. This comprises military missions as well as
remote sensing use cases and emerging topics such as autonomous driving, inserting
unmanned aircraft systems safely into the airspace, even automated industrial man-
ufacturing and many others areas where radar sensor are or will be playing a key
role. Situational awareness is not only the key to efficiently reaching certain goals of
action, however, but to reach them also in an acceptable and responsible way.

Radar, and radiofrequency sensors in a more general sense, have been in the
past, are currently, and will be in the foreseeable future the backbone sensing
option for producing reliable and comprehensive situation pictures, the pre-
requisites of achieving situational awareness.

Although radar is an established and mature sensor technology that is reliably
used in countless applications and available at all scales and for specialized purposes,
we are facing five overall technological trends that are profoundly transforming
radar and radiofrequency-sensing systems already for some time. They will be
increasingly important by the advent of even more powerful processing units,
broadband communication links, data-base systems, high-precision, robust naviga-
tion systems and mobile platform technologies in general, on the one hand, and
sophisticated mathematical algorithms on the other. We thus expect that the future
development will evolve according to the following five theses, which might be
questionable in themselves, of course, as all attempts of technology predictions.

1. The system design principles of future radar systems are changing towards a
predominant role of software in comparison to classical hardware components.

2. radar and radiofrequency sensors will be embedded in overall systems
of complementary and heterogeneous sensors on multiple mobile sensor
platforms.

*Fraunhofer FKIE, Germany



3. Multi-functionality in radar sensor design is and will be a predominant factor,
i.e. the shared use of sensing hardware to achieve specialized goals.

4. Emphasis will increasingly be placed on system security aspects. Besides
robustness to electronic countermeasures, this also comprises navigation and
cyber warfare.

5. Future radar systems will be inherently adaptive to specific scenario and mis-
sion requirements and will massively exploit external knowledge bases.

In summary, future radar and radiofrequency systems will provide not only kine-
matic measurements and classification spectra at high update rates with much
improved qualities in terms of accuracy, reliability, resolution, robustness, etc.,
but will also offer new types of classification attributes, mission-relevant environ-
mental information and complimentary information provided by other sensors
via sensor data fusion. Moreover, these rich informational sources for producing
real-time situation pictures will be collected by an optimized use of all available
sensing, communications and platform-related resources.

Figure 1 shows a schematic overview of a generic radar and radiofrequency
system that may possibly consist of multiple individual sensor sub-systems or
multifunctional sensor components on multiple platforms. The data and informa-
tion between human decision makers and the mission-related entities in their
respective environment basically flows in two directions. First, there is a flow while
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Figure 1 Schematic overview of a generic radar or radio frequency system with
its basic flows of information and various perception levels
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assessing data and information that is harvesting increasingly higher levels of
information with a more and more advanced informational content. It begins with
elementary sensor signals. The signal, data and information processing techniques
are typically rooting in mathematical statistics and combinatorial optimization for
solving the various data and information association problems involved [1].

A second flow of information, data and signals that is needed for resources
management and actively controlling the information acquisition processes begins
with the overarching, high-level mission goals and finally aims at choosing,
for example at the right time, the right waveform to be transmitted into the right
direction in order to optimize object detection, tracking and classification func-
tionalities. Quite expectedly, the information management flow is dominated by
advanced methods from statistical decision theory and mathematical game
theory.1

This two-fold flow of information, assessment and management is driven and
maintained by mathematical learning and reasoning algorithms. They may be col-
lected into three more general groups. In the first group, the focus is on adaptively
learning the features characterizing the sensing environment in order to adapt or to
optimize the sensing system appropriately to a dynamically changing sensing
environment. Second, algorithms are to be considered that sequentially provide the
elements for producing situation pictures, i.e. algorithms that are answering the
‘situation picture building question’: ‘What belongs where when in which way to
what?’ A third group of algorithms is required to predict the effect probably
achieved by a potential data acquisition decision. These provide the basis of any
type of radar resources management techniques.

As indicated in Figure 1, five different levels can be distinguished in the realm
of algorithms that are related to the so called JDL levels of information fusion in the
terms of the sensor data and information fusion community [2] or by the perception
levels according a more psychologically inspired approach, which is often referred
to as cognitive sensing [3]. The two levels primarily dealing with radar signals and
reports, i.e. the measurements, are addressed as ‘data levels’ and are typically
invisible to the user in a given application. The three remaining levels are repre-
senting information related to an individual objects, to several objects of interest
and their mutual interrelation, i.e. situational elements, and, finally, to the mission,
i.e. to a particular situation where human decision makers with their specific goals
play an active role, for example when multifunctional sensors, mobile sensor
platforms, or effectors and actuators need to be controlled.

On each perception level, the aspects of assessment, learning and reasoning, as
well as management are intimately interrelated to each other and essentially form
nested or multiple layer OODA loops: Observe, Orient, Decide, Act. In a different
wording, this overall principle has always been present in classical radar systems
design on the two data levels and is the model for the three information levels,
object, situation and mission, in the more comprehensive picture as well.

1See the chapters by Alexander Charlish in this handbook, for example.
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Figure 2 provides a schematic overview of selected assessment and manage-
ment algorithms on various perception levels in the context of the overall flow of
information. Among the data exploitation products of radar systems, object ‘tracks’
are of particular importance. ‘Tracking’ faces an omnipresent aspect in every real-
world application insofar as it is dealing with fusion of data produced at different
instants of time, i.e. tracking is important in all applications where particular
emphasis is placed on the fact that the radar reports to be exploited have the
character of a time series. Tracks thus represent currently available knowledge
on relevant, time-varying quantities characterizing the instantaneous ‘state’ of
individual objects or object groups of interest, such as aircraft, ships, vehicles, or
moving persons.

Quantitative measures that reliably describe the quality of this knowledge are
an integral part of a track. The information obtained by tracking algorithms also
includes the history of the objects considered. If possible, a one-to-one association
between the object trajectories in the radar sensors’ field of view and the produced
tracks is to be established and has to be preserved as long as possible (track
continuity).
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Figure 2 Schematic overview of selected assessment and management algorithms
on various perception levels in the context of the overall flow of
information
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The achievable track quality does not only depend on the performance of the
radar sensors used, but also on the individual objects properties and the operational
conditions within the scenario to be observed. If tracks ‘match’ with the underlying
real situation within the bounds defined by inherent quality measures being part of
them, we speak of ‘track consistency’. Quite generally, a tracking algorithm is
designed by answering a series of basic questions:

1. Which object properties are of interest? Define appropriate object state quan-
tities at varying time instants.

2. Which information is to be fused? Consider time series of radar measurements
and related context information.

3. How to describe imprecise information? Design certain functions of the object
state, such as probability density functions or more generalized versions of
them.

4. What does ‘learning’ from a time series of sensor reports mean? Iteratively
calculate these functions.

5. What is required for the learning process? Appropriate models of the radar
sensor and object evolution models.

6. How to initiate/terminate the learning procedure? Use sequential decision-
making procedures (implicitly, explicitly).

According to this admittedly very generic scheme, the tracking task has basically
to deal with two problems: First, solve the data association task, i.e. find those radar
reports belonging to the same object of interest. Second, apply state estimation
techniques that typically leading to solving non-linear estimation and filtering
problems. Many tracking algorithms make explicitly use of these distinctions, such
as the popular Probabilistic Data Association Filters and the various versions of
Multiple Hypothesis Tracking.2 More innovative approaches develop a unified
methodology (Probability Hypothesis Density and Multi-Bernoulli Filtering
approaches).

Active phased-array radar [4] is an example of a multifunctional sensor system
that requires sophisticated management algorithms for its efficient operation. Such
systems call for efficient exploitation of their degrees of freedom, which are vari-
able over a wide range and may be chosen individually for each track. This is
especially true in multiple object tracking tasks. Of special interest are air situations
with agile objects significantly differing in their radar cross sections. Unless
properly handled, such situations can be highly allocation time and energy
consuming.

In this context, advanced sensor and dynamics models for combined tracking
and radar management are discussed, i.e. control of data innovation intervals,
radar beam positioning and transmitted energy management. By efficiently
exploiting its limited resources, the total surveillance performance of such sensor
systems can be significantly improved. For track-while-scan radar systems
or operating modes, data acquisition and tracking are completely decoupled.

2See, e.g.: [1]. Chapter 3.
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For phased-array radar operated in an active tracking mode, however, the current
signal-to-noise ratio of the object (i.e. the detection probability) strongly depends
on the correct positioning of the pencil-beam, which is now taken into the
responsibility of the tracking system. Sensor control and data processing are thus
closely interrelated. This basically local character of the tracking process con-
stitutes the principal difference between phased-array and track-while-scan appli-
cations from a tracking point of view. By using suitable sensor and object evolution
models, however, this fact can be incorporated. The potential of this approach thus
also applies to phased-array radar.

A last remark is related the role of context information. The exploitation of
radar reports in decision-support systems critically depends on the quality of
appropriate context information as well as on the underlying algorithms that take
them into account. It seems reasonable to distinguish between physical context
information, derived from facts from engineering, environmental context infor-
mation, determined typically while operating the system, partially known context
information, often described by statistical models and even language-encoded
context information, such as certain limitations required by law or the underlying
rules of engagement.

In many cases, these categories of context information do not appear isolated
from each other. Radar models, for example combine physical and partially known
context for describing imprecise radar measurements with environmental context,
e.g. when a clutter background has to be estimated online. Another example for
language-encoded context information is a plan to be followed by certain objects of
interest in the course of time. A plan, i.e. a certain mode of expected motion,
comprises the description of geographical way-point coordinates to be passed at a
given instants of time via particular paths along with quantitative measures of
tolerance.

Often, radar signals and reports are referred to as ‘hard’ data, while observer
reports and context information are considered to be ‘soft’ pieces of information
[5]. Besides speaking of ‘hard’ and ‘soft’ data, one could also characterize the data
to be fused with respect to the time scale they are referring to. In this sense, we may
distinguish between ‘close-to-object evolution data’, where the informational
content of the data streaming in may change on a relatively short time scale, from
data with a more stable or slowly changing informational content.

The technological evolution is driven by algorithms for extracting high-value
information from sensor data streams of even poor quality. Due to the complexity
of the real-world phenomena to be observed, however, and their inherently
unpredictable nature, the role context information and its integration on various
levels in systems engineering are particularly crucial. In a sense, also legal and
moral constraints can be viewed as context information shaping the very design
of informational decision support systems, especially for public safety and
security [6].

In summary, modern and future radar and radio frequency sensors are and will
be the backbone of multi-functional, multiple sources, multiple platform sensing
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systems for supporting decision makers. Mission relevant radar-based sensing
systems

● have to be embedded into overarching information systems,
● have to profit from advanced communications links,
● have to be cyber-safe and resistant to electronic warfare,
● have to be integrated seamlessly into unmanned platforms,
● have to have intuitive human machine interfaces.
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Chapter 9

Posterior Cramér–Rao bounds for target
tracking

Marcel Hernandez*, Alfonso Farina** and Branko Ristic***

Abstract

In this chapter, we present a review of recent developments in the calculation of
estimation error performance bounds for target tracking. We concentrate on the
posterior Cramér–Rao bound (PCRB), which is computationally the simplest of a
general class of lower bounds. We present full details of an efficient recursive
formula for the PCRB for the general non-linear filtering problem, and of PCRB
methodologies in cluttered environments (i.e. in which there can be missed detec-
tions and spurious false measurements). In such environments, the measurement
origin uncertainty is shown to manifest itself as an information reduction factor that
degrades tracking performance according to the severity of the clutter. A tutorial of
the key PCRB methodologies in cluttered environments is provided, and via
simulations, PCRBs are calculated for a scenario in which a single target is tracked
using measurements generated by a stationary radar. The PCRBs are compared to
the performance of an extended Kalman filter, and the results demonstrate the
efficacy of the PCRB as an efficient theoretical predictor of the capability of the
tracker. We also present a discussion of applications that would benefit greatly
from the development of a PCRB methodology. These applications include sensor
scheduling in passive coherent location networks; and performance assessment of
algorithms designed for image fusion, data assimilation for meteorology/oceano-
graphy, simultaneous localization and mapping and quantum estimation.

9.1 Introduction

In this chapter, a review of recent developments in the calculation of mean square
error (MSE) tracker performance bounds is presented. In the context of target
tracking, performance bounds are a powerful tool, enabling one to quantify the

*Hernandez Technical Solutions Ltd, UK
**Selex ES (retired), Italy
***RMIT University, School of Engineering, Australia



optimal achievable accuracy of target state estimation. This provides a mechanism
for establishing the maximum degree by which sub-optimal filtering algorithms
could potentially be improved (e.g. [1]). Furthermore, by establishing the physical
performance limit, these bounds enable one to identify scenarios in which the
required tracking accuracy cannot be achieved without enhancements to the sensor
system (e.g. additional sensors, or upgrades to existing sensors). Tracker perfor-
mance bounds give long-run average MSE. They are dependent on the uncertainty
in the target motion, the accuracy of the available sensor measurements and the
clutter density. Critically, such bounds are independent of any particular scenario
realization (i.e. target trajectory and measurement sequence realization). As a
result, performance bounds can be pre-calculated without the requirement for
extensive simulation. Therefore, these bounds offer an invaluable tool both in
system design and in sensor management applications (e.g. see [2]).

There are a number of MSE performance bounds (e.g. see [3,4]), including the
Bhattacharya lower bound (BLB) [5], Weiss–Weinstein lower bound (WWLB) [6]
and Bobrovsky–Zakai lower bound (BZLB) [7]. However, the posterior Cramér–
Rao bound (PCRB) [8] is the most well-known MSE performance bound, primarily
because of its low computational complexity compared to the other bounds. Indeed,
there has been an explosion of interest in the PCRB in the last 15 years as a result of
the establishment of an efficient recursive formula for the bound for non-linear
filtering [9]. This chapter reviews recent developments in the calculation, and
exploitation, of PCRBs, with the emphasis on formulations of the bound in clut-
tered environments (in which there can be both missed detections and false alarms).
Details are provided of the different approaches in this case, all of which use an
‘information reduction factor’ (IRF) to scale the contribution of each measurement
according to the magnitude of the measurement origin uncertainty.

As a result of these recent developments, the PCRB provides an efficient
mechanism for predicting optimal system performance in many tracking applica-
tions. Indeed, the PCRB has been extensively used in the evaluation and compar-
ison of different system architectures and sensor configurations during the design
phase [10]. In time-critical applications, the PCRB has been used in automating the
deployment of passive sonobuoys in anti-submarine warfare [2,11]; controlling a
large network of bandwidth limited sensors in multi-target tracking (MTT) [12,13];
unmanned aerial vehicle trajectory planning in bearings-only tracking [2,14�16];
controlling a phased array radar in order to geo-locate anti-ship missiles [17];
selection of bistatic channels of multistatic radar systems [18], to name a few.

This chapter is organized as follows. Section 9.2 provides a review of
key developments in the calculation of the PCRB, together with brief details of
applications that have exploited the bound. In Section 9.3, the basic filtering
problem is defined, and details are provided of a general class of lower bounds that
includes as special cases the PCRB, BLB, WWLB and BZLB. In Section 9.4,
details are provided of the excellent paper of [9] that introduced an efficient
recursion for the PCRB, together with details of methodologies for calculating
the constituent matrices, and other related work. In Section 9.5, details are provided
of computationally efficient formulations of the PCRB in cluttered environments.
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In Section 9.6, simulation results are presented comparing the various PCRBs with
the performance of an extended Kalman filter (EKF) tracking methodology, for a
scenario with a single target and a stationary radar. In Section 9.7, a discussion
of potential avenues for further development of PCRBs is provided. Finally, a
summary of the chapter appears in Section 9.8.

9.2 Literature review

Target tracking involves exploiting sensor (e.g. radar) measurements in order to
form and maintain a track of each moving target in the surveillance volume. The
target tracking problem is so complex that tracking algorithms typically consist of
several layers of logic, including non-linear filtering, manoeuvre handling and data
association. Hence, despite its long history, research into the PCRB (also referred
to as the Bayesian Cramér–Rao bound) for target tracking has not resulted in a
universally applicable bound. Instead, the PCRB has been formulated only for
particular components of the target tracking problem, as discussed below.

Non-linear filtering is a problem of sequential state estimation of a single
stochastic dynamic system. The assumptions are (a) the dynamic system (i.e. the
target) is present throughout the observation interval; (b) the target (stochastic)
motion model does not change; and (c) all sequentially received measurements
originate from the target. The general formulation of the recursive PCRB for the
non-linear filtering problem has been formulated in [9], in which a Riccati-like
equation was determined. This was a seminal paper which resulted in application to
various target tracking modalities, such as bearings-only tracking (see [19], pages
103–152) and range-only tracking (see [19], pages 153–178), ballistic object
tracking [20], bistatic radar tracking [21] and Doppler-only target tracking [22].
Furthermore, the bound has been extended to distributed estimation [23], coloured
noise [24], quantized measurements [25] and extended target tracking [26].

Motivated by [9], in [27], the Markov property of the state transition equation
was again exploited to show that the BLB and BZLB are also given by Riccati-like
recursions, but with more complex constituent matrices in these cases. Moreover,
the authors of [27] also introduced a fully recursive form for the information sub-
matrix for the WWLB for the estimation of the current target state (see also [28]).

For tracking manoeuvring targets, clearly the assumption that the target
stochastic motion model does not change throughout the observation interval needs
to be relaxed. This was done by adopting Markovian model switching dynamics,
which results in a hybrid estimation problem where it is required to estimate
sequentially both the continuous-valued target state and the discrete-valued target
motion model. Direct application of the PCRB recursive formula for non-linear
filtering [9] would lead to differentiation of terms involving the discrete-valued
model variable. Since this cannot be done analytically, in one’s quest for the lower
bound, there are two options at one’s disposal. The first is to explore alternatives
to the Cramér–Rao bound, which are potentially applicable to hybrid system
estimation problem (e.g. BLB, WWLB and BZLB [29]). The difficulty with these
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bounds is that the derivations are extremely complex and their implementation is
quite involved.

The second option is to consider approximations to the PCRB for Markovian
switching systems. In [30], an approach was presented in which a conditional
PCRB was calculated by conditioning on the manoeuvre sequence. The uncondi-
tional PCRB was then determined as a weighted sum of these conditional bounds.
However, this formulation typically provides an overly optimistic lower bound,
because at each stage, one implicitly knows the sequence of manoeuvres that the
filtering algorithm is required to estimate.

In [31,32], the multi-modal prior target probability density function (PDF) of
the manoeuvring target was approximated by a best-fitting uni-modal Gaussian
(BFG) distribution. The key idea is to match the first two moments of the state
evolving according to the jump Markov system, with the first two moments of the
state evolving according to a linear/Gaussian uni-modal system. The Riccati-like
recursive formula of [9] was then applied to calculate an MSE performance mea-
sure. This measure is not a lower bound, because of the approximation involved.
Despite this, the performance measure is an accurate predictor of the steady-state
performance of state-of-the-art tracking algorithms, such as the interacting multiple
model filter [33]. Furthermore, the mean and covariance of the uni-modal BFG
distribution are given by an elegant recursive formula, allowing the BFG measure
to be calculated extremely efficiently.

This makes the approach of [31,32] invaluable in predicting system perfor-
mance in manoeuvring target scenarios. The BFG approach was later modified [34]
to match the transition mean and covariance matrix of the uni-modal system to
those of the jump Markov system. The resulting BFG performance measure is
computationally demanding but is generally lower than both the BFG measure of
[31,32], and the achievable estimation MSE. More recently, Svensson [35] pro-
posed estimating the PCRB for Markovian switching systems using a Monte Carlo
method. Surprisingly, the resulting bound is found to be even more optimistic than
the conditional PCRB [30] and therefore is not useful in practice.

Relaxation of the assumption that all sequentially received measurements for
target tracking originate from the (same) target introduces additional uncertainty
into the target tracking problem: the measurement origin uncertainty. This situation
is prevalent in radar systems with a probability of detection less than unity (i.e.
Pd < 1) and a probability of false alarm greater than zero (i.e. Pfa > 0). In such
cases, measurements in a typical scan may include false detections (due to clutter),
while the target originating detection may be missing. Efficient PCRB formulations
now exist for this case, as discussed next.

For example, for the problem with deterministic (i.e. not randomly evolving)
target dynamics, the measurement origin uncertainty was shown (in [36]) to man-
ifested itself as a constant IRF. This IRF scales the measurement contribution such
that the Cramér–Rao bound increases in magnitude (i.e. optimal performance is
degraded) as the environment becomes more cluttered (i.e. as the number of false
positives increases). The paper [37] (see also [38]) then derived a general expres-
sion for the PCRB for the linear filtering problem with randomly evolving target
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dynamical equations. The paper [39] extended [37] to provide a PCRB for the non-
linear filtering problem. The methodology detailed in the papers [37�39] is
referred to as the ‘IRF approach’. It is also noted that an IRF was determined earlier
in [40], to quantify the impact of measurement origin uncertainty on the perfor-
mance of probabilistic data association filters.

However, it has recently been shown that the IRF approach provides an opti-
mistic bound on tracker performance [41�43]. This is primarily because the IRF
approach does not take into account the exact sequence of missed detections, which
can have a considerable impact on performance, particularly during the early stages
of tracking. In [41], an enumeration approach was introduced for the case with
missed detections (i.e. Pd � 1) but no false alarms (i.e. Pfa ¼ 0). This enumeration
approach created a bound conditional on the sequence of detections and then cre-
ated an unconditional bound as a weighted average. It was then shown in [40] that
the enumeration bound was greater (i.e. tighter) than the IRF bound, and therefore
less optimistic.

The paper [43] generalized the enumeration bound of [41] to the case where
false alarms are possible (i.e. Pd � 1 and Pfa � 0) by introducing the ‘measurement
sequence conditioning’ (MSC) approach. The MSC approach created a bound
conditional on the number of measurements at each sampling time and then created
an unconditional bound as a weighted average (weighted by the probability of each
particular sequence occurring). It was then shown (again, see [43]) that the MSC
bound was also tighter (less optimistic) than the corresponding IRF bound.1

In simulations, it was then shown that differences between the two bounds are
greatest initially, when the impact of the actual measurement sequence is most
significant (again, see [43]).

In [44], the measurement existence sequence conditioning (MESC) approach
was introduced. This is similar to the MSC approach, but rather than condition on
the number of measurements, MESC conditions on at least one measurement
existing at each sampling time. In simulations, the resulting MESC bound was
shown to be almost identical to the MSC bound [44]. In the case with no false
alarms, it has recently been shown in [45�47] that a modified Riccati (MR)
equation provides an upper bound on the enumeration bound [39], but with a much
lower computational overhead2. In simulations, the MR equation was shown to
bound the enumeration PCRB reasonably tightly, making it an effective measure of
system performance. However, the MR equation cannot be guaranteed to provide a
bound on tracker performance and can only be applied in the case Pfa ¼ 0.

Multi-target formulations of the PCRB in the presence of measurement origin
uncertainty have also been studied, see for example [12,13]. This formulation
added the complexity of associating measurements across multiple targets, leading
to extremely complex expressions of the IRFs, which are then given by an infor-
mation reduction matrix [13]. The work of [12,13] builds on the PCRB recursion

1Which generalized the finding of [40] to the case in which Pfa � 0.
2The MR approach has a computational complexity similar to that of the IRF approach [37].
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for MTT first introduced in [48], which assumed a constant and known number of
targets during the observation period.

Attempts to formulate a theoretical error bound for multiple appearing/
disappearing targets in the presence of measurement origin uncertainty have been
more recently considered in the framework of random finite set (RFS) theory [49].
These error bounds at present can only be derived for a single time instance (i.e. no
recursive formulation exists). Also, since the targets can appear/disappear at any
time, the RFS bounds replace the MSE with the optimal sub-pattern assignment
error, which captures both the MSE and the error in the cardinality (i.e. the number
of targets).

The PCRB for MTT is much simpler to derive in the context of track-before-
detect (TBD) [50]. The main idea is to work with pre-detection (raw) sensor data
(e.g. range-azimuth-Doppler map). Assuming that the number of targets is known
and constant during the observation period, the PCRB for the MTT problem can be
solved using the non-linear filtering formulation of [9]; for details see [51,52]. The
motivation for TBD is its capacity to detect and track very low signal-to-noise ratio
(SNR) targets. Unfortunately, the PCRB cannot predict the well-known SNR
threshold effect in TBD; and the Barankin bound was studied for this purpose in [53].

9.3 Bayesian performance bounds

9.3.1 Discrete time estimation
Let Xk 2 Rnx denote the target state at discrete sampling time tk , k ¼ 0; 1; . . . . The
target state evolves according to a Markov process given as follows:
Xkþ1 ¼ fk Xk ;wkð Þ where fk :ð Þ is potentially a non-linear function of the target state
and wk is an independent and identically distributed (IID) process noise sequence.

Measurements Zk 2 Rnz are available at the discrete sampling times tk ,
k ¼ 1; 2; . . . . Each measurement is given as follows: Zk ¼ hk Xk ; �kð Þ, where hk :ð Þ is
also potentially a non-linear function of the target state and �k is also an IID mea-
surement noise sequence. The objective is to estimate the target state vector

X0:k ¼D X 0
0; . . .;X

0
k

� �0
at each sampling time k based on the sequence of measure-

ments Z1:k ¼D Z 0
1; . . .; Z

0
k

� �0
. The superscript 0 denotes the transpose operator.

9.3.2 General class of lower bounds
Let X̂ 0:k denote any unbiased estimator of X0:k , based on the sequence of
measurements Z1:k . Invoking the Cauchy–Schwarz inequality enables a general
class of MSE performance bounds for the non-linear estimation problem to be
determined. This class of lower bounds is given as follows [29]:

E X0:k � X̂ 0:k

� �

X0:k � X̂ 0:k

� �0h i

� V0:kJ�1
0:k V 0

0:k (9.1)

The inequality in (9.1) means that the difference is a non-negative definite matrix;
J0:k is referred to as the Fisher information matrix (FIM).
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The ðk þ 1Þnx � ðk þ 1Þnx matrices V0:k and J0:k are given by:

V0:k ¼ E X0:k �Y X0:k ; Z1:kð Þ0� �

(9.2)

J0:k ¼ E Y X0:k ; Z1:kð Þ �Y X0:k ; Z1:kð Þ0� �

(9.3)

The expectations are with respect to X0:k and Z1:k ; and Y X0:k ; Z1:kð Þ is a vector of
dimensionality ðk þ 1Þnx of real-valued, measurable functions that satisfy:

Z

X0:k

Y X0:k ; Z1:kð Þp X0:k ; Z1:kð ÞdX0:k ¼ 0 (9.4)

where p X0:k ; Z1:kð Þ denotes the joint PDF of X0:k and Z1:k

The vector function Y X0:k ; Z1:kð Þ defines the bound. For example, the general
BLB is obtained by setting Y X0:k ; Z1:kð Þ as follows (e.g. [27]):

Y X0:k ; Z1:kð Þ ¼
X

M

i¼1

ai

p X0:k ; Z1:kð Þr
i
X0:k

p X0:k ; Z1:kð Þ (9.5)

where ri
v ¼ @i=@vi

1; . . .; @
i=@vi

n

� �0
for a vector v ¼ v1; . . .; vn½ �0, i.e. ri

v, denotes the
ith-order partial derivative operator with respect to v. The parameter M is an arbi-
trary natural number, a1 ¼ 1 and ai ði > 1) are arbitrary real numbers. It can easily
be shown that for this choice of Y, (9.4) holds.

Of particular interest, the PCRB (e.g. [8]) is a special case of the BLB in which
M ¼ 1, i.e.:

Y X0:k ; Z1:kð Þ ¼ rX0:k p X0:k ; Z1:kð Þ
p X0:k ; Z1:kð Þ (9.6)

In this case, it can easily be shown that V0:k ¼ �Iðkþ1Þnx
, where Im denotes the

m-dimensional identity matrix. The PCRB is then given as follows:

E X0:k � X̂ 0:k

� �

X0:k � X̂ 0:k

� �0h i

� J�1
0:k (9.7)

where J0:k is given by:

J0:k ¼ E
rX0:k p X0:k ; Z1:kð Þ rX0:k p X0:k ; Z1:kð Þ½ �0

p X0:k ; Z1:kð Þ½ �2
" #

(9.8)

¼ E �DX0:k
X0:k

log p X0:k ; Z1:kð Þ
h i

(9.9)

D is a second-order partial differential operator, defined as follows: DQ
Y ¼ rYr0

Q.
In [29], a further class of vectors Y X0:k ; Z1:kð Þ satisfying (9.4) is introduced,

giving the multiple parameter WWLB. Furthermore, in [27], a general expression
for the multiple parameter BZLB is provided.
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In exemplar scenarios, the PCRB has been shown to be the least tight of the
performance bounds [27], although the result has not been proven in general.
However, the relative optimism of the PCRB is not surprising when one considers
the fact that the PCRB is a special case of the BLB and is also a limiting case
of the WWLB and BZLB. The BLB, WWLB and BZLB all contain free
parameters that can be optimized in order to make the bound as tight (i.e. large) as
possible.

However, of critical importance, the PCRB is computationally (by far) the
simplest of the performance bounds. This makes it an appealing measure of system
performance in time-critical sensor management applications, in which the ability
to quickly evaluate and compare sensor configurations is invaluable.

9.4 Posterior Cramér–Rao bound for non-linear filtering

9.4.1 General recursion
The limitation with each of the bounds in Section 9.3.2 is that the dimensionality of
the bound grows linearly as the sampling time k increases. As a result, the matrix
manipulations required in calculating each bound become increasingly complex
and must be re-calculated at every time step. However, in [9], the authors con-
sidered the general non-linear filtering problem and were interested only in the
PCRB for the estimation of the target state at time k, i.e.:

E Xk � X̂ k

� �

Xk � X̂ k

� �0h i

� J�1
k (9.10)

where J�1
k is the bottom right nx � nx block of the matrix J�1

0:k , with J0:k given
by (9.9).

In [9], the Markov property of the target state transition equation was exploited
in order to provide the following fixed dimensionality, Riccati-like recursion for
the sequence Jk :

Jk ¼ D33
k�1 � D12

k�1

� �0
Jk�1 þ D11

k�1

� ��1
D12

k�1 þ JZðkÞ (9.11)

where:

D11
k�1 ¼ EX0:k ;Z1:k �DXk�1

Xk�1
log p Xk jXk�1ð Þ

h i

(9.12)

D12
k�1 ¼ EX0:k ;Z1:k �DXk

Xk�1
log p Xk jXk�1ð Þ

h i

(9.13)

D33
k�1 ¼ EX0:k ;Z1:k �DXk

Xk
log p Xk jXk�1ð Þ

h i

(9.14)

JZðkÞ ¼ EX0:k ;Z1:k �DXk
Xk

log p Zk jXkð Þ
h i

(9.15)
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The Riccati-like recursion (9.11) generalizes the CRLB of [54] to non-deterministic
systems.

The initial FIM is given by:

J0 ¼ EX0 �DX0
X0

log p X0ð Þ
h i

(9.16)

It is typical to assume that the prior target distribution X0 is Gaussian with a large
covariance C0, reflecting limited (or no) knowledge of the initial target state. In
such cases, J0 ¼ C�1

0 .

9.4.2 Calculating the constituent matrices
9.4.2.1 Case 1: Exploiting target ground-truth data
Monte Carlo methods can be used to approximate the involved expectations given
in (9.12)–(9.15), with respect to the target states and measurements. However, these
methods require an ensemble of true target states and measurement sequences.
Sensor readings are often available from historical datasets, but true target states
may not be available, except in simulations (such as those presented in Section 9.6),
or in appropriately designed experiments (e.g. in which accurate GPS data are
available).

Nevertheless, if the true target state evolutions and measurement sequences are
available, (9.12)–(9.15) can be estimated as follows:

D11
k�1 � 1

N

X

N

i¼1

�DXk�1
Xk�1

log p X i
k X i

k�1

�

�

��

h i

(9.17)

D12
k�1 � 1

N

X

N

i¼1

�DXk
Xk�1

log p X i
k X i

k�1

�

�

��

h i

(9.18)

D33
k�1 � 1

N

X

N

i¼1

�DXk
Xk

log p X i
k X i

k�1

�

�

��

h i

(9.19)

JZðkÞ � 1
N

X

N

i¼1

�DXk
Xk

log p Zi
k X i

k

�

�

��

h i

(9.20)

where N denotes the number of true target state evolutions and corresponding
measurement sequences available; X i

k is the true target state at sampling time k in
the ith state evolution and Zi

k is the measurement generated at sampling time k for
the ith state evolution. Hence, the expectations in (9.12)–(9.15) are replaced with
values averaged over true target states evolutions and historical measurements.

9.4.2.2 Case 2: The case of hidden states – exploiting
historical sensor data

In many practical applications, the true target state data will be unavailable or
unmeasurable, and the approximations in (9.17)–(9.20) cannot be calculated. Such
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applications include surveillance operations of unknown (e.g. red-force) targets, or
when performing predictive sensor management.

However, historical sensor data are typically available. Recently, methodol-
ogies have been developed that exploit this historical sensor data in order to
estimate the hidden target state and then use this estimate to approximate the
expectations (9.12)–(9.15). In particular, in [55], the hidden target state was
estimated using either an EKF (e.g. [56]) or unscented Kalman filter (UKF) [57]
methodology, whereas in [58], a particle filter (PF) approach [59] was employed.
In each case, an accurate PCRB approximation was determined. It is noted that
the approach of [58] more readily applies itself to non-linear, non-Gaussian
applications, for which the PF approach does not require the linearisation per-
formed the EKF, or the assumption of Gaussianality inherent in both the EKF and
UKF approaches.

When using the PCRB as a mechanism for estimating future tracking perfor-
mance (e.g. when performing adaptive sensor management in order to optimize
tracking accuracy), there is a requirement to predict the future PCRB conditioned
on the measurements available up to the current time step. In [60], such a condi-
tional PCRB is determined, with matrices analogous to (9.12)–(9.15) determined
(in the absence of the true target states) via a sequential Monte Carlo (i.e. PF)
approach. The conditional PCRB of [60] can be calculated in real time and was
shown to be less optimistic (i.e. greater) than the unconditional PCRB of [9].
Following this, in [61], two alternative conditional bounds were proposed, which
were shown to be in close agreement with the conditional PCRB of [60]. The
approaches of [60,61] are similar in principle to the renewal strategy introduced in
[11], which restarts the unconditional PCRB [9] each time sensor scheduling is
performed, using the most recent target state estimate based on the measurements
generated up to that time.

9.4.3 Simplifications – Linear models and Gaussian noise
If fk :ð Þ is a linear function of Xk , with additive Gaussian distributed noise (i.e.
fkðXk ;wkÞ ¼ AkXk þ wk , where wk � Nð0;SkÞ), the calculation of the Dk matrices
is straightforward. Indeed, it can easily be shown that (e.g. [62]):

D11
k ¼ A0

kS
�1
k Ak (9.21)

D12
k ¼ �A0

kS
�1
k (9.22)

D33
k ¼ S�1

k (9.23)

In this case, substituting relations (9.21)–(9.23) into (9.11) and applying the matrix
inversion lemma gives:

Jk ¼ Sk�1 þ Ak�1J�1
k�1A0

k�1

� ��1 þ JZðkÞ (9.24)

Furthermore, if the measurement model is a linear function of the target state, with
additive Gaussian distributed measurement errors (i.e. hk Xk ; �kð Þ ¼ HkXk þ �k ,
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where �k � Nð0;RkÞ), it can easily be shown that:

JZðkÞ ¼ H 0
kR�1

k Hk (9.25)

which is independent of the true target state and measurement sequence
realizations.

It is noted that if the system and measurement models are linear, with additive
Gaussian noise, the Kalman filter is the minimum mean squared error estimator,
achieving the PCRB. Furthermore, in this case, calculation of the PCRB is inde-
pendent of the target state and measurement sequence realizations, making the
complications noted in Section 9.4.2 redundant.

9.5 Posterior Cramér–Rao bounds for non-linear filtering in
cluttered environments

9.5.1 Target generated measurements and false alarms
We consider the problem of tracking a single target in a cluttered environment, in
which there can be both missed detections and false alarms. Purely for notational
simplicity, analysis focuses on a single sensor scenario. The extension to multi-
sensor systems is straightforward provided that the sensors have independent
measurement processes (conditional on the target state). The key expressions in the
multi-sensor case are included for completeness.

The measurement model specified in [37] is used throughout. In this model,
there can be a maximum of one target generated measurement per sampling time,
which occurs with constant probability Pd . Each target generated measurement,
ZTG

k is a non-linear function of the target state, corrupted by white Gaussian
noise, i.e.:

ZTG
k ¼ hk Xkð Þ þ �k (9.26)

where � � N 0;Rkð Þ.
At each sampling time, the number of false alarm measurements has a

Poisson distribution with mean lV , where V denotes the volume of the surveillance
region A and l is the density of false alarms per unit volume. Each false
alarm measurement ZFA

k is uniformly distributed throughout the surveillance
region, i.e.:

ZFA
k ¼ uk (9.27)

where p ukð Þ ¼ 1=V for uk 2 A.
In the PCRB recursion (9.11), only the JZ :ð Þ matrix is dependent on the mea-

surement model, with the D-matrices dependent solely on the target dynamical
model. In the following sections, several different formulations of the PCRB are
presented in cluttered environments. These formulations differ in the way in which
they condition on the measurement sequence.
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9.5.2 Information reduction factor bound
9.5.2.1 General approach
The IRF PCRB is given by J�1

k , with the sequence of FIMs given by the recursion
(9.11), or by the recursion (9.24) if the target dynamics are linear. The measure-
ment contribution is calculated as follows [37�39]:

JZðkÞ ¼ Emk JZ k : mkð Þ½ � (9.28)

¼
X

1

mk¼1

p mkð ÞJZ k : mkð Þ (9.29)

where:

● mk is the number of measurements (each of dimensionality nz) generated
within a gated observation region3 at sampling time k; mk is a count of both
measurements generated by the target and false alarms.

● p mkð Þ is the probability that there are mk measurements in the gated observa-
tion region at sampling time k.

JZ k : mkð Þ is the measurement contribution at time k given that there are mk mea-
surements at that time. This is given as follows:

JZ k : mkð Þ ¼ EXk ;Zk rXk ln p Zk Xk ;mkj Þð � rXk ln p Zk Xk ;mkj Þð �0� ���

(9.30)

The measurement likelihood, p Zk jXk ;mkð Þ, is a mixture distribution, i.e. a mixture
of the PDFs of target generated measurements (given by (9.26)) and false alarm
measurements (given by (9.27)). This makes JZ k : mkð Þ difficult to calculate.
However, conditional on several unrestrictive assumptions (see the ‘Assumptions’
section overleaf ), and after significant calculations [39,43], it can be shown that:

JZ k : mkð Þ ¼ qk mkð ÞEXk H 0
kR�1

k Hk

� �

; for mk > 0 (9.31)

where qk mkð Þ 2 0; 1½ � is an IRF conditional on there being mk measurements at
sampling time k [43]; and Hk ¼ rXk hk Xkð Þ0� �0

is the Jacobian of the measurement
vector (of target generated measurements). Clearly, JZðk : 0Þ ¼ 0, i.e. there is no
contribution, if there are no measurements.

It is then straightforward to show that:

JZðkÞ ¼ qkEXk H 0
kR�1

k Hk

� �

(9.32)

3This region is an nz-dimensional hyper-cube centred on the ground-truth (i.e. errorless) measurement,
with edge lengths 2gs1; . . .; 2gsnz ; where si is the measurement error standard deviation of the ith
component of each measurement; nz is the dimensionality of each measurement; and g is a constant
(typically g ¼ 4). The gated observation region is analogous to the gated region used in performing data
association in filtering; and the hyper-cube design has appealing features when manipulating the
resulting multi-dimensional expectation for JZðk : mkÞ.
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where:

qk ¼
X

1

mk¼1

p mkð Þqk mkð Þ (9.33)

The parameter qk 2 0; 1½ � is the overall IRF [39]. The IRFs qk and qk mkð Þ (mk > 0)
are independent of the target state and quantify the effect of missed detections and
false alarms. If there is no clutter and there are no missed detections, then mk ¼ 1
and qk mkð Þ ¼ qk ¼ 1. In all other cases, qk mkð Þ and qk are less than unity; and, the
IRF reduces the measurement contribution (compared to the no clutter case) and
therefore increases the PCRB.

For completeness, in the ‘General expression’ section overleaf, (9.35) provides a
general expression for the IRF qk mkð Þ (taken from [43]). In the ‘Numerical
approximation’ section on page 277, (9.39) then provides a numerical approximation
of (9.35). Of particular note, if the measurement, clutter and detection models are
time invariant then so too is the IRF qk mkð Þ, which need then only be calculated
once (for each sensor). This calculation can be performed offline, enabling the PCRB
to be calculated efficiently, and implemented in real-time applications, e.g. [11].

An extension of the IRF approach also exists for the problem of tracking
multiple targets in cluttered environments [13]. The sequence of manipulations is
even more complex in that case, and the measurement origin uncertainty can be
shown to manifest itself as an information reduction matrix.

9.5.2.2 Calculation of the information reduction factors
Assumptions
In calculating the IRFs, the following unrestrictive assumptions are made (e.g. see
[2,43]).

1. There is a maximum of one target generated measurement per sampling time,
which occurs with probability Pd . Pd does not have to be constant (e.g. in [11]
the probability of detection was range dependent), but the IRF must be calcu-
lated for each potential value of Pd .

2. False alarm measurements are independent of the target state. It is also com-
monly assumed (e.g. see [37�39]) that the number of false alarms has a
Poisson distribution with rate l per unit volume of the observation region.
However, it is not necessary to use a Poisson distribution to model the number
of false alarms.

3. We only consider false alarms that fall in the gated observation region (given
in footnote 3) of volume Vg around the target (e.g. see (9.39) in [43]). The
gated observation region is analogous to the gated region used in performing
data association in filtering. The average number of false alarms considered per
sampling time is then given by lVg.

4. The error covariance of target generated measurements is a diagonal matrix,
i.e. is given by Rk ¼ diag ðs2

1; . . .; s2
nz
Þ. If this assumption does not hold an

information reduction matrix (rather than an IRF) quantifies the effect of the
measurement origin uncertainty.
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General expression
The IRFs, qk mkð Þ, are given as follows (e.g. see (9.54) in [43]):

qk 0ð Þ ¼ 0 (9.34)

qkðmÞ ¼ �ðmÞ2jRk jðm�2Þ=2

mV 2m�2
g ð2pÞnz
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(9.35)

for m > 0. The volume of the gated observation region is given by:

Vg ¼ ð2gÞnz
Y

nz

i¼1

si (9.36)

The parameter �ðmkÞ is the probability that one of the mk measurements is target
generated. This is given as follows:

� mkð Þ ¼ Pg
d

p mkð Þ
lVg

� �mk�1
exp �lVg

� �

mk � 1ð Þ! (9.37)

To remind the reader, p mkð Þ is the probability that there are mk observations in the
gated observation region. This is given as follows:

p mkð Þ ¼ 1 � Pg
d

� � lVg

� �mk exp �lVg

� �

mk !
þ Pg

d

lVg

� �mk�1
exp �lVg

� �

mk � 1ð Þ! (9.38)

Pg
d is the probability of obtaining a target generated measurement in the gated

observation region. Clearly, provided g is not small (and typically g � 4), then
Pg

d � Pd .
It is again noted that if the measurement, clutter and detection models are

time invariant then so too are the IRFs, qkðmkÞ, mk > 0, which then need only be
calculated once.
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Numerical approximation
A Monte Carlo approximation of (9.35) is given as follows (see (9.58) in [43]):

qk mkð Þ � ð2gÞnzmk �ðmkÞ2 Rkj j mk�2ð Þ=2

mkV 2mk�2
g ð2pÞnz

� 1
Np

X

Np

l¼1

U11 l½ �2exp �
X

nz

i¼1

U1i l½ �2
( )

1� � mkð Þð Þ
V mk

g
þ � mkð Þ

mkV mk�1
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞnz jRk j
p

X

mk

r¼1

exp �1
2

X

nz

j¼1

Urj l½ �2
( )" #

(9.39)

where Uij l½ �, i ¼ 1; . . .;mk ; j ¼ 1; . . .; nz; l ¼ 1; . . .;Np are Np IID random variables
drawn from a Uniform distribution on �g; g½ � (i.e. each Uij l½ � � U �g; g½ �).

In applications for which this numerical approximation is too computationally
expensive, analytical approximations, such as those presented in [40], may prove
invaluable.

9.5.2.3 Extension to multi-sensor systems
In the case of an Ns sensor system, with independent measurement processes at
each sensor, (9.32) generalizes to:

JZðkÞ ¼
X

Ns

i¼1

qi
kEXk Hi

k

� �0
Ri

k

� ��1
Hi

k

h i

(9.40)

where the superscript ‘i’ denotes the terms corresponding to sensor i.

9.5.3 Measurement sequence conditioning bound
9.5.3.1 General approach
Let m1:k denote the sequence comprising of the number of measurements available
at sampling times 1; . . .; k, i.e. m1:k ¼D m1; . . .;mkf g. The MSC approach [43] cre-
ates an MSE estimator performance bound as follows:

E X̂ k � Xk

� �

X̂ k � Xk

� �0h i

¼ Em1:k E X̂ k � Xk

� �

X̂ k � Xk

� �0
m1:kj �

h ih

(9.41)

� Em1:k J�1
k m1:kð Þ� �

(9.42)

¼
X

m1:k

Pr m1:kð Þ � J�1
k m1:kð Þ� �

(9.43)

¼D MSC PCRB (9.44)

Posterior Cramér–Rao bounds for target tracking 277



where Prðm1:kÞ is the probability of the sequence of measurements m1:k

occurring, i.e.:

Pr m1:kð Þ ¼
Y

k

i¼1

p mið Þ (9.45)

with pðmiÞ given by, e.g. (9.38). Jkðm1:kÞ is the FIM conditional on the measure-
ment sequence m1:k .

Conditioning on m1:k , and repeating the derivation of [9], the recursive formula
for the conditional FIM is given by:

Jk m1:kð Þ ¼ D33
k�1 � D12

k�1

� �0
Jk�1 m1:k�1ð Þ þ D11

k�1

� ��1
D12

k�1 þ JZ k : mkð Þ (9.46)

JZðk : mkÞ is again the measurement contribution at sampling time k given that
there are mk measurements at that time (see (9.30) and (9.31)). The initial FIM is
given by J0 ¼ C�1

0 irrespective of the sequence m1:k .
If the target dynamics are linear, then (9.46) can be simplified as follows

(see (9.24)):

Jk m1:kð Þ ¼ Sk�1 þ Ak�1Jk�1 m1:k�1ð Þ�1A0
k�1


 ��1
þ JZ k : mkð Þ (9.47)

The MSC approach generalizes the enumeration approach of [41] to the case in
which there are both false alarms and missed detections. To see this, if there are
no false alarms (i.e. l ¼ 0), then mk ¼ 0 or 1 and it can easily be shown that
qk 1ð Þ ¼ 1. Hence, the approach of conditioning on the measurement sequence
reduces to conditioning on the detection sequence, as in [41].

9.5.3.2 Extension to multi-sensor systems
To extend the MSC formulation to an Ns sensor system, m1:k is replaced with
M1:k ¼D M1; . . .;Mkf g in the recursions (9.46) and (9.47), where Mk ¼D

m1
k ; . . .;m

NS
k

� �

and mi
k denotes the number of measurements generated by sensor

i at sampling time k. The measurement contribution given by (9.31) then gen-
eralizes to:

JZ k : Mkð Þ ¼
X

Ns

i¼1

qi
k mi

k

� �

EXk Hi
k

� �0
Ri

k

� ��1
Hi

k

h i

(9.48)

Again, the superscript ‘i’ denotes the terms corresponding to sensor i.

9.5.4 Measurement existence sequence conditioning bound
The MESC approach [44] is similar in principle to the MSC approach [43], but
rather than condition on the number of measurements generated at each sampling
time, the MESC approach conditions on the existence of at least one measurement.
Therefore, instead of conditioning on m1:k , the MESC approach conditions on
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e1:k ¼D e1; . . .; ekf g where ek ¼ 1 if mk � 1 and ek ¼ 0 otherwise. The performance
bound is then given as follows:

MESC PCRB ¼D
X

e1:k

Pr e1:kð Þ � J�1
k e1:kð Þ� �

(9.49)

Repeating the derivation of the recursive formula (9.11), conditional this time on
e1:k , it can easily be shown that:

Jk e1:kð Þ ¼ D33
k�1 � D12

k�1

� �0
Jk�1 e1:k�1ð Þ þ D11

k�1

� ��1
D12

k�1 þ JZ k : ekð Þ (9.50)

Again, the measurement contribution is zero if there are no measurements, i.e.
JZðk : ek ¼ 0Þ ¼ 0. In the case ek ¼ 1, it can then be shown that [44]:

JZ k : ek ¼ 1ð Þ ¼ qk

Pr ek ¼ 1ð ÞEXk H 0
kR�1

k Hk

� �

(9.51)

where Prðek ¼ 1Þ ¼ 1 � p 0ð Þ½ �, with p 0ð Þ again given by, e.g. (9.38). The IRF, qk ,
is again as given in (9.33). Finally, if the target dynamics are linear, (9.50) can be
simplified as follows (see (9.24)):

Jk e1:kð Þ ¼ Sk�1 þ Ak�1Jk�1 e1:k�1ð Þ�1A0
k�1


 ��1
þ JZ k : ekð Þ (9.52)

The extension to multi-sensor systems is again straightforward but is omitted for
brevity.

9.5.5 Relationships between the performance bounds
The following relationships, proven in [44], hold between the three performance
bounds:

IRF PCRB � MESC PCRB � MSC PCRB; for all sampling times; k (9.53)

It is noted that IRF PCRB � MSC PCRB was first proven in [42] for the case
with no false alarms and later proven in [43] in the general case. It is also noted
that the inequalities (9.53) hold in general and are not reliant on the measurement
model prescribed in Section (5.1). Indeed, the proofs of the inequalities (9.53) are
reliant only on convexity of the matrix inversion operation and Jensen’s inequality
(e.g. see Appendix A in [42]).

There are three special cases that are worthy of consideration. These are as
follows:

● Case 1: There are no false alarms (i.e. l ¼ 0). In this case, mk ¼ ek ð¼ 0 or 1Þ
for all k and the MSC and MESC approaches give identical bounds, equal to
the enumeration bound of [41].

● Case 2: There are no missed detections (i.e. Pd ¼ 1). In this case, ek ¼ 1 for all
k, Prðek ¼ 1Þ ¼ 1 and the IRF and MESC approaches give identical bounds.
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● Case 3: There are no false alarms and no missed detections. In this case,
mk ¼ ek ¼ 1 for all k; and qk ¼ qk 1ð Þ ¼ 1. Clearly, in this case, all three
performance bounds are identical, with each giving the no-clutter PCRB.

The IRF PCRB is computationally the simplest of the three performance bounds
but does not consider the impact of the actual sequence of measurements (it simply
scales the measurement contribution by a constant factor at each sampling time).
However, the actual sequence of measurements can have a critical impact on
tracking performance, particularly after track formation, in which target state
uncertainty can be high. At such times, the IRF PCRB can be optimistic compared
to the MSC PCRB [42,43]. Differences between the two bounds are greatest when
the measurements are accurate and the initial target state uncertainty is large.

The MESC approach has the advantage that it can be enumerated exactly,
because there are precisely 2k existence sequences e1:k at each sampling time k. By
comparison, the MSC approach has an infinite number of potential measurement
sequences. Many of these sequences have an extremely low probability of occur-
rence and can be instantly discounted. However, in implementing both the MSC
and MESC approaches, the number of sequences that need to be considered is still
prohibitively large, even for relatively small values of k. A more scalable method
of estimating the MSC PCRB (or MESC PCRB) is to sample measurement (or
existence) sequences and determine the average value of the sequence dependent
bound (see Section VI in [43]). Although the MSC approach produces the tightest
performance bound, simulations have yielded insignificant differences between the
MESC and MSC bounds [44]. Furthermore, as the number of sampling times
increases, all three bounds converge to the same steady-state value [43,44].

9.6 Simulations

9.6.1 Scenario specification
We consider the problem of tracking a single target in a three-dimensional
Cartesian space. The target state is denoted by Xk ¼D xk _xk yk _yk zk _zk½ �0, where
notation is standard. The target motion in the x- and y- coordinate directions is
nearly constant velocity (NCV) (e.g. [56]), with the target having constant velocity
in the z-coordinate direction. The target state evolution is therefore given by:

Xkþ1 ¼ FkXk þ wk (9.54)

where wk � N 0;Skð Þ. The matrices Fk and Sk are given as follows:

Fk ¼ I3 
 1 T
0 1

� 

Sk ¼ ‘�

T3=3 T2=2 0 0 0 0
T2=2 T 0 0 0 0

0 0 T3=3 T2=2 0 0
0 0 T2=2 T 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

(9.55)
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The symbol 
 denotes the Kronecker product; ‘ is the ‘power spectral density’ of
the NCV motion and T is the time interval between successive measurements.

A single sensor, positioned at the origin, provides measurements of range (rk),
azimuth (qk) and elevation (fk). Each target generated measurement is therefore
given by:

ZTG
k ¼ ðrk qk fkÞ0 þ �k (9.56)

where:

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
k þ y2

k þ z2
k

q

(9.57)

qk ¼ tan�1 yk=xkð Þ (9.58)

fk ¼ tan�1 zk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
k þ y2

k

q

� 

(9.59)

The measurement error �k � Nð0;RkÞ, with covariance Rk ¼ diagðs2
r ; s2

q; s2
fÞ.

The parameters sr, sq and sf are the range, azimuth and elevation measurement
error standard deviations (SDs), respectively. The sensor has a field of view of
�p;p½ � in azimuth, and �p=2;p=2½ � in elevation. The maximum detection range is

50 km. The parameter settings used in the simulations are summarized in Table 9.1.

9.6.2 Tracking methodology
The tracking methodology has the following features:

1. Nearest neighbour data association is used to associate measurements to tracks,
using a gate of g ¼ 4 SDs.

2. Tracks are initialized based on ‘three-out-of-three’ logic, whereby measurements
on three successive scans that are not associated with an existing track must be
consistent with the potential trajectory of a target, allowing for a maximum
velocity of 2 km/s. [This velocity is significantly greater than the achievable
velocity of the target, but extensive analysis demonstrated that this value results in
timely initialization of the (true) target track, whilst creating very few false
tracks.]

Table 9.1 Target and sensor parameter settings used in the simulations

Parameter Value

Initial target state, X0 (20 km, �200 m/s, 20 km, 0 m/s, 1 km, 0 m/s)
Power spectral density, ‘ (of NCV motion) 30 m2/s3

Sensor location (stationary) (0 m, 0 m, 0 m)
Sampling interval, T 1 s (i.e. a sampling rate of 1 Hz)
Range measurement error SD, sr 50 m
Azimuth measurement error SD, sq 0.01 rad (�0.6�)
Elevation measurement error SD, sf 0.01 rad (�0.6�)
Target probability of detection, Pd 0.8, 0.9 or 1.0
False alarm rate (FAR), l 0.1 or 0.01 m�1 rad�2
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3. For each track that is formed, the initial target state estimate is determined
using ‘two-point’ initialization, based on the two most recent measurements.4

4. For each track, the prediction and update steps are performed using an EKF.
5. A track is deleted if no measurement is associated with it on any one of 10

successive scans or the estimated target velocity exceeds 4 km/s.

These are all standard tracker features, and the reader is referred to [56] for further
details.

9.6.3 Quantifying the performance of the tracker
The performance of the tracking algorithm is evaluated using 1,000 simulations,
each of duration 100 s. The initial target state, X0 for each trajectory is given in
Table 9.1, and each trajectory evolves according to the model (9.54). The 1,000
target trajectories are shown in Figure 9.1(a).

To reduce the influence of outliers, the 100a% worst runs (in terms of tracker
location root mean square error [RMSE]) are removed from the analysis.5 The tracker
location RMSE and velocity RMSE, at each sampling time, are then given as follows:

location RMSE at time k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1000ð1 � aÞ

X

1000ð1�aÞ

i¼1

xi
k � x̂i

k

� �2 þ yi
k � ŷi

k

� �2 þ zi
k � ẑi

k

� �2
n o

v

u

u

t (9.60)

velocity RMSE at time k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1000ð1 � aÞ

X

1000ð1�aÞ

i¼1

_xi
k � _̂xi

k

� �2 þ _yi
k � _̂yi

k

� �2 þ _zi
k � _̂zi

k

� �2
n o

v

u

u

t (9.61)

where ðx̂i
k ; _̂x

i
k ; ŷ

i
k ; _̂y

i
k ; ẑ

i
k ; _̂z

i
kÞ is the EKF target state estimate at sampling time k on

(the included) run number i; and the true target state at sampling time k for this run
is given by X i

k ¼D ðxi
k ; _x

i
k ; y

i
k ; _y

i
k ; z

i
k ; _z

i
kÞ.

In implementing the tracker, in order to keep the number of false alarm mea-
surements manageable, false alarms (occurring with rate l) are only considered in an
extended region around the true target location (rather than throughout the sensor
field of view).6

4That is, the location estimate is determined from the most recent measurement, with the velocity esti-
mated using the difference between the locations specified by the two most recent measurements. It is
straightforward to determine the error covariance of this initial estimate, using the measurement error
covariances associated with each measurement.
5In the simulations that follow, the 0.5% worst runs (i.e. 5 runs) are excluded from the RMSE
calculations.
6This extended region is [�250 m, �0.05 rad, �0.05 rad], in the [range, azimuth, elevation] measure-
ment space. This gives an average of 0.5 (when l ¼ 0:1) or 0.05 (when l ¼ 0:01) false alarm
measurements per sampling time.
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Figure 9.1 (a) The 1,000 target trajectories used in the simulations (red lines, the
starting location of each trajectory is shown by the triangle); also
shown is the sensor location (circle). (b) The MSC PCRB location
RMSE (red line), plotted against sampling time; also shown are the
1,000 conditional PCRBs used in calculating the bound (black lines).
(c) The MSC PCRB location RMSEs shown in the flat-Earth plane;
each ellipse gives a 50 standard deviation uncertainty region. In this
exemplar, Pd ¼ 0:8 and l ¼ 0:1
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At sampling times for which multiple tracks exist (as a result of tracks being
formed from false alarm measurements), the track closest to the true target location
(based on the Mahalanobis distance) is used in the analysis.

9.6.4 Calculating the posterior Cramér–Rao bounds
The IRF PCRB and the MSC PCRB are calculated. In the scenarios considered, the
MESC PCRB is indistinguishable from the MSC PCRB and is not shown.

9.6.4.1 Information reduction factor bound
The IRF PCRB is given by J�1

k , with the sequence of FIMs given by the recursion
(24). The measurement contribution at time k (see (9.32)) is estimated as follows:

JZðkÞ � qk

1000

X

1000

i¼1

HkðiÞ0R�1
k HkðiÞ (9.62)

In Table 9.2, the value of the overall IRF, qk , is shown for each parameter com-
bination considered.

Each IRF is calculated using the numerical approximation (9.39) of the
‘Numerical approximation’ section, using 100,000 samples; and the overall IRF is
given by (9.33).

It is noted that l ¼ 0:01 results in very few false alarms being generated
(i.e. an average of 0.0256 false alarms in the gated observation region per sampling
time). Hence, in this case, qk 1ð Þ � 1:0 and p 1ð Þ � 1:0, which gives qk � Pd .

HkðiÞ is the Jacobian of the measurement vector evaluated at sampling time k
for the ith target trajectory (i.e. HkðiÞ ¼ rXk ½hkðX i

kÞ0�). This Jacobian is given as
follows:

Hk ¼
xk=rk 0 yk=rk 0 zk=rk 0
�yk=d2

k 0 xk=d2
k 0 0 0

�xkzk=r2
k dk 0 �ykzk=r2

k dk 0 dk=r2
k 0

0

@

1

A (9.63)

where dk is the flat-Earth range, i.e. dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
k þ y2

k

q

.

Table 9.2 The overall IRF, qk, for each of the parameter
combinations considered

FAR, l Probability of detection, Pd Overall IRF, qk

0.1 0.8 0.74
’’ 0.9 0.85
’’ 1.0 0.97
0.01 0.8 0.80
’’ 0.9 0.90
’’ 1.0 1.00
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The PCRB is initialized with J0 ¼ C�1
0 , with the initial target state covariance

C0 given in Table 9.3. The value of the initial target state covariance is motivated
by the following:

1. The initial target location and velocity in the flat-Earth plane (i.e. x–y plane)
are highly uncertain.

2. Target altitude is more constrained, and the target is likely to have a relatively
low velocity in the vertical plane.

9.6.4.2 Measurement sequence conditioned bound
The MSC PCRB is estimated using 1,000 measurement sequences, mj

1:k ,
j ¼ 1; . . .; 1;000, i.e.:

MSC PCRB � 1
1;000

X

1;000

j¼1

J�1
k mj

1:k

� �

(9.64)

with Jkðmj
1:kÞ given by (9.47), and referred to as the ‘conditional PCRB’. Each

conditional PCRB is initialized with J0 ¼ C�1
0 .

The measurement contribution at time k given that there are mk measurements
at that time (see (9.31)) is estimated as follows:

JZ k : mkð Þ � qk mkð Þ
1;000

X

1;000

i¼1

HkðiÞ0R�1
k HkðiÞ (9.65)

In Figure 9.1(b), an example is provided showing 1,000 conditional PCRBs
and the resulting MSC PCRB for the scenario in which Pd ¼ 0:8 and l ¼ 0:1.
In Figure 9.1(c), a representation of the MSC PCRB in the flat-Earth plane is
shown. Following this, in Figure 9.2, the IRFs qkðmkÞ, mk ¼ 1; . . .; 5, are shown
for the parameter combinations considered (i.e. Pd ¼ 0:8; 0:9; 1:0; and
l ¼ 0:1; 0:01). Table 9.3 summarizes all of the parameters used in the PCRB
calculations.

Table 9.3 Parameter values used in the PCRB calculations

Parameter Value

Initial target state covariance, C0 diag 1010; 106; 1010; 106; 106; 102
� �

Number of target state evolutions, N (see Figure 9.1(a)) 1,000
Number of measurement sequences, mk (MSC

approach)
1,000

Number of samples in IRF approximations, Np 100,000
Gate standard deviations, g 4
Gate volume, Vg 2.56 m rad2

Average false alarms in the gated observation region,
lVg

0.256 (l¼ 0.1), 0.0256 (l ¼ 0:01)
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9.6.5 Simulation results
Simulations results are shown in Figures 9.3–9.6 and Table 9.4. To elaborate, in
Figure 9.3, the location and velocity RMSEs of the IRF PCRB, MSC PCRB and EKF
are shown, for l ¼ 0:1. The corresponding RMSEs for l ¼ 0:01 are shown in Fig-
ure 9.5. Figures 9.4 and 9.6 then show the percentage increases in the values of the
MSC PCRB and EKF RMSE over that of the IRF PCRB for l ¼ 0:1 and l ¼ 0:01,
respectively. A comparison of the algorithm runtimes is given in Table 9.4. It is noted
that l ¼ 0:01 results in very few false alarms (i.e. an average of 0.0256 false alarms
in the gated observation region per sampling time). As a result, the IRF and MSC
PCRBs are virtually unaffected by false alarms in this case.

The following observations are made:

1. Differences between the IRF PCRB and the MSC PCRB are greatest initially,
when the actual sequence of measurements can have a critical impact on
tracking performance.
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Figure 9.2 The IRF, qkðmkÞ, plotted against the number of measurements, mk, for
three Pd values and two l values. Key: red circles: Pd ¼ 0:8, blue
circles: Pd ¼ 0:9, green circles: Pd ¼ 1:0. Each IRF is calculated
using the numerical approximation (39) of the ‘Numerical
approximation’ section, using 100,000 samples
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2. The IRF PCRB and MSC PCRB converge to the same steady-state values as
the number of sampling times increases.

3. When the probability of detection is unity (i.e. Pd ¼ 1:0), there is always at
least one measurement per sampling time, and the IRF PCRB and MSC PCRB
are virtually identical at all sampling times.7

7This is likely to be generally true as a result of the following facts: (i) when Pd ¼ 1:0, the IRF
and MESC bounds are identical; (ii) the MESC and MSC bounds have been shown to be virtually
identical [44].
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Figure 9.3 Comparison between the PCRB RMSEs and tracker RMSEs for
l ¼ 0:1, and three different Pd values. Key: red lines: IRF PCRB
RMSE, blue lines: MSC PCRB RMSE, green lines: EKF RMSE. In
each case, the 0.5% worst performing runs are excluded from the
tracker RMSE calculations
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4. Differences between the PCRB RMSEs and EKF RMSEs are greatest
immediately following track formation, because of the difficulty in accurately
estimating the initial velocity of the target.

5. In the long-run, the EKF RMSE is consistently with 30% of the PCRB RMSEs,
with differences often much smaller (albeit with the 5 worst runs [i.e. 0.5% of
runs] excluded from the EKF RMSE calculations). Hence, as well as providing
an estimation accuracy bound, the PCRB is an accurate predictor of the long-
run performance of the tracking algorithm.
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Figure 9.4 Percentage increase in the value of the MSC PCRB RMSE over that of

the IRF PCRB RMSE (i.e. 100 � RMSEMSC�RMSEIRFð Þ
RMSEIRF

; blue lines); and the

percentage increase in the value of the EKF RMSE over that of the

IRF PCRB RMSE (i.e. 100 � RMSEEKF�RMSEIRFð Þ
RMSEIRF

; green lines). The

corresponding RMSE values are shown in Figure 9.3
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6. The PCRB and EKF RMSEs increase only very slightly as the FAR is
increased from 0.01 to 0.1. This is because even at the higher rate, the
prevalence of false alarms is still quite low.

7. The runtime of the MSC PCRB increases almost linearly with the number of
measurement sequences and is over 300 times greater than the runtime of the
IRF PCRB when 1,000 measurement sequence realizations are used.

8. The runtime of the tracker is highly dependent on the FAR, which has a critical
impact on the track initialization logic. Furthermore, higher FARs result in a
greater number of tracks being formed, which thereby increases the number of
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Figure 9.5 Comparison between the PCRB RMSEs and tracker RMSEs for
l ¼ 0:01, and three different Pd values. Key: red lines: IRF PCRB
RMSE, blue lines: MSC PCRB RMSE, green lines: EKF RMSE. In
each case, the 0.5% worst performing runs are excluded from the
tracker RMSE calculations
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parallel EKFs that have to be utilized. Consequently, even when the FAR is
low, the time required for the tracker to perform 1,000 simulations is over
20 times greater than that of the MSC PCRB approach; and over 7,000 times
greater than the runtime of the IRF PCRB approach.

Observations #2 and #7 highlight the fact that only in the early stages following
track initialization should the MSC PCRB be preferred to the IRF PCRB, because
of the increased computational overhead of the MSC approach.
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Figure 9.6 Percentage increase in the value of the MSC PCRB RMSE over that of

the IRF PCRB RMSE (i.e. 100 � RMSEMSC�RMSEIRFð Þ
RMSEIRF

; blue lines); and the

percentage increase in the value of the EKF RMSE over that of the

IRF PCRB RMSE (i.e. 100 � RMSEEKF�RMSEIRFð Þ
RMSEIRF

; green lines). The

corresponding RMSE values are shown in Figure 9.5
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Furthermore, observations #5 and #8 demonstrate the utility of using a PCRB
as a predictor of the performance of a tracker, particularly in sensor management
applications. The PCRB allows the (predicted) performance of different combina-
tions of sensors to be quickly evaluated, without the need to resort to computa-
tionally expense tracker Monte Carlo simulations.

The EKF run time is based on 1,000 simulations, each with 101 sampling
times. The MSC PCRB run-time is based on approximating the bound using 1,000
measurement sequences. All simulations were programmed in C and run on an
Intel� CoreTM i5-430M processor (2.26 GHz).

9.7 Further development of posterior Cramér–Rao bounds

9.7.1 Improvements in computational efficiency
Cluttered environment PCRB methodologies can be computationally expensive, as
a result of the requirement to sample a large number of measurement or existence
sequences [43,44]. However, there may be the potential to develop more compu-
tationally efficient bounds that have the bounding capability of the MSC [43] and
MESC [44] approaches.

Furthermore, the conditional PCRB (CPCRB)8 [60] would potentially be
invaluable for sensor management (e.g. [11]) and cognitive radar [63] applications.
However, additional work is required to express the CPCRB as a recursion without
the need to ‘restart’ the computation on each iteration. This would improve com-
putational efficiency and enable the CPCRB to be utilized in time-critical, multi-
step sensor management applications. These include multi-step sensor selection
problems for which the number of potential sensor combinations requiring eva-
luation is currently prohibitively large.

It is noted that the cluttered environment PCRB methodologies [43,44] and the
CPCRB approach [60] have the common need to condition, invert and average. The
order in which these computations are performed impacts on the ‘tightness’ of
the bound. There is then a trade-off between computational efficiency and tightness.

8The CPCRB is conditional on the measurements that have already been generated up to the current
sampling time.

Table 9.4 Runtime of each algorithm (in seconds), for each of
the parameter combinations considered

FAR, l Pd EKF MSC PCRB IRF PCRB

0.1 0.8 158 2.3 0.007
’’ 0.9 184 ’’ ’’
’’ 1.0 188 ’’ ’’
0.01 0.8 50 ’’ ’’
’’ 0.9 51 ’’ ’’
’’ 1.0 52 ’’ ’’
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9.7.2 Passive coherent location networks
9.7.2.1 General scenario
Consider the problem of optimizing the transmitter–receiver pairings in a passive
coherent location (PCL) network [64] in order to accurately track an evasive target
(e.g. see Figure 9.7).

For a bistatic system, there is a requirement to optimally select the transmitter–
receiver pair. For a multistatic system, the requirement is to associate a set of
transmitters to each receiver which will enable the target location to be estimated
via multi-lateration (e.g. [65]).

The tracking accuracy achievable by a PCL network is dependent on a number
of factors, including (but not limited to) the following:

1. The sampling rate (1=T Hz), probability of detection (Pd) and FAR (l).
2. The receiver (RX) and transmitter (TX) locations.
3. The bistatic ambiguity function of the received waveforms.
4. The accuracy of the range (i.e. sr), azimuth (i.e. sq) and elevation (i.e. sf)

measurements.
5. The target trajectory and manoeuvrability.
6. The signal-to-noise power ratio.

It is noted that a PCL network can also potentially exploit a wide spectrum of
‘waveforms of opportunity’, e.g. FM, DAB, DVB-T, LTE, GSM, UMTS, WiFi and
WiMax. This would enable the network to take advantage of the best properties of
each waveform in order to provide extended coverage and potentially improve
target detection/localization capability. For example, FM signals may provide early
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Figure 9.7 A PCL network. Transmitters of opportunity are shown by green
circles, and receivers are shown by blue circles. A target trajectory
(moving in a North-Westerly direction) is shown by the red line
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warning due to their long range capability. FM detections could then be used to cue
the DVB-T and DAB components of the passive receiver, which are able to provide
improved range resolution and extended elevation coverage.

9.7.2.2 Complicating factor – state-dependent measurement errors
The PCRB is well established as an invaluable tool for predicting the performance of
a network of sensors. The PCRB also depends on 1–6 and enables the accuracy of
target state estimation to be predicted without the need to resort to computationally
expensive Monte Carlo simulations. Exploiting the PCRB enables suitable selection
of either an RX/TX pair (for the bistatic case) or an RX/TX cluster (for the multi-
static case) to be performed in order to minimize estimation error. However, direct
application of the PCRB is not straightforward in this application, because the
measurement error SD can be a function of the transmitter–receiver-target geometry.

In Figure 9.8, this phenomenon is demonstrated for a bistatic system, with
co-planar transmitters, receiver and target (see Figure 9.8(a); this exemplar is taken
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Figure 9.8 An exemplar demonstrating how the sensor/target geometry can affect
sensor performance. (a) The sensor/target geometry: the target
trajectory is shown by the red line, with the target moving in a
Northerly direction at around 300 m/s; the receiver (RX) and
transmitter (TX1, TX2) locations are marked by circles. (b)–(d) The
range measurement error SD as a function of time; in (b), the receiver
is paired with receiver TX1; in (c), the receiver is paired with receiver
TX2; in (d), the transmitter is switched from TX1 to TX2 and back again
at the times indicated
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from slides 51–52 of [64]). When the target is close to the RX/TX1 baseline, the
range measurement error SD increases rapidly (i.e. between sampling times 60 and
108), as shown in Figure 9.8(b). The peak in the range measurement error SD is the
result of both the deterministic null in the detection probability and the de-focus of
the bistatic ambiguity function. The deterministic null in the receiver antenna
pattern is set in the direction of the transmitter in order to avoid directly receiving
the transmitter radiation, which would blind the receiver. However, the target tra-
jectory is such that the RX/TX2 pair is not prone to this effect (see Figure 9.8(c)).
Therefore, the range measurement error SD can be kept consistently low by tem-
porarily switching the transmitter from TX1 to TX2 as the target approaches the
RX/TX1 baseline (see Figure 9.8(d)).

Direct application of either the MSC or MESC PCRB approaches is proble-
matic in this case. This is because the state-dependent range measurement error SD
results in the volume of the gated observation region (see footnote 3), used in
generating measurement sequences, also being dependent on the target state.
Hence, the target state evolution cannot be decoupled from the generation of the
measurement sequences, with the result that the conditional FIM given in (9.46) is
dependent on the target state. A possible mechanism for resolving this problem is to
use the ‘path-dependent conditioning’ methodology introduced in Section III of
[66], which provides performance measures that are upper bounds on the PCRB.
Despite not being lower bounds, these measures can be accurate predictors of the
performance of the system. Application of the approach of [66] to PCL network
performance prediction is left for future work.

9.7.3 Image fusion
Multi-sensor image fusion typically requires images (e.g. from satellites) to be
combined that are generated at different frequencies, view angles and/or polariza-
tions. Furthermore, there is the potential for missed detections of objects of interest
(i.e. Pd < 1, particularly at low resolutions) and false alarms (i.e. l > 0), which can
occur at different rates in different imagery. The multi-scale Kalman filter (MKF)
[67] provides a valuable tool to optimally fuse such imagery and has found suc-
cessful applications in radar image fusion [68,69] and remote sensing [70].

There is an ongoing need to determine PCRBs to quantify the optimal per-
formance of image fusion algorithms in estimating the states of objects of interest.
Such bounds would need to take into account the changes in resolution, clutter
density and probability of detection that can occur in different imagery and would
be invaluable in assessing the performance of multi-scale estimation algorithms,
such as the MKF.

9.7.4 Data assimilation for meteorology/oceanography
Data assimilation, via the incorporation of noisy measurements into a computer
simulation of a real system (e.g. via an ensemble Kalman filter [71,72]), has wide
application in the estimation of various spatial–temporal variables (e.g. tempera-
ture, pressure, humidity, water-height) for weather forecasting and oceano-
graphic purposes. Forecasting typically utilizes partial differential equation (PDE)
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models and exploits sensors that can be prone to missed detections and/or false
alarms.

Therefore, there is the potential to exploit cluttered environment PCRB
approaches in order to quantify the performance of meteorological/oceanographic
forecasting algorithms, e.g. quantify spatial–temporal effects, and the impact of
missed detections and false alarms. In developing a PCRB methodology, there is a
need to account for the complex dynamic behaviour that can occur within
meteorological/oceanographic system, that is characterised via the PDEs models.

9.7.5 Simultaneous localization and mapping
Simultaneous localization and mapping (SLAM) (e.g. see [73,74]) consists of
jointly estimating the state of an autonomous agent and generating a map of the
surrounding environment via measurements generated by on-board sensors. SLAM
lies at the core of most remote sensing and GPS denied robotic navigation appli-
cations. In a sense, SLAM is a multi-object estimation problem analogous to MTT.
Both SLAM and MTT aim to detect/localize objects of interest, i.e. environmental
features/landmarks in the case of SLAM, non-cooperative targets in MTT.

To date, the PCRB has been developed for SLAM only in simplified scenarios
(see [75] and references therein). For example, in [75], a SLAM PCRB was
determined that assumed perfect data association and used an approximation that
required the process noise to be small. In developing a general PCRB methodology
for SLAM, it is necessary to take into account the usual sources of uncertainty (e.g.
measurement error), as well as the complex data association uncertainty that results
from the fact that it is not known whether each measurement is generated by an
established map feature, a new feature, or is clutter. Given the similarity to MTT,
there is therefore the potential to extend PCRB approaches developed for MTT
(e.g. [13,48]) in order to determine a PCRB methodology for SLAM.

9.7.6 Quantum estimation
Quantum estimation theory [76,77] is a reformulation of classical estimation theory
in quantum mechanical terms. In fact, classical statistical theory can be seen as a
special case of the more general quantum theory. Quantum estimation theory has
been exploited in a number of applications, including analogue communication via
quantum channels [78]. Furthermore, recently, a quantum Kalman filter (QKF)
methodology has been developed. Indeed, in [79], a QKF was developed in order to
perform parameter estimation for an optical, probe-laser system. There remains the
need to develop PCRBs for quantum applications in order to quantify the optimality
of the estimation algorithms that have been developed.

9.8 Summary

This chapter has presented a review of recent developments in the calculation of
mean squared error tracker performance bounds, with a strong emphasis on the
PCRB. In the last 15 years, there has been an explosion of interest in the PCRB,
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primarily as a result of the excellent paper [9], in which an efficient, fixed
dimensional recursive formula was derived. As a result, the PCRB can be calcu-
lated relatively easily, making it an appealing metric both for assessing tracking
algorithm optimality and in conducting predictive sensor resource management.

A review of recent developments provides details of PCRBs for non-linear
filtering, manoeuvring target tracking, cluttered environments (i.e. in which there
can be false alarms and missed detections) and MTT, as well as highlighting
applications in which the bound has been exploited. Following this, details are
provided of the recursive formula of [9] and of the PCRB approaches devised in
cluttered environments. In such environments, there is a need to resolve the
measurement origin uncertainty. This uncertainty is shown to manifest itself as an
IRF that degrades tracking performance according to severity of the environment.
A tutorial of the key PCRB approaches in cluttered environments [37,43,44] is
provided, giving details of all of the key equations necessary to calculate the bounds.

Via simulations, the PCRBs are calculated for a cluttered environment scenario
in which a single target is tracked using measurements generated by a stationary
radar. The PCRBs are compared to the performance of an EKF tracker, and results
demonstrate the utility of using the PCRB as a predictor of the estimation capability
of the tracker. Moreover, it is shown that the PCRB allows the potential perfor-
mance of the system to be efficiently evaluated, without the need to resort to
computationally expense tracker Monte Carlo simulations. This confirms the effi-
cacy of exploiting the PCRB in order to perform predictive sensor management.

This chapter also presents a discussion of applications that would benefit
greatly from the development of a PCRB methodology. These applications include
sensor scheduling in PCL networks, and performance assessment of algorithms
designed for image fusion, data assimilation for meteorology/oceanography,
SLAM and quantum estimation.
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Chapter 10

Tracking and fusion in log-spherical state space
with application to collision avoidance and

kinematic ranging

Dietrich Fränken1

Abstract

This chapter is devoted to a special state representation for target tracking.
The considered coordinates possess, in comparison with classical Cartesian ones,
distinct advantages in particular in applications where angles are the only mea-
surements available like, e.g. for jammed radar. In those applications, measure-
ments are not Cartesian-complete and the range of a moving object under track is
not observable unless the sensor platform performs manoeuvres.

This chapter presents basic relations and properties of log-spherical coordi-
nates. In particular, it is shown how those coordinates decouple the remaining
coordinates from the unobservable range in angular-only tracking. The chapter
discusses recursive filter algorithms and corresponding performance bounds. As an
application example, it uses data fusion in a collision avoidance system based on a
suite of sensors. The final topic is the so-called kinematic ranging, i.e. the extrac-
tion of range information from angular-only measurements by suitably chosen
manoeuvres of the sensor platform. Presentation in this chapter covers both math-
ematical derivations as well as numerical simulation results.

10.1 Introduction

When processing radar measurements in tracking and fusion applications, the mea-
surement space to be used depends on the underlying sensor technology. A modern
radar delivers range and usually also Doppler plus two angular measurements. For
mechanically steered antennas, those are azimuth and elevation (yielding in total
polar measurements). But, the angular measurements of electronically steered
phased array antennas are better modelled as sine angles. In any case, the state of the
target to be estimated is usually taken as Cartesian, and measurement updates are
either performed via pseudo-Cartesian converted measurements or using non-linear
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filtering techniques as, e.g. the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF) and its relatives (just to name a few).

Radar may be jammed by means of electronic counter-measures (cf. [1,2] and
the references cited therein). In such a case, it will fail to provide range information,
and its measurements will not be Cartesian-complete. Especially, if in this case
neither the platform carrying the radar nor the jammer perform any manoeuvres,
tracking in log-spherical coordinates (LSCs) becomes highly advantageous. They
effectively de-couple the observable (state) sub-space from the non-observable one,
and robust estimates of the observable quantities can be obtained. Tracking in LSCs
comes with further advantages if the complete state of the target is to be estimated
by means of own-ship manoeuvres, an approach commonly called kinematic
ranging.

From a measurement space point of view, passive optical sensors like electro-
optics or infrared are, after plot extraction, somewhat comparable to jammed radar.
Thus, kinematics estimation can be performed in the same fashion. Such a unified
tracking approach is of particular interest for systems equipped with a suite of
different sensors where each sensor might lack a different sub-space in its respec-
tive measurement set. A typical example is a collision avoidance system [3–6]
where a system like TCAS [7] alone may fail to provide (reliable) azimuth infor-
mation. Here, radar or optical sensors can provide valuable support.

10.2 Log-spherical coordinates

Throughout this chapter, the state to be tracked consists of the three-dimensional
(3D) position of the target of interest plus its corresponding 3D velocity. Therein,
positions as well as their spherical representations (ranges and angles) are con-
sidered in a Cartesian coordinate system with constant orientation. This is, e.g. an
east-north-up system, centred within and moving with the sensor platform. Velo-
cities and log-spherical rates are defined relative to that in a consistent manner.

Starting point on the way to LSCs is a spherical representation of the (relative)
position p with range r, bearing angle b (measured in mathematically positive
direction from the x-axis) and elevation angle e as depicted in Figure 10.1. With
unitary rotation matrices

BðbÞ ¼
cos b �sin b 0
sin b cos b 0

0 0 1

2

4

3

5 and EðeÞ ¼
cos e 0 �sin e

0 1 0
sin e 0 cos e

2

4

3

5 (10.1)

and the unit vector ux ¼ 1; 0; 0½ �T , this representation can be written as follows:

x ¼ r cos b cos e
y ¼ r sin b cos e
z ¼ r sin e

) p ¼
x
y
z

2

4

3

5 ¼ rBðbÞEðeÞux (10.2)

Differentiation with respect to time delivers, after some ordering of terms,

v ¼
vx

vy

vz

2

4

3

5 ¼
_x
_y
_z

2

4

3

5 ¼ rBðbÞEðeÞ
_r=r
w
_e

2

4

3

5 with w ¼ _b cos e (10.3)

304 Novel radar techniques and applications – volume 2



where w is the projected bearing rate. Tracking in log-spherical space is based on
the use of the logarithmic range and its rate (the normalized range rate), i.e.

r ¼ log
r

R

� �

with some normalizing range R ) _r ¼ _r

r

� �

(10.4)

as states. In addition, the angles b and e plus the rates w and _e are used. Herein, the
three rate components r, w and _e form an orthogonal basis for the coordinate system
of the (normalized) velocity. Its _r-axis is co-aligned with the line of sight from sensor
platform to tracked target. Compactly, the log-spherical state vector thus is composed
of q ¼ r; b; e½ �T and _q ¼ _r;w; _e½ �T . Here, brevity caused a slight abuse of notation as
_q is not the time derivative of q when it comes to its second component.

Benefits of using this particular set of state variables become apparent when a
constant velocity (CV) motion model is considered for both tracked target and
sensor platform. Let subscript 0 denote all quantities at some given time t0 and
subscript 1 all at some time t1 ¼ t0 þ T . Furthermore, introduce the abbreviation
b10 ¼ b1 � b0. Then, there always holds Bðb1Þ ¼ Bðb0ÞBðb10Þ while the CV
motion implies both v1 ¼ v0 and p1 ¼ p0 þ Tv0 to hold. In combination with the
equations above, one thus obtains as decisive propagation relation

r1Bðb10ÞEðe1Þux ¼ r0g10 with g10 ¼ Eðe0Þðux þ T _q0Þ (10.5)

This implies

r1 ¼ r0kg10k ) r1 ¼ r0 þ logðkg10kÞ
b10 ¼ arctan2ðw0T ; ½1 þ _r0T � cos e0 � _e0T sin e0Þ
e1 ¼ arcsin ð ½1 þ _r0T � sin e0 þ _e0T cos e0f g=kg10kÞ

(10.6)

with

kg10k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ _r0TÞ2 þ ðw0TÞ2 þ ð_e0TÞ2
q

(10.7)

Once b10 and e1 have been determined, the rates can be computed via

_q1 ¼ 1
kg10k

ET
1B

T
10E0 _q0 ) T _r1 ¼ 1 � 1 þ _r0T

kg10k2 (10.8)

where the latter implication is verified by some more detailed analysis.

vxT x

β
ε

p
z

vzT
vT vyT

y

Figure 10.1 Position p and velocity v in the reference coordinate system with
Cartesian components and spherical angles. There holds kpk ¼ r

Tracking and fusion in log-spherical state space 305



The propagation equations in LSCs reveal a high level of de-coupling for the
CV motion: The additive increments for logarithmic range and bearing as well as
the propagation equations for elevation and for all three rate components depend
neither on the range nor on the bearing of the tracked target. In addition to that,
both the additive increment for logarithmic range and the propagation equation for
the normalized range rate are independent of the elevation.

An additional level of de-coupling shows up for a modification of the reference
coordinate system. As indicated in Figure 10.2, the CV movement of the tracked-
target relative to the platform determines a plane. Unless the movement is zero or
heading directly either towards or away from the platform, this plane is uniquely
determined as going through the initial origin of the platform-oriented coordinate
system and possessing a normal vector n ¼ ðp0 � v0Þ=kp0 � v0k. Let ~r, ~b, ~e, _~r, ~w
and _~e denote the quantities of the state vector with respect to a rotated coordinate
system whose z-axis is co-aligned with n. Then, elevation ~e and elevation rate _~e will
be zero throughout, while (logarithmic) range and normalized range rate are not
affected by the rotation of the coordinate system. A formal replacement of each
variable � by ~� in (10.5) to (10.8) honouring ~e ¼ 0 and _~e ¼ 0 leads to the two-
dimensional (2D) log-polar propagation equations in the variables ~r ¼ r, ~b, _~r ¼ _r
and ~w. It turns out that the original rates w and _e are related to the effective bearing
rate ~w via w ¼ ~w cos J and _e ¼ ~w sin J with j~wj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ _e2
p

and some angle J.
A detailed analysis delivers, in accordance with the conservation law of the angular
momentum,

~w1 ¼ 1

kg10k2 ~w0 , r2
1 ~w1 ¼ r2

0 ~w0 (10.9)

as a final result. This shows that the propagation equation of the effective bearing
rate does not depend on the (original) elevation, neither.

10.3 Tracking with angular-only measurements

Among the many existing proposed approaches to tracking targets by means of
angular-only measurements, the application of LSCs often provides a very good

β0

ε0

v0T
p0

~p0

~v0~n

ω~

Figure 10.2 Motion plane with normal vector n defined by position p and velocity v
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compromise between computational implementation effort and accomplishable
estimation accuracy.

10.3.1 Filter principles
The field of state estimation and filtering in the context of tracking is vast and many
are the possible methods treated in the existing literature. To get an introductive
overview, the reader is referred to [8].

A large (although by far not the most general) class of state estimation pro-
blems can be described by dynamic state equations of the form xkþ1 ¼ f ðxkÞ þ vk

and measurement equations of the form yk ¼ hðxkÞ þ wk . Here, the additive so-
called process noise vk causes a stochastic deviation from the otherwise undisturbed
transition of the target state x from one time tk to another tkþ1. Similarly, the
otherwise undisturbed mapping from a target state to the measurement y is subject
to the additive stochastic measurement noise wk . The goal is to find for the state xk

the best possible estimate xkj‘ as well as the corresponding estimation error cov-
ariance matrix Pkj‘ based on all received measurements up to and including y‘.
Here, the functions f and h as well as the distributions of vk and wk have an impact
on the selection of a suitable estimation method. They are all assumed to be known
with sufficient precision.

A very simple case is that of linear equations with additive noise described by
xkþ1 ¼ Fxk þ vk and yk ¼ Hxk þ wk with vk and wk being zero-mean, (mutually)
white, state-independent and normally distributed with covariances Q and R, respec-
tively. Here, the best possible estimate is provided recursively by the Kalman filter
(KF) [9]. Its prediction equations read xkþ1jk ¼ Fxkjk and Pkþ1jk ¼ FPkjkFT þQ.
The update equations are given by the equations xkþ1jkþ1 ¼ xkþ1jk þ Kkdk and
Pkþ1jkþ1 ¼ Pkþ1jk � KkSkK

T
k with innovation dk ¼ yk �Hxkþ1jk , corresponding

error covariance Sk ¼ HPkþ1jkHT þ R and Kalman gain K k ¼ Pkþ1jkHTS�1
k .

If any of the two equations (state transition or measurement) is non-linear, the
KF cannot be applied as is any more. However, various approximative variants of it
have been developed for such cases, among which only the EKF is treated in the
upcoming sections of this chapter. It uses xkþ1jk ¼ f ðxkjkÞ for state prediction and
replaces in the covariance prediction F by the Jacobian of f , evaluated at the state
estimate xkjk prior to prediction. Within the update step of the EKF, the innovation
is computed as dk ¼ yk � hðxkþ1jkÞ. The Jacobian of h, evaluated at the predicted
state estimate xkþ1jk , replaces H in the computation of the innovation error cov-
ariance and the Kalman gain. These replacements boil down to a linearisation
with approximations of the form E f ðxÞ½ � � f ðE x½ �Þ and Var f ðxÞ½ � � F Var x½ �FT .
Herewith, it is in general not guaranteed that the computed state estimates are
unbiased and that the estimation error covariances as computed by the EKF match
their true counterparts. The mismatch may cause filter divergence, so a certain
caution is advised.

If required, deterministic sampling may be used to replace linearisation at any
place in the upcoming presentations. That method is applied in various filters like,
e.g. the UKF [10] or the Gauß filter [11]. It uses a deterministically selected set
of sample points xi and weights wi matching the mean E x½ � ¼ x ¼Pwixi and
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the variance Var x½ � ¼Pwiðxi � xÞðxi � xÞT (plus possibly higher-order
moments) and approximates E f ðxÞ½ � � f ¼Pwi f ðxiÞ as well as Var f ðxÞ½ � �
P

wið f ðxiÞ � f Þð f ðxiÞ � f ÞT . Deterministic sampling produces better estimation
results than linearisation in most cases.

When tracking, based on angular-only measurements, targets performing
(disturbed) CV (relative) movements, a Cartesian state representation would come
with a linear state transition but a non-linear measurement equation. For a state
representation in LSCs, the situation would be just reversed. Starting from this
latter alternative, a sub-division of the log-spherical propagation step into three
sub-steps leads to the following filter cycle:

1. Convert state and covariance from log-spherical to Cartesian space.
2. Perform KF propagation for state and covariance in Cartesian space.
3. Convert propagated state and covariance from Cartesian to log-spherical space.
4. Perform (E)KF update for state and covariance in log-spherical space.

This scheme combines in a straightforward manner the sub-division suggested by
the derivation of a 2D filter in modified-polar coordinates [12], the extension to
3D modified-spherical coordinates [13] and the replacement of the inverse range
of the modified coordinates by the logarithmic range for improved filter perfor-
mance like in 2D [14]. No time-costly numerical integration of continuous-time
stochastic differential equations as, e.g. in [15] is performed. The different steps of
the scheme are detailed next.

10.3.2 Filter update
For a state representation in LSCs according to xT ¼ qT ; _qT

� �

and measured
bearing and elevation, the measured quantities b and e are components of the state
vector. The measurement matrix can thus be chosen as H ¼ ½hb; he�T with
hT
b ¼ ½0; 1; 0; 0; 0; 0� and hT

e ¼ ½0; 0; 1; 0; 0; 0�. Herewith, the linear KF update is
trivial and can be performed by two sequential scalar updates if measurement errors
are mutually independent. The only smaller pitfall to be avoided is related to the
computation of the innovation. Care must be taken that the magnitude of the
innovation for the bearing component does not exceed p. But, that can always be
ensured by possible 2p-shifts.

A phased-array antenna, whose antenna plane coincides with the yz-plane as
shown in Figure 10.3, is commonly modelled to deliver, in addition to the range r,
the sine angles u and v as measurements (w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2 � v2
p

is not measured).
Measurement errors are assumed independent of each other and of the measured
values (cf. [16]). A jammed radar with such an antenna would only provide u and v.
This can be honoured in an EKF update as (omitting the subscript k þ 1jk
throughout for the sake of brevity)

hðxÞ ¼ u
v

	 


¼ sin b cos e
sin e

	 


)

HðxÞ ¼ @h

@x
¼ 0 cos b cos e �sin b sin e 0 0 0

0 0 cos e 0 0 0

	 
 (10.10)
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10.3.3 Filter propagation/prediction
As derived in Section 10.2, the state transition function f ðxÞ relating to a Cartesian
CV movement becomes highly non-linear in log-spherical space. Although the
corresponding Jacobians can be elaborated starting from (10.6) to (10.8), this ela-
boration is somewhat tedious and creates fairly lengthy results (cf. [17]). Moreover,
an additive process noise in this case comes with no clear physical meaning and
thus is not easy to quantify when tuning the filter. In Cartesian space, however, an
additive process noise can be both modelled with physical meaning and intuitively
quantified according to an assumed manoeuvrability of the targets to be tracked.

A conversion by linearisation in steps 1 and 3 of the filter cycle is straight-
forward. The corresponding mapping is directly applied to the estimated state,
while the covariance matrix P is multiplied from left and right by the Jacobian J of
the mapping, i.e. it becomes JPJT . As p depends on q only while v ¼ _p depends on
both q and _q, the Jacobians of both mappings are lower block-triagonal matrices.
With T ¼ Tðb; eÞ ¼ BðbÞEðeÞ, the Jacobian for getting to Cartesian from log-
spherical is composed of

Jpq ¼ @p

@q
¼ rT

1 0 0
0 cos e 0
0 0 1

2

4

3

5 Jp _q ¼ @p

@ _q
¼ 0

Jvq ¼ @v

@q
¼ rT

_r �w cos e �_e
w _r cos e� _e sin e 0
_e w sin e _r

2

4

3

5 J v _q ¼ @v

@ _q
¼ rT

(10.11)

while the Jacobian for the transformation to log-spherical from Cartesian contains

Jqp ¼ @q

@p
¼ 1

r

1 0 0
0 1=cos e 0
0 0 1

2

4

3

5TT Jqv ¼ @q

@v
¼ 0

Jqp ¼ @ _q

@p
¼ 1

r

� _r w _e
�w _e tan e� _r 0
�_e �w tan e � _r

2

4

3

5TT J _qv ¼ @ _q

@v
¼ 1

r
TT

(10.12)
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Figure 10.3 Sine angles u and v defined in relation to the antenna plane and its
associated normal direction
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State-transition matrix and process noise covariance in step 2 of the described filter
cycle are given by

F ¼ 1 T1
0 1

	 


and Q ¼ q

T3

3
1

T2

2
1

T2

2
1 T1

2

6

4

3

7

5

(10.13)

where 1 is the identity matrix of dimension three and q the noise level for an
assumed isotropic white acceleration superimposed on the CV movement.

Steps 1 to 3 of the filter cycle together define a nested function from
log-spherical to log-spherical for the state, the function f ðxÞ of Section 10.2. An
application of the chain rule of differentiation produces the aforementioned
corresponding Jacobian in the somewhat more compact form

J10 ¼ Jq1p1
0

J _q1p1
J _q1v1

	 


1 T1
0 1

	 


Jp0q0
0

Jv0q0
Jv0 _q0

	 


(10.14)

This Jacobian does not depend on range, because range therein only shows up as an
overall factor r0=r1 ¼ 1=kg10k. Without any process noise, linearisation yields
P1 ¼ J10P0J

T
10.

Angular-only measurements provide no range information at all for CV
movements, the range is not observable (also cf. Section 10.3.5). Still, any arbi-
trarily chosen initial range produces the correct state transition for all log-
spherical quantities except for the range itself where at least the range increment
is still the correct one (i.e. the filter produces over time in itself consistent albeit
usually not correct range estimates), and the same arbitrarily chosen initial range
produces the correct covariance transition for zero process noise. In contrast
to that, the chosen initial range does have an impact on filter output and
performance in case the process noise is non-zero. Q is effectively scaled by 1=r2

1
in log-spherical space:

P1 ¼ J10P0J
T
10 þ

Jq1p1
0

J _q1p1
J _q1v1

	 


Q
JT
q1p1

JT
_q1p1

0 JT
_q1v1

" #

(10.15)

Maximum (and possibly minimum) detection range of the sensor may help to
obtain a rough estimate of the initial range (see the next section). However, if the
thus determined initial filter range is still far larger than the true one, the process
noise will effectively be under-estimated and the filter will become too stiff. This
may finally lead to divergence. Vice versa, the smoothing effect of the filter is not
as pronounced as it could be in case the initial range is chosen way too small. For
improved estimation performance, a monitoring of innovation consistency may be
used either to steer a multiple-model filter or to adaptively adjust the scaling of the
process noise.

The key property of LSCs is given by the fact that they de-couple the propa-
gation equations from the unobservable range. It is worth to note that this is mainly
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caused by using the normalized range rate _r as state variable. The use of the
projected bearing rate w instead of the bearing rate _b induces a certain additional
de-coupling from elevation. It is a nice feature that the normalized range rate is the
time derivative of the logarithmic range (also cf. Section 10.3.5), but the choice of
the latter does not contribute to de-coupling at all. The inverse range 1=r, as has
been proposed for the 2D modified-polar filter [12], or even the range r itself
(in fact, any bijective function of r) would fulfil the same purpose. However, filters
based on the logarithmic range have been shown to often provide superior perfor-
mance when compared to the other ones. Unlike r and 1=r, r is not restricted to be
positive. No special measures must be taken due to possibly violated sign restric-
tions after filter update. Moreover, the values of r possess a similar order of
magnitude as the other state variables for a large scope of ranges. This significantly
reduces numerical problems when implementing the filter.

10.3.4 Filter initialization
For the initialization of a Cartesian KF with states position and velocity by means
of position-only measurements, the following approaches are most popular:

1. Initialize position by first measurement and velocity as zero with chosen initial
covariance (one-point initialization with prior).

2. Initialize position by second measurement, velocity by analytic solution of
state transition equation based on first two position measurements, compute
covariance accordingly (two-point differencing) [18].

3. Apply linear regression on multiple measurements to determine state
and covariance (multiple-point-initialization). Variant 2 is a special case of
this one.

For an initialization of log-spherical states with angular-only measurements, var-
iants 1 and often 3 are applicable up to the fact that the unobservable range requires
a prior in any case. With (at most) five observable states, no general analytic
solution as in variant 2 can be provided, the system of (at least) three equations is
over-determined.

10.3.4.1 One-point initialization with prior
Initially, measured bearing and elevation plus their measurement error variances
can be used un-alteredly to initialize the respective angular states and covariances of
the filter. For all remaining states, initial state estimates as well as covariances are
computed based on assumptions with respect to prior distributions [19].

The prior distribution for the (Cartesian) position is assumed to be diffuse.
Then, the detection of a target by a sensor with some minimum and maximum
detection range rmin and rmax generates a homogeneous density pðx; y; zÞ on a
spherical shell yielding

pðrÞ ¼ p0r2 ¼ r2

1=3ð Þðr3
max � r3

minÞ
for rmin � r � rmax (10.16)
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and pðrÞ ¼ 0 elsewhere. Consequently, the initial estimate of the logarithmic range
is taken as its expected value

r ¼ E r½ � ¼ p0

ðrmax

rmin

logðr=RÞr2dr ¼ r3
maxrmax � r3

minrmin

r3
max � r3

min

� 1
3

(10.17)

with rmin ¼ logðrmin=RÞ and rmax ¼ logðrmax=RÞ. The corresponding estimation
error variance can be computed to be

Var r½ � ¼
ðrmax

rmin

log2 r

R

� �

r2dr � r2 ¼ 1
9
� r3

maxr3
minðrmax � rminÞ2

ðr3
max � r3

minÞ2 (10.18)

In the limit of zero minimum detection range, the results obtained simplify to

E r½ � ¼ rmax �
1
3

and Var r½ � ¼ 1
9

(10.19)

This in particular means that the filter is initialized with slightly more than half the
maximum detection range according to rinitial ¼ expð�1=3Þrmax � 0:53rmax.

In order to derive corresponding expressions for the log-spherical rates, the
simplified case of a fixed platform is investigated first. Therein, an isotropic prior in
the Cartesian velocity with zero-mean and independent of position is chosen. In par-
ticular, E v½ � ¼ 0 and E vpT½ � ¼ 0 as well as E vvT½ � ¼ s2

vel1 are assumed to hold. From
_q ¼ 1=rð ÞTT ðb; eÞv, there follows E _q½ � ¼ E 1=rð ÞTTðb; eÞ� �

E v½ � ¼ 0 as well as

E _qqT
� � ¼ E

1
r
TTðb; eÞ E v½ �

|{z}

¼0

qT

2

6

4

3

7

5

¼ 0 (10.20)

and

E _q _qT
� � ¼ E

1
r2
TT ðb; eÞE vvT

� �

|fflfflffl{zfflfflffl}

¼s2
vel1

Tðb; eÞ

2

6

6

4

3

7

7

5

¼ E
1
r2

	 


s2
vel1 (10.21)

As there holds

E
1
r2

	 


¼ p0

ðrmax

rmin

1
r2

r2dr ¼ 3
rmax � rmin

r3
max � r3

min

(10.22)

the variances of the rate components read

Var _r½ � ¼ Var w½ � ¼ Var _e½ � ¼ 3s2
vel

rmax � rmin

r3
max � r3

min

!rmin!0 3s2
vel

r2
max

(10.23)

A non-zero own-ship velocity vown of the sensor platform requires modifications
of the derivations above. Just like the position, Cartesian velocity must be taken
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relative to the one of the sensor platform in order to get the desired de-coupling of
the remaining components from the range in LSCs. But, an assumption of a zero-
mean initial value only makes sense for a Cartesian velocity defined in a stationary
coordinate system that happens to have its origin in the platform position at initi-
alization time. However, a detailed analysis of the resulting priors starting from a
relative velocity v with expected value �vown and an isotropic variance matrix as
above is tedious. In context with the filter cycle considered, it may even yield an
unexpected outcome because the delivered velocity will be non-zero with respect to
the stationary coordinate system. This unwanted behaviour favours a heuristic and
much simpler approach to initialization:

1. Initialize q with prior logarithmic range r plus measured bearing bm;0 and

elevation em;0 and the covariance matrix as Var q½ � ¼ diag Var r½ �; s2
b; s

2
e

n o

.

2. Convert q and Var q½ � from log-spherical to Cartesian space.
3. Append initial velocity v ¼ �vown to state and Var v½ � ¼ s2

vel1 to covariance.
4. Continue with step 2 of the filter cycle.

For conversion via linearisation, this is the same as using initial rate components

_q0 ¼ �ETðem;0ÞBT ðbm;0Þ
vown

rinitial
with rinitial ¼ R expðrÞ (10.24)

and a covariance that, with the Jacobians given earlier on, can be condensed to read

P ¼
Var q½ � Var q½ �DT

DVar q½ � DVar q½ �DT þ s2
vel

r2
initial

1

2

4

3

5 with D ¼ J _qpJpq (10.25)

10.3.4.2 Multiple-point initialization with batch estimate
Based on measured values bm;i and em;i at times ti, optimal values b0, e0, _r0, w0 and
_e0 are sought assuming an undisturbed CV motion. But, the minimization of

X

i

ðbm;i � biÞ2

s2
b

þ ðem;i � eiÞ2

s2
e

 !

with
bi ¼ bðb0; e0; _r0;w0; _e0; ti; t0Þ
ei ¼ eðb0; e0; _r0;w0; _e0; ti; t0Þ (10.26)

states a non-linear least-squares (LS) problem without closed form solution.
Standard iterative methods for solving general non-linear LS problems can be
applied but may be costly with respect to computational implementation effort.
Moreover, it is not clear whether local optima exist for the concrete problem stated
here which would make the solution process even more demanding.

A still iterative, yet fairly simple approximative approach makes use of the
tilted plane shown in Figure 10.2 and consists of the following steps [19]:

1. Find an estimate of the normal vector n of the tilted plane.
2. Transform all values into the estimated tilted plane.
3. Set up non-linear equations based on a CV movement in that plane.
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4. Iteratively determine the LS solution of the resulting equations.
5. Transform the solution back from the tilted plane into the original coordinates.

As all true position vectors pi are orthogonal to n, all true unit-length direction
vectors wi ¼ ½ cos ðbiÞcos ðeiÞ; sin ðbiÞcos ðeiÞ; sin ðeiÞ�T must fulfil nTwi ¼ 0. An
LS estimate of n can thus be obtained from the measured unit vectors wm;i by
selecting it to yield, under the constraint knk ¼ 1,

min
n

X

i

nTwm;i

� 2

( )

¼ min
n

nTWn
� �

with W :¼
X

i

wm;iw
T
m;i (10.27)

Consequently, the estimate n in step 1 is chosen as a unit-length eigenvector
referring to the smallest eigenvalue of W .

With the true normal vector written as n ¼ ½cosðbÞcosðeÞ; sinðbÞcosðeÞ;
sinðeÞ�T , the unitary transformation matrix

U ¼
�cosðbÞsinðeÞ �sinðbÞ cosðbÞcosðeÞ
�sinðbÞsin ðeÞ cosðbÞ sinðbÞcosðeÞ

cosðeÞ 0 sinðeÞ

2

6

4

3

7

5

(10.28)

produces according to ~wi ¼ UTwi ¼ ½cosð~biÞ; sinð~biÞ; 0�T transformed unit vectors
with zero z-components. In step 2 of the batch estimator, the estimated n is used to
compute b and e and herewith U . The values ~wm;i ¼ UTwm;i ¼ ½~wx;i; ~wy;i; ~wz;i�T
then determine estimates for the tilted bearing angles via ~bi ¼ arctan2ð~wy;i; ~wx;iÞ.

The transition equation for any true tilted bearing angle can be deduced from

(10.6). It implies sinð~bi � ~b0Þð1 þ _r0TiÞ � cosð~bi � ~b0Þ~w0Ti ¼ 0 with Ti ¼ ti � t0.

That can be written as tTmi ¼ 0 with the vectors t ¼ ½c0; s0; c0 _r0; s0 _r0; c0~w0; s0~w0�T
and mi ¼ ½si;�ci; siTi;�ciTi;�ciTi;�siTi�T using the abbreviations ci ¼ cosð~biÞ
as well as si ¼ sinð~biÞ. Moreover, there must hold tTm ¼ 1 with

m ¼ ½c0; s0; 0; 0; 0; 0�T . Step 3 of the batch estimator computes from the measured
values vectors mm;i and mm. Herewith, t is defined as yielding the minimum of
P

iðtTmm;iÞ2 þ ðtTmm � 1Þ2 under the constraint c2
0 þ s2

0 ¼ 1 and honouring the
special structure of t.

In step 4 of the batch estimator, the minimization task is re-written to an
alternate form where t must, under the mentioned constraints, deliver

min
t

tTMt� 2tTmm þ 1
� �

with M :¼ mmm
T
m þ

X

i

mm;im
T
m;i (10.29)

For constrained minimization, LðlÞ:¼ tTMt � 2tTmm þ lð1 � c2
0 þ s2

0

� �Þ is used
as Lagrange function with multiplier l. It must be differentiated with respect to c0,
s0, _r0, ~w0 and l setting derivatives to zero (where the differentiation with respect to
l just yields the constraint). This results in a set of polynomial equations where a
closed-form solution is unknown. However, the pair ð _r0; ~w0Þ can be determined as
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a function of the pair ðc0; s0Þ and vice versa. This way, an iterative scheme can
be set up. Derivatives can compactly be written considering M decomposed into
ð2 � 2Þ-blocks M ij with M ji ¼ MT

ij and abbreviating a ¼ ½c0; s0�T , am ¼
½cm;0; sm;0�T and

AT ¼ 1 0 _r0 0 ~w0 0
0 1 0 _r0 0 ~w0

	 


(10.30)

Differentiation of LðlÞ with respect to _r0 and ~w0 yields

0¼! 1
2

@L

@ _r0; ~w0½ � ¼
0T aT 0T

0T 0T aT

	 


ðMt�mmÞ

¼ aTMT
12a aTM22a aTM23a

aTMT
13a aTMT

23a aTM33a

" # 1
_r0
~w0

2

4

3

5

(10.31)

which delivers _r0 and ~w0 for a given a. On the other hand, differentiation with
respect to c0 and s0 leads to

0¼! 1
2
@L

@aT
¼ ATMt� la� am , a ¼ �ðl1 � ATMAÞ�1am (10.32)

Computation of the inverse as quotient of adjoint and determinant plus successive
insertion into the constraint aTa ¼ 1 yields a fourth-order polynomial in the mul-
tiplier l. Once among the real roots of the polynomial that one minimizing LðlÞ has
been determined (for given _r0 and ~w0), a is known, too. Starting from initial value
am, a can be determined as fixed point of the mentioned iterative scheme. Con-
vergence appears to be quite fast and can be accelerated by commonly known
methods if necessary.

With estimates c0 and s0 as well as _r0 and ~w0 obtained, the final step of
the estimator transforms the results back from the tilted plane into the original
coordinate system. The estimated angles b0 and e0 are obtained from the vector

p0

r0
¼

cosðb0Þcosðe0Þ
sinðb0Þcosðe0Þ

sinðe0Þ

2

4

3

5 ¼ U
c0

s0

0

2

4

3

5 (10.33)

while the rates are computed via

_q0 ¼ ET ðe0ÞBT ðb0Þ
v0

r0
¼ ET ðe0ÞBTðb0ÞU

c0 _r0 � s0~w0

s0 _r0 þ c0~w0

0

2

4

3

5 (10.34)

An explicit expression for the expected squared estimation error of the presented
batch estimator is unknown. Only for certain geometries it seems to be justified to
let the filter report as error covariance the Cramér–Rao lower bound (CLRB) of the
upcoming section, evaluated at the estimates instead of the (unknown) true target
state. The estimator sometimes tends towards degraded performance, especially in
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cases of very large elevations and elevation rates. Here, the one-point initialization
with prior and successive updates often proves much more robust. Better
performance of one-point vs. multi-point initialization has also been reported for
Cartesian-complete position measurements [20].

10.3.5 Performance bounds and observability
When trying to predict the achievable estimation accuracy based on a set of noisy
measurements, the Fisher information matrix (FIM) plays a crucial role. It quan-
tifies the joint contribution of all measurements to the available information about
the originating state. The inverse of the FIM, if it exists, is the minimum estimation
error covariance that no unbiased estimator can undercut. This absolute perfor-
mance limit is called CLRB. For ease of presentation, zero-process noise is
assumed next when computing FIM and CRLB for non-stochastic states to be
estimated.

10.3.5.1 Fisher information and Cramér–Rao lower bound
For independent angular-only measurements and without prior knowledge, the FIM
at time tj based on some measurements received at times ti with i � j is given by

IðtjÞ ¼
X

i�j

1

s2
b
bijb

T
ij þ

1
s2
e
eije

T
ij

 !

with bT
ij ¼

@bi

@sj
and eT

ij ¼
@ei

@sj
(10.35)

Depending on the context within the following presentations, sj will be either the
full log-spherical state x or only the reduced one coming without range component,

i.e. sj ¼ ½ðrjÞ; bj; ej; _rj;wj; _ej�T . Furthermore, let ub ¼ ½ð0Þ; 1; 0; 0; 0; 0�T denote the

unit vector related to the b-component and ue ¼ ½ð0Þ; 0; 1; 0; 0; 0�T the one corre-

sponding to the e-component. Finally, define uy ¼ ½0; 1; 0�T and uz ¼ ½0; 0; 1�T .
For now, the full log-spherical state s ¼ x is considered, and a CV movement

is assumed. An application of the chain rule then yields the scaled information
vectors

@bi

@sj
¼ @bi

@si

@si

@sj
¼ uT

bJ ij and
@ei

@sj
¼ @ei

@si

@si

@sj
¼ uT

e J ij (10.36)

with Jacobians J ij in analogy to (10.14). In consequence, the scaled information
vectors are given by the second and the third row of the J ij or, equivalently, by

bT
ij

eT
ij

" #

¼ uT
y

uT
z

	 


Jqipi
Jpjqj

þ Tij Jvjqj

� �

; Tij
~J ij

h i

; ~J ij ¼ Jqipi
Jvj _q j

(10.37)

with Tij ¼ tj � ti. Their r-components read bT
ijux ¼ ðT iuyÞTpi=ðri cos eiÞ as well as

eT
ijux ¼ ðT iuzÞTpi=ri due to (10.11) and (10.12). Both are always zero in accordance

with the fact that there is no range-dependency in the transition equations.
As a result, the (logarithmic) range is not observable, the FIM for the full six-
dimensional state x is not invertible. But, if only the five-dimensional state
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s without range-component is considered, the ð5 � 5Þ-matrix IðtjÞ can be inverted
(for three or more measurement pairs obtained at distinct times) in most cases. If so,
the CRLB can be computed for both angles and all three rate components.

The exception to that is the case when the target is performing a strictly radial
movement (SRM), i.e. the target is moving with zero relative velocity or heading
directly either towards or away from the platform and thus seen by the sensor under
constant angles. Then, there holds w ¼ _b ¼ _e ¼ 0 as well as bi ¼ bj and ei ¼ ej.
Herewith, the matrix ~J ij simplifies to a diagonal matrix and the _r-components of
both information vectors bT

ij ¼ uT
y T ij

~J ijux and eT
ij ¼ uT

z Tij
~J ijux become zero, too.

Hence, the normalized range rate is not observable for an SRM. But, the CRLB for
the remaining states can be computed. Prior to inversion, row and column referring
to the non-observable _r-component in the FIM are to be omitted as well in order to
get the sought CRLB.

10.3.5.2 Pseudo-measurements of normalized range rate
For jammed radar, there exists an at least conceptually possible way to gain probably
missing information about the _r-component. It makes explicit use of the received
signal power. If the jammer emits with constant radiation power, the received power
will, under idealized conditions, be proportional to the inverse of the squared distance
at time of emittance. So, for two measured received powers S0 ¼ Sðt0Þ and S1 ¼ Sðt1Þ
emitted at corresponding distances r0 and r1, there holds S0=S1 ¼ ðr1=r0Þ2. That can
be used to compute logðS0=S1Þ=2 ¼ logðr1=r0Þ ¼ logðr1=RÞ � logðr0=RÞ. Now, the
normalized range rate is the time derivative of the logarithmic range. Therefore, the
approximation _r=r ¼ _r � Dr=Dt holds for sufficiently small Dt. In consequence,

_r :¼ 1
2

logðS0=S1Þ
t1 � t0

� _rðtÞ with t ¼ 1
2
ðt0 þ t1Þ (10.38)

provides a suitable pseudo-measurement of the normalized range rate. With some
normalizing power Sn, linear regression in logðS=SnÞ can be used to obtain
improved pseudo-measurements of _r based on batches of more than two power
measurements. Then, (half of) the slope of the best fitting (in the LS sense) line
determines _r. Several of those pseudo-measurements have uncorrelated errors
if the sets of power measurements used are disjoint. Like the angles bearing
and elevation, the normalized range rate is a component of the log-spherical state
vector. As before, a simple KF update is appropriate, and the additional information
contained in one such measurement can be computed via the scaled information
vector here being the fourth row of J ij.

In practice, the use of several shorter batches of a few power measurements
each should yield better estimation performance than an increasingly long batch
using all of them. Minor deviations of the tracked target from the CV movement are
inevitable, so the use of at least some small process noise covariance matrix in the
tracking filter is advised. Furthermore, a (at least almost) constant unknown factor
between received power and squared inverse range cannot be safely assumed for
too long-time intervals. Emitted power may fluctuate. And for targets not observed
under constant angles, the aspect angle of the sensor-to-jammer-geometry changes
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over time and herewith possibly the portion of emitted power being sent towards
the sensor (via the antenna-pattern of the jammer). A receiving phased-array
antenna with fixed orientation (electronically steered) will in addition vary in its
effective cross-section. A compensation of this effect is in principle possible but, as
it requires incorporating the angles, would introduce correlation. After all, the
quality of the pseudo-measurements tends to decrease for larger angular rates while
at the same time observability of the normalized range rate based on the angular
measurements alone becomes increasingly better. Eventually, it will be better to
refrain from incorporating the pseudo-measurements.

Deviations from the idealized free-space conditions will introduce further
errors. Atmospheric attenuation is one of the effects to discuss here. Commonly, a
constant attenuation per covered distance is assumed. When compared with the
power Sk received under idealized conditions, the actually received one is written
as S�

k ¼ expð�rk=rdÞSk with some damping constant rd. Therein, rd is known to
depend not only on radar frequency but also on air humidity and temperature. This
attenuation introduces a (deterministic) bias error on the pseudo-measurement that
becomes extremal for an SRM with constant radial velocity _r:

S�
k ¼ expð�rk=rdÞSk ) _r� � _r ¼ 1

2rd

r1 � r0

t1 � t0
!SRM _r

2rd
(10.39)

For example, an attenuation of 0:1 dB=km would yield rd ¼ 1 km=ð0:01 logð10ÞÞ
and thus approximately rd ¼ 43:5 km which in turn means about 2:3 � 10�3=s sys-
tematic error on the pseudo-measurement for a jammer approaching with 200 m=s.

If at all, the pseudo-measurements described here may be useful for airborne
radar. Surface-based radar can be expected to suffer much more from disturbing
reflections and thus, in particular, from fluctuations in the received signal power.

10.3.5.3 Prior information
The prior derived in Section 10.3.4.1 comes with a certain information contribu-
tion, too. To honour it within the FIM as considered in this chapter, the prior values
are treated like virtual measurements at initial time t0 with according variances
Var r½ � and Var _r½ � as in (10.18) and (10.23). With ur, u _r , uw and u_e defined in an
obvious way, the information matrix of (10.35) with dimension 6 � 6 is thus
increased by

IpðtjÞ ¼ JT
0j

1
Var r½ � uru

T
r þ 1

Var _r½ � u _ru
T
_r þ uwu

T
w þ u_eu

T
_e

� �

	 


J0j (10.40)

10.3.5.4 Sample scenario
Figure 10.4 compares tracking results with CRLBs for a scenario where a sensor
provided angular measurements with accuracies sb ¼ se ¼ 0:2 deg at sample time
T ¼ 1 s. It was mounted on a platform starting from initial position zero and
moving horizontally in pure x-direction with speed vown ¼ 200 m=s. Initial position
and velocity of the tracked target were pT

0 ¼ ½27250; 9150;�300� m with
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vT
0 ¼ �150; 10; 4�m=s½ . The described EKF in LSCs has been initialized with the

derived prior (for rmin ¼ 0 m, rmax ¼ 25 km and vmax ¼ 250 m=s). It has been run
assuming some small process noise q ¼ 10 m2=s3 for it.

Filter results are displayed as root mean square errors (RMSEs) obtained in
1,000 Monte-Carlo runs. For a while, filter performance is close to the CLRB being
computed with the prior contribution (10.40). Some initial deviation is caused by a
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Figure 10.4 Target states in log-spherical coordinates (left) as well as Cramer–
Rao lower bounds and filter root mean square errors (right) for a
passing target, measured angles only
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discrepancy between modelling assumption and simulation set-up for the prior. Later
on, the CRLB is not matched well any more due to the process noise matrix applied
when filtering. The non-observable range shows a consistent error induced by its prior
because it is always initialized with a value being smaller than the true initial one.

Finally, the figure also shows the results obtained with the batch estimator of
Section 10.3.4.2. Therein, up to the six (where available) most recently received
measurement pairs were honoured. The corresponding CRLB clearly indicates that
the level of observability of the normalized range rate decreases with increasing range.
A low observability shows up with an even increased RMSE for the batch estimator.

10.4 Collision avoidance

In collision avoidance applications, a sensor-equipped platform is to detect whether
an intruding target is going to collide with the platform. If so, the platform will
have to perform avoiding manoeuvres. Not only collision avoidance itself is a must,
it is commonly preceded with a phase in which much less abrupt separating man-
oeuvres are performed by the platform in order to keep a certain minimum distance
between intruder and own-ship. In order to do so, a prediction is necessary on how
close the intruder will ever get and at which time it will reach this crucial point.

In accordance with Figure 10.5, the position at the point of closest approach
must be orthogonal to the velocity of the intruder. In consequence, an evaluation of
the equation 0 ¼ vT

1 p1 ¼ vT
0 ðp0 þ Tcv0Þ delivers the time to the closest approach Tc,

the corresponding closest distance rc subsequently can be obtained from
rc=r0 ¼ kgck. It turns out that both results do not require knowledge about the full
set of quantities appearing in LSCs. With ~w2

0 ¼ w2
0 þ _e2

0, there holds

Tc ¼ � vT
0 p0

vT
0 v0

¼ � _r0

_r2
0 þ ~w2

0

and
rc

r0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~w2
0

_r2
0 þ ~w2

0

s

(10.41)
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Figure 10.5 Orthogonality condition for the point p1 of closest approach

320 Novel radar techniques and applications – volume 2



So, both the time to closest approach and the ratio closest over initial range can
be determined from the rates alone.

10.4.1 Sensor tracking
One key factor for a reliable and safe collision avoidance system is a suitably
selected sensor suite. A variety of sensors exist, each class has its own pros and
cons with respect to measurement accuracy, sensitivity to adverse weather condi-
tions, energy consumption, required space, costs etc. Moreover, some sensors
require cooperation and thus a certain equipment on the intruder’s side. A survey
on this matter can be found in [5], while Table 10.1 summarizes some facts detailed
in the upcoming sections.

10.4.1.1 Radar
Among the sensors considered here for collision avoidance, a modern 3D Doppler
radar probably is the most versatile one. It requires no cooperation of the intruder
and at the same time is the only one delivering a completely observable state
space.

The update with a pair of two independently measured angles has been dis-
cussed earlier on. A Doppler radar in addition measures range and range rate where,
due to the internal processing, usually some correlation occurs between their
measurement errors yielding a non-diagonal measurement error variance matrix
Rr_r . An EKF update with range and range rate in log-spherical state space can be
performed using

hðxÞ ¼ r
_r

	 


) HðxÞ ¼ @h

@x
¼ r

1 0
_r 1

	 


uT
r
uT
_r

	 


(10.42)

Without any prior information, two measurement sets (with or without) Doppler are
necessary and sufficient to obtain all six-state variables. The contribution of one
measurement pair ðri; _riÞ at time ti to the available information at time tj reads, with
the quantities above, I ri;_r iðtjÞ ¼ JT

ij HðxiÞ½ �TR�1
r;_r HðxiÞJ ij.

Table 10.1 Measured and observable states plus number of measurements
required to obtain the states for some non-cooperative and
cooperative sensors

Source Measured Observable Requ. Coop.

3D Doppler radar r, b, e, _r r, b, e, _r, w, _e 2 No
Optical without size b, e b, e, _r*, w, _e 3 No
Optical with size b, e, _r b, e, _r, w, _e 2 No
ACAS omni without altitude r r, _r, j~wj 3 Yes
ACAS omni with altitude r, z r, e, _r, jwj, _e 3 Yes

*Observable only if w2 þ _e2 > 0.
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10.4.1.2 Passive optical sensor
After object extraction, a passive optical sensor delivers as measurements in
particular the (pixel) position in a 2D image. With known sensor geometry, this
image position can be transformed into two angles, e.g. bearing and elevation.
Alternatively, the sine angles u and v can be considered an equivalent representa-
tion. Without any further information, the measured kinematic states are, although
often coming with much smaller errors, analogous to those of jammed radar. As
there, the (logarithmic) range is never observable for a CV movement while _r is
observable only if the intruder is neither on a collision course nor on an escape
course (thus not performing an SRM). The estimation of the five observable states
then requires three measurement pairs.

Again, missing information about the normalized range rate becomes available
by generating pseudo-measurements thereof [17]. The results of Figure 10.6, gen-
eralized to two optical dimensions, show that the extent of the intruder translates
into some area in the image plane that can be used instead of the received signal
power. While neither fluctuation in physical size of the intruder nor an atmospheric
attenuation play a role here, the influence of a changing aspect angle must be
considered for an optical sensor as well. A significantly changed aspect angle may
cause a complete change in the 2D projection of the rigid body. For intruders
detected to perform an (almost) SRM however, the aspect angle should not change
by any significant amount. Thus, the area in the image plane can be considered to
be inverse proportional to the square of the range. Then, the rest works like before
as long as pixel effects are small enough. Two measurement pairs of angles plus
two size measurements (yielding one pseudo-measurement of _r) suffice to compute
all five observable states.

10.4.1.3 ACAS or IFF with omnidirectional antenna
Consider a range-giving cooperative sensor with an antenna yielding only rough
direction measurements or none at all. Typical representatives would be an

r0

d w

w

e0
e1

r1

Focal plane
Lense plane

β

Optical axis

Figure 10.6 Schematic view of measured vs. physical size and influence of aspect
angle in top view (not to scale). For distance d between lense and
focal plane and an object of width w in distance r from the lense’s
centre seen under angle b, there holds e=d ¼ ðw cos bÞ=ðr cos bÞ ¼
w=r for the extent e in the focal plane

322 Novel radar techniques and applications – volume 2



air-collision avoidance system (ACAS) or an IFF (interrogation friend or foe)
interrogator with an omnidirectional antenna. In case both the sensor platform
and the intruder measure their respective barometric altitudes and the latter trans-
mits (e.g. via Mode C) its measured value to the former, a measurement of the
altitude difference between the two participants is available. This difference is the
z-component in the sensor’s local coordinate system as long as the distance is small
enough such that the Earth’s curvature can be ignored.

Both measurements of r and z possess mutually uncorrelated errors with
respective variances s2

r and s2
z , hence the error matrix is Rr;z ¼ diag s2

r ; s2
z

� �

.
Herewith, an EKF filter update would be based on

hðxÞ ¼ r
r sin e

	 


) HðxÞ ¼ @h

@x
¼ r

1 0
sin e cos e

	 


uT
r

uT
e

	 


(10.43)

An inspection of (10.6) reveals that bearing cannot be estimated if it is not mea-
sured. Based on the first and third equations alone, it is also impossible to tell
whether any increment in bearing is clockwise or counter clockwise. This is due to
the fact that bearing rate occurs as w2 only. But, because it does occur at all, at least
the magnitude of the bearing rate can be estimated. With the exception of bearing
and sign of bearing rate, all states are observable by three measurement pairs. Each
pair contributes I ri;ziðtjÞ ¼ JT

ij HðxiÞ½ �TR�1
r;z HðxiÞJ ij to the information.

In case no altitude difference is available, the tilt angle of the motion plane
with respect to the platform as shown in Figure 10.2 loses its observability and the
tracking problem becomes range-only tracking. 2D log-polar tracking should then
be used to estimate the remaining three observable states r, _r and j~wj based on the
scalar range measurements with hð~xÞ ¼ r ) Hð~xÞ ¼ r~uT

r and accordingly deter-
mined information contributions.

10.4.2 Track fusion
Like in all fusion systems, several general architecture approaches exist for systems
used in airborne collision avoidance. A hierarchical structure as depicted in
Figure 10.7 is often chosen. Herewith, data-association and kinematics estimation
can run on sensor level, individually adapted to the different update rates of the
sensors and making use of the underlying nature and specific features of the data.

Radar tracker

Optical tracker

ACAS tracker

Track to track
association

and
track fusion

Tracks

Tracks
(Feedback)

Tracks
(Feedback)

(Feedback)

Figure 10.7 Simple hierarchical fusion scheme with sensor tracking, track-to-
track association and fusion plus optional feedback

Tracking and fusion in log-spherical state space 323



For example, electro-optical (EO) sensors can be expected to deliver individual
measurements at high data rates. Feature-based data-association in high-rate ima-
ges compensated for ego-motion in general is significantly easier than for radar
usually coming with larger scan times and fewer features. In cooperative equip-
ment, data association should be almost trivial as the intruder identifies itself.
Feedback of existence information from the fusion centre to the sensor level
tracking systems may be used to help track initiation or to avoid premature track
drops in case of low detection probabilities.

In the fusion centre, the labelled sensor tracks undergo a track-to-track data
association. Therein, the non-observability of certain states must and can be hon-
oured in an appropriate fashion, e.g. for association of tracks based on passive
optical measurements including size with ACAS/IFF based on range and altitude
difference (without measured bearing), the quantities e, _r, jwj and _e can be eval-
uated. In case ACAS/IFF here has no elevation information, _r and j~wj vs.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ _e2
p

remain as suitable variables to evaluate for matching.
Likewise, (non-)observability of sub-spaces influences the computation of

joint estimates. This can be handled in an elegant manner by applying convex
combination (CC) [21], an information-based fusion scheme. For two estimates x1

and x2 (the index here indicating the data source rather than the time) and corre-
sponding error covariances P1 and P2, the information matrices I1 ¼ P�1

1 and
I2 ¼ P�1

2 as well as information vectors i1 ¼ I1x1 and i2 ¼ I2x2 are computed.
Subsequently, the information is added up according to i ¼ i1 þ i2 and I ¼ I1 þ I2

before computing for the joint estimate x ¼ Pi with P ¼ I�1. Computation of
information from state and covariance uses observable states only, missing infor-
mation is then accounted for by using zero values to extend information vector and
matrix to the dimension needed for addition. Despite its apparent simplicity, some
care about details is necessary when applying information-based fusion in log-
spherical state space. As in Section 10.3.2, one must avoid differences between
bearings that exceed p in magnitude by according adjustments prior to conversion
from state to information space. Values like, e.g. the elevation may be missing in
one estimate (say in x1) yet would be needed for transformation. If provided by
the other estimate (then x2), they safely can be taken from there for transforming
the incomplete estimate as long as the information contribution is set to zero in the
corresponding information matrix (here I1Þ.

Information-based fusion by CC assumes uncorrelatedness between the esti-
mation errors of the individual estimates that are fused. A common prior destroys
this independence as well as common process noise does, but those effects usually
are only marginal in collision avoidance applications. However, relevant correla-
tion will occur if the feedback indicated in Figure 10.7 is not limited to existence
indications, but rather encompasses kinematic information actually being used to
update the estimates in the tracker. In this case, covariance intersection (CI) can be
used to ensure conservative fused estimates [22]. These are always consistent in the
sense that the actual mean squared estimation error never exceeds the covariance
reported (as long as individual estimates have been consistent). Just like CC, CI
is information-based, but rather uses i ¼ w1i1 þ w2i2 and I ¼ w1I1 þ w2I2 to
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compute the fused information with some non-negative weights w1 and w2

summing up to one. The weights can be selected according to some optimization
criterion or as w1 ¼ ðdet I1 þ I2½ � þ det I1½ � � det I2½ �Þ=ð2det I1 þ I2½ �Þ and w2 ¼
ðdet I1 þ I2½ � þ det I2½ � � det I1½ �Þ=ð2det I1 þ I2½ �Þ. The latter choice requires no
numerical optimization and yields good estimation results especially if correlation
happens to be low [23], weights simplify to 1=2 each in case that both individual
estimates deliver incomplete information but the combined information is
complete.

10.4.3 Performance bounds
Figure 10.8 depicts as performance bounds the CRLBs for different sensor suites based
on a platform moving as in Section 10.3.5.4. At pT

0 ¼ ½31250;�850;�300� m, the
intruder started with vT

0 ¼ �150; 10; 4�m=s½ and thus came as close to the platform as
about 370 m. An update interval of T ¼ 1 s was used for all sensors for simplicity,
accuracies for EO were sb ¼ se ¼ 0:2 deg, radar had sr ¼ 20 m and s_r ¼ 2 m=s
with correlation factor 0:3 as well as sb ¼ se ¼ 0:5 deg while sr ¼ 15 m and
sz ¼ 30 m were used for ACAS.

All CRLBs have been computed without prior information. In accordance with
the respective non-observability, no values are shown for the range of the EO and
the bearing of the ACAS. The normalized range rate of the EO and the projected
bearing rate of the ACAS are only weakly observable at larger distances and thus
the corresponding bounds start from very high values. In the vicinity of the point of
closest approach the ACAS shows, not surprisingly, weak elevation and hence also
elevation rate performance. Due to the sudden change in platform-to-intruder
geometry, also the remaining components are affected by this as are those for the
other sensors.

As an example for the increased estimation accuracy achievable by fusion of
data in a mixed sensor set-up, the combination radar/EO is considered in the figure.
As indicated by the CRLBs, it is expected that this combination can yield better
performance than each of the individual sensors alone.

10.5 Kinematic ranging

With the set-up of the four-step filter cycle of Section 10.3, the task of kinematic
ranging with angular-only measurements can also be fulfilled. Herein, the platform
performs suitable manoeuvres in order to gain the otherwise missing range
information.

10.5.1 Propagation/prediction
Without a CV relative motion, (10.5) to (10.8) no longer hold. Rather than that, the
propagation equation between the Cartesian states x0 and x1, both taken relative to
the respective own-ship states xown

0 and xown
1 , in general must be determined from

x1 þ xown
1 ¼ Fðx0 þ xown

0 Þ þ vk with the matrix F of (10.13). It consequently
can be written as x1 ¼ Fx0 þ vk þ Fxown

0 � xown
1

� �

. The only formal change in

Tracking and fusion in log-spherical state space 325



the nested approach of Section 10.3.3 thus is an additive term in the Cartesian state
transition. As the values of this term are assumed to be provided with sufficient
precision by the platform’s inertial navigation system, they are considered as
known control inputs. Thus, they do not change the manner to compute the overall
propagation Jacobian (10.14), and the FIM can formally be computed as before.
However, the term Fxown

0 � xown
1 (vanishing for a non-manoeuvring platform) now
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Rao lower bounds (right) for an almost colliding intruder, different
sensors used
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can be chosen to prevent the cancellation of certain terms in the FIM such that in
particular the range becomes observable.

10.5.2 Sample scenario
The sample scenario shown in Figure 10.9 is based on a jammed platform where
the on-board radar measured angles with precisions sb ¼ se ¼ 0:2 deg once a
second. The platform started from position zero and initially moved horizontally in
pure x-direction with speed vown ¼ 200 m=s before weaving along seven quarter-
circles with cross-acceleration of about 3 g each in order to stay away from the
jammer starting at pT

0 ¼ ½31250;�850;�300� m with vT
0 ¼ �150; 10; 4� m=s½ .
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Figure 10.9 Scenario (top) as well as single-run filter output (middle) and errors
(bottom) for a jamming target subject to kinematic ranging
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The shown result of a single (very favourite) run with corresponding 90-per-cent error
ellipses visualizes the changing geometry. In the beginning, the lack of range obser-
vability causes larger uncertainties in x-direction (based on the assumed prior).
Observability builds up and improves significantly in manoeuvre phase before
becoming weaker again (now with larger uncertainties in y-direction) as the platform
escapes. The CRLBs as well as the outcomes of 1,000 Monte-Carlo runs in
Figure 10.10 confirm these findings.
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10.5.3 Observer trajectory planning
With the possibility to enforce range observability by certain manoeuvres, the
question arises on exactly how to choose the own-ship’s flight path in order to gain
maximum information about the jammer’s dynamic state. The classical problem of
observer trajectory planning has a long history and still is subject to on-going
research.

In an early work [24], a thorough study has been performed on how to choose
successive legs to obtain a maximum determinant of the FIM in the 2D bearings-
only tracking problem known as target motion analysis. A solution has been given
using a couple of simplifying assumptions and approximations.

Other authors [25] have claimed (without proof) that the maximization of the
mutual information between observer trajectory and final target state is equiva-
lent to minimizing the determinant of the error covariance matrix. Based on this,
they proposed some sub-optimal strategies to determine suitable own-ship man-
oeuvres for bearings-only tracking [26]. In combination with the EKF in LSCs as
described in this chapter, their simplest strategy would read as follows: Starting
from estimates xkjk and Pkjk , specify a discrete set of possible manoeuvres for the
next time interval. For each manoeuvre, perform the corresponding filter pre-
diction step and compute the matrix Pkþ1jkþ1 that would be the result of a mea-
surement update. That result is independent of a (not yet received) measurement
at time tk in LSCs and corresponds in Cartesian coordinates to the outcome of an
update with an assumed zero innovation. Among the candidate matrices, deter-
mine the one yielding the minimum determinant and herewith select the actual
manoeuvre to perform. Instead of the determinant of Pkþ1jkþ1, it has also been
proposed to use its trace or its largest eigenvalue as value to minimize. Further on,
the whole matrix Pkþ1jkþ1 or only its position part can be considered on this
behalf.

Figure 10.11 displays several outcomes of this simple ‘one-step-ahead opti-
mization’ for different realizations of the measurement noise with an initial scenario
set-up as in the previous section. Herein, coordinated turns with cross-accelerations
ranging in magnitude from zero up to 40 m=s2 in steps of 5 m=s2 were selected after
20 s of straight flight. As a reference, the figure also shows a somewhat optimized
trajectory (including corresponding single-run estimation results) that maximizes in
each step the position part of the true FIM (which is not available to the trajectory
planner). Typically, the own-ship trajectories tend to ‘zoom in’ on the target and
certain manoeuvres must be excepted from the planning as to avoid collision here.
To this end, Pkþ1jk can be used to define a volume not to enter. The figure shows
some bifurcation in the own-ship trajectories due to the fact that the scenario
set-up is almost symmetric. Herewith, it emphasizes a general weakness of the
simple strategy which only performs local optimization for a highly non-linear
optimization problem.

More sophisticated trajectory planners honour the non-linearity by treating the
planning task as a stochastic optimization problem. However, the solution of that
problem turns out to be very demanding, and the resulting algorithms often require
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the application of stochastic integration methods (as they are also used, e.g. for
so-called particle filters). Those methods are out of scope for this presentation, and
the interested reader is referred to the corresponding literature like [27,28].

10.6 Summary

In certain tracking and data fusion applications, LSCs constitute an attractive
alternative to Cartesian ones, especially when sensors provide measurements that
are polar in nature but not Cartesian-complete. Those coordinates de-couple
observable states from non-observable ones. This leads to robust estimators.
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Figure 10.11 Own-ship trajectories resulting from observer trajectory planning
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Glossary

Acronyms

2D/3D two-/three-dimensional IFF interrogation friend or foe
ACAS air-collision avoidance system KF Kalman filter
CC convex combination
CI covariance intersection LS least-squares
CRLB Cramer–Rao lower bound LSC log-spherical coordinate
CV constant velocity
EKF extended Kalman filter RMSE root mean square error
ENU east-north-up SRM strictly radial movement
FIM Fisher information matrix UKF Unscented Kalman filter
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Chapter 11

Multistatic tracking for passive
radar applications

Martina Brötje1 and Wolfgang Koch1

Abstract

Bistatic and passive radar systems enjoy various advantages, which have been
discussed in detail in Part III of Volume 1 of this book. Multistatic configurations,
where multiple transmitters (Txs) and/or multiple receivers (Rxs) are located
separately, are of particular importance in this context. They provide detection of a
target from different aspect angles. Furthermore, the fusion of the measurements
from different Tx/Rx pairs can be used to overcome the low quality of a single
measurement. Associating measurements of the same target from different Tx/Rx
combinations (i.e. multi-sensor association), as well as improving the target state
estimate over time belongs to the tasks of target tracking.

In this chapter, the tracking task is discussed for different passive radar
systems. Solutions based on multiple hypothesis-tracking techniques are proposed
and tested.

11.1 Introduction

The classical approach to sensor data processing follows the three-stage procedure
of information extraction: extraction of receiver (Rx) data, extraction of target
parameters (by signal processing) and extraction of target dynamics (by target
tracking). Typically, a clear separation between the signal processing and the data
fusion and target tracking task is assumed. This implies that there are different
detection processes. The first decision is taken at the signal-processing level, where
a threshold is applied e.g. to the matched filter output. Hereby, a reduction of the
data amount is achieved. At the tracking and data fusion level, the measurements
from different bistatic configurations are further evaluated in terms of the target
origin. Further thresholding accounting for the target state model results in the
extraction of target tracks that are, for example displayed to a human operator.

1Fraunhofer FKIE, Germany



The hard decisions by thresholding are well suited to reduce the data rate, but
this holds the danger of suppressing weak targets. To overcome this difficulty
track-before-detect strategies (e.g. [1]) have been suggested. The idea is to reduce
information loss at the signal-processing stage and increase information gain in the
tracking stage. However, the advantage is accompanied with an increased com-
plexity, which increases the already high complexity of the target-tracking task
in passive radar applications. We base our work on tracking after detection at
signal-processing level. The results of the detection are termed measurements; they
are a product of each bistatic sensor pair [transmitter (Tx) and Rx] as well as of the
associated signal processing. To efficiently interpret the measurements by the
tracking algorithm, the measurements need to be correctly understood and mod-
elled depending on the application.

For example, in conventional signal processing for each measurement, a signal-
to-noise ratio (SNR) is estimated. By decreasing the detection threshold applied to
the measurements, the probability of detection (PD) of the targets increases, while
simultaneously the false alarm probability (PFA) increases. In the tracking algo-
rithm, we use estimates of these values in the model of the sensor performance.
Thus, the estimated values of PD and PFA have significant influence on the tracking
performance. Equivalently, the assumptions for the measurement noise influence
the tracking result. Rating the information content of the measurements too pessi-
mistically causes information loss, while a too optimistical rating may even result
in track instability.

The design of the passive radar tracking filter needs to be adapted to the
individual application. In the literature, a wide range of tracking filters exists and
has been applied to passive radar data.

One of the first passive radar systems used analogue radio (frequency
modulation, FM). This technology is commercially available with the ‘Silent
Sentry’ of the Lockheed Martin Company and the ‘Homeland Alerter’ HA100 of
the Thales Group. System development including tracking for a bistatic Tx/Rx pair
is considered e.g. in [2,3]. The problem of multistatic FM passive radar target
tracking is addressed in detail in [4].

The use of digital radio or video signals (DAB/DVB-T), see also Chapter 18,
has the advantage of a large and content independent bandwidth. This results in
good range resolution compared to the FM illumination. However, this advantage is
accompanied by the problem of Tx-origin uncertainty. Several Txs are arranged in
a single-frequency network (SFN), which means from a tracking perspective that
the association of measurements and Txs is unknown. This is a key challenge with
regard to the design of the target tracking algorithm. Besides our own work [5], the
problem has e.g. been discussed by Tharmarasa et al. [6] and Choi et al. [7].

Signals of the second-generation (2G) mobile phone (GSM) base stations have
digital coding and use frequency diversity. The challenge of GSM passive radar lies
in dealing with the low transmit power and small effective bandwidth. However,
this is accompanied by a multitude of available Txs [8]. To overcome the limita-
tions from a single bistatic Tx–Rx pair, fusion of measurements from different
geometries is the key component of a GSM passive radar system [9].
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Oriented towards the specific requirements of passive radar, we will in the
following describe the task of state estimation and data association. Implementation
of the multiple hypothesis tracking (MHT) technique will be discussed and ana-
lysed by simulations. Real data results with GSM passive radar data finally confirm
the expected gain from fusing measurements from multiple Tx/Rx pairs and
underline the importance of incorporation of specific context knowledge.

11.2 Measurement model

A bistatic radar system consists of a pair of a single Tx and Rx placed at different
locations. A signal is emitted by the Tx at s ¼ ðsx; sy; szÞ and is reflected at the target
at q ¼ ðx; y; zÞ (see Figure 11.1) producing an echo of the original signal.
By comparing at the Rx at o ¼ ðox; oy; ozÞ the emitted signal with the target echo, the
target state parameters can be estimated. Since the time of transmission is usually
unknown, the time difference of arrival t between the arrival of the direct signal
and the delayed signal at the Rx is measured. From the known distance between the
Tx and Rx jjo � sjj, the bistatic range is calculated by r ¼ t � c þ jjo � sjj.

The contours of constant bistatic range describe ellipses in 2D Cartesian and
ellipsoids in 3D Cartesian coordinates. In dependency on the Cartesian position of
the target, the bistatic range equation is given by

r ¼ jjq � ojj þ jjq � sjj (11.1)

To describe the Doppler shift fd as a function of the target state, we use the
bistatic range-rate _r equation given by

_r ¼ �fdl ¼ q � o

jjq � ojj þ
q � s

jjq � sjj
� �T

� v (11.2)

where v is the velocity component of the target. Tx and Rx are assumed stationary.

s = (sx, sy, sz)
Tx

o = (ox, oy, oz)

Rx

North

East

Target
q = (x, y, z)

q − s o − q

–φ

Figure 11.1 Bistatic set-up; signal from transmitter at s is reflected by the target
at q and received at the observer o
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The angle of the incoming echo can be determined by scanning the receiving
antenna (mechanically or electronically) to find the angle of incidence by the
maximum response. We consider here the angle of incidence in the x – y plane
(azimuth). It is related to the geometry by the four-quadrant inverse tangent

j ¼ atan2ðx � ox; y � oyÞ 2 ð�p;p� (11.3)

When defining the target state vector by x ¼ ðq; vÞ ¼ ðx; y; z; _x; _y; _zÞ the functional
relationship between target state and measurements for the ith Tx and Rx pair can
be expressed by the non-linear measurement equation hðiÞðxÞ ¼ ðr; _r;jÞ with hðiÞ

defined by (11.1)–(11.3).

11.2.1 Modelling of the bistatic measurement accuracy
The technical equipment (consisting of the sensors with subsequent signal
processing) delivers measurements of r, _r and possibly j with certain accuracies.
We model the target state at time tk by a random variable (r.v.) Xk and the
corresponding target measurement by Zk . For simplification, we model the
measurement noise as unbiased and Gaussian distributed. Strictly speaking,
the Gaussian model is violated in real applications. For example, all measured
values have only a limited range. However, it is a reasonable approximation in
many tracking applications.

Following these assumptions, the measurement Z k of the ith Tx and Rx pair is
modelled by

Zk ¼ hðiÞðXkÞ þ Wk ; with Wk � Nð0;RkÞ (11.4)

where Rk denotes the positive definite measurement covariance matrix. If the
individual measurements are uncorrelated (as assumed here), R is a diagonal
matrix, and the diagonal elements correspond to the variances of the individual
measurements, R ¼ diagðs2

r ; s2
_r ; s2

jÞ. The measurements are generated at the Rx at
discrete times ti with i 2 N. We also say that measurements belong to time scan i.

The magnitude of the error variances can vary considerably depending on
the application and has to be chosen in accordance with the accuracy of the
respective passive radar system. This work does not aim at a general comparison of
different passive radar systems, since this is not only a question of the type of signal
but also of the operational dedication. For example, a FM passive radar system is a
good choice for wide area surveillance due to its high transmits power. In Sec-
tion 11.6, we roughly typify the different systems according to their measurement
errors and discuss on the basis of simulations which impact this has on the design of
a proper tracking architecture.

Some characteristics of different passive radar systems are summarized in
Table 11.1. The range accuracy is mainly dependent on the range-resolution of the
system, which can be derived from the bandwidth of the signal. We use here the
formula Dr ¼ c

2B, see [10] p. 5. Typical values of the range accuracy are 10�100 m
for DAB/DVB-T and 300�1;000 m for GSM/FM.
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The azimuth accuracy depends mainly on the frequency of the signal and on
the size of the antenna aperture. The angle accuracy is assumed here to be in range
of 3� and 7�. Of course, for low frequency signals (e.g. FM), this would assume a
larger aperture size.

The Doppler accuracy depends mainly on the integration time. The choice of
this parameter depends on how long a target stays in a resolution cell. For systems
with low range resolution, a longer integration time can be used (see Chapter 18).
The integration time depends also on the application, for slow targets, a longer
integration time can be used. A typical value of Doppler accuracy is in the range of
1 Hz Doppler. The accuracy in range rate further depends on the signal frequency.

11.3 General methodology for target tracking

Mathematically, the aim of target tracking can be formulated as determining the
conditional probability density of the target state given the measurement history of
all data from the multistatic Tx/Rx pairs. This conditional probability density is
derived from a probabilistic target dynamics model (state model) and sensor per-
formance model (sensor model). The tracking and fusion problem can be described
in the Bayesian framework. For practical considerations and for leading to real-
time-capable algorithms, several approximation techniques are necessary [13].

The sensor data at time tk contain measurements of the targets as well as false

alarms, the set of measurements is denoted by Zk ¼ ðzð1Þk ; . . .; zðmkÞ
k Þ, where mk is the

number of measurements. According to Bayes’ rule, the conditional probability
density of the targets state xk at time tk , given all sensor data Z1:k ¼ Z1; . . .; Zkf g up
to and including time tk can be sequentially calculated by

pðxk jZ1:kÞ ¼ pðZk ; xk jZ1:k�1Þ
pðZk jZ1:k�1Þ

¼ pðZk jxkÞ � pðxk jZ1:k�1Þ
pðZk jZ1:k�1Þ ;

(11.5)

¼ pðZk jxkÞ �
R

pðxk jxk�1Þ � pðxk�1jZ1:k�1Þdxk�1

pðZk jZ1:k�1Þ (11.6)

Table 11.1 Some characteristics of different passive radar systems, see [8,11,12]

DAB DVB-T FM GSM

Effective bandwidth 1.5 7.6 �0.055 0.081
[MHz] Content-dependent
Frequency [MHz] 220–234 513–750 87.5–108 925–960

1,805–1,880
Transmit power [kW] �10 �8 0.04–250 �0.01
Range resolution [m] 100 20 �2,725 1,851
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Note that pðZk jxk ; Z1:k�1Þ ¼ pðZk jxkÞ due to conditioning on the true target state.
For a single target state, i.e. xk ¼ xk , the Bayes formula is well understood, for

discussion of the multi-target version, i.e. xk ¼ ðxð1Þk ; . . .; xðnÞk Þ, we refer to [14].
The transitional density pðxk jxk�1Þ describes the prediction of the targets state

to the next time scan, this uses e.g. a model of the target motion.
The likelihood function pðZk jxkÞ can be understood as a weighting function,

scoring possible target states by the new incoming data. The likelihood reflects
the match between the measurements and target states and has to be adapted to the
characteristics of the respective sensor system. It provides the description of the
estimation problem and the association ambiguity as is discussed in the following.

11.3.1 Estimation task
If the association of measurements to targets is known, the conversion of
multistatic measurements into target state estimates in Cartesian coordinates is a
non-linear estimation problem. The sensor and target model define the a posteriori
density as description of the estimation problem.

For known association, the maximum-a posteriori estimator can be obtained
by evaluating the likelihood function together with a priori knowledge according to
Bayes’ rule.

Under the following assumptions,

● linear measurement equation: pðzk jxkÞ ¼ Nðzk ;Hxk ;RÞ (sensor model)
● linear target motion model: pðxk jxk�1Þ ¼ Nðxk ;Fxk�1;QÞ (target model)

the Bayes formalism leads to the well-known sequential Kalman Filter update
formulas, see e.g. [13] pp. 64–65:

pðxk jZ1:kÞ / pðzk jxkÞpðxk jZ1:k�1Þ ¼ pðzk jxkÞ
Z

pðxk jxk�1Þpðxk�1jZ1:k�1Þdxk�1

¼Nðzk ;Hxk ;RÞ �
Z

Nðxk ;Fxk�1;QÞ �Nðxk�1; x̂k�1jk�1; P̂k�1jk�1Þdxk�1

¼Nðzk ;Hxk ;RÞ �Nðxk ; x̂kjk�1; P̂kjk�1Þ
¼Nðzk ;Hx̂kjk�1;HP̂kjk�1HT þRÞ �Nðxk ; x̂kjk ; P̂kjkÞ

(11.7)

where x̂kj‘ and P̂kj‘ describe the estimated target state and covariance matrix of time
tk using measurements up to time t‘.

The Kalman Filter equations follow the two steps of prediction and filter
update:

Prediction: x̂kjk�1 ¼ Fkjk�1x̂k�1jk�1 and P̂kjk�1 ¼ Fkjk�1P̂k�1jk�1FT
kjk�1 þ Q

Update: x̂kjk ¼ x̂kjk�1 þ W � ðzk � Hx̂kjk�1Þ and P̂kjk ¼ P̂kjk�1 � WSW

where

S ¼ HP̂kjk�1HT þ R; W ¼ P̂kjk�1HT S�1
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The Kalman Filter provides an optimal analytic solution in sense of minimizing the
mean squared error. If the assumption of linearity is not fulfilled, approximations are
needed. Two common approximation techniques are linearization [15] and unscented
transform (UT) [16]. Both fit well in the framework of MHT as we discuss later.
However, a good performance is not guaranteed and has to be discussed for a given
application.

The Kalman Filter can be implemented in two ways (see also Figure 11.2):

● Transform the measurements into Cartesian coordinates (using UT or linear-
ization) and process via Linear Kalman Filter.

● Transform the Cartesian estimate into measurement coordinates and perform
the measurement update in mixed coordinates (the result is again in Cartesian
coordinates). This is called the unscented Kalman filter (UKF) and extended
Kalman filter (EKF).

The two variants have been discussed for multistatic tracking in more detail in
[17]. The UKF version has shown to be appropriate to handle the non-linearity of
the bistatic measurement equation, if the track is appropriately initialized.

The Doppler measurement of a bistatic measurement alone cannot be trans-
ferred to the higher dimensional Cartesian velocity component. UKF and EKF have
the additional advantage that they allow processing of the Doppler measurement
without transformation.

However, the UKF and EKF rely on an initial estimate in Cartesian coordinates,
thus, the transformation of measurements into Cartesian coordinates has to be done at
least once. To provide insight into the task of track initialization from bistatic
measurements, the densities of bistatic measurements are displayed in Cartesian
coordinates (position only) in Figure 11.3. Figure 11.3(a) shows an example with a
relatively good range, but poor azimuth measurement (e.g. DAB, DVB-T). The
density of the measurement transformed into the Cartesian coordinate system is non-
Gaussian. Curves of equal density values in the Cartesian space have banana shape,
UT (red) or linearization (green) provide only a poor approximation. Figure 11.3(b)
shows the same scenario as Figure 11.3(a), but with larger range error (GSM, FM).
Even through the estimation, error increases the approximations via UT or linear-
ization show a better match. In case the approximation via UT or Linearization fails,
the density of the target estimate that is used for track initialization can be

Cartesian KF

Cartesian

Measurement

{x̂k|k–1, P̂k|k–1}

{ẑC
k , R̂C}

{zk, R}

{x̂k|k, P̂k|k}

g

UKF/EKF
{x̂k|k–1, P̂k|k–1}

{ẑk|k–1, R̂k|k–1}
{zk, R}

{x̂k|k, P̂k|k}

h

Figure 11.2 Track update schemes: Cartesian KF (left): Transformation of
measurement zk into Cartesian state; UKF/EKF (right):
Transformation of predicted track state into measurement space
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approximated by a Gaussian sum (see Figure 11.3(c)). Alternatively, the combination
of measurements from multiple bistatic pairs via ellipse intersection, as displayed in
Figure 11.3(d), see e.g. [18], can be used to approximate the initial target density.

The velocity component is typically initialized with mean zero and appropriate
variance. In case that the measurements from multiple bistatic pairs are available,
the velocity can be initialized by combination of Doppler measurements.

The 2D approximation of the target state is appropriate for targets with
low altitude (e.g. maritime traffic surveillance). Track initialization with unknown
target height via Gaussian mixture initialization is discussed in [18].

11.3.1.1 Theoretical performance bounds
From the likelihood function, the Cramér–Rao Lower Bound (CRB) (Chapter 28)
can be calculated to evaluate the expected performance of the estimation task. This
theoretical performance bound can be used to analyse the influence of geometrical
and sensorial features and to check the efficiency of an estimator [9]. The CRB of
the ith Tx/Rx pair for a single time scan is calculated by the inverse of the Fisher
Information Matrix (FIM)

FIMðiÞðxkÞ ¼ @hðiÞðxkÞ
@xk

T

R�1 @hðiÞðxkÞ
@xk

(11.8)

(c) (d) 

(a) (d) 

Figure 11.3 Position Estimation uncertainty described by the likelihood function.
Approximations via UT (red) and Linearization (green) are shown by
ellipses. (a) Good range, poor azimuth, (b) poor range and azimuth,
(c) Gaussian mixture approximation and (d) target localization by
ellipse intersection
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see e.g. [19]. hðiÞ is the measurement function defined in (11.4). The result for
fusion of multiple bistatic geometries is obtained from the sum of the FIM, i.e.

FIMðxkÞ ¼
X

N

i¼1

FIMðiÞðxkÞ (11.9)

The additivity is a property of the information matrix, see [20], and does not depend
on the fusion scheme, which is applied in tracking. In particular, this reflects the
theoretical consideration that adding measurements of an additional Tx–Rx pair
will result in an increase of information and consequently in a decrease of the
estimation uncertainty (described by the CRB). This can be further extended to
multiple time scans by incorporation of a target propagation model, see [21].
The probability of detection PD is an input parameter for the calculation of the
CRB. By use of the information reduction factor as introduced by [22], this results
in a scaling of FIM according to

FIMðxkÞ ¼
X

N

i¼1

PDFIMðiÞðxkÞ (11.10)

11.3.2 Association task
The association task comprises identifying if a measurement belongs to the target
or is a false alarm. In case of multiple targets, we need to additionally associate
target measurements with specific targets. The degree of difficulty further increases
with multiple sensors. As the estimation task, the association task is described by
the likelihood function.

11.3.2.1 Scenario with frequency diversity
In the case that the measurements of different Tx/Rx pairs are distinguishable
(non-SFNs), the set of measurements of time tk decomposes into individual sets
i.e. Zk ¼ Z1

k ; . . .; Z
hS
k

� �

, where hS is the number of Tx/Rx pairs and

Zi
k ¼ ðz 1ð Þ

k;i ; . . .; z
ðmk;iÞ
k;i Þ, with mk;i the number of measurements of Tx/Rx pair i.

Assuming that measurements from different bistatic pairs are independent, the
likelihood function becomes

pðZk jxkÞ ¼
Y

hS

i¼1

pðZi
k jxkÞ (11.11)

For a single target state, i.e. xk ¼ xk , the likelihood function is given by

pðZi
k jxkÞ ¼ PDðxkÞ

mk;i

X

a
p zðaÞk;i jxk ;a
� �

fc Zi
knzðaÞk;i

� �

 !

þ 1�PDðxkÞð ÞfcðZi
kÞ (11.12)

where the sum is overall possible association events a, with a ¼ ‘ describing
the association of a measurement zð‘Þk;i with the target. Each association of a
measurement and a target is assumed a priori equally likely (factor 1=mk;i). PDðxkÞ
is the probability of target detection at xk .
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fC describes the probability density function (pdf) with respect to the distribution
of false alarms. Let Ck � Zi

k with mF be the number of elements of Ck . The probability

that the elements in Ck are false alarms is given by fCðCkÞ ¼ pFðmFÞ �
QmF

‘¼1 pCðzð‘Þk;i Þ;
first, the probability that there are mF false alarms and, second, the probability that the
false alarm observations coincide with the elements in Ck . This is typically modelled
by a Poisson Point Process (see e.g. [23]) to describe the rare event of false alarm
occurrence for points in the field of view (FoV). Thus,

pFðmFÞ ¼ e�m mmF

mF !
and pCðzð‘Þk;i Þ ¼

rFðzð‘Þk;i Þ
m

(11.13)

which is parametrized by the false alarm intensity rF with m ¼ RFoVrFðzÞdz. The
intensity is not equal to the pdf, in fact, the intensity and the pdf are proportional,
and m is equal to the expected number of false alarms.

In composition we obtain

fCðCkÞ ¼ e�m mmF

mF !
�
Y

mF

i¼1

rFðzð‘Þk;i Þ
m

¼ e�m 1
mF !

�
Y

mF

‘¼1

rFðzð‘Þk;i Þ (11.14)

In particular

fCðZi
knzðaÞk;i Þ � rFðzðaÞk;i Þ ¼ mk;i � fCðZi

kÞ (11.15)

holds and the likelihood function can be written as

pðZi
k jxkÞ ¼ fcðZi

kÞ
X

a

PDðxkÞ
rFðzðaÞk;i Þ

pðzðaÞk;i jxk ;aÞ þ ð1 � PDðxkÞÞ
 !

(11.16)

A more detailed derivation can e.g. be found in [13] pp. 45–48.
Obviously, the choice of PD and rF will have a significant influence on the

tracking process. To simplify the calculation, a fixed probability of detection and

false alarm intensity (PDðxkÞ ¼ PD and rFðzð‘Þk;i Þ ¼ rF) is used in the following;

however, this is not a general restriction as we will see in Section 11.7.4.
The multi-target likelihood function can be derived in a similar manner. Let xk

describes the multi-target state ðxð1Þk ; . . .; xðnÞk Þ. We define the association variable

b ¼ ðb 1ð Þ; . . .; bðnÞÞ, with bðsÞ ¼ ‘ meaning target xðsÞk associated with measurement

zð‘Þk;i and bðsÞ ¼ 0 describing a missed detection. The sum of entries with bðsÞ 6¼ 0 in

particular gives the number of detected targets nb for association hypothesis b.
Assuming again that a priori each measurement is equally likely to be asso-

ciated with each target; the multi-target likelihood is given by

pðZi
k jxkÞ ¼

X

b

ðmk;i � nbÞ!
mk;i!

P
nb
D ð1 � PDÞn�nb fcðZi

knfzðbð�ÞÞk;i gÞ

�
Y

j:bð jÞ6¼0

pðzðbð jÞÞ
k;i jxð jÞ

k ; bð jÞÞ
(11.17)

where the sum is in this case over all multi-target associations.
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fcðZi
knfzðbð�ÞÞk;i gÞ is the probability that all measurements besides the measure-

ments associated with the targets in b are false alarms. Using (11.15), it follows that

fcðZi
knfzbð�Þk gÞ � rnb

F ¼ mk;i!

ðmk;i � nbÞ! � fCðZi
kÞ (11.18)

and

pðZi
k jxkÞ ¼ fcðZi

kÞ
X

b

Y

j:bð jÞ6¼0

PD

rF
p zðbð jÞÞ

k;i jxð jÞ
k ; bð jÞ

� �

0

@

1

A �
Y

j:bð jÞ¼0

ð1 � PDÞ
0

@

1

A

(11.19)

For a detailed derivation of the multi-target likelihood, we refer to [24].

11.3.2.2 Example
An example is plotted in Figure 11.4 for a scenario with one Rx and two Txs. In the
example, the measurements z 1ð Þ

1 ; z 2ð Þ
1 belong to the first and z 1ð Þ

2 ; z 2ð Þ
2 to the second

Tx. Each measurement consisting of bistatic range and azimuth describes an
uncertainty area (here banana shape). The maxima of the likelihood function form
at the intersections of the ellipses as given by the range measurement. For example,
the likelihood function is given by

pðZk jxkÞ / PD

rF
pðz 1ð Þ

1 jxkÞ þ pðz 2ð Þ
1 jxkÞ

� �

þ ð1 � PDÞ
� �

� PD

rF
pðz 1ð Þ

2 jxkÞ þ pðz 2ð Þ
2 jxkÞ

� �

þ ð1 � PDÞ
� �

as displayed in Figure 11.4(a). For PD ¼ 1, this is

p Zk jxkð Þ / pðzð1Þ1 jxkÞ þ pðzð2Þ1 jxkÞ
� �

� pðzð1Þ2 jxkÞ þ pðzð2Þ2 jxkÞ
� �

(11.20)

¼ pðzð1Þ1

�

�xkÞpðzð1Þ2

�

�xkÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H1:z
ð1Þ
1 �zð1Þ2

þ pðzð2Þ1 jxkÞpðzð1Þ2 jxkÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H2:z
ð2Þ
1 �zð1Þ2

þ pðzð1Þ1 jxkÞpðzð2Þ2 jxkÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H3:z
ð1Þ
1 �zð2Þ2

þ pðzð2Þ1 jxkÞpðzð2Þ2 jxkÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H4:z
ð2Þ
1 �zð2Þ2

(11.21)

displayed in Figure 11.4(b), showing four potential positions of the target coin-
ciding with the four single-target hypotheses H1, H2, H3 and H4.

In the example, a two-target scenario was the basis of the simulation, thus, the
single-target likelihood gives only a rough description of the estimation problem.
The hypotheses H2 and H3 represent the true association, whilst H1 and H4 repre-
sent false associations. If the algorithm decides for one of these false associations,
this would result in a so-called ghost track. A ghost track is based on a false
association of true target measurements (e.g. measurements of different targets) and
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can show similar kinematics than a true target. In contrast to the false tracks that are
typically based on false detections at the signal processing level, ghost tracks arise
at the data fusion level.

If, for the same scenario, we assume a two-target state xk ¼ ðx 1ð Þ
k ; x 2ð Þ

k Þ, the
likelihood for PD ¼ 1 is given by

pðZjx 1ð Þ
k ; x 2ð Þ

k Þ ¼ pðZ2jx 1ð Þ
k ; x 2ð Þ

k Þ � pðZ1jx 1ð Þ
k ; x 2ð Þ

k Þ
/ ðpðz 1ð Þ

1 jx 1ð Þ
k Þpðz 2ð Þ

1 jx 2ð Þ
k Þ þ pðz 2ð Þ

1 jx 1ð Þ
k Þpðz 1ð Þ

1 jx 2ð Þ
k ÞÞ

� ðpðz 1ð Þ
2 jx 1ð Þ

k Þpðz 2ð Þ
2 jx 2ð Þ

k Þ þ pðz 2ð Þ
2 jx 1ð Þ

k Þpðz 1ð Þ
2 jx 2ð Þ

k ÞÞ
¼ pðz 1ð Þ

1 jx 1ð Þ
k Þpðz 2ð Þ

1 jx 2ð Þ
k Þ � pðz 1ð Þ

2 jx 1ð Þ
k Þpðz 2ð Þ

2 jx 2ð Þ
k Þ j H1 � H4

þ pðz 1ð Þ
1 jx 1ð Þ

k Þpðz 2ð Þ
1 jx 2ð Þ
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2 jx 2ð Þ
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1 jx 2ð Þ
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k Þ j H4 � H1

Obviously, pðZjx 1ð Þ
k ; x 2ð Þ

k Þ 6¼ pðZjx 1ð Þ
k Þ � pðZ; x 2ð Þ

k Þ. However, multi-target associa-
tions can be constructed by combination of single-target associations under the
constraint that a measurement is only associated with one target.

In the example only, the combination of the single-target hypotheses H1 and
H4 as well as H3 and H2 gives feasible multi-target solutions (no measurement is
used twice). The multi-target likelihood is displayed in Figure 11.4(c) by margin-

alization via
R

pðZjx 1ð Þ
k ; x 2ð Þ

k Þpðx 2ð Þ
k Þdx 2ð Þ

k , where the a priori pdf pðx 2ð Þ
k Þ is chosen

from uniform distribution.
The calculation of the multi-target likelihood function is relevant in applications

where multiple targets are closely spaced and can help to distinguish between true
and ghosts hypotheses. As illustrated in Figure 11.4(a), association problems in
multi-target scenarios are not only influenced by the geographical distance of targets,

z (1)
1

z (2)
1

z (1)
2 z (2)

2

(a) (b) (c)

Figure 11.4 The likelihood function description of data ambiguity. (a) single-
target likelihood (PD ¼ 0.8), (b) single-target likelihood (PD ¼ 1)
and (c) marginalized two-target likelihood (PD ¼ 1)
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but also on the size of the measurement error and the multistatic geometry
(describing the extend of the bistatic measurement density in Cartesian coordinates).

11.3.2.3 Scenario with single-frequency property
For SFNs, the association between measurements and Txs within a network is
a priori not known. In contrast to the case of frequency diversity (11.11),
the decomposition of the likelihood function for different Txs is in general not true.

The association of measurements has to be done for targets and Txs. Therefore,
the association variable g becomes an array of dimension hS � n, where gði; jÞ ¼ ‘
stands for associating measurement zð‘Þk with target xð jÞ

k and Tx sðiÞ. Analogous to
the derivation of the multi-target likelihood function (11.19), the multi-target
likelihood function of a single-frequency network can be calculated by

p Zk jxkð Þ ¼ fcðZkÞÞ
X

g

Y

i

Y

j:gði; jÞ6¼0

PD

rF
p zðgði; jÞÞk jxð jÞ

k ; sðiÞ;gði; jÞ
� �

�
Y

j:gði; jÞ¼0

ð1�PDÞ
0

@

1

A

(11.22)

where the sum is over all multi-target/multi-Tx associations.

11.3.2.4 Example
For the previous example, we assume the single-frequency property. This means
that the association between measurements z 1ð Þ

1 ; z 2ð Þ
1 ; z 1ð Þ

2 and z 2ð Þ
2 and the two Txs is

assumed to be unknown. The single-target likelihood function, assuming that there
are no false alarms, is displayed in Figure 11.5(a) and (b) for PD ¼ 0:8 and PD ¼ 1,
respectively. The likelihood function for PD ¼ 1 can be explicitly written as

pðZk jxkÞ / pðzð1Þ1 jxk ; s
ð1ÞÞpðzð2Þ1 jxk ; sð2ÞÞ
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The unknown association of measurements and Txs increases the association
ambiguity and thereby the number of ghost hypotheses. Even measurements of the
same target can result in a ghost hypothesis if the wrong association of Txs is
considered. By combination of single-target hypotheses, we obtain 12 valid multi-
target hypotheses:

H1 � H9; H1 � H12; H2 � H6; H2 � H11

H3 � H8; H3 � H5; H4 � H9; H4 � H12

H5 � H10; H6 � H7; H7 � H11; H8 � H10

The marginalized multi-target likelihood is shown in Figure 11.5(c). The con-
sideration of the multi-target likelihood in this case significantly helps unmasking
the positions of the true targets.

Solving the association ambiguity is an important challenge in every passive
radar application. However, the dimension of the association problem depends on
multiple factors which are as follows:

● accuracy of the bistatic measurement
● distance between targets
● number of false alarms
● single-frequency property
● number of Txs
● bistatic geometry

The dimension of data ambiguity has an impact on the design of the tracking
architecture. The basis of our algorithms is multiple hypothesis tracking (MHT),
which is described in the following section.

11.4 Principle of multiple hypothesis tracking

The idea of MHT [24–26] is to evaluate the different association possibilities
(Section 1.3.2) over time.

z (1)
1

z (2)
1

z (1)
2 z (2)

2z (1)
1 z (2)

1

z (1)
2

z (2)
2

(a) (b) (c)

Figure 11.5 The likelihood function description of data ambiguity in single-
frequency network. (a) Single-target likelihood (PD ¼ 0.8),
(b) single-target likelihood (PD ¼ 1) and (c) marginalized
two-target likelihood (PD ¼ 1)
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The literature differentiates between two different MHT approaches [27]
pp. 365–367: hypothesis-oriented and track-oriented MHT. The hypotheses-
oriented approach creates multi-target hypotheses by associating measurements
with potential targets. The track-oriented approach (which we also follow here)
generates single-target tracks, which are further evaluated by calculation of multi-
target hypotheses.

11.4.1 Single-target tracks
In the MHT, a track is represented by a Gaussian mixture,

i.e. the prediction of the track from time tk�1 to tk has the form

pðxk jZ1:k�1Þ 	
X

hk�1

j¼1

pð jÞ
k�1N xk ; x̂

ð jÞ
kjk�1; P̂

ð jÞ
kjk�1

� �

(11.23)

According to Bayes’ rule, the measurement update is obtained by multiplication of
the likelihood function (11.16), i.e. in the single sensor case under the assumptions
of Section 11.3.1 this is

pðxk jZ1:kÞ / pðZk jxkÞpðxk jZ1:k�1Þ
¼ fcðZkÞ PD

rF
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i¼1
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 !
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hk�1

j¼1

pð jÞ
k�1Nðxk ; x̂

ð jÞ
kjk�1; P̂

ð jÞ
kjk�1Þ

(11.24)

For each combination of an old hypothesis and a measurement this results in a
Kalman Filter update step (11.7). The hypothesis of a missed detection is addi-
tionally considered. The updated hypotheses are weighted by

fCðZkÞð1 � PDÞ � pðjÞk�1 in case of a misdetection;

fCðZkÞPD

rF
N zðiÞk ;Hx̂ðjÞ

kjk�1;HP̂
ðjÞ
kjk�1HT þ S

� �

� pðjÞk�1 in case of detection with zðiÞk

8

<

:

(11.25)

The sum of hypotheses (according to their normalized weights) gives a description
of the conditional probability density defined in (11.6).

Theoretically, the number of hypotheses increases in each time step by factor
ðmk þ 1Þ (where mk is the number of measurements). Thus, the MHT suffers from
an exponential growth of the number of hypotheses. Appropriate hypotheses
reduction techniques are needed to make it real-time capable, this includes

● hypotheses pruning: deleting hypotheses with low weights
● hypotheses merging: combining similar hypotheses
● gating: considering reliable measurement to track combinations only.

The MHT algorithm described above is designed to track a single target. However,
it can be easily extended to handle multiple well-separated targets. This is realized
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by a track management scheme overarching the MHT structure, see [26] for more
details.

A tentative track is initiated from a single Gaussian (or Gaussian mixture see
Section 11.3.1). This is the starting point for building a hypothesis tree by
exploiting the measurement information of the following time scans. Gating
methods ensure individual processing of well-separated targets.

The track will be tested for belonging to a true target by calculating the like-
lihood ratio (LR), see Section 11.4.2. Only tracks that pass this test will e.g. be
displayed to a human operator (extracted track). The same procedure can be
applied for track termination.

Further instances of track management imply merging of tracks and splitting of
tracks.

11.4.2 Track extraction and track termination
The principle of LR testing is briefly summarized in this sub-section, see [26,28]
for more details.

Given a sequence of measurements Z1:k ¼ z1; Z2; . . . ;Zkf g with an initial
measurement z1 and Z‘ denoting the incoming measurements at time t‘, the LR is
calculated according to the hypotheses

● h1: the data Z1:k contain target measurements and false alarms
● h0: the data Z1:k contain only false alarms

by

LRðZ1:kÞ ¼ ph1ðZ1:kÞ
ph0ðZ1:kÞ (11.26)

phn describes the likelihood function given that there are n targets. Choosing
thresholds A and B, we accept h1 if LRðZ1:kÞ > A (track extraction) and h0 if
LRðZ1:kÞ < B (track termination). According to [28], the LR can be recursively
calculated by:

LRðZ1:kÞ ¼ ph1ðZk jZ1:k�1Þ
ph0ðZk jZ1:k�1Þ � LRðZ1:k�1Þ

¼
R

pðZk jxkÞpðxk jZ1:k�1Þdxk

fCðZkÞ � LRðZ1:k�1Þ (11.27)

Note that MHT the LR of a single track can be calculated parallel to the MHT
measurement update as the sum of the hypotheses weights from (11.25) where the
weights are scaled by factor 1=fCðZkÞ.

11.4.3 Evaluation of multi-target/multi-sensor hypotheses
In case that multiple targets are not well separated, the evaluation of multi-target
hypotheses becomes necessary as motivated in Section 11.3.2. In the tracking
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context, well separation means that a track contains only measurements of a single
target and false alarms. As discussed in Section 11.3.2, the level of association
ambiguity does not only depend on the geographical distance between targets, but
also on the Tx/Rx geometry and on the size of the measurement error.

The number of multi-target hypotheses increases even faster than exponen-
tially with the number of targets. For this reason, the idea of track-oriented MHT
has become popular.

In a first step, single-target tracks are built. Evaluation of multi-target associa-
tions is only necessary, if a measurement association conflict between multiple tracks
exists. A solution to solve such a conflict is the application of the N-scan pruning
technique. The idea is to enforce a non-conflicting history of tracks. The currently
best multi-target hypothesis is found and track hypotheses N scans ago that are not
ancestors of the currently chosen best global hypothesis are deleted (together with
their descendants). For details, we refer e.g. to [27] pp. 367–369. The pre-requisite
for using N -scan pruning is the solution of the multi-target association problem,
which can be formulated as an N -scan assignment problem and has been shown to be
non-deterministic polynomial time (NP) hard. The number of scans N depends on the
number of time scans and the number of sensors. Convenient approximation methods
are based on Lagrangian relaxation [29] or 0=1 integer programming [30].

As shown in Section 11.3.2, if the measurements of different Tx/Rx pairs are
uncorrelated, the likelihood function decomposes into the product of its individual
terms. For the MHT, the multi-sensor fusion step can therefore be done by
sequentially updating the mixture components according to the measurements of
each Tx/Rx pair. However, this is not true for passive radar tracking in single-
frequency networks. Here, the evaluation of multi-sensor hypotheses becomes
necessary to ensure that a measurement is not associated with different Txs within a
network. The concept of MHT is thereby not modified [31]. However, the con-
sideration of additional hypotheses results in an increasing complexity, which
might result in more restrictive hypotheses reduction schemes. This similarly holds
for the s-dimensional (SD)-assignment approach ([6,32]). Approximations of the
measurement update process based on the JPDA, the PMHT and the Particle Filter
are discussed in [33,34].

11.5 Multi-sensor fusion strategies

For the fusion of measurements from different sensor pairs, the literature distin-
guishes between two different strategies, see e.g. [27] pp. 598–614: The theoretical
optimal solution is the fusion of all available measurement information at a global
fusion centre (centralized tracking). The alternative strategy is distributed tracking,
where tracks are formed at local nodes. Only the pre-processed information is
transferred to the fusion centre. In some applications due to communication con-
straints, the second strategy is the only option. The two strategies have been dis-
cussed in detail for multistatic tracking by Coraluppi et al. e.g. in [35]. They point
out that there is no general best strategy even without communication constraints.
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For high detection redundancy (measurements from multiple Tx/Rx pairs are
available) and high false alarm environment centralized tracking outperforms the
distributed strategy, which might be more robust in case of low detection redun-
dancy. The analysis has been done for multistatic active sonar tracking.

For passive radar tracking, the pre-processing of the measurements by tracking
in measurement coordinates has been discussed by several authors, see e.g.
[5,32,36]. This corresponds to the distributed tracking scheme, but without trans-
formation into Cartesian coordinates. Tracking in measurement coordinates has the
advantage that the measurement function is linear, and thus approximation errors
introduced by transformation into Cartesian coordinates (Section 11.3.1) can be
avoided for the processing of a single bistatic sensor pair. A disadvantage of
tracking in measurement coordinates is the definition of the motion model. The
Doppler component is equivalent to the range rate except for a negative multi-
plicative factor. The bistatic range-rate describes the velocity component of the
bistatic range. A constant target velocity in Cartesian coordinates typically defines
parabolic curves in measurement coordinates, which can be described by a nearly
constant acceleration model. However, the bistatic geometry has a significant
impact on the exact motion in measurement coordinates. Tracking in measurement
coordinates is in the following referred to as Range/Doppler (R/D) tracking, this
goes back to the kinematic relationship between range and Doppler coordinates.
If available, the azimuth is included as an additional state variable.

We define three fusion strategies, see also Figure 11.6:

● 1-stage MHT: uses a central node for tracking in Cartesian coordinates (cen-
tralized tracking). It uses a standard track-oriented MHT as motivated in the
previous sub-sections. A new tentative track is initiated from measurements
that are not used by existing tracks. For track initialization, the measurement of
a single Tx/Rx pair is transformed into Cartesian coordinates using a Gaussian
mixture approximation as shown in Figure 11.3(c). The measurement update
from different Txs is performed sequentially according to the UKF equations.

● 2-stage MHT: uses R/D tracking followed by a correlation stage (equivalent to
a distributed tracking strategy).

● 3-stage MHT: uses 2-stage MHT to initialize tracks that are further processed
by a central node (compromise between centralized and distributed tracking).

The 2-stage and 3-stage MHT have been originally implemented to cope with the
high complexity of tracking in SFN, see [5,31] for details. The idea is to perform
the multi-sensor association and Cartesian estimation steps for a batch of mea-
surements (measurements in R/D tracks) instead for individual measurements,
thereby, the number of association possibilities can be drastically reduced.

The three tracking stages are summarized in the following. Details of the
algorithm are described in [5].

● R/D tracking implies track-oriented MHT in measurement coordinates.
A tentative track is started from measurements not used in existing tracks.

For the propagation of the range/range-rate component, a nearly constant
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acceleration model is used. The association of measurements from multiple
Txs is not considered. The first tracking stage provides estimates of the targets
for each Tx/Rx pair but without Cartesian location.

● The correlation stage addresses the multi-sensor association problem.
A correlation hypothesis is based on the association of R/D tracks from

different (hypothesized) Txs to a single target (multi-sensor association),

Sensor 1 Sensor ηS

Measurements

Central tracking stage

1-stage MHT(a)

Sensor 1 Sensor ηS

Measurements

R/D tracking R/D tracking

Correlation stage:
generation/update of correlation

hypotheses

Evaluation of global/multi-target
hypotheses

Pruning

(b)

Sensor 1 Sensor ηS
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Labelling

R/D tracking R/D tracking

Central tracking
stage

Correlation stage:
generation/update of correlation
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Evaluation of global/multi-target
hypotheses

Pruning

Extraction of
Cartesian tracks

(c) 3-stage MHT

2-stage MHT

Figure 11.6 Overview of multi-stage tracking strategies

Multistatic tracking for passive radar applications 353



see Figure 11.7. The association over time is given by the history of the R/D
tracks.

Thus, for a correlation hypothesis, the association of measurements can be
assumed to be known and the target trajectory in Cartesian coordinates can be
estimated as discussed in Section 11.3.1. As at least two R/D tracks are asso-
ciated with a correlation hypothesis, we use ellipse intersection to initialize the
Cartesian state. Measurements associated with additional R/D tracks are
incorporated via the measurement update of the UKF. The correlation
hypothesis in particular contains the information of a Cartesian track in terms
of a target state estimate and the single-target LR score, which is calculated in
parallel to the measurement update, compare Section 11.4.2.

The number of correlation hypotheses is typically much higher than the
number of targets. To select correlation hypotheses that are likely to represent
the true targets, multi-target hypotheses are built to resolve conflicting
hypotheses. Correlation hypotheses that are contained in the best multi-target
interpretation of the R/D tracks reach the status of Cartesian tracks. The
number of Cartesian tracks that are displayed to a potential operator is further
controlled by a threshold with respect to the single-target likelihood score.

Evaluation by multi-target association, deletion and re-organization of corre-
lation hypotheses and R/D tracks is conducted in certain time intervals. In the
meantime, existing correlation hypotheses are updated with new measurements
of associated R/D tracks. A Cartesian track of the second tracking stage is treated
in the same manner as a correlation hypothesis. Switching between correlation
hypotheses that are displayed as Cartesian tracks is possible over time.

● Central tracking stage: The third tracking stage is reserved to Cartesian tracks
for which the likelihood scores of the corresponding correlation hypotheses are
high (as output of the second tracking stage). The association of measurements
from different Tx/Rx pairs to Cartesian tracks is performed at a single node in
an MHT framework. Cartesian tracks are updated with the associated mea-
surements according to the UKF equations (compare 1-stage tracking).

Cartesian tracks at this level are not directly coupled to the R/D tracking stage.
Thus, a measurement can be used twice by an R/D track and a Cartesian track. To
avoid multiple tracks and to reduce complexity, R/D tracks that are based on

Tx/Rx 1 Tx/Rx 2 Tx/Rx ηS

R/D track i R/D track j

Correlation hypothesis:
• Estimated target trajectory • Likelihood score

Figure 11.7 Schematic overview: correlation hypothesis
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measurements also used by Cartesian tracks of the central tracking stage are
labelled and removed from the correlation stage.

11.6 Simulation study

In this paragraph, the proposed algorithms are evaluated and discussed by Monte
Carlo simulations.

We use a simulation with one Rx, 5 Txs and 10 targets. The geometry is
displayed in Figure 11.8. The targets have been simulated to move at low constant
altitude and with constant velocity over ground.

The values of probability of detection (PD) of each Rx/Tx pair are obtained
from the radar equation by assuming a constant radar cross section [37]. In
Figure 11.8, the PD is displayed by contour lines, representing the sum of PD values
from different bistatic pairs. The number of available measurements increases in a
region near the Rx.

The scenario shows different target constellations:

● Constellation 1 (Targets 1 and 2): Two approaching targets are simulated
entering into the FoV of the Rx.

● Constellation 2 (Targets 3, 4, 8 and 9): Multi-target scenario with approaching
and parallel moving targets. Targets enter into the FoV.
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● Constellation 3 (Targets 6, 7, 10): Three targets in close distance moving from
a region with high-sensor coverage into a region with low coverage.

● Constellation 4 (Target 5): Single target in region with low-sensor coverage.

The scenario is not based on the characteristics of a specific passive radar system.
In fact, the constellation of targets and the model of PD have been chosen to represent
different multi-target scenarios in regions with low- and high-sensor coverage.

To test the influence of the single-frequency property, we use the same con-
stellation of Txs and Rx in the scenario with and without frequency separation of
the Txs. Furthermore, we vary the measurement errors to analyse the impact on the
tracking architecture.

Three scenarios are defined, where the measurements are sampled according to
a Gaussian distribution given in Table 11.2.

False alarms are sampled from a uniform distribution in measurement coordi-
nates in the region of interest. When assuming that the Txs are arranged in an SFN,
only one measurement set (containing entries of all Txs) is considered. The same
assumption of false alarm intensity results for an SFN results therefore in effec-
tively less false alarms than for frequency diversity. The mean number of false
alarms in scenarios with frequency diversity is about 80 false alarms per Tx/Rx pair.
For the SFN, the mean number of false alarms is about 160 for all Txs together.

Tracking results of 500 Monte Carlo runs are discussed in terms of the root-mean-
squared-position error (RMSPOS) and the track probability of detection (track-PD). A
target is assumed to be detected at the track level when a Cartesian track is associated
according to a distance criterion in Cartesian coordinates. The track-PD is given by
the mean number of detections at the track level for a given time scan averaged over
the Monte Carlo runs. The results are averaged over targets within a constellation. The
RMSPOS is compared to the root trace of the CRB (see Section 11.3.1.1).

11.6.1 Tracking results for scenario with frequency diversity
The results for the three fusion schemes (1-stage MHT, 2-stage MHT and 3-stage
MHT) are shown in Figure 11.9 for scenario A and B and the four constellations of
targets. The impact of the large range error (Scenario A) can be seen by the shift
of CRB.

11.6.1.1 Comparison: track extraction time
For constellation 1, 2 and 4 (starting) in a region of low coverage, the 2-stage and
3-stage strategy results in faster extraction of tracks compared to 1-stage tracking.

Table 11.2 Definition of tracking scenarios

Scenario A Scenario B Scenario C

Bistatic range accuracy [m] 500 30 30
Azimuth accuracy [�] 3 3 5
Range-rate accuracy [m/s] 0.6 0.6 0.6
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For Constellation 3, (starting in a region with high-sensor coverage) we observe the
contrary.

All three tracking schemes use an LR test for track extraction. For the 2-stage/
3-stage tracking approach, the LR test is applied on R/D tracks and therefore for each
bistatic Tx/Rx separately. For 1-stage tracking, track extraction is applied on Cartesian
tracks, which means that the LR test incorporates updates from different Tx/Rx pairs.

In the LR test, a miss-detection is penalized by decreasing the LR by the factor
1 � PD. As the exact PD is typically unknown to the tracker, we use a fixed
PD ¼ 0:5 as tracking parameter. This can be interpreted separately for R/D tracking
and Cartesian tracking: for R/D tracking, a PD ¼ 0:5 means that for a given Tx/Rx
pair the tracker expects a measurement update in each second time scan. For
Cartesian tracking, it can be interpreted that in each time scan the tracker expects a
measurement of half of the considered Tx/Rx pairs. Thus, in case that only 1 or 2
Txs provide detection of the target, the mismatch between assumed and simulated
PD leads to delayed track extraction in 1-stage tracking. In contrary, R/D track
extraction is not influenced by missed detections from other Tx/Rx pairs but needs
a frequent number of detections of the given Tx/Rx pair. In case that detections
from multiple Tx/Rx pairs are available, the LR test in Cartesian coordinates can
accelerate the track extraction process as seen in Figure 11.9(c).

Even though the described effect is mostly to be led back to the wrong PD

assumption, it shows that 2-stage/3-stage tracking is more robust in cases when the
assumed tracking model is violated for some of the Tx/Rx pairs.

11.6.1.2 Comparison: estimation accuracy
For scenario A, the estimation performance (as stated by the RMSPOS) of the
1-stage tracking scheme is generally better than of the 2-stage tracking scheme.
Also the estimation performance of 3-stage tracking is improved compared to
2-stage tracking. For scenario B, the estimation performance of the three approa-
ches is comparable.

2-stage tracking can only use measurements for Cartesian localization that are
contained in R/D tracks, this can lead to worse estimation performance compared to
the 1-stage approach, which can choose from the set of all available measurements.

3-stage tracking uses a compromise between 2-stage and 1-stage tracking. It
shows a similar trend than 2-stage tracking with respect to the track extraction and
similar trend than 1-stage tracking with respect to the RMSPOS.

Constellation 4 considers a single target in a region of low-sensor coverage and
bad estimation performance (near to the Tx/Rx line). Due to the association cri-
terion of tracks and ground truth that we use in Monte Carlo evaluation, tracks with
large estimation errors are not included in the statistic. A decrease of track-PD and
an increase of false track rate can therefore go back to increased estimation errors.
However, we observe a significant improvement with respect to the track-PD and/
or track accuracy when using the 2-stage initialization scheme. None of our
approaches reaches the CRB for this constellation. Tx/Rx pairs with very low PD

provide theoretically a gain to the estimation result (CRB). However, none of the
fusion strategies is able to make use of these Tx/Rx pairs.
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11.6.1.3 Comparison: false track rate
A comparison of the tracking schemes with respect to the false track rate is given in
Figure 11.10(a). The false track rate generally decreases with decreasing mea-
surement error. The worst performance is obtained for Scenario A and 2-stage
tracking. 1-stage tracking shows the best performance in the initial phase of the
scenario, the false track rate is on an equal level throughout the scenario.

The false track rate is mainly influenced by the size of the track gate (region
where the track looks for new measurements). If the gate is very large, the prob-
ability that false alarms fall into this region increases. Centralized tracking is
therefore typically more robust against the generation of false tracks, as the direct
fusion of all available measurements results in small gates. The relatively high false
track rate in this scenario goes back to tracks of Target 5 that have erroneously be
declared as false tracks due to large estimation errors.

The false track rate of 2-stage tracking is mainly influenced by the false track
rate of R/D tracking. Increasing the measurement error results in increased false
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track rate for each individual subsystem. Here, the mean R/D false track rate of
Scenario A is 2:3 times the mean R/D false track rate of Scenario B. Each R/D track
may be able to generate a Cartesian output, reasoning that the Cartesian false track
rate increases even more.

The tracking algorithms were implemented in FORTRAN 95 and executed
at a HP Workstation with an Intel Corporation Xeon CPU W3565 processor with
3.20 GHz processor.

The runtime comparison of the three fusion schemes refers to 1 s of the
scenario time:

● 1-stage MHT: 1.5 s
● 2-stage MHT: 1.32 s
● 3-stage MHT: 0.83 s.

The 3-stage tracking strategy gives the best results in terms of the runtime of the
algorithm.

11.6.2 Tracking results for scenario with single-frequency property
In a second step, the Txs are assumed to be arranged in a single-frequency network.
This only appears for DAB/DVB-T passive radar, thus, we consider Scenarios B
and C only (assuming good bistatic range accuracy) and focus on evaluation of the
3-stage tracking scheme. In Figure 11.11, where we compare the tracking results
with and without the assumption of an SFN. For constellation 3 (starting in the
region of good sensor performance), the results are nearly identical. For the other
constellations, we find that the track extraction is delayed due to the increased
association ambiguity in SFNs. Figure 11.10(b) shows that also the false track-rate
(especially in the initialization phase) increases.

A pure runtime comparison is not fair here, as the mean number of false alarms
is different in SFNs. The runtime comparison (Table 11.3) is therefore split into the
individual tracking stages.

The total runtime is dominated by the R/D tracking as a consequence of the
simulated false alarms. The assumption of single frequency results in an increase
with respect to the association effort in Stage 2 by a factor of 8:5 and in Stage 3 by a
factor of 2:2.

11.7 Application to GSM passive radar

The use of GSM mobile phone signals for passive radar is attractive, because the
base stations are worldwide spread even in out of area regions. The signals have
digital coding and use frequency diversity. Compared to FM, DAB and DVB-T, the
GSM base stations broadcast at relatively high frequencies, which allow a good
discrimination in azimuth [8]. However, these advantages are accompanied by a
modest range resolution (due to the low signal bandwidth) and low signal power.
For appropriate target localization and to achieve a good target coverage, the fusion
of multiple Txs/Rx pairs is a key requisite. Thus, data fusion and tracking is of
particular importance in this application.
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In the previous section, we presented different adaptations of the MHT and dis-
cussed their strengths on the basis of simulated data. The 3-stage MHT seems to be a
good compromise between good estimation accuracy and low false track rate [strength
of the 1-stage tracking (centralized)] and short track extraction time [strength of the
2-stage tracking approach (distributed)]. It is especially suitable for application in
single-frequency networks with high association ambiguity (see Chapter 18).

For the application to GSM passive radar, we choose the centralized approach
(1-stage MHT), because we can directly benefit from the fusion gain from multiple
Tx/Rx pairs. In the simulations, 1-stage MHT has shown best performance with
respect to the number of false tracks and localization accuracy in the scenario with
poor bistatic range accuracy. However, as we also discuss in Section 11.6, the
disadvantage of 1-stage MHT is the sensitivity with respect to the match of the
tracking model as shown for the example of PD. Thus, besides the choice of
the appropriate tracking strategy, in practice, the development of an appropriate
sensor model and the incorporation of context knowledge are of particular impor-
tance. This will be discussed in this section by help of real data for the GAMMA-2
experimental system, which was deployed at Fraunhofer FKIE. Results are shown
for the application of maritime surveillance. This was also published in [9].

11.7.1 Receiver and data processing
For completeness, we represent the features of the GAMMA-2 GSM system. The
guideline for the system concept of GAMMA-2 was to realize a software-defined
radar as much as possible [9]. This leads to the design of a uniform linear array
(ULA) with 16 elements and 16 digital Rxs. The ULA guarantees maximum spatial
target discrimination as well as deep and narrow nulling of interference for a given
number of channels, hence minimizing the clutter in the Tx direction [38]. The
output of this array can be used for all tasks: reference signal acquisition, surveil-
lance signal extraction and base transceiver stations (BTS) monitoring.

In the trials, the FKIE-receiving system GAMMA-2 shown in Figure 11.12(d)
has been used. Each element of the ULA is composed of columns of three Vivaldi
antennas (frequency range: 1.5–2.15 GHz) which are summed in the analogue
domain. Each column has a 3 dB elevation BW of 27� and a gain of 10 dB (at
1.8 GHz) resulting in an array gain equal to 22 dB. For reception of GSM1800
signals, the distance between the elements is chosen equal to 8 cm. This corre-
sponds to a spacing of the half wavelength for a frequency of 1,874 MHz.

As a compromise between processing speed and flexibility, the digital Rx
hardware has been designed to extract in parallel up to eight GSM frequency

Table 11.3 Runtime comparison of 3-stage MHT

Tracking stage Frequency diversity [s] Single-frequency network [s]

R/D tracking 0.83 0.6
Correlation stage and evaluation 0.016 0.136
Central tracking stage 0.016 0.0346
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channels (demodulated I&Q) of 200 kHz width within the system receiving band-
width of 30 MHz. Each frequency channel is subsequently digitally down con-
verted and stored for further signal processing steps. This special realization of the
hardware limits the number of Txs that can be used in parallel. With hardware that
is more expensive also full GSM bandwidth of 75 MHz could be realized.

For reasons of verification, we have considered standard signal processing: the
reference signal is extracted by conventional beamforming [39] p. 506. The FoV
for the surveillance signal (from �60� to 60�) is sampled by a set of fixed beams in
azimuth. For each beam with given angle of arrival digital adaptive beamforming
and clutter cancellation are performed to obtain the corresponding surveillance
signal [38]. The clutter cancellation method in space and time used here is based on
the projection of the received signal onto the sub-space orthogonal to the clutter
sub-space [40]. The signal power is accumulated by coherent integration. The
coherent integration time (CIT) is selected as the longest time in which the target
with its dynamic remains in the resolution cell. According to [8] and the given
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Figure 11.12 Scenario configurations, (a) Scenario 1, Bay of Mecklenburg, (b)
Scenario 2, Fehmarn Belt, (c) GAMMA-2 mounted on the tower and
(d) The GSM passive radar antenna and receiver GAMMA-2,
after [9] �2014 IET
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scenario, one obtains a CIT equal to 1.8 s producing theoretically a very fine
Doppler resolution (0.56 Hz) corresponding to a radial velocity less than 0.05 m/s.
The long CIT is suited for the detection of maritime targets. The Doppler is
therefore an excellent criterion to distinguish closely located vessels in areas with
high target density. Finally, the range-Doppler-bin for which the signal strength
exceeds a pre-defined threshold is declared as detection and is forwarded to the
tracker.

11.7.1.1 Parameter accuracies
To characterize the measurement accuracies for target tracking, a simple bin pro-
cessing strategy is assumed. Of course, a detailed analysis of the achievable
accuracies must include all effects, starting with the implemented estimation and
calibration algorithms, the environmental effects like multipath and the target SNR.
This will be a topic of future research.

We start by considering a simple grid search over the range domain. The grid
cell dimension Dcell is selected according to the sampling frequency of the analo-
gue-to-digital converter and is smaller than the resolution limit Drange. Thus, the
range accuracy for high SNR values is determined by:

s2
range ¼

D2
cell

12
(11.28)

This is based on the assumptions that (i) the unknown target position is uniformly
distributed within the cell and (ii) no fine estimation technique is implemented
(e.g. inter-polation or range mono-pulse).

In the experiment, the signals are sampled at a frequency equal to 240 kHz.
Thus, the monostatic range accuracy is about 360 m. This is less than the
range resolution but still not satisfying for a good position estimation of moving
targets. It has to be stressed that, when operating in Cartesian coordinates, the
achieved position estimation accuracy depends not only on the measurement errors
but also on the bistatic geometry. Thus, the position estimate can be worse than
360 m.

For the angle estimation, we consider a simple search of the maximum
response over the 16 look directions (beams) within the FoV. Thus, again the
angular cell Dangle defines the angular accuracy. In the case of a uniformly dis-
tributed target over the angular cell and considering an angle bin of Dangle ¼ 7:5�,
the angular accuracy sangle is about 2:15�. Admittedly, such an angular accuracy
can only be attained if targets are well separated without any clutter influence. In
reality, clutter cancellation and especially direct signal cancellation is imperfect
and this will influence the angular accuracy. To deal with this, we assume that the
angle error is distributed over two adjacent beams. Thus, the angular accuracy is
approximately 5�.

Following the same argumentation as above, the Doppler accuracy sDoppler for
an integration time equal to 1.8 s results into 0.56 Hz. This high accuracy com-
pensates the low accuracy in range and allows target discrimination and tracking as
will be seen in the sequel.
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11.7.2 Scenario description
Two trial scenarios were acquired in the Baltic sea. The first one considers the
maritime traffic in the Bay of Mecklenburg. Figure 11.12(a) shows the scenario
configuration with the Rx (indicated by circle). As Txs, seven BTS (black triangles)
in six different locations with specific look directions were selected (two BTS were
sharing one mast).

The Rx was mounted on a tower of 56 m height shown in Figure 11.12(c)
located at the eastern cape of the Fehmarn island [41]. Its FoV is represented with
the blue sector (120� FoV and 40 km range [41]). The illumination sectors of the
individual BTS are indicated by small red sectors. Each BTS typically covers a
120� sector. Moreover, the white arrow within the Rx FOV shows a typical vessel
trajectory following one of the sea lanes in this area. We will concentrate on vessels
moving along this trajectory to analyse and discuss the obtained results in the
following sections.

The second scenario features the frequent ferry traffic between the Fehmarn
island and Rodby in Denmark. At the same time in orthogonal direction, dense
shipping traffic through the Fehmarn Belt is crossing the ferry lane. For both
scenarios, the Rx was mounted at the same position as in the first scenario
(Figure 11.12(a)) but with a look direction changed to cover the area of interest. In
fact, several potential BTS exist in this region, nevertheless they all could not be
considered simultaneously. This is because of the limited Rx bandwidth (30 MHz)
and the widespread carrier frequencies of the potential BTS. Here, we present
results with a configuration restricted to the three Txs from Figure 11.12(b). This is
clearly not an optimal configuration and shows constraints due to the hardware and
the geometry, but it shows exemplary the good results that can be obtained.

11.7.3 Performance analysis on real data
For validation purposes, an Automatic Identification System (AIS) Rx has been
used to obtain reference positions and velocities of the vessels in the observed area.
The AIS information of existing vessels is transformed into the range-Doppler-
azimuth domain and compared with the GSM measurements. Measurements asso-
ciated with this ground truth are selected by the global nearest neighbour technique
[27] pp. 8–11. The availability of the AIS ground truth can be used for theoretical
evaluation and validation of experimental system performance. Specifically, we
analyse two exemplary vessels. In Scenario 1, a ship moving through the Bay of
Mecklenburg is considered. In Scenario 2, we consider a ferry which is approach-
ing Fehmarn island from Rodby in Denmark.

The measurements that have been associated with the ground truth (see Sec-
tion 11.7.3) are processed by the UKF to obtain estimates of the target position and
velocity as well as the covariances (Section 11.3.1). Results are displayed in
Figure 11.13. Please note that for data evaluation, we use a simplified association
strategy based on the AIS data, tracking results for the full MHT (without AIS
support) are discussed in Section 1.7.4. Specifically, Figure 11.13(a) and (b) show
sequences of the estimation results. The AIS reference data of the vessel are

Multistatic tracking for passive radar applications 365



depicted as red crosses. The GSM track (for several time scans) is represented by a
black cross (mean value of estimated position) and an appended black line (mean
velocity), while the black ellipses show the corresponding track position uncer-
tainty (described by the track covariance). Finally, the blue and green bold ellipses
illustrate the position uncertainty given by the plots (after transformation into
Cartesian domain) of one time instant for each of the bistatic configurations that
provide detection. Uncertainty ellipses are plotted according to the 3-sigma volume
(3-times the standard deviation). In Figure 11.13(c) and (d), the RMSPOS is plotted
over track time. The Bay of Mecklenburg scenario confirms the importance of the
bistatic geometry. At the given time scan, six of seven BTS provide detection of
the target (Figure 11.13(a)). Five of them are from closely spaced Txs, while one
has a quasi-orthogonal geometry. The dramatic multi-sensor fusion gain can be
seen clearly in this example (black ellipses). Fusion over time (assuming the nearly
constant velocity motion model) finally improves the accuracy down to 200 m
(Figure 11.13(c)). Specifically, the exploitation of the BTS with the error
covariance orthogonal to the other configurations enhances the localization
capability. At the end of the scenario, the error increases, which is consistent with
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Figure 11.13 Accuracy improvement by multistatic fusion (real data), (a)
Scenario Bay of Mecklenburg (screenshot, 15 time scans), (b)
Scenario Fehmarn Belt (screenshot, 30 time scans), (c) Scenario
Bay of Mecklenburg (position error over time) and (d) Scenario
Fehmarn Belt (position error over time), after [9] �2014 IET
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our expectation from CRB analysis [9]. At the beginning of the scenario, the error
values are higher than expected, which can be traced back to missed detections
from some Txs.

For the Fehmarn Belt scenario, the fusion of the three BTS delivers indeed a
more accurate position estimation than with only one BTS, but it is not satisfying
(Figure 11.13(b)). This performance can be referred to the inconvenient choice of
the BTS which are in this example almost on the same line with the trajectory of the
ferry. Thus, the corresponding position ellipses coincide. No significant accuracy
improvement can be expected from the fusion of the BTS during the first half of the
scenario. Only the fusion over time (according to the adopted motion model and
exploiting the Doppler measurement) improves the performance. At the second half
of the scenario, the target is moving into an area of better estimation performance,
which is confirmed by the tracking result (Figure 11.13(d)).

These examples emphasize the importance of the Tx–Rx geometry. Orthogonal
bistatic configurations deliver higher fusion gain. Hence, the optimization of a GSM
passive radar system as considered in [8] is a key factor for the overall performance.

11.7.4 Tracking results
The number of false alarms limits the quality of target tracking. In particular, the
increased occurrence of false alarms in a specific region will lead to unwanted false
tracks. One should note that because of our conventional signal processing and
hardware imperfections, we have many false alarms due to clutter residues in BTS
direction for each bistatic pair. This applies in particular to the scenario of the Bay
of Mecklenburg.

In the second scenario of Fehmarn Belt, a wind park at the coast of the Fehmarn
island (see Figure 11.12(b)) caused major problems. Without any treatment, the
tracking results are dominated by a large number of false tracks, as seen in Fig-
ure 11.14(a). Table 11.4 explains the visualization symbols of the tracking results.

To improve the tracker performance, procedures have been proposed to gen-
erate adaptively a clutter map based on all collected measurements of the same
geographic region [42,43]. This uses the assumption that the clutter is stationary
and targets average out. The clutter map identifies regions of high false alarm level.
This means that for each BTS and for each range-Doppler cell, a probability value
describing the appearance of a false alarm is assigned. The generated clutter map
for one BTS is displayed in Figure 11.14(c). The target returns associated to AIS
data have been removed from the adaptive statistic. The contribution of the wind park
becomes apparent in the first two range cells. This context information is then
exploited by the tracker in the plot to track association by the factor rF (influencing the
hypothesis weights as discussed in Section 11.4.1). In addition, we introduce a
threshold on the false alarm probability to avoid track initiation in a region of high
false alarm level. However, an existing track can be maintained in a clutter region.

In addition to the clutter map, the geographic information of the coastline can
be inserted in order to discard detections on the land. A geographic map of
admissible areas, Figure 11.14(d), is taken into account for the MHT. The use of

Multistatic tracking for passive radar applications 367



© OpenStreetMap contributors
http://www.open street map.org/copyright

(a)

© OpenStreetMap contributors
http://www.openstreetmap.org/copyright

(b)

(c) (d)

Rx 

BTS 1 
BTS 2 

BTS 3 B
is

ta
tic

 ra
ng

e 
[k

m
]

60

55

50

45

40

35

30

25

20

15

–20 –10 0 10 20
Bistatic range-rate [m/s]

Wind park clutter

Figure 11.14 Clutter reduction (a) GSM Tracking results are mainly influenced
by the high false alarm level, see also Table 11.4, (b) By use of
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see also Table 11.4, (c) Clutter map for one BTS and (d)
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Table 11.4 Visualization scheme: tracking results

Tracks Small ship symbols Green: high-probability track
Red: low-probability track
Grey: identify an inactive track

Ground truth Triangles Orange: AIS target detected by the GSM system
(From AIS) White: no associated measurement

Look direction Shaded area Red: receiver
Green: transmitter
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context information has been already demonstrated as an effective mean for per-
formance improvement in other maritime applications [44,45]. In our system, the
geographic map is pre-loaded before the processing starts. The tracker listens to
this context information in two different steps of the processing, which are as
follows:

1. when new sensor measurements are received as input for the algorithm and
2. when already existing tracks are predicted.

In both cases, the unrealistic cases (e.g. measurements over land or tracks
crossing land) are discarded in order to reduce the number of the hypotheses.
Using both forms of context knowledge (clutter and land map), an impressively
clean situation picture can be achieved only on the basis of GSM measurements
(Figure 11.14(b)).

A more detailed discussion of the tracking results has been done in [9].

11.8 Summary

The fusion of measurements from multiple bistatic sensor pairs is a key feature of
passive radar. It is the prerequisite for increasing the coverage of a sensor and to
improve the estimation accuracy. The task of passive radar tracking is to realize this
fusion gain by correctly associating measurements of the different bistatic sensor
pairs and by appropriate estimation techniques.

For known associations of measurements to targets, target localization by
combining information of different Txs is a non-linear estimation problem. Con-
ventional approximation techniques like the unscented or EKF are appropriate to
handle the non-linearity of the bistatic measurement equation, but rely on a good
initial estimate.

The dimension of the association problem in passive radar applications
depends strongly on the precision of the bistatic measurements. Multi-target con-
flicts can arise, even if the targets are geographically well separated. The associa-
tion problem further increases when Txs are arranged in single-frequency networks.
Ghost tracks result from misinterpretation of measurement data. Compared to false
alarms that are contained in the sensor data, ghosts emerge at the fusion level and
are to be traced back to multi-target and multi-sensor association conflicts.

A solution of the association task has been derived on the basis of the multiple
hypothesis-tracking techniques. Different fusion schemes have been discussed with
the help of simulated data.

The design of the tracking algorithms needs to be adapted to the specific
characteristics of the passive radar system. For the example of GSM passive radar,
we discussed real data results that demonstrate the gain from fusing measurements
of different Tx/Rx pairs. Incorporation of prior information, if available, can further
improve the tracking results. This has been demonstrated for a GSM passive radar
application by incorporation of a clutter map and geographical information. This is
of particular importance, when operating in dense clutter regions like wind parks
and blind zones.
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Chapter 12

Radar-based ground surveillance

Felix Opitz1

Abstract

Radar-based ground surveillance provided by airborne platforms or based on dis-
tributed land-based installations is an essential ingredient for modern activity-based
intelligence. Therefore, ground moving target indication radar detects objects
within wide areas on land and sea and reports them through extracted radar plots.
Often these radar plots end up in a big data problem due to the high number of
involved objects and the long duration of typical surveillance missions. Also, the
object trajectories reported by radar plots may be interrupted due to terrain masking
and radar blindness within the Doppler notch. Multi-object tracking techniques
create continuous object trajectories by considering the radar plots collected by
multiple platforms together with topography and infrastructure. Higher level
aggregation methods, like convoy detection, group tracking and traffic flow esti-
mation, are additional methods of data analytics. Applied on the radar-based
ground picture they contribute to the overall situation assessment and are
suitable for focussing the attention of the users. Besides these detection and
tracking aspects, object classification and identification is necessary to complete
the situational ground picture. Radar contributes e.g. with synthetic aperture radar
or high-range resolution. Finally, data fusion is used to combine the radar picture
with additional data coming from other sensors or transponder systems.

12.1 Introduction

Ground surveillance is of central interest in numerous domains like defence, border
security, coastal surveillance, traffic supervision and emergency management to
mention only a few. The surveyed objects can be individuals, vessels or critical
facilities on sea or on land. The surveillance has to cover extended areas, compli-
cated environments and dense scenarios with a high concentration of objects.
Finally, the systems have to perform well in all weather conditions and provide
permanent long-term availability.

1Airbus Space & Defence, Germany



Usually, radar meets these demands on surveillance systems very well. They
are mounted on airborne platforms, on space-based satellites, on naval and ground
vessels or they are part of fixed installations.

Radar is the preferred sensor for detection and tracking. This means the
determination of all trajectories of moving ground objects based on subsequent
sensor measurements. But ground surveillance is not limited to the pure determi-
nation of trajectories. Knowing the position and dynamics of the involved objects,
the next question is their classification and identification. And even for this task,
the radar contributes as synthetic aperture, via high-range resolution or via Doppler
analysis.

Ground surveillance is related to numerous environmental models, e.g. road
maps, digital elevation or geoid models. Their incorporation into the surveillance
process is essential for the generation of a more comprehensive situational ground
picture. And again, this set of environment data is often the result of radar
measurement campaigns.

Further improvements for ground surveillance can be achieved by multiple-
radar platforms instead of only a single one, which increases coverage and helps to
improve the accuracy of the involved radar-based tracking.

In addition, the situational ground picture can be completed by the fusion with
complementary sensors. Imaging sensors like infrared and daylight camera systems
are often able to enrich the radar generated picture with additional information.
Furthermore, the interrogation of transponders provided by various systems is very
valuable for the tracking, classification and identification of co-operating objects.

Modern surveillance systems are integrated in a network-centric architecture
and exchange information by several data links.

In the following sections, techniques for the situational ground picture
compilation with the focus on radar sensors are described. First, an overview about
radar characteristics and mounting platforms is presented. The individual tracking
of ground objects based on radar detections taking into account co-ordinate
systems, road map information and digital elevation models is considered in the
second part. Another important aspect of ground surveillance is the tracking of
object aggregation, or the usage of multiple-radar platforms. This is addressed in a
separate section. Finally, an outlook is given to synergies offered by multi-sensor
data fusion between radar sensors themselves, and with complementary sensors.

12.2 Radar systems in ground surveillance

A radar system used for ground surveillance has two essential factors: The radar
itself and the platform, which carries the radar.

12.2.1 Radar platforms
One of the most critical issues for ground surveillance is masking caused by terrain,
building development and vegetation.
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Ground surveillance radar operates best mounted on airborne platforms, which
offers an optimized line of sight between sensor and objects. Possible platforms
include manned aircraft or unmanned aerial vehicles (UAVs), like high altitude
long endurance or medium altitude long endurance UAVs [1]. These operate in
heights starting from 5 km up to over 20 km and provide a coverage range up
to several hundred kilometres. Also, blimps are used as static airborne sensor
platforms, which ascent up to 5 km. Radar equipped satellites orbit in more than
500 km and possess a ground speed of several km/s. At present, these platforms are
commonly equipped with SAR sensors, but it has also been proposed to add ground
moving target indication (GMTI) functionality [2–4]. Further, high-altitude
platform stations are sensor platforms, which address the gap between UAVs and
satellites [5]. Ground-based GMTI sensors are mounted on stationary masts or
vehicles. Normally, the resulting grazing angle is ten to hundred orders of magni-
tude smaller than the one achievable by airborne platforms. So, the surveillance
range of these systems is highly terrain and object dependent, normally it can cover
a few tens of kilometres. Often, ground surveillance radars are deployed within a
whole sensor chain and are also effective in the detection of individuals.

12.2.2 Radar systems
12.2.2.1 Radar modes and types
Depending on the emitted waveform, pulsed and frequency modulated continuous
wave radars are distinguished. Both variants are useful for ground surveillance.
More details concerning wave form design and applications can be found in [6,7].
Here, only pulsed radars are considered.

Radar offers specialised modes for different surveillance tasks [8]. To detect
and track moving objects, the GMTI is the preferred technology. GMTI radar
exploits the Doppler to get a highly precise estimation of the object range rate, i.e.
the speed of the object projected to the line of sight. Therefore, the Doppler
information is used to distinguish between moving objects and the background
clutter.

Synthetic aperture radar (SAR) allows the imaging of wide areas and static
objects. While GMTI radar uses Doppler information to get the range rate of an
object, SAR uses the Doppler information to improve the cross-range resolution of
a radar image. To monitor an extended area, stripmap SAR is the most common
mode. Here, the radar images the area perpendicular to the ground track (i.e. the
projected trajectory) of its mounting platform. Conversely, spotlight mode SAR is
suited for the imaging of limited areas but with increased resolution. If the aim is to
classify objects, inverse SAR (ISAR) applies. This allows e.g. the classification of
ships even under environmental conditions which are infeasible by optical or thermal
systems. More advanced techniques for SAR processing can be found in [9].

Modern radars equipped with electronically scanning antennas are able to
execute these modes quasi-simultaneously. A dedicated sensor management opti-
mizes the switch between the available radar modes. Often a combination of GMTI
and SAR is used where the former allows the detection and tracking of moving

Radar-based ground surveillance 375



ground objects and the latter is triggered by special events to establish a more
detailed situation assessment based on imaging. Such events could be e.g. sinks,
sources and aggregations of ground objects [10,11].

12.2.2.2 Characteristics of GMTI radar
The performance of ground surveillance depends strongly on radar specifications
e.g. probability of false alarm and detection, update rate, accuracy and resolution,
minimum and maximum detection range, transmission and pulse repetition fre-
quency (PRF).

Depending on the used PRF the range or Doppler measurement becomes
ambiguous. The low PRF mode is by definition Doppler ambiguous; high PRF
is ambiguous in range. Medium PRF is ambiguous in both of them. Due to this
ambiguity, the range rate is only known modulo the blind speed. There are
methods to eliminate these ambiguities based on variations of the PRF and the
Chinese reminder theorem, known as staggering [8]. However, the trade-off
when using staggering must be considered, as it requires the emission of multiple
bursts and complicates the radar-based classification processing. Often, it is
preferred to eliminate ambiguities within the tracking (see [12] for an advanced
discussion).

Today, GMTI radars offer an excellent range and Doppler resolution and
accuracy, whereas the cross-range resolution and accuracy is a limiting factor
especially in airborne systems and mobile ground systems, where the antenna size
is limited. The expected cross-range resolution of a radar with wavelength l and
aperture size A is given by the 3-dB beam width and k � 0:89 (see [8], p. 12):

Q3 ¼ 2arcsin
1:4l
pA
� k

l
A

(12.1)

Therefore, the cross-range resolution depends on the antenna size and cannot
be made arbitrarily small. It becomes very inaccurate whenever the object has a
long distance to the radar. Methods to improve the cross-range accuracy include the
utilization of road maps within compressive sensing [13] or tracking, which is
discussed later on.

Another limiting factor is the platform motion-induced Doppler bandwidth –
especially for GMTI radar carried by airborne platform. The Doppler bandwidth bD

of a side-looking radar moving with velocity v and having a squint angle y to the
object and a projected antenna size Ay is given by [8], p. 125 and 390:

bD � k
2v

Ay
(12.2)

Hence, for radars on moving platform it is a problem to distinguish between ground
clutter and slow moving objects based on the Doppler measurement [6,14].

This leads to another problem, the Doppler notch. To reject the ground clutter,
usually a threshold is introduced, called minimum detectable velocity vMDV. Radar
plots with an absolute range rate less than this threshold are ignored. As a
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consequence, also real objects moving perpendicular to the line of sight vector are
eliminated. Further, the detection probability depends on the ratio between range
rate _r and MDV [12,15].

PD ¼ Pd 1� e�ð1=2Þð_r=vMDVÞ2
� �

(12.3)

Pd stands for the maximum probability of detection.
Pulse compression is a radar processing method to combine long detection

range and fine resolution, especially if individuals are observed. But pulse com-
pression has also a potential side effect, because it can cause an inner blind zone,
which is absolutely unwanted in ground surveillance.

Further, advanced constant false alarm techniques helps to handle hetero-
geneous clutter that is also a characteristic phenomenon in ground surveillance
[8,14].

Finally, to take full benefit out of modern array antennas space time adaptive
processing (STAP) [16–18] is important. Ground object tracking with STAP radars
is addressed in [19].

12.2.2.3 GMTI radar standard
There is a dedicated standard agreement for an optimal provision of GMTI related
information to the surveillance system, see [20].

This takes care of modern radars which can execute multiple tasks – so-called
jobs – quasi-simultaneously.

Radar plots are sorted into continuous revisits, and within a revisit they are
arranged into so-called dwells (Figure 12.1). Hence, the tracking system is aware of
the scanning behaviour of the radar and can also conclude when an object is not
detected within a revisit.

Often the sensor only measures range, azimuth and Doppler and internally uses
projections onto the earth surface to deliver a three-dimensional spatial plot.
Therefore, the GMTI sensor also provides the reference of the used geoid and
elevation model. This is necessary, because the GMTI standard delivers the posi-
tion information in latitude, longitude and possible altitude and not the raw mea-
surements. Also sensor performance data can be submitted, e.g. detection
probability, false alarm probability, range rate ambiguity (blind speed) and the
accuracies for the sensor measurements, i.e. range, cross-range and range rate.
These are pre-requisites for the tracking capability. In addition, the GMTI standard
supports HRR, such that plots can also get a reference to dedicated HRR
measurements.

On the other side, the standard also provides means, to control the radar in its
sensing.

However, much of these parameters are optional and it is a high effort to build
surveillance systems that are able to handle all the possible combinations.

Also for the other radar aspects like the resulting tracks based on
GMTI measurements [21] and for SAR [22] dedicated standardizations are
available.
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12.3 Co-ordinate systems for ground surveillance

Different co-ordinate systems are used to represent the position and velocity of the
monitored objects, radar platforms and radar measurements in ground surveillance.

12.3.1 WGS 84 ellipsoid
Concerning long range surveillance where the sensor has to keep a stand-off dis-
tance to the surveillance area, the curvature of the earth has to be taken into
account. This is done by the approximation of the earth surface by an ellipsoid,
which leads to the WGS 84 system [23]. The WGS 84 ellipsoid is defined by the
semi-major and semi-minor axes:

semi-major axis ðequatorial axisÞ: a ¼ 6378137 m

semi-minor axis ðpolar axisÞ: b ¼ 6356752:3142 m

flattening: f ¼ 1
298:257223563

eccentricity: e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2

a2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:69437999014 � 10�3
p

Revisit 4

Surveillance area Surveillance area

Last
dwell

Dwell 0 Dwell 1 Dwell 2

Last dwell

Dwell 0 Dwell 1

Revisit 5

Figure 12.1 GMTI standard: The figure shows two revisits [l] and [r]. Revisits
are composed out of dwells, which contains the plots. These dwells
are enumerated within a revisit. The last dwell carries a marker (last
dwell flag) that the revisit is finished. Also empty dwells are allowed
to indicate missed plots (negative information)
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12.3.2 Object co-ordinate systems – WGS 84 and ECEF
A spatial point is defined in WGS 84 by geodetic latitude f, longitude l and altitude h.

The ECEF co-ordinate system assigns three Cartesian positions to a point,
written as X , Y , Z. Z is in the direction of the rotation axis of the earth and points
to north, whereas X and Y spans the equatorial plane, such that X directs to the
0-longitude half circle. Given latitude, longitude and altitude, the computation of
the transformation TXYZ flh and its derivative DTXYZ flh is straightforward:

X
Y
Z

0

@

1

A ¼
ðNðfÞ þ hÞcos l cos f
ðNðfÞ þ hÞsin l cos f
ðNðfÞð1:0� e2Þ þ hÞsin f

0

@

1

A (12.4)
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�N1 cos l sin f �N2 cos f sin l cos f cos l
�N1 sin f sin l N2 cos f cos l cos f sin l

N1 cos f 0 sin f

0

@

1

A

_f
_l
_h

0

@

1

A (12.5)

with the following abbreviation:

NðfÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2 sin2f
p (12.6)

N1ðfÞ ¼ 1� e2

a2
NðfÞ3 þ h (12.7)

N2ðfÞ ¼ NðfÞ þ h (12.8)

The inverse transformation Tflh XYZ from ECEF to WGS 84 is more difficult
since no explicit formula exists. An iterative algorithm has to be used. Here,
Fukushima’s fast implementation of Bowring’s formula is presented [24]. This

b h

y

a
x

Pz

b h

a
N

P
z

λ
φ

ρ
φ

Figure 12.2 WGS 84 co-ordinate system. The figures show the definitions of WGS
84 co-ordinates: a, b are the semi-axes, X, Y, Z are the Cartesian
earth centric earth fixed (ECEF) co-ordinates, f, l, h are latitude,
longitude and altitude
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method delivers sufficiently accurate results after the first iteration for positions on
the Earth surface:

First the iteration is initialized for i ¼ 0 by:

l ¼ arctan
Y

X
(12.9)

c ¼ ae2; e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

; Z 0 ¼ e0Z (12.10)

T0 ¼ Z

e0p
(12.11)

The iterative step from i 7! iþ 1 is as follows:

C ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T2
i�1

p ; S ¼ CTi�1 (12.12)

Ti ¼ Z 0 þ cS3

p� cC3
(12.13)

f ¼ arctan
Ti

e0
(12.14)

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� e2Þ þ T2
i

p

e0
p� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T2
i

p

 !

if p > z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� e2Þ þ T2
i

p Z

Ti
� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T2
i

p

 !

if p � z

8

>

>

>

>

>

<

>

>

>

>

>

:

(12.15)

For other methods see [25,26]. The derivative DTflh XYZ is best calculated by
DTXYZ flh taking into account the chain rule.

12.3.3 Platform-centric system – ENU
The radar platform system is the east-north-up system (ENU), where the east and
north direction generates the tangential plane to the WGS 84 ellipsoid and the third
axis points skywards. The transformation TXYZ flh of ECEF to ENU co-ordinates

relative to a position X0 Y0 Z0ð ÞT are given by:

x
y
z

0

@

1

A ¼
�sin l cos l 0

�sin f cos l �sin f sin l cos f
cos f cos l cos f sin l sin f

0

@

1

A

X � X0

Y � Y0

Z � Z0

0

@

1

A (12.16)

The backward transformation from ENU to ECEF is given by:
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0 cos f sin f
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A (12.17)
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12.3.4 Sensor co-ordinate system – range, azimuth and Doppler
Finally, the co-ordinate system of the radar measurement is given by range r, azi-
muth y and range rate _r. For completeness, we also mention elevation e. So
Trye_r xyz, respectively, DTrye xyz at a point (x, y, z) are given by:
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e
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B

B
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1
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The backward direction Txyz rye, respectively, DTxyz rye from ENU to the sensor
measurement system is given by:
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r sin y cos e
r cos y cos e

r sin e
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A (12.20)
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12.4 Environment models

As mentioned before, environment data are of central interest for ground surveil-
lance. In the following, road maps and digital elevation models are briefly
considered.

12.4.1 Road maps
There exist a large variety of different file formats to store road maps as so-called
vector data. Several open source libraries are available to handle all these file
formats. Widely used in the Cþþ world is Open GIS Simple Features Reference
Implementation which is part of the open source Geospatial Data Abstraction
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Library [27–29]. Digital roads are typically represented by polygons. The nodes of
these polygons are given by their latitude and longitude co-ordinates. Further, each
road is modified by a unique key, a surrounding bounding box and possible addi-
tional tags, like speed limit, type of road, name of road, etc. Unfortunately, there is
no common standard concerning these tags so that they are difficult to incorporate
due to compatibility reasons. To use road map information, it is essential that these
maps are highly efficient integrated in the surveillance system and a fast access is
guaranteed [30].

The following nomenclature is used (see Figure 12.3):

fpi
j; j ¼ 0; . . .g ¼ the nodes of the road Ri (12.22)

Ri
j ¼ the road segment spanned by pi

j and pi
jþ1 (12.23)

ni
j ¼ normal to Ri

j (12.24)

For the projection of a radar plot to a road segment its covariance Q has to be
considered, see Figure 12.4. It defines the pullback metric given by the quadratic
form (see [31] or [32]):

W ¼ DTry flðf; lÞQ�1DTry flðf; lÞT (12.25)

The plumb point to the road segment Ri
j with normal ni

j and distance di
j is

given by:

Pri
jp ¼ p�W�1nðnT W�1nÞ�1ðnT p� di

jÞ (12.26)

Figure 12.3 Road map information
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and its derivative by:

DPri
jðpÞ ¼ I�W�1nðnT W�1nÞ�1nT (12.27)

If the projection ends outside of the road segment, the nearest corner point has to be
taken instead (see Figure 12.5). The final projection point is the one with the
minimal distance over all available road segments, i.e.

PrðpÞ ¼ argminPri k p� PriðpÞ k (12.28)

PriðpÞ ¼ argminPri
j
k p� Pri

jðpÞ k (12.29)

12.4.2 Digital elevation models
Whenever no sufficient altitude is directly measured by the GMTI radar, the
completion of two-dimensional localizations to spatial plots can be realized by the
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Figure 12.4 Orthogonal vs. probabilistic projection
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Figure 12.5 Projection of radar plots to road map
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projection onto suited elevation models. Often coarse assumptions are taken like a
fixed plane of constant altitude in the area of interest. More accurate are digital
elevation models. The Digital Terrain Elevation Data (DTED) is represented by the
elevation values of a rectangular grid. DTED level 2 has a latitude spacing of 1 arcs
and a longitude spacing from 1 arcs at the equator to 6 arcs at the poles. This cor-
responds to approximately 30 m [33]. A whole amount of DEM data was captured
during the Shuttle Radar Topography Mission in 2000 [34]. Today, WorldDEMTM is
an extremely accurate DEM model, which offers 2 m (relative), respectively, 4 m
(absolute) vertical accuracy in a 12� 12 m raster [35].

In the following, it is assumed that

aðj; lÞ (12.30)

is an elevation model which maps a latitude j and longitude l to their corre-
sponding altitude value.

A GMTI plot – given by range r and azimuth y – can be projected to the earth
surface by intersecting the circle defined by the measured range and directed along
the measured azimuth with the chosen elevation model, as shown in Figure 12.6.
The resulting planar position in latitude and longitude is denoted by

PrDEMðr;yÞ ¼ Projected position in latitude and longitude (12.31)

12.5 Tracking in ground surveillance

In general, tracking has to perform two tasks:

● data association and
● filtering.

Data Association is responsible for establishing the correct plot track relation in
multi-object scenarios.

There are several algorithms addressing the data association problem. An over-
view can be found in [36–41]. A classical approach is the multi-hypothesis tracking
or the multi-dimensional data association. Special GMTI aspects can be found in
[42–44]. Other approaches include two-dimensional data association like the

Azimuth

Range

Figure 12.6 Projection onto DEM for radar plots
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so-called Munkres [45], Auction [46], or Jonker-Volgenant-Castanon [47] algorithm.
An opposite approach tries to avoid the data association at all and uses methods
based on random sets. Very popular are the Gaussian mixture versions of the Prob-
abilistic Hypothesis Density Filter and the Cardinalised Probabilistic Hypothesis
Density Filter, see [41,44,48,49]. To support these advanced association methods, a
complete implementation of the available GMTI standard [20] is essential, as dis-
cussed in Section 12.2.2.3.

Filtering realizes the state estimation of an existing track whenever a new plot
arrives. It splits into a prediction and an assimilation (or update) step. Prediction
extrapolates a track to the time of an actual radar plot, whereas the assimilation
estimates the new track state based on the plot information and the previously
predicted state. Multiple-filters exist. The most famous is the Kalman filter and its
non-linear generalization, the extended Kalman filter. Other generalizations are the
Unscented Kalman filter (UKF) and the whole class of particle filters [36–40,50].

In ground surveillance, the track states have to fulfil additional constraints. The
tracks move on the surface of the earth and usually follow roads. These constraints
are modelled by road maps and elevation models. The incorporation of these
models leads to road-assisted or terrain-assisted tracking. Assisted tracking is an
option to improve the track accuracy and continuity. Three alternatives to integrate
state space constraints into filtering can be identified:

● Projection: The first one is the projection approach. This performs prediction
with an adequate prediction model and afterwards the assimilation. The pro-
blem is that the state does not necessarily fulfil the environment constraints.
A projection is necessary to get the track back into the constrained state space,
i.e. this part of the state space which fulfils the constraints.

● Parameterization: The alternative approach is to choose a parameterization of
the constrained state space and perform the tracking within the parameteriza-
tion space. Once the plot is projected to the constrained state space to initialize
the track, no further projection is necessary.

● Particle filter: A third alternative is the usage of particle filters. Therefore, the
constraints are implemented into the particle prediction model.

Filters for ground surveillance which follows the first and second approach using
Gaussian mixtures can be found in [51–54]. A UKF is proposed in [55,56]. Particle
filters are suggested e.g. by [57,58]. Unfortunately, particle filters induce high
computational load so that these filters may still not be feasible for real-time pro-
cessing of extended multi-object scenarios.

A very important aspects in tracking with GMTI plots is the handling of blind
zones [43,48,49,52–54]. In [19] also, the aspect of STAP is analysed, and in [12],
the consequences of range and Doppler ambiguities.

Here, the second approach is used. The prediction of the object is given by a
local parameterization gðsÞ of the road map, centred at the last known position,
which assigns to each parameter s a path on the road map given by latitude and
longitude. To add the altitude information, a digital elevation model is given, which
assigns to each pair of latitude and longitude the corresponding altitude aðf; lÞ.
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Afterwards, the resulting point can be mapped as predicted plot into the platform
system and finally into the measurement space of the radar to perform the assim-
ilation step. Figure 12.7 summarizes the concepts. In the following sub-sections, a
filter algorithm for unassisted and road-assisted tracking is described.

12.5.1 Filtering with GMTI measurements
In the following, the filtering with GMTI plots is explained based on an Unscented
Kalman filter [50,59–61]. The UKF uses the Unscented transformation (see
Figure 12.8).

The Unscented transformation is a sampling method to approximate the image
of a covariance under a non-linear function. Therefore, the shape of a covariance is
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Figure 12.7 Radar tracking with digital elevation model and road maps. The
figure shows all relevant models, spaces and transformations
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Figure 12.8 Unscented Transformation of covariance
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described by so-called sigma points. These sigma points are transformed by the
given function and afterwards determine the shape of the transformed covariance.
For the generation of these sigma points, a Cholesky decomposition is applied.

The UKF allows a comfortable and flexible integration of roads and elevation
models into the filter. Further, it is also suited, when we have to deal with the non-
linearity caused by the Doppler (range rate) measurement.

12.5.1.1 State and measurement equation
Filtering is the solution of a problem defined by two equations. The first one is the
prediction equation for an object state xt�1 at the time t�1.

xt ¼ Fxt�1 þ rt (12.32)

F describes the prediction of the object. It is given by:

F ¼ 1 dt
0 1

� �

respectively by F ¼
1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

0

B

B

@

1

C

C

A

(12.33)

for a two-dimensional respectively four-dimensional track state. rt is a Gaussian
process noise with covariance Rt. A radar plot yt relates with a track state through
the measurement equation:

yt ¼ hðxtÞ þ qt (12.34)

h is the transformation from the track state to the measurement space. qt is the
measurement noise given by a Gaussian distribution with covariance Qt:

Qt ¼
s2

r 0 0
0 s2

y 0
0 0 s2

_r

0

@

1

A (12.35)

12.5.1.2 Parametrisation of the unscented transformation
To start the UKF filter the Unscented transformation has to be parametrized
[59,60]. This means the spread of the sigma points and the weighting of the central
sigma point compared to those on the boundary has to be defined, see Table 12.1.

Table 12.1 Unscented Transformation – Parametrisation

Parameter Setting Recommended
range

Significance

a 1 1 � a � 10�4 Spread of sigma points
b 2 Prior knowledge of distribution b¼ 2 is optimal

for Gaussian
k 0 k 2 0; 3� Lf g Secondary-scaling parameter
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Further the following derived parameters are used:

l ¼ a2ðLþ kÞ � L (12.36)

g ¼
ffiffiffiffiffiffiffiffiffiffiffi

Lþ l
p

(12.37)

12.5.1.3 Initialization
The Unscented Kalman filter starts with an initial state and covariance:

x0 ¼ E x½ � (12.38)

P0 ¼ E½ðx � x0Þðx� x0ÞT � (12.39)

12.5.1.4 Prediction
Assuming that the state xt�1 and covariance Pt�1 are known for iteration t � 1, the
prediction steps calculate the sigma points and their weights through a Cholesky
decomposition:

Xt�1;0 ¼ xt�1 (12.40)

Xt�1;i ¼ xt�1 þ gð
ffiffiffiffiffiffiffiffiffi

Pt�1

p

Þi; i ¼ 1; . . . ; L (12.41)

Xt�1;i ¼ xt�1 � gð
ffiffiffiffiffiffiffiffiffi

Pt�1

p

Þi�L; i ¼ Lþ 1; . . . ; 2L (12.42)

The sigma points are transformed by an Unscented transformation and the pre-
dicted state and its covariance are calculated for iteration number t (based on
iteration t � 1):

Xtjt�1;i ¼ f ðXt�1;iÞ; i ¼ 0; . . . ; 2L (12.43)

xtjt�1 ¼
X

2L

i¼0

wðmÞi Xtjt�1;i (12.44)

Ptjt�1 ¼
X

2L

i¼0

wðcÞi ðXtjt�1;i � xtjt�1ÞðXtjt�1;i � xtjt�1ÞT þ Rt (12.45)

The weights to build the predicted state and covariance are given by:

wðmÞ0 ¼ l
Lþ l

(12.46)

wðcÞ0 ¼
l

Lþ l
þ 1� a2 þ b (12.47)

wðmÞi ¼ wðcÞi ¼
1
2

1
Lþ l

; i ¼ 1; . . .; 2L (12.48)
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12.5.1.5 Assimilation
For the assimilation step the predicted state is mapped into the measurement space.
Therefore, the sigma point are generated first through:

X0tjt�1;0 ¼ xtjt�1 (12.49)

X0tjt�1;i ¼ xtjt�1 þ gð ffiffiffiffiffiffiffiffiffiffiffi

Ptjt�1

p Þi; i ¼ 1; . . . ; L (12.50)

X0tjt�1;i ¼ xtjt�1 � gð ffiffiffiffiffiffiffiffiffiffiffi

Ptjt�1

p Þi�L; i ¼ Lþ 1; . . . ; 2L (12.51)

and afterwards are mapped into the measurement space:

Ytjt�1;i ¼ hðX0tjt�1;iÞ; i ¼ 0; . . . ; 2L (12.52)

Then, the predicted measurement and the associated covariance are calculated:

ytjt�1 ¼
X

2L

i¼0

wðmÞi Ytjt�1;i (12.53)

Pyy;tjt�1 ¼
X

2L

i¼0

wðcÞi ðYtjt�1;i � ytjt�1ÞðYtjt�1;i � ytjt�1ÞT þ Qt (12.54)

Finally, the Kalman gain and the state and covariance update is given by:

Pxy;tjt�1 ¼
X

2L

i¼0

wðcÞi ðXi;tjt�1 � xtjt�1ÞðYi;tjt�1 � ytjt�1ÞT (12.55)

K ¼ PxyP�1
yy (12.56)

xt ¼ xtjt�1 þ Kðyt � ytjt�1Þ (12.57)

Pt ¼ Ptjt�1 þ KPyyKT (12.58)

Next, the Unscented Kalman filter is applied to unassisted and assisted tracking.

12.5.1.6 Unassisted tracking
The state vector is given in planar WGS 84 co-ordinates and the corresponding
angular velocities:

xt ¼ ft lt _ft
_lt

� �T
(12.59)

The process noise is derived from a Gaussian distributed acceleration in l and f

with covariance matrix
s2
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fl
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fl s2
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 !

, i.e.
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 !
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(12.60)
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To initialize the filter a GMTI plot is mapped onto a two-dimensional state vector,
as explained before in (12.31). This delivers x0 and P0.

The projection h used in the filter is given through the co-ordinate transfor-
mation discussed in Section 12.3. It assigns to each state variable the co-ordinates
in the measurement space given by range, azimuth and range rate:

hðf; l; _f; _lÞ ¼ ðrðf; l; _f; _lÞ;yðf; l; _f; _lÞ; _rðf; l; _f; _lÞÞT (12.61)

12.5.1.7 Road-assisted tracking
The road-assisted tracking depends on a parametrisation of a possible route of the
object, given by gðsÞ. Hence, a two-dimensional state space is used given by the arc
length s of the route:

xt ¼ st _stð Þ (12.62)

The process noise is directed along the road. It is derived from a Gaussian-
distributed acceleration in s with covariance s2

s :

Rt ¼ GT s2
s

� �

G and G ¼ 1
2

dt2 dt

� �

(12.63)

To initialize the filter, a GMTI plot is mapped onto the elevation model of the earth
and afterwards onto a road. A possible route gðsÞ is selected centred in this position.

Finally, the projection h used in the filter is given through the co-ordinate
transformation, discussed in Section 12.3. It assigns to each position along the
selected route gðsÞ, the co-ordinates in the measurement space given by range,
azimuth and range rate (see Figure 12.7)

hðs; _sÞ ¼ ðrðs; _sÞ;yðs; _sÞ; _rðs; _sÞÞT (12.64)

So far, the filtering for a given route parameterization was described. What makes
the situation more complex is that the object can turn at each junction to continue
along another road, see Figure 12.9. These different routes are incorporated via a
multiple model [62,63], i.e. the filter calculates several possible routes in parallel
together with their likelihoods:

Lgi ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2pPðgiÞ
yy;tjt�1Þ

q e�
1
2ðy
ðgiÞ
tjt�1
�yÞT ðPðgiÞ

yy;tjt�1
Þ�1ðyðgiÞ

tjt�1
�yÞ (12.65)

The upper index gi symbolizes the dependency of the chosen route gi. This is used
to maintain a multiple model.

Further, it is possible to use the Doppler notch information, such that also
missed detections are used to prefer routes which are in the notch as proposed in
[12,57,64]. This can also be applied to other types of blind zones (e.g. terrain
masking). Therefore, it is important, that a GMTI radar delivers not only plots but
also hints about missed detections, as intended in the GMTI standard [20].
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Figure 12.10 shows the result of assisted tracking. On the left side, GMTI plots
are shown. It is easy to see how they deviate from the infrastructure. The right side
shows the result of a road-assisted tracking together with the covariances of the
assigned plots.

12.6 Further topics in radar tracking

12.6.1 On–off road tracking
The proposed concept can be extended to deal with on–off road tracking. There-
fore, it is estimated whether an object leaves a road or enters a road. A multiple
model is used to realize these model transfers.

Another realization using particle filters can be found in [57]. A different
method using a VS-IMM is discussed in [64].

Figure 12.11 shows the result of automatic on-off road tracking based on
simulation. Note the size of the covariance when the object is on or off road.

12.6.2 Tracking with multiple platforms
The use of multiple GMTI radar platforms is a significant measure to improve the
accuracy and completeness of the tracking. In airborne ground surveillance, this
can be realized by co-operating UAVs. In coastal or border surveillance, often a
grid of dislocated radar towers or sensor vehicles is installed. The main goal is to
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Figure 12.9 Road-assisted vs. non-assisted tracking: Road-assisted tracking keeps
the error ellipses small by using the road constraint (in fact they are
one dimensional). Therefore, the accuracy is improved and objects
could also be better separated in the data association step. For the
road-assisted tracking, all possible routes an object can take have to
be considered
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improve the cross-range accuracy of the radar system by intersecting two more or
less perpendicular ellipsoids. A further advantage is the avoidance of terrain
masking and Doppler blind zones.

But using dislocated platforms increases the risk of out-of-sequence measure-
ments (oosm). This may be caused by different delay times within the (radio)
network or by delays in the radar processing itself. Therefore, techniques have to be
applied to update also with oosm, especially to predict backwards in time for

Figure 12.10 Road-assisted tracking: [l] raw data, [r] road-assisted tracking
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unassisted and assisted tracking [40,56,65]. If oosm occur while road-assisted
tracking is used, also the road map has to be taken into account for back-propagation.
In these situations, the benefit of road-assisted tracking is limited, because the
geometry already realizes an improvement of the plot accuracy.

Figure 12.12 shows a situation where two sensors are involved.

Figure 12.11 On–off road tracking: The red lines define the roads. The colour of
the ellipses symbolize the different range rates

Figure 12.12 Multiple radar tracking with out of sequence measurement: The
figure shows the plots and covariances of the radar plots of two
sensors. The green line shows the resulting track. Unassisted
tracking was applied
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12.6.3 Group tracking
In ground surveillance, often the situation arises where multiple objects are spaced
closely together and move in a co-ordinated manner. A classical example is the
so-called convoy, where the succeeding vehicles move with a nearly constant
distance and with a common velocity [44]. These convoys typically follow the
infrastructure, which creates a one-dimensional chain. For maritime situations, a
convoy can often be arranged around a common centre, resulting in a more two-
dimensional shape.

Often, it is the task of a cluster algorithm to find out, which objects belong to a
convoy or more general to a group.

Next, a tracking method for the extracted groups has to be selected. Therefore,
several options are possible:

● Individual tracking: Each object is tracked individually, so that only an attri-
bution with cluster affiliation is required.

● Extended object tracking: This approach does not try to track the individual
members of a cluster separately. Instead, the whole group is considered as an
extended object, which has to be tracked. Therefore, the group may be abstracted
as an ellipsoid and its centre. More details may be found in [40,66–68].

● Tracking of co-ordinated objects: This technique tries to use the co-ordinated
behaviour of the group members to improve their individual tracking. This
approach can be found in e.g. [69].

On top of these aspects also road-assisted tracking may apply. Also, the first
and the second possibility can be combined.

In addition, there are situations where several groups are involved within a
scenario which can merge, split and pass. Also, this has to be taken into account –
especially in the clustering. So the resulting situations can be quite complicated.

12.7 Information fusion and sensor management

12.7.1 Multi-sensor data fusion and sensor management
The localization information carried by a GMTI plot can be combined with other
sensors, which are advantageous in complementary dimensions: While GMTI
measures range, azimuth and range rate some transponder systems deliver a GPS
position given by latitude, longitude and altitude. So-called interrogation friend foe
(IFF) transponders are also able to deliver the barometric height for example within
mode 3C. Passive optical or infrared sensors do not provide a range measurement
but have very accurate azimuth and elevation measurements. So, there is potential
to improve or at least complete the localization based on GMTI radar plots with
other localization sources.

Complementary sensors measure attributes which may be of interest for
situation awareness. It is not only the task to localize the objects within a scenario,
objects have to be classified and identified. This means that the type and the
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intention of an object have to be estimated. Information fusion and automated
sensor management are necessary to obtain synergies out of a diverse, dislocated
and networked sensor grid [11].

12.7.2 Traffic flow, areas, corridors and routes
The result of a tracker can be evaluated, to derive additional information. Traffic
flow analysis is used to determine how intensively the parts of an infrastructure are
frequented. It is possible to determine sinks and sources, i.e. areas where objects
regularly appear and disappear, which is of strategic interest to determine points of
concentrations. Group tracking delivers also merger and split points of groups
which are of interest for the monitoring of on-going deployments [10,11].

Areas, which are known to be friendly or suspect can be used to support
identification. If it is possible to backtrack the trajectory of an object to such an
area, the object has most probably the same disposition. Also, it is possible to give
some way points, which have to be passed by objects belonging to the same
coalition.

Finally, it is possible to generate infrastructure information out of GMTI
tracking, as addressed in [70].

12.7.3 Radar-based classification
SAR contributes to ground surveillance systems, especially if extended terrain
should be observed or non-moving objects have to be detected which remain
undiscovered by GMTI radar. Especially, objects which are observed in GMTI mode
are candidates for a SAR acquisition if they stop. Similar sink and sources areas
found by traffic flow analysis may be investigated within the SAR radar mode.

Further, the Doppler spectrum can be used to differentiate between object
classes like wheeled or tracked vehicles, helicopters, planes or humans respectively
animals as far as the relevant features are visible [71,72]. This applies especially for
ground-based MTI radars used in security applications. Radar classification is
possible during day and night and under poor weather conditions. So, the radar
detection is possible when electro-optical sensors have to struggle with challenging
environmental conditions.

12.7.4 Transponder systems
To enrich the situational ground picture the interaction with transponder systems is
useful.

The secondary surveillance radar or the non-civilian IFF interrogates trans-
ponders, which are mainly installed on air platforms but also on several naval
vessels. It measures range and azimuth to a transponder directly. The transponder
of the object gives additional information. For instance, the so-called mode 3A/C
code provides a squawk code and pressure altitude in 100-ft increments. Further
ADS-B is a co-operative surveillance technology in which an aircraft determines its
position via satellite navigation and provides its position to nearby aircraft or air
traffic control.
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The Automatic Identification System (AIS) is an automatic tracking system
used on ships and by vessel traffic services for identifying and locating vessels. It
contains the GPS position and further attributes about the object like its route,
identity, name, task, etc. Other Blue force tracking systems deliver the position of
own land based units based on GPS position and specific tags.

This information can be correlated with radar tracks to complete the localiza-
tion, to determine the object environment and to add relevant attributes to the
tracks.

12.7.5 Electro-optical and IR sensors
Optical sensors are used to detect, recognize and identify objects at day and night
time. There are long-range daylight camera systems, infrared systems, laser
scanners, light intensifiers and newest range gating vision systems. The latter one is
also able to look through windows and read labels at night.

Unfortunately, optical sensors like infrared are more weather and environment
dependent than radar sensors. Even if the objects are in the field of view of such a
system, a sufficient temperature difference or contrast is needed [73,74]. Motion or
atmospheric blur may hamper the detection of objects either visual by an operator
or also by automatic systems (e.g. change detection) etc. Disadvantageous weather
condition like sandstorm can stop detection at all. However, within complex multi-
object situations optical sensors are essential for identification and final situation
assessment.

Also for optical sensors software which detects (ATD) and recognizes (ATR)
objects automatically is available [75]. ATD software that uses change detection
techniques works best when the objects move perpendicular to the line of sight,
which is also complementary to the radar behaviour. However, it is in general more
difficult to eliminate the background, especially for moving sensor platforms or
turning camera systems. Newer concepts propose compressive sensing technology
for this purpose [76,77].

Detected objects are normally marked within a video, i.e. their pixel co-
ordinates are determined. Knowing the direction of the camera systems and DEM
model, their real world position can be estimated by ray tracing. DEM may also be
essential to realize the required absolute alignment of a camera system with a high-
zoom capability [78,79].

Best usability is ensured if optical sensors are combined with radar systems,
such that the radar is used for volume search and the camera is used slaved to the
radar. Within this constellation, very high zoom has to be used which results in a
small field of view. This requires a very accurate alignment between camera, radar
and the environment and an excellent radar tracker performance to control the
camera movement.

12.7.6 Network-centric sources
In the network-centric environment, radar and additional data is shared between
participating units – called the sensor and information grid in newer terminology.
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Track data is exchanged by tactical data links like Link 16 or Link 22 via radio.
So, the system correlates the external tracks with its own and sends out its internal
track, whenever it has a higher track quality than the reporting unit i.e. the unit with
the highest track quality for an object has the reporting responsibility for this
individual track. These data links are still driven by limited data rates.

Newer track exchange standards that share more information have recently
become available for ground surveillance [21]. So, higher data rates will enable
distributed radar tracking with higher performance track–track fusion. This is a step
forward into the direction of optimal track–track fusion as described in [80].

There are further standards to share GMTI plots, primary or secondary radar
data, IFF, AIS and ESM. It is possible to distribute image and video information
within ground surveillance systems and persisting the information in data bases –
often called coalition shared database.

12.8 Conclusion

Radar is the most important sensor for ground surveillance systems due to its all-
weather availability at day and night. Mounted on airborne platforms, it benefits
additionally from an excellent line of sight and enables a continuous surveillance.

Its performance can be significantly increased by a priori information like road
maps or digital elevation models. These can be integrated by radar tracking tech-
niques or perhaps in the future also with compressive sensing technologies.

Optimal tracking has to take into account all the radar specifics. Very impor-
tant for ground object tracking is the incorporation of the Doppler notch informa-
tion to support e.g. track-continuity. Similar, other blind zones caused by terrain
masking have to be considered.

A significant increase of the radar based ground surveillance can be realized by
dislocated and co-operating platforms. These may be ground, airborne or satellite
based platforms. So radar will profit from trends related to platform development,
like autonomous UAVs or swarms of sensor platforms. Radar-based surveillance
will establish synergies out of these developments. It will also increase the per-
formance of the surveillance systems when wide band data links are available,
which enables distributed tracking and advanced track-track fusion.

The high amount of radar data collected in ground-based surveillance leads to
a big data problem, which must also be solved to be able to profit from the sensor
capabilities. Radar related topics are group tracking within the radar trackers,
identification of suspicious behaviour by identifying and tracking on and off road
objects, traffic flow analysis, or other means. Also the fusion and automated sensor
management between the available radar modes like GMTI, SAR, ISAR, HRR are
methods to obtain situation awareness and leads inevitably to what is called cog-
nitive radar.

Radar is the best suitable sensor to support the integration of other sensor types
like infrared, range gated vision systems, daylight cameras, actual and future
transponder systems in a network-centric approach. The optimal performance of
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ground surveillance is established if the sensors are linked together using the tools
which are provided by information fusion.
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Abbreviations

ADS-B Automatic-Dependent Surveillance Broadcast

AIS Automatic Identification System

ATD Automatic Target Detection

ATR Automatic Target Recognition

CFAR Constant False Alarm Rate

CPHD Cardinalised PHD

DEM Digital Elevation Model

DTED Digital Terrain Elevation Data

ECEF Earth Centric Earth Fixed

EKF Extended Kalman Filter

ENU East North Up

ESM Electronic Support Measurement

GDAL Geospatial Data Abstraction Library

GMTI Ground Moving Target Indication

HALE High-Altitude Long Endurance

HAPS High-Altitude Platform Station

HPRF High PRF

HRR High-Range Resolution

IFF Identification Fried Foe

ISAR Inverse SAR

KF Kalman Filter

LPRF Low PRF

MALE Medium-Altitude Long Endurance

MIT Moving Target Indication

MPRF Medium PRF

PHD Probabilistic Hypothesis Density Filter

PRF Pulse repetition frequency

398 Novel radar techniques and applications – volume 2



SAR Synthetic aperture radar

SSR Secondary Surveillance Radar

STAP Space time adaptive processing

UAV Unmanned Aerial Vehicle

UKF Unscented Kalman Filter

WGS 84 World Geodetic System 1984
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Chapter 13

Radar multi-platform system for air surveillance

Hervé Fargetton1

Abstract

The chapter is about air surveillance system composed of several platforms
equipped with primary and secondary radars. Currently, air situational awareness is
obtained by data fusion of platform tracks exchanged via normalized Tactical Data
Links. The performances of air surveillance can be significantly improved, taking
into account the game changing due to telecommunication progress: High Data
Rate network is now available on almost all the multiplatform systems, even those
composed of mobile platforms as ships and aircrafts. Via HDR network, platforms
can share plots (raw detections) of all their radars and a common improved air
picture can be elaborated by plot data fusion on each platform.

The first section presents the objectives of multiplatform air surveillance sys-
tem in civil and military domains. The second section describes the theoretical
multi radar performance gains under the hypothesis that the HDR network is per-
fect (no loss, no delay) and that the radar plots of all the platforms are exchanged.
The third section describes the evolution of architectures for civil and military
multiplatform systems over a 40 years period. For the upgraded multiplatform
architecture, the fourth section presents its external interface and its main functions.
The fifth section provides some examples of western multiplatform systems and
gives some results of performance gains obtained by a multiplatform system in
development. Finally, multiplatform systems’ future challenges are discussed in the
sixth section.

13.1 Introduction

A radar multi-platform system is composed of several platforms (equipped with
primary radars and secondary radars) which shares sensor data via a high data rate
network (HDR network). A platform may be a ground station or a mobile platform
such as a ship or an aircraft.
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13.2 Role and objective

The role of multi-platform systems is different in civil and military domains

13.2.1 Civil domain
Air traffic management (ATM) relies on many platform systems inter-connected by
low bandwidth link but also on some multi-platform systems. We will consider here
regional ATM systems controlling the planes along their flight.

Secondary surveillance radar (SSR) are the key components of regional ATM
systems but primary radar detections are also needed to ensure airplane safety
towards unexpected and non-cooperative aircrafts. Regional systems sometimes
have their own primary radars but more often, they have a link with a military air
defence system that allows them to benefit from its primary radar detections.

Preliminaries
ATM relies on a set of ground stations equipped with SSR and sometimes with
primary radar: regional ATM centres, which exploit one or more ground stations, must
track each flight from departure to arrival, control their trajectories, avoid collision,
re-route flights in case of plane engine failure, meteorological event, . . . .

SSR requires aircraft to be equipped with transponders. When interrogated by
SSR, the plane transponder sends answers. The SSR power budget is better than
that of primary radar: it depends only on transponder features and losses due to a
single path. SSR periodically scans the sky by emitting interrogations to locate and
identify civil flights; the civil planes equipped with a transponder deliver answers
depending on interrogations:

● On two pulses separated by 8 ms, answer is mode A, code of 4 octal digits
(4,096 possibilities only) given by ground controllers to the plane.

● On two pulses separated by 24 ms, answer is mode C, barometric altitude.
● On three pulses, transponder with mode S extension answers Aircraft ID on

24bits (unambiguous ID delivered by ICAO), barometric altitude in 25 feet.

The ground station receiving answers locates the plane in azimuth-range by the
measurement of direction-delay and in altitude by barometric altitude (mode C).
Mode S station is an extension of basic SSR:

● Elementary Surveillance Mode S (ELS), compared to basic SSR, improves the
precision of measurement in range (15 vs 30 m) and in altitude (25 vs 100 ft).
The precision in azimuth is better than 1.1 milliradians.

● With Enriched Surveillance Mode S (EHS), the station can interrogate a plane
by its ICAO ID to obtain cockpit information: altitude, roll angle, track angle
rate, ground speed, magnetic heading, vertical rate, etc.

ADS-B (Automatic Dependent Surveillance-Broadcast) completes SSR in ground
stations: aircraft equipped with ADS-B out periodically emit squitters; in other
words, they periodically broadcast their aircraft-tracking data without solicitation.
The 1090 MHz Extended Squitter contains the same information than the Enriched
Surveillance Mode S (EHS). Therefore, without solicitation, the ground station can

406 Novel radar techniques and applications – volume 2



receive cockpit information from aircraft equipped with ADS-B out. The plane
position is not measured by the station but is provided by the Global Navigation
Satellite System (GNSS) of the aircraft.

As a backup, the primary radar associated to a ground station or to a neighbouring
military air defence system provides detections on the aircraft that are not equipped
with transponder and ADS-B out: tourism aircraft micro-lights, drones, etc.

Objectives of civil multi-platform systems
At the moment, some regional ATM centres, at national level or on a larger scale
(e.g., Eurocontrol), share ground stations that are distributed on the territory.

These regional ATM centres and their ground stations can be considered as a
multi-platform system, because they exchange sensor data via a HDR network.

The objectives of the multi-platform system are as follows:

● Providing each regional ATM centre with the access to the sensor data (SSR,
ADS-B out, primary radar) of any ground station, in order to achieve redun-
dancy in case of ground station failure.

● Having, in each regional ATM centre, exactly the same tracks (kinematics and
identification) to ensure continuity of control in the areas where the planes
come under the control of a neighbouring regional ATM centre.

● Improving range detection and tracking of non-cooperative aircrafts to ensure
the security of the civil air traffic.

13.2.2 Military domain
Because threats are not co-operative, primary radars are the key components of air
defence system but secondary surveillance radar (SSR) is also necessary to identify
friends.

Reminder
An air defence system must:

● detect and track all objects in its area of responsibility,
● establish the friend awareness (blue force tracking) and the neutral situational

awareness (civil traffic),
● identify the threat as soon as possible,
● if necessary, engage the threat with its effectors (e.g., anti-missile system).

Primary radars, crucial components, are designed to detect and track non-
cooperative targets, characterized by their radar cross-sections (RCS) and their
altitude-speed-acceleration profiles. If the radar is associated to an effector, the
radar track must also be able to give accurate designation of the target to the
effector in its domain of engagement.

Electronic support measurement (ESM) gives complementary information on
non-cooperative objects for their localization and their identification: electronic
warfare (EW) bearings and their attributes on detected radio and radar emitters are
also considered as crucial sources in air defence systems.

Military SSR is compatible with civil SSR (mode 3, mode A and sometimes
mode S) to identify all the neutral planes, but it has other modes to establish a
secured blue force tracking (position and identification of friends).
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The possible answers of an allied transponder to military SSR are as follows:

● On two pulses separated by 3 ms, mode 1 gives the military mission on two
octal digits.

● On two pulses separated by 5 ms, mode 2 gives military plane identification on
four octal digits (4,096 possibilities only).

● On two pulses separated by 8 ms, mode 3 is equivalent to civil mode A, code of
four octal digits (4,096 possibilities only) given by ground controllers to the plane.

● On two pulses separated by 24 ms, mode C gives barometric altitude.
● On specific interrogation, mode 4 is composed of three-pulse reply, delay

being based on the encrypted challenge known only by friend allied planes.
● On specific interrogation, transponder with mode 5 extension provides a

cryptographically secured version containing the equivalent of mode 4 and, in
addition, information as GNSS position.

Modes 4 and 5 are the basis of identification friend or foe (IFF) on the battlefield:
when an unidentified aircraft does not answer to this interrogation, it will be clas-
sified suspect or hostile.

ADS-B out is also used to establish neutral situational awareness. Military
systems must assess the reliability and the consistency of ADS-B reports with radar
and intelligence information before taking them into account. Care must be taken to
detect the intruders emitting fake reports.

Objectives of military multi-platform system
The majority of allied air defence systems inter-operates by tactical data link
(TDL), standardized NATO Links (L11, L16, L22, JREAP). TDL supports the
exchange of tactical tracks and command-control messages between units to
co-ordinate their actions but does not support the exchanges of sensor data.

However, some air defence systems are multi-platform systems exchanging
sensor data via an HDR network. The objectives of these multi-platform systems vs
those based on TDL are as follows:

● Providing each platform with access to sensor data (primary radars, SSR,
ADS-B) of all the platforms, to reduce the visibility gaps (relief, infrastructure)
and to improve the probability of detection in over-lapping radar coverages;

● Improving first detection range and tracking continuously and accurately the
high-spectrum threats (low RCS, high manoeuvrability and high speed, e.g.,
missiles);

● Improving the number of automatically and correctly identified objects;
● Having, on all the platforms, exactly the same tracks (kinematics and identi-

fication) so as to have a more efficient co-ordination of their actions.

13.3 Theoretical gains of multi-platform approach

For this analysis, the hypothesis is to consider that the HDR network is perfect
(no loss, no delay), and the sensor data of all radars are available without delay
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everywhere in the multi-platform system. Two types of gains are identified: gain
due to the diversity of frequencies and waveforms of the primary radars, gain due to
the spatial repartition of primary radars and also of SSRs.

13.3.1 Gains due to frequency and waveform diversity
If the multi-platform system relies on several radars working in different frequency
bands and using several waveforms, the theoretical improvements are as follows:

● Range coverage and accuracy improvement due to frequency band diversity
Since the attenuation due to the propagation is important at high frequencies,

a long-range radar exploits the low frequency band (<2 GHz) but its accuracy
is limited. A weapon system radar exploits the high-frequency band (>6 GHz)
and is accurate. The multi-functional radar exploits the middle frequency
band (3–5 GHz) and is an interesting compromise, but it has some limitations
in range coverage. A multi-platform system, with long-range radars, multi-
functional radars and weapon radars, will have extended coverage for early
detection, more robust tracking in middle range and more accurate tracking in
short range for weapon engagement, due to the over-lapping coverages.

● Detection of stealth targets by radars due to frequency band diversity
The following figure shows how RCS (radar cross-section) of missiles

depends on frequency: the very low RCS values of new missiles are only
achieved in the high-frequency bands. The low frequency band radars can give
the first detections and the system will require that the other radar bands per-
form cueing on these first detections, in order to track the missile with accu-
racy (Figure 13.1).
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Figure 13.1 Missile RCS as function of frequency legend: blue line classical
missile – pink line new missile; the scales of frequencies and RCS
are logarithmic
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For example, an AEW platform with UHF radar (e.g. Hawkeye) can give a
decisive advantage against a low RCS missile to the multi-platform system on.
After the first detections by UHF radar, the system will send, via HDR network,
cueing information to middle- and high-band radars in order to track the missile
with accuracy.

● Robustness to electronic jamming due to frequency and waveform diversity
Jamming is a hostile activity to desensitize radar and blind it or to deceive it.

Sweep jamming or barrage jamming have some limitations against multi-radar
systems which exploit several frequency bands and different waveforms: it is
difficult for jammers to simultaneously jam extreme bands, the sweep period is
longer when the number of frequencies to jam increases, the full power of
jammer is spread across all the frequencies.

● Robustness in abnormal EM propagation (e.g., vaporation ducts on the sea,
surface and altitude ducts) because the effect of propagation is not the same in
the different frequency bands.

● Robustness to clutter because cloud, land, coast, sea have not the same impact
on the different radars depending on their frequency band and their waveform.

13.3.2 Multi-radar improvements due to the diversity of viewpoints
The spatial repartition of radars in the network provides several improvements:

● Detection probability improvement on a stealthy threat if the primary radars
see the threat under different viewing angles, mainly because side RCS is
greater than front RCS.

● Discrimination probability improvement when the objects are seen by radars
(primary or SSR) under different look angles.

Numerical example: Based on a simplified model (see Figure 13.2), the two
following tables provide the minimum gap between objects to be discriminated
either by R1 or by R2 with a probability of one. Features of radars are: R1 range
bin ¼ 16 m, theta 3 db ¼ 2,5�; R2 range bin ¼ 10 m theta 3 db ¼ 2�.

Distance to R1 (km) 30 60 90 120 150
Radial discrimination (m) 48 48 48 48 48
Transversal discrimination (m) 1,275 2,550 3,825 5,100 6,375

Distance to R2 (km) 30 60 90 120 150
Radial discrimination (m) 30 30 30 30 30
Transversal discrimination (m) 1,020 2,040 3,060 4,080 5,100

The resulting discrimination of R1 þ R2 in case of Figure 13.3 is then:

R1 (120 km) R2 (30 km) R1 þ R2
X discrimination (m) 48 1,020 48
Y discrimination (m) 5,100 30 30

The discrimination of R1 on Y axis is improved by a factor 170 with R1 þ R2;
the four objects of Figure 13.3 will be easily discriminated with R1 þ R2.
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Figure 13.2 Simplified model of primary radar discrimination performances
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Figure 13.3 Illustration of discrimination gain with two perpendicular radars.
Radar R1 is unable to discriminate (a,b,c) objects and R2 to
discriminate (c, d) objects due to their bad angular resolution;
R1 þ R2 discriminates the four individual objects, thanks to their
range resolution
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● Location accuracy improvement of an object when the object is seen by radars
(primary radars and SSR) under different directions;

The accuracy of modern radars is very good and nearly constant along radial
axis (range bin quantification noise) while the accuracy on transversal axis
grows with range.

Numerical example: The two tables give the Gaussian accuracy at 3*sigma for
different ranges. Features of radars are: R1 range bin ¼ 16 m, theta 3 db ¼ 2,5�; R2
range bin ¼ 10 m theta 3 db ¼ 2�.

Radial accuracy is equal to range accuracy; if range accuracy is approximated
by Gaussian quantification noise:

range accuracy ¼ 3 � range bin=
p

12

Transversal accuracy is equal to azimuth accuracy multiplied by range; if azimuth
sigma is approximated by 10% of theta 3 db:

transversal accuracy ¼ 3 � 0; 1 � theta 3bð Þ � range

Distance to R1 (km) 30 60 90 120 150
Radial accuracy (m) 14 14 14 14 14
Transversal accuracy (m) 392 785 1,178 1,571 1,963

Distance to R2 (km) 30 60 90 120 150
Radial accuracy (m) 9 9 9 9 9
Transversal accuracy (m) 314 628 942 1,256 1,570

The resulting accuracy on the object of Figure 13.4 is then:

R1 (120 km) R2 (30 km) R1 þ R2
X accuracy (m) 14 314 14
Y accuracy (m) 1,571 9 9

The R1 accuracy on Y axis is improved by a factor 175 by R2. The R2 accuracy
on X axis is improved by a factor 35 with R1.

R1

30 km

x

120 km

R2

Figure 13.4 Accuracy improvement with two perpendicular radars. Resulting
accuracy benefits from the good range accuracy on the two axes
(red area)
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● Localization of the objects by triangulations of EW bearings
Localization of non-cooperative objects can be obtained by triangulation of

EW bearings: the operational advantage is to locate objects without indiscrete
radar emissions. When several emitting objects are present, de-ghosting treat-
ment is necessary to eliminate false inter-sections (red points of Figure 13.5):
de-ghosting may be based on kinematic analysis of inter-section points and on
coherency of EW attributes.

● In complement of radar elevation measurement, improvement of the altitude
estimation by triangulations of (azimuth, range) measurements in multi-radar
over-lapping area (Figure 13.6).

In this example, the altitude estimation accuracy by triangulation is good at 30
km from the platforms (<300 m). On low altitude objects, for which the noise on
radar elevation measurements is important (multi-path effect), altitude estimation
obtained by triangulation is more accurate than elevation measurement.
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Figure 13.5 Localization of non-cooperative object by triangulation of EW bearings
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Figure 13.6 Altitude estimation by triangulation of (azimuth, range)
measurements. The x–y unit is 100 km, altitude accuracy is
represented by colours (scale on the right in metres)
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● Detection complementarity towards masks of relief
Air surveillance can benefit from complementary detections by coastal radars

and ship-borne radars to detect low altitude threat which follows the coast
exploiting the relief.

13.4 Multi-platform architecture

The multi-platform architecture relies on data exchanges and on data fusion.

● Data exchanges in a multi-platform system rely on high data rate (HDR) net-
works: a presentation of operational HDR networks is first done.

● Data fusion may take into account high level data or sensor raw detections. It
may be centralized or distributed: advantages and drawbacks of these choices
are discussed afterwards.

In Section 13.1.3.3, several multi-platform architectures are presented, two archi-
tectures corresponding to legacy systems and a new promising one based on sensor
data exchanges.

13.4.1 Operational high data rate networks
Infrastructure networks have been deployed on western countries’ territory since
40 years. These networks rely on Hertzian waves, steel wires and optical fibres.
Former point-to-point protocols, such as X25, are now replaced with IP protocols.
The availability of these redundant HDR networks explains that multi-platform
civil and military systems with permanent installation have been operational since
1980. While the exchange of sensor data is effective since its beginning, the
exchange of images/videos in real time is nowadays also possible.

The deployment of HDR networks between mobile platforms is more recent.
A modern military HDR network is an IP network federating several media
(SATCOM, UHF, HF, etc.) and managing different levels of confidentiality
(public, restricted, confidential, secret). On each unit, a federated router selects
media depending on distances to recipients.

In the above example (Figure 13.7), two ships are linked together via direct
radio frequency and linked to a NATO air defence system and to another ship via
SATCOM.

This type of network is less powerful than an infrastructure network. The latest
HDR networks enable the exchange of sensor data as plots, under the condition that
the platform number is limited.

13.4.2 Choices of data fusion
The first choice of data fusion is the nature of the inputs:

● Inputs may be plots (sensor raw detections) delivered by sensor extractor.
● Inputs may be tracks resulting from plot filtering, delivered by sensor tracker.

Because a tracker filters only chains of plots with spatio-temporal coherence, the
volume of sensor tracks is less critical than the volume of plots.

Compared to plot data fusion, track data fusion requires less network and com-
puter resources. Because a sensor track is multi-dimensional (position, kinematics,
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attributes), the correlation of sensor tracks from different sources is simpler to realize
than plot correlation (Figure 13.8).
However, track data fusion has limited performance compared to plot data fusion:

● Track data fusion is unable to create system tracks on a low RCS target when the
detection probability of individual sensor is not sufficient to create a sensor track
and even if the cumulated detection probability of all the sensors is good.

● Furthermore, it is impossible to have rigorous data fusion because:
* Sensor trackers designed by different providers are not homogeneous,
* Sensor track errors are often characterized by a simple scalar (track

quality) under the hypothesis that track uncertainties are spherical,
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Figure 13.8 Sensor track data fusion vs plot data fusion
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Figure 13.7 HDR network fitted with different media for the inter-connection of
military platforms
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* Even if a tracker sends the covariance matrix of the track, this matrix may
be inconsistent during manoeuvring phases,

* Track data fusion is sensitive to sensor track imperfections (lags, drops,
recreations) and may provide multiple designations or track discontinuity,
especially on manoeuvring objects in sensor overlapping areas.

Multi-sensor plot data fusion does not have these limitations and can optimally
process detection complementarities of sensors:

● Plot data fusion can create system tracks on low RCS object by chaining multi-
sensor plots.

● It is possible to have a rigorous plot data fusion because plot errors are well
mastered under representative noise, often given by the sensor. Therefore, all
the theoretical improvements seen in Section 13.3.2 are accessible with this
rigorous plot data fusion.

● Plot data fusion can update system tracks at the rate of all sensor plot arrivals,
improving the track update rates and their continuity.

The second choice for a multi-platform system is the architecture of data fusion:
centralized or distributed data fusion.

With centralized data fusion, all the platforms send their plots to a central
platform and the data fusion is performed on this platform (platform 1 on the
example of Figure 13.9); the system tracks resulting from data fusion are then
distributed to the other platforms. The advantage is that data fusion is done in one
point, so that all the platforms will receive the same system tracks. The main
drawback is that, if there is a problem on the central platform, the benefit of data
fusion is lost for all the platforms. The architecture of data fusion is not robust and
each platform has to switch to its local tracks obtained with its sensors.

With distributed data fusion, all platforms exchange their plots and the data
fusion is realized simultaneously on each platform: given the same inputs, the same
data fusion algorithm will give the same system tracks on each platform. The first
advantage is that the track is available on each platform with a limited delay by the
network latency; the second advantage is robustness of data fusion because the
architecture is not dependant on a central platform. The drawback is complexity: a
unified picture management based on exchange of system tracks between platforms
is necessary to have the same labels (number and identification) of system tracks.

Platform 2
Platform 2

Platform 3 Platform 3

Single picture
management

Platform 1 Platform 1

HDR network

Plots
System tracks

HDR network

Figure 13.9 Centralized vs decentralized plot data fusion
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To summarize: the distributed plot data fusion is more complex but is the best
data fusion option for multi-platform systems because of its performance and
robustness.

13.4.3 Evolution of multi-platform architectures
The architecture of multi-platform radar surveillance systems mainly depends on
the communication network connecting the platforms. The capacity of the network
(data rates, latency, surety of exchanges, etc.) determines the level of information
exchange.

These multi-platform systems are based on plot data fusion but also have the
capability to integrate radar tracks when the radar has a track interface, only.

In the example of Figure 13.10, all the radars have a plot interface except radar 4;
each control system utilizes the radars covering its area of responsibility. The
exchange of system tracks allows the two control systems to have a coherent track
picture at the common border of their area of responsibility. Data fusion has in fact two
levels: the first level is plot data fusion, and the second level is track data fusion to
integrate system tracks and, potentially, radar tracks.

For this first generation of multi-platform systems, the sensor interface has
been standardized very rapidly: this is the objective of the ASTERIX standard of
Eurocontrol (reference: http://www.eurocontrol.int/services/asterix).

These multi-platform systems work well with fixed and rotating surveillance
radars but are unable to take into account mobile platforms and more complex
multi-function radars (MFR).

It was necessary to adopt other architectures for modern air defence systems
based on ground stations, ships and aircrafts which are mobile and often have MFR.

Redundant
HDR

Rd 1

Rd 2

Rd 4

Plots
Sensor tracks
System tracks

Rd 3

Civil or military
control system

Civil or military
control system

Figure 13.10 First architecture with fixed distant radars based on sensor data
exchanges
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Before the deployment of HDR-network-supporting mobile platforms, an
intermediate architecture was adopted based on tactical data link (TDL). TDL
denotes NATO standardized data links of low (L11 and L22) and intermediate data
rates (L16, JREAP). The track exchanges obey to a protocol of reporting and
responsibility (R2 protocol): simultaneous exchanges of tracks on the same object
are forbidden, limiting the improvement due to the track data fusion. Only the
platform detecting the objet with the best track quality (TQ) can report its tracks on
the TDL network (Figure 13.11).

In this example, the exchanges between a platform and its radars are rich of
plots and also tracks for MFR. The data fusion at platform level can be very effi-
cient. However, across platforms, the improvement due to multi-platform data
fusion is limited by the constraint of TDL protocol (track exchanges, low track
update rate and the fact that only the tracks of the ‘best’ platforms are exchanged).

With the recent deployment of IP high data rate networks on mobile units, plot
data fusion at multi-platform level can be considered for an optimal exploitation of
sensor complementarity. An upgraded architecture based on sensor data exchanges
is proposed (Figure 13.12).
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Figure 13.11 Intermediate multi-platform architecture based on TDL
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Figure 13.12 Upgraded multi-platform architecture based on sensor data
exchanges
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The key principles are to share the plots between platforms (and also
tracks for MFR) and to have on each platform the same application of data
fusion: same inputs and same application will give the same multi-platform
tracks on each platform. Tracks will be exactly identical if a single picture man-
agement is added to give the same label to these tracks on each platform and to
correct the likely divergence of tracks due to the network imperfections (latencies,
loss, etc.).

13.5 Description of the upgraded multi-platform architecture

Each system platform hosts a multi-platform sub-system. This sub-system has
interfaces with the platform sensors, with the navigation system of the platform and
with the other platforms via HDR network. A multi-platform protocol standardizes
these interfaces:

● Interface with sensors: generic sensor data message are defined (generic plot
message, generic sensor track message, generic sensor command and control
message). Sensor gateways on each platform convert local sensor data messages
from their native formats to the generic formats. Following these conversions,
all the sensor data exchanges in multi-platform system are done in generic
formats.

● Interface with navigation system: generic navigation messages are defined for
position, kinematics and attitude of the platform in a geographical referential.
A navigation gateway on each platform converts local navigation data in a
generic message and following this conversion, all navigation data are
exchanged across platforms using the generic format.

● Interface with HDR network: each platform sub-system is connected to the
HDR network via a router: sensor data and navigation data in a standardized
format are exchanged between platforms but also system tracks for single
picture management.

The multi-platform sub-system is based on the so-called composite tracking (see
below) in charge of sensor data fusion, and it is composed of four other functions
(Figure 13.13).

Composite tracking
Composite tracking realizes the data fusion of platform sensor data with remote
sensor data received from the other platforms. Composite tracking produces multi-
platform system tracks. It is important that the composite tracking satisfies the
following requirements:

● Composite tracking shall be able to take into account latencies in remote
sensor data received via the HDR network as the platform sensor data is
received without latency via the platform network.

Radar multi-platform system for air surveillance 419



● Composite tracking must establish identical tracks (position, kinematics) on all
platforms whatever the chronological dates of plot arrival dates on each
platform.

● Composite tracking must be robust to alignment errors between sensor data.

Single picture management between platforms
If composite tracking is able to produce identical tracks in position and kinematics
on each platform, the single picture management will provide identical numbers of
these tracks on all the platforms. Another objective of single picture management is
to correct the divergence of the system track picture on the platforms that have not
received all the sensor data because of HDR network losses.

Exchanges of system tracks between platforms are necessary to realize the
synchronization of track numbers and the correction of divergences.

Multi-platform global bias correction
Even if composite tracking is robust to misalignment errors, global bias
correction is necessary for sensor cueing or effector engagement by a platform that
has not yet detected an object with its own sensors. Global bias correction is made
in two steps:

● Bias estimation
Biases are navigation errors of the platforms and offsets (azimuth and dis-

tance bias) of the sensors. Estimation of bias is based on the correlation
between sensors plot pictures.

● Validation of estimated bias
Validation of bias estimation may be made automatically or under operator

control.
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Figure 13.13 Main functions of evolved multi-platform system based on sensor
data exchanges
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Multi-platform optimization
Multi-platform optimization has two main objectives:

● Exchange the most useful sensor data via HDR network, taking into account
network bandwidth limitation.

● Decide on sensor cueing to improve the quality of system tracks (continuity,
accuracy).

Exchange of the most useful sensor data may be obtained in different ways:
● By selection of the best sensors in each cell of multi-platform coverage,

depending on their performances and their disturbance level,
● By selection of the plots, depending on their utility for each track [1] or for the

satisfaction of operational needs [2].

The bandwidth constraints must be monitored in real time. The supervision of an
HDR network must provide this information to multi-platform optimization.

The decision on sensor cueing is an important challenge with the modern
radar as MFR because their cueing capability is determinant to continuously track
high-spectrum threat (low RCS, high manoeuvring and speed). Multi-platform sub-
system offers the possibility to make inter-platform sensor-to-sensor cueing by
request on the system tracks.

For each track, multi-platform optimization analyses the quality of tracking
and, if the quality has to be improved for a specific operational need (e.g., effector
engagement, identification), it has to request sensor cueing to the more capable
neighbouring MFR.

Multi-platform recognition and identification
The objective is to determine automatically the type of each aircraft (e.g.,
recognition as liner or fighter) and their intention (identification as friend, neutral,
hostile), utilizing all sensors of the multi-platform system.

The co-operative sources such as SSR, mode S, mode 5 and ADS-B (see
Sections 13.2.1 and 13.2.2) are key assets for the blue force tracking and the neutral
situational awareness. Multiple platforms offer redundancy of these co-operative
sources. Multi-platform global bias correction will place all their information in a
common geographical referential (e.g. GPS referential) and will avoid ambiguity or
dual tracks due to mis-correlation of the co-operative data.

The MFR high resolution cueing is an important means to recognize the non-
cooperative objects. The multi-platform offers the possibility to action this type of
cueing on system tracks. Because other sensors may take care of the surveillance
tasks in a multi-platform system, high resolution capability of MFR may be acti-
vated more often.

13.6 Examples of western multi-platform systems

For 40 years, multi-platform radar surveillance has been a reality for the regional
ATM centres and for the air defence system with rotating and fixed radars. These
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systems are included in Eurocontrol (European civil ATM) or in NATO Air
Command and Control System (ACCS). They rely on infrastructure networks with
high bandwidth and redundancy.

The deployment of HDR networks between mobile platforms is more recent,
and only some multi-platform systems have been developed in the military domain
for the Navy: e.g., CEC (US Navy), VCN (French Navy).

US CEC
US Navy has acquired an operational capability called co-operative engagement
capability (CEC), after 30 years of research and development. CEC gains are
described in [3]. CEC relies on a proprietary HDR network. CEC was at first a sub-
system beside the operational ship system. CEC is now integrated as a software
module in the operational ship system.

French VCN
The French capacity was at first called ‘Tenue de Situation Multi-Plates-formes’
(TSMPF); its name is now ‘Veille Co-operative Navale’ (VCN). The French
capacity is based on the upgraded architecture presented in Section 13.5.

After a preliminary study demonstrating performance gains for anti-missile
defence (see Section 13.6.1), France has decided to initiate an important pro-
gramme of research with industry. The choice of architecture and the design of data
fusion algorithm were made during the research phase. In 2010, research ended
with an at sea evaluation between a frigate and two shore sites [4,5].

Since then, VCN capacity is in development. In 2013–14, experiments have
been realized with air force platforms to prepare inter-operability of VCN [6].

In 2015–16, France has carried out the first operational at sea evaluation of
VCN with frigates and aircraft carrier vessels [7].

13.6.1 Preliminary study for French Navy
A preliminary study in 1999 has demonstrated significant gains for the anti-missile
defence of a navy force before modernization of former generation radars.

This study compared the air defence capability of a three-ship force in missile
scenarios under different hypotheses:

● No exchange: the ships do not communicate; each ship generates local system
tracks by plot data fusion of its radars, engagement is made on local tracks of
the ship.

● With exchange of system tracks: each ship generates tracks by plot data
fusion of its radars and exchanges its tracks with other ships every X seconds
(X < 10). Engagement is made on local tracks enriched by exchanged tracks.

● Sensor data exchanges: each ship generates tracks by multi-platform data
fusion of all radar plots. Engagement is made on multi-platform tracks.

The selected scenario assumes three missiles with typical trajectories: low-altitude
trajectory or diving trajectories. The scenario was played in four environments for
which real plots were recorded: two offshore environments (standard propagation
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and duct) and two coastal environments (standard propagation and duct). The
coastal environments introduce topography masks, which affected the detection of
low-altitude missile (Figure 13.14).

Figures 13.15 and 13.16 present the results of engagement success rates
obtained by Monte-Carlo evaluation. The engagement is possible when the accu-
racy of the track is sufficient (track position accuracy in a 3D template depending
on the effector). Figure 13.15 shows the possibilities of engagement in the most
difficult environment (coastal and duct).

Left column figures are above top views of the scenarios. Central figures are
3D views; on these figures, the parts of missile trajectories for which the engage-
ment is possible are highlighted in green colour. In the right figures, the histograms
present the possibilities of engagement (x axis: 0%–100%) for the 90 instances of
missile trajectories of Monte-Carlo evaluation (y axis).

The success of engagement is low (36%) in mono-platform and increases with
the exchange of system tracks (41%) because continuity on AS missile is improved.
With exchange of sensor data, the success of engagement grows up to 62%: gain is
observed on the AS missile behind the relief and also in the final acceleration of 15 g.

Figure 13.16 presents the engagement success rates for four environments. In the
two coastal environments, the improvement of engagement success grows up to 50%.
Multi-platform data fusion is especially interesting in difficult environments where
the complementarity of sensors can suppress the topography masks. It improves the
probability of detection above the ground or in presence of surface duct over the sea.
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Figure 13.14 Operational navy scenario. Ship A protected by two ships (B, C) is
attacked by three missiles (1 anti-surface missile, 2 anti-radar
missile, 3 low-altitude missile)
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Figure 13.15 Engagement results for coastal environment with duct
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13.7 Next challenges

The next two challenges for multi-platform systems are discussed: standardization
of multi-platform inter-operability protocol and integration of a multi-platform sub-
system in operational systems.

Standardization of multi-platform protocol

The inter-operability offered by a multi-platform protocol (see Section 13.4) is a
first step to integrate platform in a multi-platform system. The former multi-
platform systems with fixed radars have their protocol: ASTERIX and STANAG
5532. The modern multi-platform systems, such as CEC and VCN, have proprietary
protocols. The inter-operability of platform begins with the definition of non-
proprietary standards (civil standard, STANAG).

Integration of multi-platform sub-system in operational system
Inter-operability by multi-platform protocol is a first step but the performance of a
multi-platform system will be optimal if the same application is deployed on all the
host systems (key principle ‘same inputs and same application will give the same
multi-platform tracks’).

There are at least two solutions to deploy the capability on a host operational
system:

● The multi-platform sub-system is on specific hardware and is connected to the
operational system to update its track table.

● The multiplatform sub-system is a software module integrated in the opera-
tional system software.

For an existing operational system, the first solution has the advantage of
limited modifications to the operational system; the drawback is that it is not fully
integrated in the operational system. In particular, the operators will have two
interfaces, the main interface carrying the operational system and a specific one to
support the multi-platform sub-system.

For a new operational system, the second software solution is recommended:
the application will be fully integrated; operators will have coherent interfaces with
all the operational functions. There is an integration issue if the technology of the
multi-platform software is different to the technology of operational system. Open
architecture is an important orientation to support the deployment of multi-platform
software on host operational systems.

Acronyms

ACCS air command and control system

ADS-B automatic dependent surveillance-broadcast

AEW aircraft early warning

ASTERIX all-purpose structured EUROCONTROL surveillance infor-
mation exchange

ATM air traffic management
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EHS enriched surveillance mode S

ELS elementary surveillance mode S

EM electro magnetic

ESM electronic support measurement

EUROCONTROL European Organization for the Safety of Air Navigation

EW electronic warfare

FAA federal administration agency

GIS geographical information system

GNSS Global Navigation Satellite System

IFF identification friend or foe

JREAP Joint Range Extension Applications Protocol

LOS line of sight

LRR long range radar

MFR multi-function radar

ICAO International Civil Aviation Organization

RCS radar cross-section

SoS system of systems

SSR secondary surveillance radar

STANAG standardization agreement

TDL tactical data link

TN track number

TQ track quality

UAV unmanned air vehicle

UHF ultra-high frequency

VCN ‘Veille Co-opérative Navale’ French Navy multi-platform
capability
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[7] Hervé Fargetton, DGA, ‘First operational evaluation of the new French mul-
tiplatform capability’, presented at MAST 2016, The Netherlands.

Radar multi-platform system for air surveillance 427



This page intentionally left blank 



Chapter 14

People tracking and data fusion for UWB radar
applications

Snezhana Jovanoska1,2, Felix Govaers2, and Reiner Thomä1

Abstract

Localization of people that do not carry active tags is needed in security as well as
in rescue applications. Ultra-wideband (UWB) technology is promising due to its
high ranging resolution capability, robustness against multipath interference and
obstacle penetration among others. In this chapter, an approach for detection,
localization and tracking of people using either a single UWB sensor or a dis-
tributed network of UWB sensor nodes is described. The background behind UWB
sensing, a description of UWB sensor nodes and a concept for a distributed sensor
network is presented. The basic principle of person detection based on the changes
the person induces on the channel impulse response is explained. Two approaches
for localization based on range-only observations that can be applied in single-
sensor or multiple-sensor scenarios or in the presence of a single person or multiple
people are presented. The concept and each step of the approach are illustrated
using data obtained in a measurement campaign at TU Ilmenau from an office
environment.

14.1 Introduction

Investigations into Ultra-wideband (UWB) started 60–70 years ago for needs in
radar and communication technology. Since then, UWB technology has been found
useful in many industrial, medical, surveillance, security, search and rescue appli-
cations among others. High-power medium and long-range radar systems are
reserved for (typically) military use. High-resolution short-range devices deal with
low power (<1 mW) and are of interest for civil applications. Reference [1] gives a
good overview on UWB technology, sensing, radar architecture and some
applications.

1Technical University Ilmenau, Germany
2Fraunhofer FKIE, Germany



In many people localization applications, the people to be tracked carry a
device or tag such as radio frequency identification chip that aids in their locali-
zation. However, for some applications, the person to be tracked cannot or does not
want to cooperate with the localization system. This kind of non-cooperative or
device-free target detection and localization is also sometimes referred to as pas-
sive localization. Indoor localization and tracking of people in passive manner has
many applications such as intruder detection, emergency response, surveillance and
security [2,3]. UWB signals have a very good time resolution due to the large
bandwidth and allow for centimetre accuracy in ranging. UWB systems can operate
regardless of the visibility conditions (dark or smoke-filled environments) and
through non-metal obstacles (e.g. through-wall).

Dependent on the size of the object of interest, multiple echoes per object can
be detected. Time-variant multipath components can be separated easily due to the
high spatial resolution as a function of time delay. If the transmitting and receiving
antennas are stationary throughout the measurement time, changes in the measured
impulse responses indicate presence of moving objects which in our scenario cor-
responds to moving people. Different parameters for object characterization can be
estimated from the channel impulse response; however, the most reliable and
common ones are the time-based parameters.

By using any of the parameters corresponding to a person that can be estimated
from the channel impulse response, we ultimately want to estimate the location of
that person. If the available information regarding the location is insufficient or
noisy, tracking can be used to improve the location estimate. In addition to the
noisy observations, position estimates based on the previous states of the detected
people are used to improve the current location estimates.

The Kalman filter is the optimal solution for single target Bayes filter in linear
Gaussian systems. For multiple-target tracking, different methods have been
developed over the years. Many require the number of targets to be known and use
measurement-to-track association before estimating the target states [4–7].
A combinatorially and computationally less complex solution that does not require
explicit data association is the probability hypothesis density (PHD) filter [8–10].

Target localization and tracking based on UWB radar technology has been
previously investigated in [11–19] among others. References [11–13] only consider
single target localization and tracking. Reference [14] uses single target detection
per sensor and imaging-based data fusion. Reference [15] uses multiple hypothesis
tracking for both person localization and characterization based on parameters
estimated from the channel impulse response. Reference [16] considers people as
extended targets and utilizes both range and Doppler information for target loca-
lization. Reference [17] describes an approach for detection and localization of
multiple people using multiple-UWB sensors similar to the approach presented
here in Section 14.4.4. A PHD filter is used for location fusion and tracking.
Reference [19] considers multipath reflections to localize a person behind a corner
and [18] considers the dynamic occlusions induced by people in the scenario within
the localization and tracking approach. In this chapter, indoor localization and
tracking of multiple people using a network of UWB sensors is considered. Target
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classification, localization of targets behind a corner and dynamic occlusions are
not considered.

An overview of the UWB-sensing principle is given in Section 14.2. Within
the section, a UWB sensor node is defined as used within this work and a concept
for distributed UWB sensor network is presented. In Section 14.3, the principle of
person detection from a measured channel impulse response is explained. Methods
for moving people detection and range estimation are explained in greater detail.
The people localization principle based on range-only observations is explained
in Section 14.4. A short explanation of Bayes-based target tracking is presented,
followed by two methods for people localization and tracking by a distributed
UWB sensor network, and finally verification and comparison of the two methods
in an office scenario.

14.2 UWB sensing

In the time domain radar equation, all objects that do not move too fast and are
in the radar channel may be considered as a linear time-invariant system. The
information about the channel propagation (transmission, reception and scattering)
can be formally described by impulse response functions. Bistatic radar can be
considered as a two-port system. Let antenna 1 be the transmitting antenna denoted
by Tx and antenna 2 be the receiving antenna denoted by Rx. Disregarding polar-
ization, dispersion, angular and range dependencies, and assuming a limited target
size in the far field and no antenna coupling, the transmission between the two
antennas can be written in terms of M scatterers [1]:

b2ðtÞ ¼ S21ðtÞ � a1ðtÞ ) b2ðtÞ � S21ðtÞ for a1ðtÞ � dðtÞ

and S21ðtÞ ¼ T1ðtÞ � R2ðtÞ �
X

M

m¼1

Lm
21 t � rm

Tx þ rm
Rx

� �

=c
� �

rm
Txrm

Rx

(14.1)

where a1 is the stimulus signal, b2 is the received signal, c ¼ 3 � 108 m=s is the
signal propagation velocity in air, rm

Tx and rm
Rx are the distances of the mth scatterer

to the transmitter and receiver, T1 and R2 are the antenna impulse responses for the
transmitting and receiving mode and Lm

21 is the scatterer pulse response for inci-
dence from antenna 1 and observation by antenna 2 and contains all information
about the mth target accessible by the measurement. Lm

21 responses can be inter-
preted either as a reaction of a single body onto an incident field or the reaction of
distinct scattering centres of a composed target. The scattering response Lm

21ðtÞ of a
complex structured target is typically composed of many peaks caused by specular
reflections and damped oscillations that represent the eigenmodes of the target. To
resolve these properties, the temporal width of the sounding wave must be shorter
than the peak distances and the sounding bandwidth should cover the eigen-
frequencies of the target [1]. Using a UWB sensor, we primarily determine the
impulse response function S21ðtÞ from the test scenario. The impulse response
function contains information about possible targets and the environments based on
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their reflections. Depending on the application-specific data, processing techniques
can be used to extract the desired information from these responses. For people
localization, the primary interest is to extract information from the impulse response
regarding the position of a person. This information can be time of arrival (ToA),
time difference of arrival (TDoA), Doppler, angle and amplitude among others.

UWB signals have large fractional and huge absolute bandwidth. They are
composed of only few oscillations compared to the many in narrowband signals.
A large fractional bandwidth is needed to achieve specular reflections separation
and mix of natural frequencies. The absolute bandwidth depends on the smallest
dimensions that need to be resolved. For detection of moving targets within a
stationary clutter environment, the weak variations in the backscattered signal
induced by the movement of the target can be used. Large fractional and absolute
bandwidth is needed for penetration of objects, detection of weak movements and
target separation.

The stimulus signal a1 may have different waveforms, e.g. chirp signal, short-
impulse signal, binary sequence. An appropriate stimulus signal should be used
depending on the application where it is required. Chirp signals are not appropriate
for real-time surveillance (slow measurement rate). Short-impulse signals also
result in low measurement rate and these systems are susceptible to jitter and drift.
Pseudo-random binary sequences allow for real-time operation are generated in
stable manner and have low crest factor (allowing signal energy maximization at
low peak voltages). The UWB-sensing system used in this chapter is an m-sequence
UWB radar [20] which uses a maximum length binary signal (MLBS) as stimulus
signal. The MLBS generator can be realised on integrated circuit technology,
meeting the bandwidth, low jitter and high signal-to-noise requirements. In addi-
tion, its spectral shape follows the ðsincÞ2 function with around 80% of its energy
concentrated at frequencies below half of the clock rate [1].

14.2.1 UWB sensor
A UWB sensor node within this work is defined by an autonomous UWB module
with one transmitter, two receivers and a local processing unit as shown in
Figure 14.1. In [21], it is referred to as a bistatic bat-type UWB sensor node. The two
receiving antennas are positioned on each side of the transmitting antenna forming a
bat-type structure. The transmitter and receivers are synchronized and from each of
the two impulse response functions the ToA of possible targets can be obtained.

Due to the proximity of both receivers, we often can detect people by both
receivers. The data obtained by each receiver are locally processed to first separate
the echoes of possible targets in the scenario and then estimate their range. As two
receivers are present on the module, a target range can be estimated with respect to
both receivers. Using these two range estimates, the two-dimensional (2D) target
location can also be estimated. Each range estimate corresponds to an ellipse in the
2D Cartesian space where the location of the transmitter and receiver is the foci of
that ellipse. The ellipses intersection ideally corresponds to the 2D location of the
target. The number of intersections of two ellipses can be zero if the ellipses never
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touch, infinity if the ellipses overlap and one, two, three or four if the ellipses touch
or cross each other. As the transmitter and receivers lie on the same line at distinct
points, there can be only zero, one or two intersections. In the presence of a target,
there are two intersection points. Each should have the same likelihood of being the
target location; however, the sensor node is typically positioned on one of the edges
of the area of interest and thus one of the intersection points can be directly dis-
carded as undesirable by being outside of the area of interest or behind the sensor
antenna when directional antennas are used. The principle of ToA-based localiza-
tion using a single sensor is illustrated in Figure 14.2.

A sensor defined in this manner is applicable in many scenarios where the
sensor node needs to be used from one side of the scenario of interest such as
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through-wall. A portable sensor that can operate in a ‘plug-and-play’ mode would
be ideal. This means that the sensor should be quickly ready for use in an unknown
scenario and can provide real-time or near-real-time information for the presence of
people in that scenario.

14.2.2 Distributed UWB sensor network
UWB systems often suffer from interference with other systems that transmit at
higher power level over the same spectrum [22]. A single sensor node is not well
suited for multiple target detection. Targets close to the receiver or transmitter of a
sensor node shadow other targets in the environment, making them invisible or
barely detectable by the sensor. A network of multiple autonomous sensors covers a
larger area and many shadowed regions and blind-spots in the area of interest of
one sensor are covered by another sensor of the network. Targets in the area of
interest may be detected by multiple sensors of the network, providing information
regarding the target from different angles. This information has to be properly
fused so that a target detected by two different sensors does not appear in the final
results as two targets close to each other.

When developing a distributed sensor network, attention must be paid to the
performance of the overall system in real time. Both the detection of the targets by
the sensors and the fusion of this information must be provided in real or near real
time. Different sensor-distribution schemes for UWB systems have been discussed
in literature [21,23]. The distributed UWB sensor network scheme used here is
based on multiple autonomous bistatic bat-type UWB sensor nodes as described in
Section 14.2.1 and given in the example scenario in Figure 14.3. The connection
between each sensor node and the fusion centre node is either wired or wireless.

Sensor node

Fusion
centreSensor node

Sensor node

Figure 14.3 Example of possible scenario of interest surrounded by multiple-
UWB sensor nodes
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To synchronize the system, a common system clock should be shared among all
sensor nodes either via coax, optical cables or wirelessly. The wired synchronisa-
tion offers more precise and stable measurements; however, it requires the use of
long cables.

In this distributed sensor network, two operating principles can be defined:
parallel and sequential. For a parallel operating principle, the synchronisation of the
sensor nodes is not required. By relaxing the synchronisation requirement, each
sensor node operates using a local system clock. Thus, the transmitters of all sensor
nodes may operate in parallel, and the signals scattered by the environment can
only be resolved by using those receivers that are synchronized with the transmitter.
This means that for each transmitter of a sensor node, only the two receivers of
the same sensor node can be used. Otherwise, the cross-correlation between the
received and transmitted signal will produce a noisy signal. The advantage of the
parallel mode is the reduced measurement time for acquisition of the ‘reduced’
multiple-input–multiple-output (MIMO) impulse response function and the lack of
synchronisation between the sensor nodes. To measure the full MIMO impulse
response function which should provide more target information, a sequential
operating mode should be used. For the sequential mode, synchronisation or a
shared system clock between all sensor nodes is required. In addition, only one
transmitter can be active at a time, thus increasing the measurement time by the
number of transmitters being used in the network.

In this chapter, it is assumed that there is no synchronisation between the
different sensor nodes; however, there is cooperation of each sensor node with a
central fusion centre node that also acts as control centre. The fusion centre node
controls the sensor nodes that are distributed around the area of interest. It is
responsible for sensor discovery and definition of the sensor network. The data
received by each sensor are first aligned to account for delayed and missing data.
Then it is passed to a processing unit where it is fused defining location estimates
and tracks for each of the detected targets in the scenario. A common reference
coordinate system is defined at the fusion centre with the knowledge of the loca-
tions of each of the operating sensor nodes. It is assumed that the sensor nodes are
stationary and with known location, i.e. sensors are capable of self-localization.

14.3 Person-detection principle

In a typical scenario, the backscattered signal from the people is one of the weakest
components in the received impulse response and the system is subject to many
perturbations. The source of these perturbations can come from electronic noise,
jamming, stationary and non-stationary clutter, etc. Knowing the motion profile of
the targets (person walking speed), it is possible to separate the moving target echo
from the stationary clutter (antenna crosstalk and stationary reflections) by a
method known as background subtraction (see Section 14.3.1). Non-stationary
clutter arises from reflections of objects with the same range profile as the desired
target or from distant objects, in which case the clutter may be gated out if the
unambiguous range of the radar is sufficiently large. The different motion profiles
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may be used to distinguish between a person and non-stationary clutter. Non-
stationary clutter is not considered at this stage; however, [1] suggests that non-
stationary clutter often contains strong signal components at frequencies below the
breathing rate that can be used to cut the clutter components out.

Once the echoes of the targets are separated from the stationary background
reflections, parameters can be estimated that help localize the targets. Time-based
parameters provide more reliable and accurate target localization compared to other
parameters as shown in [22]. Time-based parameters can be estimated if there is some
sort of cooperation and synchronisation between the transmitter and receivers of the
system. ToA is defined as the absolute travel time from the transmitter to the person
and back to the receiver. To acquire the ToA, synchronisation and no clock bias is
needed between the transmitter and the receiver of the system. TDoA is defined as
the difference between the arrival times of the signal to each of the synchronized
receivers. Only synchronisation between the receivers is required for acquiring the
TDoA. The ToA, or correspondingly the range between the target and the sensor, is
one of the most useful parameters for target localization when using UWB.

14.3.1 Moving target echo separation
To detect the weak echoes of the moving people, the time-invariant strong back-
ground reflections should be removed. The first step is to estimate the time-
invariant background. Different methods for background subtraction exist [24,25].
If a measurement of the static background is available, subtracting the background
template is a reliable method for target echo separation. In many application
scenarios, the background cannot be measured ahead of time and thus needs to be
estimated. Most common background estimation methods are based on mean,
median or mode [26], exponential averaging [11] and low-pass filters and pre-
dictors [25]. Methods based on mean, median or mode are applicable for offline
processing as they require access to all measured impulse responses. Exponential
averaging can be applied in scenarios that require near-real-time performance, as
the background is iteratively computed from the previous background estimation.
It is a well-suited method for background estimation as it is simple and it is con-
trolled by only one parameter. Background subtraction algorithms that rely on
prediction filters can provide more precise adaptation to the specifics of the
environment; however, they are computationally expensive due to matrix inversion
for finding the predictor coefficients.

Due to its simplicity, good performance, high robustness and low computa-
tional complexity, exponential averaging is one of the most popular methods for
background subtraction. The background estimate as seen by receiver j of sensor s
at time t, ub

s;jðtÞ is computed using the previous background estimate ub
s;jðt � 1Þ and

the newly received impulse response us;jðtÞ
ub

s;jðtÞ ¼ aub
s;jðt � 1Þ þ ð1 � aÞus;jðtÞ (14.2)

with a being a constant scalar weighting or forgetting factor between 0 and 1.
This factor determines whether recent events (a ! 0) or long-term trends (a ! 1)
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in the background estimation are emphasized. For person motion a ! 1 should be
used as it allows for detection of slow motion in the received signal. The signal of
interest containing the person echoes is then

up
s;jðtÞ ¼ us;jðtÞ � ub

s;jðtÞ: (14.3)

In Figure 14.4, the normalized measured channel impulse response, us;jðtÞ, and
the resulting signal after background subtraction, up

s;jðtÞ, are shown. As can be
noticed, the echoes from the moving people are so weak that they are
undetectable in the directly measured signal. The radargrams of people walking in a
room before and after background subtraction (over time) are given in Figure 14.5(a)
and (b), respectively.

14.3.2 Range estimation
The signal up

s;jðtÞ contains echoes from the people in the coverage area of the sensor
as well as some low peaks corresponding to shadowed background that mimics
time-variant reflections. In most cases, clutter arrives later in the fast time (range)
compared to the first target. Thus, the estimation of the range of the closest target
can be simplified as no clutter models are necessary. The simplest method is peak
detection. However, since a person is an extended target, threshold-based approa-
ches are more appropriate. They have low computational complexity and are suited
for completely analogue implementation. These approaches are suited for scenarios
with only one target or where only the closest target is of interest.
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For multiple target scenarios, more sophisticated methods are needed. For most
multiple target-detection methods, the background subtraction data need to be
analysed over a certain period of time to derive a test statistic and threshold values.
According to these values, a decision between two hypotheses, H0 – absence of a
target and H1 – presence of a target, should be taken. The output of the detector is
then discrete corresponding to the two hypotheses. Optimum detectors often rely on
Bayes or Neyman–Pearson criteria. The most common detectors in UWB systems
for person detection are ðN ; kÞ detectors [27], inter-period correlation processing
[28] and constant false alarm rate (CFAR) detectors [29].
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Figure 14.5 Radargram of (a) the raw radar signal and (b) the signal after
background subtraction
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CFAR detectors provide good and robust performance for through-wall
moving target detection using UWB systems. Here, we give some more detail on
the Gaussian-adaptive threshold CFAR detector as used in [30]. It provides the
maximum probability of detection for a given false alarm rate based on the
Neyman–Pearson optimum criterion. Although the detector is simple and assumes a
Gaussian clutter model, it shows a good and robust performance for many through-
wall scenarios. The adaptive threshold is determined using exponential weighted
moving average (EWMA) filter. A test statistic X is defined using an EWMA over
the unbiased, normalized signal magnitude of up

s;jðtÞ. The background Y is then
estimated using a slower moving EWMA over the signal magnitude and the signal
variance s2 is defined by using a slow-moving EWMA filter over the signal energy.
The adaptive threshold is defined as

q ¼ hsþ Y (14.4)

where h satisfies

PFA ¼ 1 �
ðh

�1

1
ffiffiffiffiffiffi

2p
p e� 1=2ð Þx2

dx (14.5)

for a given false alarm rate PFA. The output of the CFAR detector is then

HðX Þ ¼ 1 if X > q
0 if X � q

�

(14.6)

The output is a binary sequence which is used to define the time indices of the
signal when a target has been detected (the indexes of the 1’s). Each index corre-
sponds to the ToA information, ts;jðxtÞ, of a detected person with unknown state xt

at time t with respect to the jth receiver of sensor s.
As a person is an extended target when UWB sensors are used for short-range

localization, multiple detections per person are available. As the extent of a person
with respect to the sensor resolution decreases with increasing distance, it can
happen that people further from the sensors are represented by fewer observations.
This has to be considered when modelling the likelihood function for statistically
processing the detections.

The performance of the CFAR detector depends on the false alarm rate and the
choice of parameters for the EWMA filters. Although these parameters can be
adjusted, depending on the position, quality and direction of the sensors, some
clutter points will still be classified as targets. These false positives hinder the
target localization and should be removed.

To reduce the multiple detections per target to one, different clustering techniques
can be used. Hierarchical clustering [31] with a predefined threshold corresponding to
a typical spread of a person in range can be applied as the number of detected people in
the scenario is unknown. However, clustering may hinder detection of multiple targets
when they have similar range distance from the sensor. The range detections after
CFAR and subsequent hierarchical clustering are shown in Figure 14.6.
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In cases where the leftover clutter and false detections after using the CFAR
detector are significantly hindering the localization of the people, a range-tracking
algorithm can be applied for removing the clutter and any false detections that do
not follow a possible target trajectory. In through-wall scenarios, a wall effect
compensation procedure as in [32] can be applied. If the walls are thin with small
relative permittivity, the wall effect can be considered negligible.

14.4 Person localization principle

In single sensor localization, one UWB sensor node is used to localize and track
possibly multiple people in the area of interest. Ranges are estimated for each
detected person in the impulse response of each transmitter–receiver pair. The
number of people detected by each sensor varies. It depends on the sensor position,
antenna direction and polarization, as well as location of people in the scenario.
A sensor does not always detect all people in its coverage area. Some are shadowed
by other people in the area and cannot be detected. Others may move on the range
ellipse of a sensor and appear as not moving to the sensor, resulting in subtraction
of their echoes when the static background is subtracted. The range information of
each detected person by each transmitter–receiver pair is sent to the fusion centre
where this information is fused aiming to estimate the number and location of the
people in the scenario at a given time. One has to be careful with fusing the range
information of the detected targets. In the case of multiple targets, ghost target
locations may arise. In Figure 14.7, an example of a scenario with two targets and
their range estimates is presented. As can be noticed, four plausible target locations
can be extracted in addition to the false intersections, out of which two are target
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Figure 14.6 Output of CFAR based detector and range estimator
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locations and two are ghost target locations. In the presence of more targets, clutter
and when multiple distributed sensors are used, the problem becomes more com-
plex. When using multiple distributed sensor nodes, one has to also consider and
account for possible communication delays between the sensor nodes and the
fusion centre.

Tracking methods can be applied to improve the localization of the detected
people. The target location is estimated based on the current observations of the
target and its previous position. In many tracking systems, simple or advanced
modifications of the Kalman filter (extended, unscented, etc.) or particle filters are
used.

14.4.1 Range-based localization of a single target
The true range of a target xt with coordinates ðxt; ytÞ at time t detected by sensor s
using receiver j is defined as the distance from the transmitter to the target, rTxðxtÞ
plus the distance from the target to receiver, rRxjðxtÞ, i.e.

rs;j xtð Þ ¼ rTx xtð Þ þ rRxj xtð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt � xsð Þ2 þ yt � ysð Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt � xs;j

� �2 þ yt � ys;j

� �2
q (14.7)

where ðxs; ysÞ are the transmitter coordinates of sensor s and ðxs;j; ys;jÞ are the
coordinates of the jth receiver of sensor s. The estimated target range is corrupted
by additive noise, i.e. random distance estimation error, and can be represented as

ds;j xtð Þ ¼ rs;j xtð Þ þ es;j;t (14.8)

y

xRx1 Rx2Tx

Target 1

False intersections

Target 2
Ghost targets

Figure 14.7 Simple scenario with two targets, their range and location estimates
with the emergence of two ghost target locations
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where es;j;t is the random distance estimation error at time t for the transmitter–
receiver j channel of sensor s, i.e. additive noise of the ToA estimation.

The target range can also be expressed based on the estimated ToA, ts;jðxtÞ, of
the target using the algorithms presented in Section 14.3:

ds;j xtð Þ ¼ ts;j xtð Þc: (14.9)

The target localization can then be redefined as estimation of the target coordinates
ðxt; ytÞ based on the set of non-linear equation (14.8) for all s and j. In the case when
a single sensor is used (s ¼ 1), the solution of two non-linear equations, each
corresponding to one of the sensor receivers ( j ¼ 1; 2), should be found.

A popular method for solving the set of non-linear equations is based on Taylor
series expansion [33]. The non-linear equations are linearized by expanding the
Taylor series around a guess of the solution and only keeping the first-order terms.
The linear equations are then solved by using the least-squares method and thus
estimating the target coordinates. The solution is then used for the next iteration as
a point around which the equations are linearized. The iterations continue until a
predefined criterion such as minimum error is satisfied.

If a perfect ToA estimate is assumed, Equations (14.7) and (14.9) can be
rewritten as

ts;j xtð Þc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt � xsð Þ2 þ yt � ysð Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt � xs;j

� �2 þ yt � ys;j

� �2
q

(14.10)

which is the equation of an ellipse with foci ðxs; ysÞ and ðxs;j; ys;jÞ and semi-major
axis ts;jðxtÞc=2 as previously explained in Section 14.2.1. The ellipse represents all
possible 2D locations of a target at range rs;jðxtÞ from the sensor. As such an ellipse
is defined for all transmitter–receiver pairs ðs; jÞ where the target is detected, the
target location can be estimated as the intersection point of those ellipses. A closed-
form solution for the ellipse intersection problem can be derived by rewriting
Equation (14.10) as a bivariate quadratic equation and solving the fourth-degree
polynomial using standard linear elimination of variables (for the case of two
ellipse intersections) by applying Bézout’s Theorem. As the two ellipses share one
focus (the transmitting node) and the major axis, there are at most two solutions as
ellipse intersection points. Due to the specifics of our scenario, i.e. the sensors are
on the borders of the area of interest, we can easily discard one of the intersections
as it does not lie within the area of interest.

14.4.2 Multiple-sensor fusion
With the above approach, the locations of the targets detected by each sensor are
estimated. A target would be typically detected by more than one sensor. In the
ideal case with no ToA estimation error, the target locations estimated by each
sensor coincide (Figure 14.8(a)). However, in practical applications, there is always
a non-zero estimation error. The case when the range estimation error is small is
shown in Figure 14.8(b). It can be observed that the target location estimates with
respect to each sensor (grey point intersections) are close to the true target location
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(black point intersection). In some scenarios, such as through-wall, the range esti-
mation error is large, leading to the situation depicted in Figure 14.8(c) where the
target location estimate using sensor 1 is further from the true target location.
Finally, it can also happen that a target is not detected in one of the impulse
responses of a sensor as depicted in Figure 14.8(d).

The above cases have also been considered in [34] where single target locali-
zation by two UWB sensor nodes is considered. A method for joining the inter-
sections of ellipses is proposed, where the additional ellipse intersections close to
the true target position are utilized to form a cluster of intersections which is later
used for target positioning. This approach is shown to be better than simple
averaging of single sensor results and Taylor series methods. However, it is also
computationally expensive as all possible ellipse intersections should be deter-
mined to form the cluster of intersections. In the presence of multiple targets and
high clutter, this method would be impractical mainly due to the many ellipse
intersections that need to be determined. In addition, in multiple target scenarios, it
can happen that the cluster of intersections determines a false target location
instead of two separate targets, as shown in Figure 14.9, where one target is
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Target location estimates
per sensor   
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i.e. possible target locations  
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Figure 14.8 Multiple sensor localization scenarios: (a) ideal localization, no
range estimation error, (b) small-range estimation error, (c) large-
range estimation error by one sensor and (d) target miss-detection by
one receiver of one sensor
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detected by one sensor and the other target by the other sensor. If it is not known
how many targets are present in the scenario, the cluster of intersections determines
one target location (grey ellipse) instead of the actual two targets (black).

In this chapter, two methods for multiple target multiple sensor localization are
presented. The first method is a two-step localization approach that localizes
detected targets for each sensor and then fuses the estimated locations. This method
has the advantage of low computational complexity as only corresponding ellipse
intersections are calculated. In addition, only the estimated target locations by each
sensor are sent to the fusion centre node where the target locations are fused. The
second method is a direct localization approach where all range estimates by all
sensors are used to determine the locations of the detected targets. Its advantage is
that the range estimation errors are not directly propagated into location estimation
errors and target detection of a receiver is not discarded if the other receiver of the
sensor did not detect the target.

14.4.3 Tracking principle
The target-tracking problem can be summarized as an estimation of the number of
targets and their states at each point in time using a set of noisy measurements and
the information of the previous target states. A state contains all the relevant
information to describe the target such as location, velocity and identity. Within
this chapter, we consider target localization in 2D and thus a four-term target states
containing the x and y coordinates of the target and the respective velocities are

Rx21 Rx22Tx2

Rx12

Tx1

Rx11

Figure 14.9 Possible false intersections chosen as single target location (grey)
instead of the true locations of two targets (black)
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estimated. Nevertheless, the methods explained here are expandable for differently
defined target states.

The Bayes filter is a successful approach to the sequential estimation of the
state of a dynamic system by using a sequence of noisy measurements. It requires a
suitable dynamic model that describes the state evolution over time as accurate as
possible and a measurement model that relates the noisy measurements to the state.

The main idea of the single-target Bayes filter is to construct a posterior
probability density function (pdf) pðxtjZ1:tÞ of a single-target state xt based on all
the available information, including the sequence of received measurements
Z1:t ¼ Z1; Z2; . . . Ztf g. Recursive filtering provides an estimate sequentially every
time a new measurement is available. It incorporates two stages: prediction and
update. In the prediction stage of the single-target Bayes filter, the system model is
used to predict the pdf of the state at a given time instant:

p xtjZ1:t�1ð Þ ¼
ð

p xtjxt�1ð Þp xt�1jZ1:t�1ð Þdxt�1 (14.11)

where p xtjxt�1ð Þ is the state transition pdf defining the target motion. Equation
(14.11) is also known as the Chapman–Kolmogorov equation.

In the update stage, the last received measurements are used to correct or
modify the predicted pdf by using the Bayes formula

p xtjZ1:tð Þ ¼ p xtjZt; Z1:t�1ð Þ ¼ p Ztjxtð Þp xtjZ1:t�1ð Þ
Ð

p Ztjzð Þp zjZ1:t�1ð Þdz : (14.12)

p Ztjxtð Þ is the measurement likelihood function. From the posterior pdf, the optimal
state estimates with respect to a given criterion can be computed. An analytic
solution exists only in some situations such as the Kalman filter in linear-Gaussian
cases. In other cases, suboptimal solutions such as Extended or Unscented Kalman
filters or particle filters are used.

In case of multiple targets, the single-target Bayes filter is extended to jointly
estimate the states of all targets. The multi-target Bayes filter propagates the
multi-target posterior density to find an optimal solution in terms of the minimum
covariance. The states of all Nx;t targets at time t are represented by the set
Xt ¼ xi

t

� �Nx;t

i¼1. The prediction and update equations are as follows:

p XtjZ1:t�1ð Þ ¼
ð

p XtjXt�1ð Þp Xt�1jZ1:t�1ð ÞdXt�1 (14.13)

p XtjZ1:tð Þ ¼ p ZtjXtð Þp XtjZ1:t�1ð Þ
ð

p ZtjXð Þp X jZ1:t�1ð ÞdX
(14.14)

where p XtjZ1:tð Þ is the multi-target posterior density that is conditional on the
measurements Z1:t up to time t. pðXtjXt�1Þ is the transition density and p ZtjXtð Þ is
the measurement multi-target likelihood function. In the Finite Set Statistics ter-
minology, the set Xt and the set Zt ¼ zi

t

� �Nz;t

i¼1 are random finite sets (RFS) of
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the states and observations, respectively, at time t [8]. Nz;t is the number of
observations at time t. Each zi

t is either a noisy observation of one of the targets or
clutter. Each target state is represented by xi

t. The set-based approach allows for
varying number of targets to appear and disappear without any particular order
while avoiding explicit data association. One thing that has to be noted here is that
the integral used in Equations (14.13) and (14.14) is not an ordinary integral but a
set integral as explained in [8].

As the multi-target Bayes filter is NP hard, i.e. numerically intractable, it is too
complex to be applied in practical scenarios. One of its approximations based on
point process theory leads to the PHD filter [8–10].

The PHD of a point process is the first-order moment of the multi-target
posterior distribution. It is a multi-modal distribution over the target space and each
mode, or peak, represents a high probability of target presence. As at a given time,
the target population is described by a set-valued state, it operates on the single-
target state space and avoids the complexities arising from data association.
A drawback of this superposition target space is the loss of target identities. Thus, if
the target identity is needed, target labels have to be obtained in a separate post
processing step [35].

The PHD is not a pdf and its integration over any subset of the space gives an
estimated number of the targets in this subset. The propagation of the posterior
intensity function vt uses the following recursion:

vtjt�1 xtð Þ ¼
ð

ftjt�1 xt; xt�1ð Þvt�1 xt�1ð Þdxt�1 þ gt xtð Þ; (14.15)

vt xtð Þ ¼ 1 � pD xtð Þ½ �vtjt�1 xtð Þ

þPzt2Zt

yz;t xtð Þvtjt�1 xtð Þ
kt ztð Þ þ

ð

yz;t zð Þvtjt�1 zð Þdz
: (14.16)

The transition density in (14.15) is defined as

ftjt�1 xt; xt�1ð Þ ¼ pS xt�1ð Þp xtjxt�1ð Þ þ btjt�1 xtjxt�1ð Þ (14.17)

where p xtjxt�1ð Þ is the single target transition density, pS xt�1ð Þ is the probability of
survival and btjt�1 xtjxt�1ð Þ is the PHD for spawned target birth. gt xtð Þ is the PHD
for spontaneous birth of new targets at time t. In the update Equation (14.16),

yz;t xtð Þ ¼ pD xtð Þp ztjxtð Þ (14.18)

where pðztjxtÞ is the single-target likelihood function and pD xtð Þ is the probability
of detection. The clutter intensity is defined as kt ztð Þ ¼ ltqt ztð Þ, where lt is the
Poisson parameter defining the expected number of false alarms and qt ztð Þ is the
clutter/false alarm probability distribution over the measurement space.

The main assumptions of the PHD filter are independence of the measurements
generated by each target, the clutter is Poisson and independent from target-based
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measurements and that the predicted multi-target RFS is Poisson. Two imple-
mentations of the PHD are common in literature, the Sequential Monte Carlo ver-
sion [10] and the Gaussian Mixture (GM) version [9]. For the processing of the data
presented in this chapter, the GM PHD was used.

For having a working multiple target tracking algorithm based on the PHD
filter, defining an appropriate birth intensity is very important. The intensity of the
spontaneous birth RFS is typically defined as

gt xtð Þ ¼
X

Ng;t

i¼1

wi
g;tN xt;m

i
g;t;P

i
g;t

� 	

(14.19)

where Ng;t is the number of birth Gaussians at time t, wi
g;t is the weight of the ith

Gaussian with mean mi
g;t and covariance Pi

g;t. In this formulation, the intensity
function of the newborn targets is independent of the measurements, and generally
it covers the entire state space as new targets may appear anywhere. The mean of
the newly born mixtures is chosen randomly from the state space, and the defining
parameter is Ng;t. Defining the birth intensity, this way is inefficient. An alternative
birth intensity definition is to use only one big Gaussian with weight Ng;t at the
centre of the field of view with large enough covariance to cover the whole field of
view. This method is slightly more efficient; however, a measurement-based birth
intensity as in [36] is the most efficient. The birth intensity also depends on whether
a target is persistent or not. If a target is persistent, it cannot be considered as a
newborn target. The subspaces where a target may appear are based on the previous
observations and not randomly over the whole state space, i.e. newly born targets
appear in regions with high likelihood. Within this work, we use the measurement-
based birth intensity.

When using the GM PHD, after the update step, Gaussians with weight below
a predefined threshold are pruned and Gaussians close to each other are merged.
Gaussian terms with weight above a predefined confirmation threshold are con-
sidered for target state estimation [17].

14.4.4 Multiple-target–multiple-sensor two-step
localization approach

In the presence of only one target, in theory, there is only one range estimate per
receiver, leading to only one possible ellipse intersection for the target location.
However, in the presence of multiple targets, multiple combinations of range esti-
mates are possible giving rise to ghost target locations as shown in Figure 14.7. The
calculation of the ellipse intersection points is computationally expensive and time
consuming, thus it might be advantageous to first associate range estimates from
both impulse responses corresponding to the same target.

In the scenarios considered in this chapter, the static sensor nodes have both
receivers very close to the transmitter and thus a similar range estimate value is
expected for a target by both receivers. An intersection threshold based on the
range difference of a target detected by both receivers of the sensor node is defined.
As the size of the area of interest A is known (or can be approximated based on the
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sensor locations), the intersection threshold, Ts, for each sensor s can be calculated
in advance for given transmitter and receiver positions as

Ts ¼ max
x2A

jds;1ðxÞ � ds;2ðxÞj: (14.20)

Let z and c denote two objects in the target space. If the range estimate of object z
with respect to the first receiver, ds;1ðzÞ, and the range estimate of object c with
respect to the second receiver, ds;2ðcÞ, satisfy

jds;1ðzÞ � ds;2ðcÞj � Ts; (14.21)

we conclude that the objects z and c represent the same object. If multiple range
estimates satisfy (14.21), the estimate resulting in the smallest absolute difference
is chosen. The above association does not only reduce the computational load, but it
also helps in reducing ghost location estimates which may result from the inter-
section of ellipses defined by ranges belonging to different targets, or by choosing
multiple intersections of one ellipse with the other ellipses. The target location is
estimated as the intersection point of the ellipses defined by the range estimates
corresponding to the same target as explained in Section 14.4.1.

As a target is typically detected by more than one sensor, these location estimates
are fused to result in a single target location per target. For location fusion of the
estimates from the different sensors, a variation of the PHD filter explained in Sec-
tion 14.4.3 is used. The observation set at time t is defined as Zt ¼ [Ns

s¼1Zs;t, where Zs;t

is the set of location estimates determined using the data from sensor s at time t. Ns is
the number of sensors used. The observation equation is defined as zs;t ¼ Hxt þ ws;t,

where H ¼ 1 0 0 0
0 1 0 0


 �

for a four-term target state, ws;t � N 0;Rs;t

� �

is the

observation process noise and zs;t is the observation vector at time t with respect to
sensor s. In this method, the observation zs;t is not the directly measured parameter but
the estimated location using the ellipse intersection method explained above. The
observation process covariance is thus highly dependent on the range estimation error
es;j from (14.8) of the two transmitter–receiver pairs used for calculating the location
estimate. The observation process covariance is thus defined as

Rs;t ¼ @rs;1ðxtÞ
@xt

s�1
s;1;t

@rs;1ðxtÞ
@xt

� T

þ @rs;2ðxtÞ
@xt

s�1
s;2;t

@rs;2ðxtÞ
@xt

� T
 !�1

(14.22)

where rs;jðxtÞ is the range equation for a target with state xt with respect to receiver
j of sensor s given in (14.7), @rs;jðxtÞ

� �

=@xt is the Jacobian of the range equation
and ssj;t is the covariance of the range estimation error esj;t. The single target
likelihood used within this work is

p zs;tjxt

� � ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jRs;tjð2pÞl
q exp � 1

2
zs;t � H � xt

� �0
R�1

s;t zs;t � H � xt

� �

� 

(14.23)

where l is the length of the measurement vector zs;t.
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Linear Gaussian target dynamics are considered:

p xtjxt�1ð Þ ¼ N xt;Ftxt�1;Qtð Þ (14.24)

with

Ft ¼ I2 dtI2

O2 I2


 �

and Qt ¼ s2
u

dt4

4
I2

dt3

2
I2

dt3

2
I2 dt2I2

2

6

4

3

7

5

as the state transition matrix and the covariance. dt is the time interval between two
observations, s2

u is the variance of the process noise ut � N 0;Qtð Þ and In and On

denote n 	 n identity and zero matrices, respectively.

14.4.5 Multiple-target–multiple-sensor direct
localization approach

The approach described above first associates the range estimates from the different
transmitter–receiver pairs, then determines locations by ellipse intersection and
finally fuses the location estimates from the different sensors and tracks the
detected targets in the scenario. This method discards possible range estimates if
only one of the transmitter–receiver pairs detects the target. Here, we describe a
method that directly fuses all range estimates from all transmitter–receiver pairs in
the scenario into location estimates and tracks the targets.

The range of the targets with respect to each transmitter–receiver pair defines

the observations at time t as Zsj;t ¼ zi
s;j;t

n oNsj
z;t

i¼1
where Nsj

z;t is the number of targets

detected by the jth receiver of sensor s. The observation set is defined as

Zt ¼ [Ns
s¼1 [Ns;j

j¼1 Zsj;t where Ns is the number of sensors used and Nsj is the number of

receivers of sensor s. The observations at time t can be defined as

zsj;t ¼ hsj xtð Þ þ wsj;t (14.25)

where

hsj xtð Þ ¼ rs;j xtð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt � xsð Þ2 þ yt � ysð Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt � xs;j

� �2 þ yt � ys;j

� �2
q

(14.26)

is the measurement equation, which is the same as the range equation (14.7), and
wsj;t � N 0;Rsj;t

� �

is the observation process noise. The observation process noise
is the same as the ToA estimation error esj;t defined in (14.8).

The single target likelihood function for each transmitter–receiver pair is then
defined as

p zsj;tjxt

� � ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jRsj;tjð2pÞl
q exp � 1

2
zsj;t � Jsj

h � xt

� �0
R�1

sj;t zsj;t � J sj
h � xt

� �

� 

(14.27)
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where J sj
h � xt is the Jacobian of hsjðxtÞ and Rsj;t ¼ ssj;t is the measurement covar-

iance matrix for the s; j transmitter–receiver pair. The target dynamics are the same
as for the two-step approach described in the above section.

14.4.6 Method comparison and experimental results
The two approaches for multiple target multiple sensor localization described above
are verified on a scenario with two people moving perpendicular to each other with
their paths crossing in the middle of the room. The person who has a shorter path
turns and walks back. A sensor network consisting of four UWB sensor modules is
used. One of the sensors (Sensor 3 in Figure 14.10) is placed behind one of the
walls of the room, and the other three sensors are placed in three of the corners of
the room. As mentioned earlier, each sensor consists of one transmitter and two
receivers synchronized by an internal 7 GHz RF clock. About 25 impulse responses
per second were measured. Directional horn antennas with different size and
quality were used on all sensor nodes, resulting in varying sensor performance. No
synchronisation between the different sensor nodes was considered, and all sensor
nodes were running in parallel. The scenario is illustrated in Figure 14.10, where
the start position of the people is shown by a circle and the end position by an arrow
showing the direction of movement the person had at the end of their movement.
The position of the transmitter and the two receivers of each sensor is shown in
different colour for each sensor where the transmitter of each sensor is always
placed between the two receivers of the sensor. The data used for target range
estimation and consequently location estimation were obtained from a measure-
ment campaign conducted at TU Ilmenau. The exact ground truth path of the
motion is not available and thus for comparison a close approximation is used.

Figure 14.11(a) shows the estimated locations of the two targets by each sen-
sor. The different colours of the location estimates correspond to the sensors whose
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Figure 14.10 Measurement scenario used for method verification
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observations were used to determine the location. They correspond to the grey
intersection points from Figure 14.8. It can be noticed that the location estimates of
each sensor are less noisy when the target is closer to the respective sensor. In
Figure 14.11(b), the fused location estimates are presented. As can be noticed, the
fused location estimates are more accurate and less noisy than the direct location
estimates per sensor and provide target tracks. The tracks of the direct localization
approach are shown in Figure 14.12. As can be seen, both two-step and direct
approach seem to properly track both targets and determine their locations. There
are minor visible differences between the results from the two approaches, which
are quantified in Figure 14.13. Here, the optimal sub-pattern assignment (OSPA)
[37] metric with cut-off c ¼ 10 and order p ¼ 1 is shown. Although both methods
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Figure 14.11 Location estimates (a) colour labelled according to the sensor that
produced them and (b) fused by the fusion centre node
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have rather low location estimation errors, the direct approach has greater stability.
For both approaches, a measurement-based birth intensity was used, and all
other parameters required by the PHD filter were kept the same, except for the
differences in the type of observations and likelihood function as explained in
Sections 14.4.4 and 14.4.5.
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Figure 14.12 Target tracks using the direct range fusion approach
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14.5 Conclusion and future work

Indoor localization of people that do not cooperate with the system network, such
as potential intruders, can be achieved and complemented by the use of UWB
systems. Due to their high time resolution, various multipath components can be
separated from the echoes of the people of interest. The large frequency spread
makes UWB systems applicable for through-wall detection and localization by
using the lower frequencies of the spectrum. In this chapter, the basis of UWB
sensing, a structure and operating principle of a UWB sensor node and a distributed
UWB sensor network is described. The main purpose of using a distributed sensor
network is the extension of the coverage area and more accurate detection and
localization of multiple people in the scenario. The processing of the measured
impulse responses is also distributed in the network for reduction of the data
transmission load between the network components.

This chapter also describes two approaches for localization of people using the
measured target scatterings by the multiple sensor receivers in the sensor network.
The described approaches are simplistic, computationally solid and implemented
for real-time operation. The first approach relies on single-sensor localization being
performed on the sensor node platform and fusion of the estimated locations at the
fusion centre node using a PHD filter. The second approach does only range esti-
mation on the sensor platform, and a direct localization and tracking PHD filter-
based fusion is performed on the fusion centre platform. The approaches are
evaluated in near-real-time operation in a measurement scenario using UWB
baseband sounder modules as UWB sensors for the network, conducted in office
scenarios that correspond closely to real application scenarios for security or smart-
home applications.

The sensor network system and approach can be further improved by inclusion
of other parameters corresponding to moving people, which can be extracted from
the measured impulse responses. In addition, a higher cooperation level between
the sensors can lead to additional information by using signals transmitted by one
sensor node and received by another sensor node.
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Chapter 15

Sensor management for radar networks

Alexander Charlish1 and Roaldje Nadjiasngar1

Abstract

Advancements in communication and information-processing technologies are
driving an interest in networked radar systems, which are capable of compensating
for the weaker attributes of the individual radars in the network. The role of a
network of radar systems is to perform joint assessment of a surveillance region by
fusing data generated at the individual radar nodes. To achieve best possible per-
formance for the network, it is necessary to optimally configure the network and
allocate its finite resources, such as radar time/energy budget, bandwidth, com-
munication capacity and processing capacity. This chapter describes sensor and
resources management techniques that can be applied to radar networks, focussing
on radar network measurement scheduling and networked radar quality of service-
based resources management.

15.1 Radar networks

A radar network can be envisaged in a large number of configurations, which can
be characterized by a number of key features [1,2]. First, a radar network can be
configured with varying degrees of coherency, which is the time period over which
a local radar node knows the phase shifts at other nodes in the network. A radar
network can also be characterized by the possible modes of operation, such
as monostatic, bistatic or multistatic modes, as well as whether the nodes are
situated on static or dynamic platforms. A monostatic radar uses common or
co-located antennas, a bistatic radar uses transmit and receive antennas that are
spatially separated, and a multistatic radar uses two or more spatially separated
transmit and receive antennas. As a radar network has a wide scope for reconfi-
guration, especially if electronically steered array antennas are used, management
of the configuration of the network is a key performance factor.

A network of radars performs joint assessment of a surveillance region, to gen-
erate situational awareness for the human operator. Joint assessment involves local
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processing of radar signals at each radar node to higher levels of information
abstraction, as well as fusing data produced by the radar nodes at a desired informa-
tion abstraction level. Data fusion in a radar network can be performed at the signal,
detection, measurement/plot or track level, and many techniques for data fusion have
been presented in the previous chapters. The way in which data in the radar network is
fused can also be managed, for example, the choice of track-to-track or measurement-
to-track fusion may depend on the time varying capacity of the communication links.

As with joint assessment, a radar network can perform joint management, such
that the radar network resources are managed to optimize the network performance.
Resources in the network are the communication capacity between radar nodes,
bandwidth, the computation available at each node as well as the finite time/energy
budget at each radar node. To enhance the performance of the radar network, the finite
resources should be efficiently allocated and configuration control parameters for the
resources optimally selected. As with data fusion, it is necessary to decide the infor-
mation abstraction layer at which joint management is performed in the radar network.
Joint management at a lower layer, such as the signal layer, is more complex than at
higher levels as management decisions must be rapidly and reliably communicated.

15.2 Information fusion and management architectures

An architecture for a single cognitive radar was discussed in Chapter 5, which is
an adapted version of the architectures by Smits et al. [3] and Kester [4]. The
architecture is comprised of branches that represent the two key processes for a
radar, which are assessment and management. At each level, knowledge is acquired
and exploited to perform the assessment and management. In addition to the
branches, the information abstraction levels of signal, measurement, object, situa-
tion and mission were proposed. A key characteristic of this architecture is that the
data volume at the lowest level is the largest and decreases as the data is processed
to higher levels of abstraction. In addition, the control time horizon and feedback
cycle duration is smallest at the lowest level and longest at the highest level.

To extend the single radar architecture to a radar network architecture, it is
necessary to consider which assessment and management modules are joined over
the network, and which modules operate independently at each radar node. Only
pure radar networks are considered; however, supplementing the radar with a net-
work of complementary sensors has clear benefits [5,6].

15.2.1 Data fusion with monostatic radars
A radar network can apply data fusion at a specified level of information abstrac-
tion. This involves joining the assessment branches at and above the specified level,
while the levels below and the management branch remain local to each radar node.
The joint assessment branch can be located at a central fusion centre, such that each
radar node has only local data, whereas the fusion centre has the global data.
Alternatively, radar nodes can exchange data, so that the radar nodes have either all
global data or data from a number of neighbouring nodes. This choice is a decision
as to whether the joint assessment and hence the complete surveillance picture is
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centralized or decentralized. The configuration is likely to be heavily application
dependent, and many alternatives can be envisaged [7,8].

A key decision for monostatic radars applying data fusion is at which informa-
tion abstraction level is data fused and the assessment branch joined. Track-to-track
fusion requires the least amount of data to be communicated over the network;
however, a lot of local pre-processing is applied which reduces the information
available in the data fusion process. For example, a track must be extracted at each
node alone, which may not be possible for difficult to detect targets. Transmission of
radar measurements or plots requires a higher communication data rate but increases
the information available in the data fusion process. Transmission of raw data would
maximize the information in the fusion process; however, this is generally infeasible
for practical applications due to the high data volume that needs to be communicated.

The following architectures can be adopted for tracking in a monostatic radar
network:

Centralized Centralized tracking involves all radar nodes transmitting their
measurements to a central fusion centre, which fuses the measurements into
tracks. The fusion centre therefore possesses the global data, whereas each
radar node only possesses local data. Although this configuration is optimal
in terms of minimizing tracking mean squared error at the fusion centre,
transmission of all measurements may not be possible due to limitations on
the communication channel.

Distributed Like centralized tracking, distributed tracking also aggregates the
global data at a centralized fusion centre. In a distributed radar network archi-
tecture, a number of radar nodes (at least one) contribute measurements to a
local fusion centre which generates tracks. Then, all local fusion centres
transmit local tracks to the central fusion centre, where track-to-track fusion is
performed. This reduces the amount of data that needs to be communicated
over the network; however, the track-to-track fusion process is suboptimal due
to the cross-correlations between local tracks.

Decentralized In a decentralized tracking architecture, no central fusion centre
with complete knowledge exists. Instead a large number of localized fusion
centres are present, which can fuse measurements from its sensors and
neighbouring fusion centres. This configuration is typical of sensor networks
with a large number of small cheap sensors.

15.2.2 Coordinated monostatic radars
In addition to improving the global situational awareness by fusing data in a
monostatic radar network, networked radar resource management can be applied,
such that the radar management for a node is coordinated with other nodes in the
network. This coordination enables the radar network resources to be management,
so that the finite network resources are allocated, and the radar network is optimally
configured. In addition, the deployment of the radars themselves can be managed,
such as the number of nodes and locations or trajectories [9–12].

Similar to data fusion, coordinated management involves joining the
management branches, such that a specified level and above are joined, and the
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management levels below are performed independently at the radar nodes. Again,
the joined management modules can be centralized, or distributed in the network.
Centralized management has the benefit that management is based on global
knowledge, however, centralized management is not scalable for large increases in
the number of radar nodes and can be susceptible to communication link failures.
Distributed management is based on local knowledge at the radar node and hence
potentially suboptimal with respect to centralized management, but it is scalable
and robust to communication link failures.

15.2.3 Multistatic radars
In a multistatic radar network, each radar node receives signals that have been
transmitted by a remote radar node. This can include a single transmitter–receiver
path, which is known as bistatic, or multiple transmitter–receiver paths, which is
full multistatic operation. A multistatic radar network configuration ultimately
increases the information generated in the network. For example, for a two-radar
case, both a bistatic and a monostatic measurement can be simultaneously gener-
ated. In addition, a bistatic or multistatic configuration enables measurements of
different aspects of a target, which can be beneficial for hard to detect, stealthy
targets. Also, bistatic or multistatic geometries can enhance target detection in
clutter, in comparison to a monostatic geometry.

A multistatic configuration places specific requirements on the assessment
and management branches. Specifically, the signal management level must be
jointly managed so that the transmission and reception of signals is synchronized,
which is challenging due to timing constraints. For coherent operation, the radar
nodes need a common phase reference, which can be achieved through a wired
clock signal or alternatively through a common reference, such as the Global
Positioning System. In addition, coordinated scheduling needs to be applied in the
network, so that the transmit and receive beams from different radar nodes are
directed towards the correct region at the correct time. For a radar network that is
capable of multiple modes, the use of the multistatic mode itself may be managed.
For example, the radar network may operate primarily monostatically, but schedule
multistatic modes for specific targets or surveillance regions.

15.3 Radar measurement scheduling

If joint management is performed at the measurement level, then measurements
from radar nodes can be scheduled based on a common set of radar tasks for
the network. The tasks can be searching for new targets, or active tracking of
previously detected targets. The majority of existing approaches focus on the
tracking problem, which is also the topic of this section.

15.3.1 Problem formulation
The radar measurement scheduling problem considered in this section is the
selection of a subset of radars in the network to generate measurements at each time
instant on targets under track. The objective is to select this subset given that a
constraint on the number of sensors that are active at each time step is not exceeded
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and that the performance is optimized, according to a relevant criterion. As the radar
network resources may be limited, a trade-off between tracking performance and
resource usage can occur. In this section, it is assumed the radars are monostatic and
transmit the generated measurements to a central fusion centre where measurement-
to-track fusion is performed.

Let xk denote the target state vector at sampling time k, which is comprised of

Cartesian kinematic components, for example xk ¼ ½x; x0y; y0�T where x and y are
position components, and x0 and y0 are velocity components. As the target state is
Cartesian, the target motion can be modelled by a linear state transition function
xkþ1 ¼ Fkxk þ vk where Fk is a linear state transition matrix, and vk is a process
noise sequence with covariance matrix Qk . At each sampling step, measurements can
be generated from a subset of radars in the network. The measurement zl

k generated
by node l is described by the non-linear measurement function zl

k ¼ hl
kðxkÞ þ wl

k ,
where hl

kðxkÞ is the non-linear measurement function, and wl
k is a measurement noise

sequence with covariance matrix Rl
k . The measurement function is non-linear as the

radar generates polar or spherical measurements, and the target state is Cartesian.
The scheduling objective is to select an action vector ak for time step k:

ak ¼ a1
k ; . . .; a

L
k

� �

(15.1)

where al
k 2 {0,1} indicates whether radar node l is active or inactive at time step k

and L is the total number of radar nodes.

15.3.2 Scheduling time horizon
In order to select the best subset of radar nodes for a time step, it is necessary to
construct an objective function. Optimization criteria for radar network scheduling
are discussed further in Section 15.3.3. The optimization criteria can evaluate a
single action akþ1 for the next time step, or the criteria can evaluate a sequence of
actions akþ1:kþm ¼ akþ1; . . .; akþmf g extending from time step k þ 1 over m time
steps into the future.

In the following, the radar network scheduling is applied with receding horizon
control, which executes the following process:

1. Track is updated to the current time k
2. All possible action sequences are evaluated over m future time steps based on

the track at time k.
3. The first action from the highest evaluated action sequence is scheduled for

time step k þ 1.
4. Measurements are generated based on the scheduled action for time step k þ 1.
5. Time is incremented and the process repeats.

Consequently, actions are selected at each time step based on a time horizon
extending potentially over multiple steps in the future. Scheduling based only on a
single step is termed myopic as it maximizes only the instantaneous reward.
However, scheduling based on multiple time steps in the future is termed non-
myopic, as it also considers future rewards.
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For a single time step, an exhaustive evaluation of all possible actions may be
possible. However, if non-myopic scheduling is performed, then the number of
action sequence combinations rapidly prohibits an exhaustive search. Various
methods can be used to tackle the complexity, such as tree search methods [13], or
approximate dynamic programming techniques [14].

15.3.3 Optimization criteria
To select the radar node or nodes to activate for target tracking at a time step, it is
necessary to formulate a selection criterion, which is the objective function used in
the optimization problem. This section describes suitable optimization criteria that
are valid for target tracking with single or multiple step ahead scheduling.

15.3.3.1 Posterior Cramér-Rao lower bound
The posterior Cramér-Rao lower bound (PCRLB) [15] is a filter independent lower
bound on the error covariance in the target state estimate. Therefore, it is a
suitable objective function when it is desired to minimize the error in the target
state estimate. A detailed treatment of the PCRLB can be found in many texts, such
as [15, 16, Chap. 2]. As an optimization criterion for scheduling a radar network,
the PCRLB can be predicted over multiple future time steps based on the target
motion model and the expected error covariances of future measurements.

Let x̂kðZkÞ denote an unbiased estimate of the target state xk based on the set of
all measurements Zk received up to time step k. Then, the PCRLB Ckjk is defined as
the inverse of the Fisher information matrix (FIM) Jk :

Ckjk ¼D E ðx̂kðZkÞ � xkÞðx̂kðZkÞ � xkÞT
h i

� J�1
k (15.2)

where E denotes the expectation over ðxk ; ZkÞ and T denotes the transpose operator.
The PCRLB can be found from the posterior FIM Jk , which can be calculated
recursively [17] according to:

Jkþ1 ¼ D22
k � ðD21

k ÞTðJk þ D11
k Þ�1D12

k þ Jz;kþ1 (15.3)

where Jz;kþ1 represents the Fisher information contribution of the expected
measurements generated at time step k þ 1. The terms involving the Dk matrices
represent the contribution of the prior information on the target state from the
previous time step. The Dk matrices are:

D11
k ¼ E �Dxk

xk
ln pðxkþ1jxkÞ

n o

(15.4)

D12
k ¼ E �Dxkþ1

xk
ln pðxkþ1jxkÞ

n o

(15.5)

D21
k ¼ ðD12

k ÞT (15.6)

D22
k ¼ E �Dxkþ1

xkþ1
ln pðxkþ1jxkÞ

n o

(15.7)
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where pðxkþ1jxkÞ is the state transition probability, which is modelled by a Gaus-
sian transition density pðxkþ1jxkÞ ¼ Nðxkþ1;Fkxk ;QkÞ. Based on this assumption,
the Dk matrices can be derived [17]:

D11
k ¼ FT

k Q�1
k Fk ; (15.8)

D12
k ¼ �FT

k Q�1
k ; (15.9)

D22
k ¼ Q�1

k : (15.10)

To calculate the Fisher information contribution from the set of expected mea-
surements associated with action akþ1 at time k þ 1, it can be assumed that the
radars in the network have independent measurement processes and therefore:

Jz;kþ1 ¼
X

L

l¼1

al
kþ1 � Jl

z;kþ1 (15.11)

where Jl
z;kþ1 is the Fisher information due to the expected measurement generated

from just radar node l. The Fisher information for node l is by definition:

Jl
z;kþ1 ¼ E �rxkþ1

xkþ1
ln pðzl

kþ1jxkþ1Þ
n o

(15.12)

which assuming perfect detection and no false measurements is:

Jl
z;kþ1 ¼ E ~H

l
kþ1ðxkþ1Þ

� �T
Rl

kþ1

� ��1 ~H
l
kþ1ðxkþ1Þ

� 	

(15.13)

where ~H
l
kðxkÞ is the Jacobian of the non-linear measurement function for radar

node l. In practice, the true target state is not known and, therefore, the Jacobian is
evaluated at the predicted target state estimate. Therefore, in the following, we
denote ~H

l
k as:

~H
l
k ¼D ~H

l
kðxkÞjxk¼x̂kðZkÞ ¼ rxk hl

kðxkÞjxk¼x̂kðZkÞ
h iT

: (15.14)

As no measurements are actually received when predicting the FIM m steps in the
future, the Jacobian would be evaluated at the target state estimated for time step
k þ m but based only on the history of measurements received up to time k. Imper-
fect detection and false measurements can be incorporated using the information
reduction factor [18], modified Riccati equation [19] or enumeration method [20].

Substituting Equations (15.8)–(15.10) and Equation (15.11) into Equation (15.3)
and applying the matrix inversion lemma gives a recursive form for the FIM:

Jkþ1 ¼ Qk þ FkJ�1
k FT

k

� ��1 þ
X

L

l¼1

al
kþ1 � ~H

l
kþ1

� �T
Rl

kþ1

� ��1 ~H
l
kþ1 (15.15)

Then, the PCRLB can be found by the matrix inversion of the FIM Jkþ1. This
recursion can be initialized by taking the filter covariance as the initial PCRLB at
time k.
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Using Equation (15.15), the FIM can be predictively calculated over a single
or multiple steps in the future, based on the target motion model and expected
measurement covariances that result from the action sequence akþ1:kþm. The
PCRLB can then be found by inverting the FIM at each of the future steps. Let
Cijk ¼ J�1

ijk be the PCRLB at time i using the measurements received up to time k.
Then, optimization criteria can be derived [13,21] from the sequence of PCRLBs,
such as:

ckþ1:kþmðakþ1:kþmÞ ¼
X

kþm

i¼kþ1

tr Cijk
� �

(15.16)

where tr denotes the trace. This can be used as the basis for the following optimi-
zation problem:

minimize:
akþ1:kþm

X

kþm

i¼kþ1

tr Cijk
� �

subject to:
X

L

l¼1

al
kþj � n 8 j ¼ 1; 2; . . . ;m

where n is the maximum number of radar nodes that can generate a measurement
on a target at a single step.

Once the action sequence which minimizes the PCRLB over the m time steps
is found, only the first action is scheduled, and then the process is repeated at the
next time step. The PCRLB has also been used as an objective function in other
sensor management problems, such as managing the deployment of sensors [9–11].

15.3.3.2 Information theoretic criteria
Information theoretic criteria can be used for radar measurement scheduling [22–
24], motivated by the assumption that it is desirable to minimize the uncertainty in
the surveillance picture or by the assumption that the radar network should max-
imize the production of information.

Entropy is a measure of the uncertainty in a random variable. Employing a
measure of uncertainty is logical, as it is the role of the radar to reduce uncertainty
about the environment. A radar network can be scheduled to update a target track or
perform search based on the task with maximum entropy [25,26]. For search, a
detection cell can be treated as a binary random variable, and hence the entropy is a
function of the probability of target presence in the cell. For tracking, the prior
entropy in the target state for the next time step k þ 1 but conditioned on all
measurements received up to the current time k is [27, Chap. 2]:

Hðxkþ1jZkÞ ¼
ð1

�1
pðxkþ1jZkÞlog pðxkþ1jZkÞdxkþ1: (15.17)

The posterior entropy at the current time can be written similarly by substituting
xkþ1 with xk .
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Instead of scheduling based on entropy, the mutual information between two
variables can be taken as a scheduling objective function. Mutual information can
quantify the reduction in uncertainty in a random variable as a result of another
random variable. For example, it can quantify the reduction in uncertainty in the
target state xk due to a new measurement zl

k . The mutual information can also be
calculated predictively over a time horizon, based on expected future measure-
ments. The mutual information between an expected measurement and the track
state at the next time step is:

Iðxkþ1; z
l
kþ1jZkÞ ¼ Hðxkþ1jZkÞ � Hðxkþ1jZk ; zl

kþ1Þ (15.18)

which implies that the mutual information is the reduction in entropy in the target
state due to the expected measurement. Let zak

k denote the set of expected mea-
surements generated from the active nodes that results from action vector ak . Then,
the mutual information between the set of expected measurements and the target
state is similarly:

Iðxkþ1; z
akþ1
kþ1 jZkÞ ¼ Hðxkþ1jZkÞ � Hðxkþ1jzakþ1

kþ1 ; Z
kÞ (15.19)

which is again the reduction in the entropy in the target state due to the set of
expected measurements. It has been shown that entropy, mutual information
and Kullback–Leibler divergence result in equivalent criteria for sensor man-
agement [28].

For multiple step ahead scheduling, it is necessary to find the mutual
information between the set of states and the set of expected measurements over the
time horizon. Let xkþ1:kþm denote the set of states from time k þ 1 to time k þ m
and let zakþ1:kþm

kþ1:kþm denote the set of expected measurements resulting from action
sequence akþ1:kþm. Then, the mutual information between all states and all
measurements in the time horizon can be broken down into the summation of the
mutual information between each state and the measurements by applying the
mutual information chain rule:

Iðxkþ1:kþm; zakþ1:kþm
kþ1:kþmjZkÞ ¼

X

kþm

i¼kþ1

Iðxi; zakþ1:i
kþ1:ijZk ; xkþ1:i�1Þ (15.20)

which from the definition of mutual information gives:

Iðxkþ1:kþm; z
akþ1:kþm
kþ1:kþmjZkÞ ¼

X

kþm

i¼kþ1

HðxijZk ; xkþ1:i�1Þ � HðxijZk ; zakþ1:i
kþ1:i; xkþ1:i�1Þ

� �

(15.21)

which is the difference in entropy between the state without the set of expected
measurements and the state with the expected measurements, summed over all
states in the time horizon.

In the following, it is assumed that a central extended Kalman filter is used,
and consequently the state estimate is represented by a Gaussian. Therefore, the
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prior is pðxkþ1jZkÞ ¼ Nðxkþ1; xkþ1jk ;Pkþ1jkÞ where xkþ1jk and Pkþ1jk denote the
state and the covariance at time step k þ 1 given the measurements up to
time step k. The prior entropy at the next time step but before the expected
measurement is:

Hðxkþ1jZkÞ ¼ 1
2

ln 2peÞNd � jPkþ1jk j
� ��

(15.22)

where ln is the natural logarithm, e is its base and Nd is the number of dimensions
in xkþ1. It is intuitively obvious that the lower the covariance in the state estimate
the lower the uncertainty and hence the lower the entropy.

The mutual information between an expected radar measurement and the track
state (Equation (15.18)) is:

Iðxkþ1; zl
kþ1jZkÞ ¼ 1

2
ln jI þ Pkþ1jk � Jl

z;kþ1j
� �

: (15.23)

The mutual information between an expected measurement set and the track state
(Equation (15.19)) has a similar form:

Iðxkþ1; zakþ1
kþ1 jZkÞ ¼ 1

2
ln jI þ Pkþ1jk � Jz;kþ1j
� �

: (15.24)

To calculate the mutual information for multiple steps ahead, it is again the case
that the state estimate is represented by a Gaussian pdf and so
pðxijZk ; zkþ1:i

kþ1:i; xkþ1:i�1Þ ¼ Nðxi; xijk;i;Pijk;iÞ where Pijk;i denotes the covariance at
time i given the actual measurements up to time k as well as the expected mea-
surements up to time i. Similarly, the state without the set of expected measurement
has a pdf pðxijZk ; xkþ1:i�1Þ ¼ Nðxi; xijk ;PijkÞ where Pijk denotes the covariance at
time i given only the actual measurements up to time step k. Then, the mutual
information between all measurements and track states over the time horizon is:

Iðxkþ1:kþm; z
akþ1:kþm

kþ1:kþmjZkÞ ¼
X

kþm

i¼kþ1

1
2

ln
jPijk j
jPijk;ij

 �

: (15.25)

As the covariance matrix Pijk;i can be written in the recursive information filter
form:

P�1
ijk;i ¼ ½Qi�1 þ Fi�1Pi�1jk;i�1FT

i�1��1 þ Jz;i (15.26)

it is clear that calculating the mutual information and the PCRLB involve exactly
the same recursion. Consequently, for the radar network scheduling scenario con-
sidered here, the PCRLB and the mutual information are similar optimization cri-
teria. The PCRLB evaluates the covariance in the target state estimate, and the
mutual information evaluates the change in entropy due to the measurements,
which can be completely described by the filter predicted covariances with and
without the expected measurements.
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Based on the mutual information over multiple steps, the following optimiza-
tion problem can be formulated:

maximize:
akþ1:kþm

X

kþm

i¼kþ1

1
2

ln
jPijk j
jPijk;ij

 �

subject to:
X

L

l¼1

al
kþj � n 8 j ¼ 1; 2; . . .;m

where n is the maximum number of radar nodes that can generate a measurement
on a target at a single step.

The mutual information is the change in entropy due to the measurements.
Therefore, as an optimization criterion, it gives preference to accurate measure-
ments of uncertain targets. Alternative information theoretic measures include the
family of Renyi divergence (also known as alpha-divergence) measures, to which
the Kullback–Leibler divergence belongs [23].

The PCRLB and information theoretic measures are bottom-up optimization
criteria, as the radar network scheduling is optimized based on task-level perfor-
mance without respect to the network’s goal or objective, which can have dis-
advantages. For example, if the radar network is scheduled based on the mutual
information, the generated information may not be operationally significant.

15.3.3.3 Covariance control
Covariance control [29–31] differentiates itself from the bottom-up optimization
criteria as it enables the specification of a desirable goal as a covariance matrix that
can be based on higher level objectives. This goal takes the form of a desired track
covariance matrix P̂.

Based on the desired covariance matrix, a variety of optimization criteria can
be constructed [30] for one step ahead scheduling. These criteria are based on the
difference between the desired covariance matrix P̂ and the expected posterior
covariance matrix Pkþ1jkþ1 that would be achieved when radar nodes are
activated from the action akþ1. If the difference P̂�Pkþ1jkþ1 is positive and semi-
definite, then the expected covariance is enclosed within the desired covariance,
and hence the covariance requirement has been met. Therefore, a constraint can be
applied:

P̂�Pkþ1jkþ1 > 0 (15.27)

while the objective is to minimize the number of radar nodes that are active at each
time step.

Another approach is the matrix norm algorithm where the objective is to select
a sensor combination ak that minimizes the norm of the difference k P̂�Pkþ1jkþ1k2.
In this approach, the eigenvalues of the covariance difference can either be positive
or negative. Positive eigenvalues imply that excess resource is allocated to the
target, while negative eigenvalues imply that too little resource is allocated. By not
taking into account the sign of the eigenvalues, the matrix norm algorithm does not
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guarantee that the produced covariance will be within the desired covariance. The
matrix norm approach can be relaxed by applying the constraint that the norm may
vary within a boundary d:

k P̂�Pkþ1jkþ1k2 < d (15.28)

while selecting the fewest radar nodes to be active.
The norm matrix algorithm uses a single-step-ahead objective function to select

the optimum sensor subset. It can be extended to multiple step ahead optimization by
summing the norm over multiple steps to give the optimization problem:

minimize:
am

X

kþm

i¼kþ1

k P̂�Pijk;ik2

X

L

l¼1

al
kþj � n 8 j ¼ 1; 2; . . . ;m

The elements of the desired covariance matrix have different units, which can make
the interpretation of the metrics difficult. For example, for a nearly constant velo-
city target dynamic, the covariance matrices have components with units m2 and
m2/s 2, requiring a transformation which results in a common unit for each com-
ponent of the matrix. In [29–31], the following transformation on P̂�Pijk;i was
suggested:

TðP̂�Pijk;iÞT (15.29)

where T is a diagonal matrix based on P̂, as an example of a two-dimensional
second order state vector this would be:

T ¼ diag
1
sx

;
1
s _x

;
1
sy

;
1
s _y

� 
 �

(15.30)

where sx, sx0 , sy and sy0 are the square roots of the diagonal elements of P̂.
Specifying goals, as with covariance control, have the benefit that resources

are expended to achieve a mission-specific performance, instead of optimizing
task-level criteria which may not be significant to the radar network objectives.

15.3.3.4 Energy and communication costs
The performance that can be achieved, determined by the selected criterion, has an
associated resource cost. This resource cost can be taken as the usage of the radar at
the time stage, as well as the communication cost required to transmit the radar
measurement to a fusion centre. Generally, it is desired to achieve best or
acceptable performance, while minimizing the resource cost. For example, when
tracking is performed in the radar network, it is desirable to minimize the number
of radar measurements on a target so that more resource is available for the radar
network to maintain other tasks, such as searching. Minimizing the number of radar
measurements while maintaining a desired performance is equivalent to the
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covariance control method. In addition to minimizing the number of measurements
or the number of active radars, the communication cost in the network can be
optimized [21,32]. It is desirable to reduce the communication overhead required in
the network, or alternatively, the radar network can be scheduled considering a
constrained communication channel.

15.3.4 Simulations
In this section, simulation results for a radar network are presented, which highlight
the difference between the scheduling time horizon length and the optimization
criteria described in the previous section. In the simulated scenario, a target
described by the two-dimensional state vector of position and velocity components
xk ¼ ½x; x0; y; y0�T moves with a nearly constant velocity and is tracked by a network
of six radars. The target initial state is 85;000; 200; 85;000; 200½ �T m, and it travels
for 80 s. Measurements are obtained with a sampling interval of T ¼ 1 s.

As the state is Cartesian, the transition function is described by the linear
transition matrix:

Fk ¼
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

2

6

6

4

3

7

7

5

; (15.31)

and the process noise covariance is:

Qk ¼ s2
q

T3

3
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2
0 0
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2
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; (15.32)

where the target’s random acceleration has standard deviation sq ¼ 5 m/s 2.
Figure 15.1 shows the complete target trajectory and the radar locations, which

are 40; 20½ �km, 90; 0½ �km, 140; 20½ �km, 40; 180½ �km, 90; 200½ �km, 140; 180½ �km. Each
radar can observe the range and bearing of the target. Therefore, the measurement
function is:

hl
kðxkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxl � xÞ2 þ ð yl � yÞ2
q

; atan2
yl � y

xl � x


 �� T

(15.33)

where xl and yl are the x and y positions of radar node l, respectively. The mea-
surement error covariance is:

R ¼ diag s2
r ; s

2
q

� �

(15.34)

Sensor management for radar networks 469



The standard deviations of the measurements are given by:

sr ¼ Dr

kn

ffiffiffiffiffiffiffiffiffiffiffiffi

2SNR
p

sq ¼ 2qB

km

ffiffiffiffiffiffiffiffiffiffiffiffi

2SNR
p (15.35)

where Dr and qB are the range resolution and the antenna half beamwidth, respec-
tively, km � ffiffiffi

2
p

[33] and kn � 1:81 [15, Chap. 2]. The SNR can be defined as:

SNR ¼ r0

rt


 �4 r
rn


 �

tc

tn
c


 �

(15.36)

where r0, rn and tn
c are nominal values of the range, radar cross section and dwell

length at which the signal-to-noise ratio is unity; tc, rt and r are the coherent dwell
length, the target range and target cross section, respectively. The parameters
r0 ¼ 140 km, rn ¼ 1 m2 tn

c ¼ 60 ms, tc ¼ 5 ms and r ¼ 20 m2 are unchanged
throughout the simulations.

15.3.4.1 Single radar selection
In the first scenario, a limit is imposed such that at most one radar can generate a
measurement at each time step. As the PCRLB and information theoretic criteria
aim to minimize the PCRLB or maximize information production, respectively, a
radar will always be active at each time step. In contrast, the covariance control
approach selects either one or no radars at each step, depending on the desired
covariance P̂, which is taken as P̂ ¼ diag 502; 152; 502; 152

� �Þ�
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Figure 15.1 Radar network measurement scheduling scenario
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Single-step-ahead scheduling
In the first simulation, the radar network is scheduled with a time horizon of one
sampling step. The root mean squared error (RMSE) after 200 Monte Carlo runs is
shown in Figure 15.2(a). It can be seen that the PCRLB and mutual information
have an equivalent performance. The covariance control approach maintains a
greater error in the target state estimate; however, this error is close to the specified
desired error. As the optimization criterion attempts to minimize the difference
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Figure 15.2 Root mean squared error (RMSE) and number of active radar nodes
for varying optimization criteria when performing one step ahead
scheduling with a maximum of one active node per time step,
averaged over 200 Monte Carlo runs
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between the actual error and the specified desired error, the actual error may be
above or below the specified desired error. It can be seen in Figure 15.2(b) that as a
consequence of a greater RMSE, the covariance control approach does not schedule
all nodes to be active at each time step. Hence, the covariance control approach
uses only the required resource in order to achieve the desired RMSE that is spe-
cified by the desired covariance P̂.

The PCRLB aims to minimize the covariance in the target state estimate, and
mutual information aims to schedule measurements to give the maximum reduction
in uncertainty in the target state estimate. As a Gaussian representation was
assumed, whose uncertainty is completely described by its covariance, it is clear
that these criteria are equivalent for this case.

Multiple steps ahead scheduling
In the second set of simulations, the radar network is scheduled based on a multiple
step future time horizon. Figure 15.3 shows the RMSE for varying step ahead
scheduling for the optimization criteria. It can be seen that for all optimization
criteria, the RMSE is unaffected by the number of step ahead scheduling that is
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Figure 15.3 Root mean squared error (RMSE) for varying optimization criteria
when performing multiple step ahead scheduling with a maximum of
one active node per time step, averaged over 200 Monte Carlo runs
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applied. This suggests that considering a future sequence of radar node activations
gives no benefit in terms of the RMSE in comparison to the greedy strategy of
selecting the best node for the next time step. This result echoes the recent surprising
result that greedy strategies perform well for optimizing the estimation error [35].

Figure 15.4 shows the average number of active radars at each time step for the
covariance control approach when scheduling with multiple time steps ahead. In
the figure, the number of active radars has been averaged over 20 s intervals. The
PCRLB and mutual information criteria have not been plotted, as they always
select one sensor at each time step. It can be seen that multiple step ahead sche-
duling can reduce the number of active radars and hence the resource usage.

For this example, scheduling the network multiple steps in the future does not
necessarily improve the RMSE; however, it does enable a reduction in the number
of active radar nodes when covariance control is applied. Multiple step ahead
scheduling would also be beneficial in complex scenarios, such as occlusions to the
radar line of sight [36] or when there are many more targets than radar nodes.

15.3.4.2 Multiple radar selection
In the next set of simulations, the maximum number of active nodes at each time
step was increased from one to four. The RMSE for one step ahead scheduling
using the varying optimization criteria is illustrated in Figure 15.5(a). Similar to the
previous results, it can be seen that the PCRLB and information theoretic criteria
maintain an identical low RMSE. The covariance control maintains a greater
RMSE, however, this is close to the specified desired error.

The number of active radars per time step is plotted in Figure 15.5(b). It can be
seen that the PCRLB and the mutual information criteria always schedule four
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Figure 15.4 Average number of active radars per time step for multiple step
ahead scheduling with covariance control criterion. The number of
active radars is averaged over 20 s intervals
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active nodes, as this minimizes the PCRLB and maximizes the mutual information
production, respectively. The covariance control approach aims to meet the speci-
fied covariance with the minimum number of active nodes and, therefore, sig-
nificantly fewer radar nodes are active at each time step.

15.3.4.3 Discussion
Scheduling based on the PCRLB or mutual information has the disadvantage that it
does not consider operational requirements. It is quite unlikely that the minimum
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Figure 15.5 Root mean squared error and number of active radar nodes for
varying optimization criteria when performing one step ahead
scheduling to select a subset of radar nodes, averaged over 200
Monte Carlo runs
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estimation error covariance or maximum information production is the ultimate
objective of the radar system. It is more likely that estimation error bounds could be
specified or a certain amount of information is required only on specific targets.
The benefit of the covariance control approach is that it provides a mechanism to
enable scheduling based on a track quality requirement. Despite this, for surveil-
lance applications the track estimation error may be of less importance in com-
parison to track continuity or purity. In which case, alternative optimization criteria
are required.

In these simulations, it was assumed that a perfect communication channel
exists between the fusion centre and the radar nodes, which is not a realistic
assumption. Measurement scheduling for the radar network would require a very
reliable low latency communication. However, the result that multiple step ahead
scheduling does not strongly influence the RMSE indicates that the sequence of
measurements executed by the network is less important than the selection of the
nodes to make the measurements. Therefore, a less communication intensive con-
figuration can be to apply radar network management at the object level, while each
radar node performs independent scheduling of measurements. This configuration
is the topic of the next section.

15.4 Networked quality of service management

The radar network scheduling methods in the previous section optimize the
scheduling of measurements from the available radars in the network. Alter-
natively, the radar network resources can be managed, while the scheduling of
measurements is performed independently at each node. A quality of service
(QoS) framework [37,38] can be used for the management of the multiple radar
resources in the network [39,40]. This can combine both the assignment of tasks
to radars as well as task control parameter optimization. In this section, it is
assumed that the network comprises monostatic radars performing measurement-
to-track fusion.

15.4.1 Management algorithms and network configurations
In this section, four different radar network configurations and management algo-
rithms are considered. These algorithms differ in terms of whether QoS manage-
ment or rule-based management is applied, whether the management is performed
locally for each node or centrally for the whole network, and whether the fusion
centre feeds fused track information back to each of the radar nodes. The radar
network configurations are illustrated in Figure 15.6 and described in detail in the
following sections.

15.4.1.1 Local rule-based management (RBM) without feedback
The local rule-based management without feedback approach (Figure 15.6(a))
selects task control parameters locally at each node based on rules that use only the
local information available at the node. The rules can exploit varying degrees of
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track information. As an example, the following rules can be applied for selecting
tracking task control parameters:

● The dwell length for a target track update is varied to achieve a specified
expected received SNR based on an estimate of the target radar cross section.
Consequently, shorter dwells are used for closer targets and longer dwells for
farther targets.

● The revisit interval between target track updates is fixed (e.g. 2 s).
● The finite radar time budget is allocated to targets in order of priority. For

equal priority targets, the time budget can be allocated to targets that use the
least temporal loading first.
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Figure 15.6 Considered network configurations and management algorithms
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These rules are applied in the following simulations.
Each radar node performs independent tracking and management; however,

the radar nodes also transmit the measurements that are generated to a fusion centre
where measurement-to-track fusion is performed. Only simplex communication is
required, and failure in the communication links would not affect the radar nodes
but would degrade the quality of the tracks at the fusion centre.

15.4.1.2 Local QoS management (LQoS) without feedback
The local QoS management without feedback configuration is illustrated in
Figure 15.6(b). This approach is identical to the rule-based approach; however,
QoS management is applied locally at each radar node instead of applying rules.
The reader is referred to Chapter 5 for a detailed treatment of QoS management for
a single radar. Applying local QoS management to all nodes in a network results in
a set of locally optimized resource allocations based only on local information.

As with the rule-based approach, each radar node performs independent
tracking and management but also transmits measurements to a central fusion
centre where measurement-to-track fusion is performed. Only simplex commu-
nication is required, and failure in the communication links would not affect the
radar nodes but would degrade the quality of the tracks at the fusion centre.

15.4.1.3 Local QoS management with feedback (LQoS-F)
The local QoS management with feedback configuration is illustrated in
Figure 15.6(c). This approach also applies local QoS management; however, the
management is based on the fused track information that is fed back from the fusion
centre to the radar nodes. Therefore, the local management of the radar node can be
based on all the information in the network. This approach leads to a set of locally
optimized resource allocations based on the global network information.

This approach requires more communication as it is necessary for the fusion
centre to distribute the global track information back to the radar nodes. If a
communication link failure would occur between the fusion centre and a node, then
the node can fall back to using only local track information. In addition, more
communication (duplex) is required when compared to the management without
feedback.

15.4.1.4 Centralized QoS management (CQoS) and fusion
In the centralized QoS management and fusion approach, the fusion centre receives
measurements from all radar nodes and performs measurement-to-track fusion like
for the previous methods. However, in this case, QoS management is applied
centrally at the fusion centre for the entire network, based on the complete fused
information. This network QoS management approach is described in detail in
Section 15.4.2. The selected task control parameters for a radar node are coordi-
nated with the control parameters selected at all the other nodes in the network.
This approach leads to a set of globally optimized resource allocations based on the
global network information. However, as the fusion centre controls the radar nodes,
this approach is susceptible to communication link failures.
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15.4.2 Multi-resource QoS problem
This subsection describes the centralized QoS management problem, which extends
the single radar QoS problem formulation given in Chapter 5.

For the radar network case, there exists a set of K independent radar tasks
T ¼ T1; . . .; TKf g, which must share the radar resources available at the L radar
nodes r ¼ r1; . . .; rLf g. Let ukl denote the control parameter selection for task k at
radar l and let uk ¼ ukljl ¼ 1; . . .; Lf g be the set of parameter selections for task Tk

for all radar nodes. Then, it is desired to select the set of complete control para-
meters u ¼ uk jk ¼ 1; . . . ; Lf g for all tasks and all radar nodes. The parameter
selection ukl is itself a set of parameters with a number of dimensions which
depends on the task, i.e. ukl ¼ u1

kl; u2
kl; . . .; u

Mkl
kl

� �

where Mkl is the number of con-
trol parameter dimensions for task Tk at radar l. The uncontrollable environmental
parameters for task k are denoted ek , which impact on the resource loading and
quality achieved by the radar network.

The calculation of the resource loading is denoted by a resource function that
maps the operational and environmental parameters into resource space:

rkl ¼ gklðukl; ekÞ (15.37)

The resource available at each radar node is constrained and so the resource
function:

glðuÞ ¼
X

K

k¼1

gklðukl; ekÞ
 !

� rl (15.38)

must satisfy the set of resource constraints:

glðuÞ � 0 8 l 2 1; . . .; Lf g (15.39)

The control parameters selected at each radar node affect the performance that a
radar task can achieve over a time horizon in the future, which is calculated through
a quality function:

qk ¼ qkðuk ; ekÞ (15.40)

Note that the quality achieved for the task depends on the control parameters for the
task selected by all radar nodes.

The mission-specific requirement for task k is represented by a utility function,
which describes the satisfaction associated with a task quality, and a task weight-
ing, which describes the mission relevance of the task. The utility function is
denoted as:

uk ¼ ukðqkðuk ; ekÞÞ (15.41)

The task weight of task k is denoted wk and:

X

K

k¼1

wk ¼ 1 (15.42)
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The mission effectiveness can then be found as a weighted sum of task utilities:

uðuÞ ¼
X

K

k¼1

wk � ukðqkðuk ; ekÞÞ (15.43)

This mission effectiveness represents the ability of the radar system to meet the
mission-specific task quality requirements.

The effective radar network resource management problem can be formulated
as a constrained optimization problem:

maximize:
u

uðuÞ ¼
X

K

k¼1

wk � ukðqkðuk ; ekÞÞ

subject to: glðuÞ � 0 8 l 2 1; . . . ; Lf g

where: glðuÞ ¼
X

K

k¼1

gklðukl; ekÞ
 !

� rl

15.4.2.1 Optimality conditions
As shown in [39], the optimality conditions for the radar network QoS management
problem can be derived in a similar way to the single radar case described in
Chapter 5. The solution must be primal and dual feasible and either use all available
resource or alternatively have no possible utility increase for further resource
allocation. In addition, the stationarity condition must be satisfied, which can be
re-arranged to give [39]:

ml ¼
@mwk � ukðqkð u�k1; . . .; u�kl; . . .; u�kL

� �

; ekÞÞ
@mgklðu�kl; ekÞ 8k 2 1; 2; . . .;Kf g

8 l 2 1; 2; . . .; Lf g
8m 2 1; 2; . . .;Mlkf g

(15.44)

where @m denotes the partial derivative with respect to um�
kl , as ukl is itself a vector

ukl ¼ u1
kl; u2

kl; . . .; u
Mkl
kl

� �

. The stationarity condition implies that the gradients in
resource utility space for all tasks at a specific radar node must be equal. However,
the gradients can be different for each of the numerous radar nodes.

15.4.2.2 MSQRAM algorithm
The original Q-RAM algorithm can be extended to solve the network radar
resource management problem formulation. To solve the problem, as described in
the previous section, the marginal utilities and hence Karush–Kuhn–Tucker (KKT)
multiplier for all tasks at a radar node must be equal. However, the marginal uti-
lities and hence KKT multiplier need not be equal for all radar nodes. Conse-
quently, the algorithm allocates resource while maintaining the gradients as close to
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equal as possible at each radar node, while ensuring that all nodes run out of
available resource at the same time. This is done by allocating resource to the radar
with the most available resource and then to the task at that radar with the largest
marginal utility. By switching between radars in this manner, the algorithm ensures
all radars run out of resources at the same time, and the marginal utilities decrease
at each radar similarly to the original Q-RAM method.

The proposed algorithm for solving the multiple resources QoS problem
applies the following procedure:

1. The resource and utility values for every possible parameter selections are
evaluated for every task for all radar nodes.

2. The concave majorant [41] for each task is extracted from the complete set of
all possible parameter selections.

3. Each task is initialized with the feasible parameter selection that uses the least
amount of resource.

4. The radar node with the greatest resource availability is selected.
5. Resource is allocated to the task whose next parameter selection on the con-

cave majorant has the largest utility per resource increase, for the radar
selected in step 4.

6. Step 4 is repeated until it is no longer possible to allocate anymore resource.

Both methods require the concave majorant to be evaluated. The convex hull
operation becomes particularly computationally intensive as the number of radar
nodes increases.

15.4.3 Performance model
As described in the previous section, a resource function (Equation (15.37)) and
quality function (Equation (15.40)) are sought. As the problem considered here is
target tracking, the standard deviation of the estimation error is taken as the quality
measure. This section describes a method for numeric evaluation based on covar-
iance analysis.

The covariance analysis procedure predictively evaluates the track estimation
error standard deviation over a time horizon starting from the current time. This is
based upon a possible operational parameter selection set for each radar, which is
taken here as the coherent dwell time and the revisit interval time between mea-
surement updates. An estimate of the target kinematic parameters and radar cross
section at the current time is available, along with the associated estimation error
covariance matrix. These estimates are used to give the environmental parameters,
which are the target range, angle and radar cross section.

The covariance analysis procedure calculates the measurement times for each
radar during the time horizon, based on the revisit interval times. At each mea-
surement time, an expected measurement update is performed and between mea-
surement times the track is predicted. This process gives a prediction of the
estimation covariance matrix over the time horizon, which is used to calculate the
quality.
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This covariance analysis procedure is illustrated in Figure 15.7 for two radars
with operational parameters n11 ¼ 5 ms; 2 sf g and n21 ¼ 5 ms; 3 sf g. It can be seen
that the radars generate measurements at different times. It can also be seen that the
measurement quality of radar 2 is better than that of radar 1, resulting in a larger
drop in the estimation error. The greatest drop in the estimation error occurs at time
t ¼ 6 s, when both radars perform a measurement.

15.4.4 Simulations
In this section, all four resource management and network configuration approa-
ches are analysed for a radar network comprising of two radar nodes. Each radar
has a field of view of �60; 60½ �	 in bearing. The radars can achieve a unity signal-
to-noise ratio at a range r0 ¼ 300 km with a nominal dwell length of 60 ms for a
target on the antenna boresight with radar cross section of rn ¼ 1 m2. A radar range
resolution of r ¼ 200 m, beamwidth qB0¼ 1:5	 and false alarm probability
PFA¼ 10�5 are chosen. These parameters are considered for the generation of radar
measurements as well as for calculating the quality and utility values for the
resource allocation.

A scenario of 20 targets (Figure 15.8) distributed uniformly over the radars’
field of view is considered. All the targets have identical radar cross sections of
r ¼ 20m2 and move with a nearly constant velocity with initial velocity selected
randomly from the set 10; 20; . . .; 200½ � m=s2. The targets’ motion is disturbed by
random acceleration with standard deviation sq ¼ 5 m/s2.
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Figure 15.7 Covariance analysis procedure for two radars with operational
parameters n11 ¼ 5 ms; 2 sf g and n21 ¼ 5 ms; 3 sf g. Rad. 1
represents the time when an update for radar one is performed,
and Rad. 2 represents the time when an update for radar two is
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For management approaches that apply QoS management, a dwell from
1; 2; . . .; 10½ � ms and a revisit interval from 1; 2; . . .; 8½ � s can be selected by each

radar node for each task. The rule-based method assumes fixed SNR of 22 dB and a
fixed revisit interval of 1 s. Twenty Monte Carlo runs for each of the four man-
agement methods are performed.

Network tracking performance
Figure 15.9(a) and (b) shows the number of active tracks and the average trace of
the covariance matrices over the number of active tracks. It can be seen that CQoS
maintains the greatest number of tracks and also achieves the lowest error in the
active tracks. This is to be expected as it performs joint optimization of all the radar
node control parameters based on the complete network information. It can also be
seen that LQoS-F maintains the same number of active tracks as CQoS but with a
slightly greater average error. As the performance of LQoS-F comes close to cen-
tralized management, it can be applied as a compromise between achieving good
estimation error and relaxing the constraint on the required communication. LQoS
is noticeably worse, and RBM is worst overall.

Network resource allocation
The total amount of network resource allocated to each active track is illustrated
proportionally to the size of a circle in Figure 15.10(a)–(d). The network
resource is the summation of the resources allocated to a target by all radar
nodes. The redundancy in the resource allocation for RBM and LQoS is clear, as
a lot of resource is allocated to targets that are close in range. In comparison,
LQoS-F, which is based on the global information, allocates less resource to
nearer targets and more to farther targets. This behaviour is even more noticeable
for CQoS.
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Task quality
The average RMSE in the active tracks is illustrated in Figure 15.11(a)–(d) by the
size of the circles. It can be seen that for the local rule-based approach, a good
quality is achieved for near targets but far targets or targets at the edge of the field
of view are not maintained or have a poor quality. This is due to the redundant
allocation of resources to near targets. The local QoS management approach
demonstrates a similar effect. LQoS-F, which performs local optimization based on
global information, allocates less resource to nearer targets and uses this resource to
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Figure 15.9 Comparison of number of active tracks and average RMSE for the
different resource management methods and network configurations
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improve the quality of far targets. CQoS achieves a good quality for all targets, as it
eliminates the resource allocation redundancy.

15.5 Summary

A network of radars has substantial scope for configuration and, therefore, sensor
management in the radar network can play a key role in ensuring best possible
performance for the encountered scenario. By performing joint measurement
management across the network, a subset of radars can be scheduled to generate
measurements of a target under track. In this chapter, it was shown that scheduling
based on the PCRLB or mutual information minimizes the track error but does so
without consideration of the mission requirements. In contrast, covariance control
methods schedule radar nodes such that a desired mission-specific track quality is
achieved. An alternative approach is to perform joint management at the object
level, in the form of QoS-based resource management, while each node performs
independent scheduling. This chapter demonstrated that centralized QoS
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Figure 15.10 Total network resource allocation to each target is illustrated by the
size of the circle for the different resource management methods and
network configurations
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management can eliminate redundancy in the radar network’s resource allocation,
resulting in an increase in the number of tracked targets and a reduction in the track
error. It was also shown that performing independent QoS management at each
node while fusing the data in the network is performant with lesser requirements on
communication and coordination.

Abbreviations

CQoS centralized quality of service

FIM Fisher information matrix

KKT Karush–Kuhn–Tucker

LQoS local quality of service

LQoS-F local quality of service with feedback

MSQRAM multiple resources quality of service resource allocation method
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Figure 15.11 Track quality, which is taken as the estimation error, is illustrated
by the size of the circle for the different resource management
methods and network configurations
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PCRLB posterior Cramer–Rao lower bound

QoS quality of service

Q-RAM quality of service resource allocation method

RBM rule-based method

RMSE root mean square error

SNR signal-to-noise ratio
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