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Preface 

The Kalman filter theory published in 1960 significantly boosted the devel- 
opment of sophisticated digital filter algorithms for tracking space vehicles. 
As a result, a large number of tracking filters have been developed and their 

algorithms published in journals. 
Tracking of objects based on Kalman filter theory has become an 

established technique of fundamental importance in both engineering 
applications and scientific investigations. The central problem is that radar 
and sonar systems, optical telescopes, and infrared sensors used in civil 
and defense applications require updated information obtained continu- 
ously on the parameters that describe the dynamics of such targets as 
satellites, missiles, aircraft, ships, submarines, RPVs, and other objects 
having a significant relative motion with respect to the sensor. 

Recent developments such as track-while-scan systems, phased array 
radar tracking, airborne radar tracking, multitarget tracking, multisensor 
tracking, and multitarget multisensor tracking have not only increased 
the scope of tracking technology but also added new dimensions to it. 

Specifically, the position of a target such as an aircraft or similar 
vehicle is measured at discrete intervals of time by an automatic 

track-while-scan radar sensor, and the measurements are reported to a radar 
data processor (RDP).The reports obtained from successive radar scans are 
processed by the RDP and suitable tracks are formed. 

A computer tracking filter is used to smooth the report data corrupted 
by range noise and angular noise caused by the electronic and mechanical 
components of the measuring device. 

The tracking filter is the most important component of an 
RDP/ surveillance system. I t  processes the target radar measurements, 

reduces the measurement errors, estimates the position, velocity, and/ or 

V 



vi Preface 

acceleration of the target at  any instant of time, and predicts the future 
position of the target. Hence the tracking filter is the heart and soul of 
a radar data processing system. 

This book deals with the development of different types of tracking 

filters based on the Kalman filtering techniques for radar tracking 
applications. 

Chapter 1 presents the discrete-time formulation of Kalman filter, the 
continuous-time and continuous-discrete-time formulations of Kalman-

Bucy filters, and the extended Kalman filter. 
Chapter 2 deals with the application of Kalman filter theory for 

developing one-dimensional trackers for tracking targets such as a n  aircraft 
moving with constant velocity or constant acceleration motion when pos- 
ition measurements are obtained by a track-while-scan radar sensor through 

random noise. Three models are discussed and their steady state results 
obtained analytically. 

Chapter 3 deals with the extension of one-dimensional models to two 

dimensions for tracking an aircraft or any other space vehicle by a 
two-dimensional track-while-scan radar that measures the range and bear- 

ing of the target. The tracking operation is assumed to be done in the 
cartesian coordinate system, and the coupling between the quantities 
measured by the radar and the cartesian coordinate system is explicitly con-
sidered in the development of two-dimensional models. 

Chapter 4 deals with the extension of one-dimensional models to three 
dimensions for tracking an aircraft or any other target with range, bearing, 
and elevation measurements obtained by a three-dimensional 

track-while-scan radar sensor. The tracking operation is assumed to be 
performed in cartesian coordinates and the coupling is explicitly considered. 

Chapter 5 deals with the continuous-time Kalman tracking filters with 
position measurements. Fitzgerald’s steady state solutions of ECV and ECA 
models are discussed. The general solution of the second-order ECV model 

of Nash is given. The random walk velocity model and the random walk 
acceleration model are also presented. 

Chapter 6 deals with the continuous-discrete-time Kalman tracking 

filters with position measurements. Singer’s ECA model and Fitzgerald’s 
steady state performance analysis are discussed. Vaughan’s nonrecursive 
algorithm is briefly described. The steady state results of ECV and ECA 
filters based on Vaughan’s nonrecursive algorithm are presented. Finally, 
Beuzit’s steady state results of the ECA filter obtained by a comparison 
of Kalman and Wiener filter theories are presented. 
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Chapter 7 deals with con tin uous-discrete-time one-dimensional 
models with position and velocity measurements. A two-state model, an 

ECV target tracking filter, Fitzgerald’s steady state analysis of the ECA 
model, and a three-state filter are discussed and their steady state solutions 
are presented. 

Chapter 8 deals with continuous-time one-dimensional tracking filters 

with position and velocity measurements. A two-state model and a 
three-state model are discussed. 

Chapter 9 deals with maneuvering target tracking filters. 
Bar-Shalom-Birmiwal’s model is discussed and Blom-Bar-Shalom’s 
interacting multiple model is presented. 

Chapter 10 deals with tracking a maneuvering target in clutter. 
Validation region or gate, the probabilistic data association filter, and Bar- 
Shalom-Chang-Blom’s model for automatic track formation are discussed. 

Chapter 11 deals with an introduction to multitarget tracking. The 
JPDAF and Reid’s algorithm are mentioned. 

This book provides enough information in the selection of trackers to 
meet the requirements of practicing engineers. It also provides sufficient 
material for advanced students to take up further work in the field. 

K.  V .  Ramachandra 
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1.5 Summary 
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1.1 INTRODUCTION 

The Kalman filter has made a dramatic impact on linear estimation because 
of its adaptability for implementation on a digital computer for on-line esti- 
mation and usefulness of the state-space approach. Today the Kalman filter 
is an established technique widely applied in the fields of navigation, 
guidance, attitude control, satellite orbit determination, aircraft and 
missiles tracking, radar, sonar and biomedical signal processing, reentry 
of space vehicles, etc. [ 1-1 11. Many new applications of this powerful tech- 
nique are being reported in various fields of engineering and technology. 

The general-discrete time formulation of the Kalman filter [l], the 
continuous-time Kalman-Bucy filter [2], and the continuous-discrete-time 

Kalman-Bucy filter [2, 61 are presented in this chapter. 

1 



2 Chapter 1 

1.2 DISCRETE-TIME KALMAN FILTER 

The statistical model of the signal process is assumed to be described by the 
discrete, linear, vector matrix equation of the form [l-111 

xk+I = F k X k  + Gk W, (1.1) 

where 
Xk = n-dimensional state vector at  the kth stage 
F k  = n x IZ transition matrix 
Gk = rz x t*  input distribution matrix 
Wk = r-dimensional random input vector 

Wk is assumed to be white gaussian with the following properties: 

E{W,} = 0 

E (6WT}= Q d j k  

where Q is the r x r covariance matrix of the process noise Wk and hjk  is the 

Dirac delta function. 
The statistical model of the measurement process is described by 

where Z k  is the in-dimensional measurement vector, Hk is the i n  x tz obser-

vation matrix, and Vk is the in-dimensional random disturbance vector that 
is corrupting the measurements. 

V ,  is assumed to be white gaussian with the following properties: 

E(  V,} = 0 

E{V J  V;} = R6,k 

where R is the rn x tn covariance matrix of the measurement noise V k .  

The random sequences W , and Vk are assumed to be independent of 
each other and also independent of the initial state Xo with the following 
properties: 

E { X " )= 0 

E{W/VX'}= 0 

E{& W;:} = 0 

E(X"Vk7') = 0 
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Now an estimate of the state vector Xk,  based upon the knowledge of 
the measurements in Z1,where 

21 4+ (21,2 2 ,  * * - 9 4, (1.6) 

is denoted as khll. Specifically, k > j denotes a predicted estimate, k < j 
denotes a smoothed estimate, and k = j denotes a filtered estimate. 

If the mean square error is chosen as the optimal criterion, then 
Kalman [ l ]  has shown that the minimizing estimate is given by 

xklj = E{Xh1211 (1-7) 

where E (X k  IZ/)denotes the conditional expectation of xk given the knowl- 

edge of 2,. 

A complete knowledge of the statistical model constitutes the knowl- 
edge of Fh, HA, Gh, Q, R and the structure defined in Eqs. (1.2), (1.4), 
and (1.5). I f  this is true, then the mean square error filtered estimate, 
X k ,  is given by the Kalman filter algorithm as 

kh = kh & ( z k  - Hhkk)  (1.8) 

where kk is the optimum estimate of the state vector before processing the 
measurement z k  and Kk is the Kalman gain matrix given by 

K~ = P k ~ [ ( ~ k & ~ ;+ R)-] (1.10) 

where &. is the covariance matrix of estimation errors before processing the 
measurement Zk and is computed recursively as 

+ G ~ Q G ;  (1.11)Pk+, = F ~ P ~ F , T  

P k  is the covariance matrix of estimation errors after processing the obser- 

vation and is given by 

F k = ( I  - KkHk)Pk (1.12) 

Equations ( 1.11) and ( 1.12) are referred to as the discrete Riccati equations. 
pk may also be expressed equivalently as 

bh-= ( I  + p k  HT R-’ Hk)-’ P k  (1.13) 

(1.14) 

The Kalman gain matrix Kk given by (1.10) may also be expressed in terms 
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of P k  as 

K~ = i;, H: R- (1.15) 

If the gaussian assumption is dropped, then the Kalman filter is the 
minimum mean square error linear filter. 

From Eqs. (1.8) to (1.12), it can be seen that the Kalman filter is a 
recursive estimator so that it processes the measurements as they are gen- 
erated in real time without any growing memory problem. Thus it is easy 
to implement on the digital computer for on-line estimation. 

As Fitzgerald puts it in  [1I], the advantages of the Kalman filter are as 
follows: 

1. The steady state restriction is removed so that optimum results are 
achieved even during start-up transients. 

2. Systems dynamics and noise characteristics may be nonstationary. 
3. Both continuous- and discrete-time formulations are possible. 
4. Measurements may be treated whenever they become available 

(not necessarily a t  a constant rate) and may consist of any function 
of the state variables. 

5 .  Large number of state variables may be handled in a 

straightforward way (although with increased computational 
cost). 

6. A by-product of the filter computations is the generation of a 
covariance matrix which provides a statistical measure of per- 
formance in the form of variances and covariances of the esti- 
mation errors. 

The fundamental work of Kalman in linear filtering theory has been 

followed by a large number of papers and reports on the subject discussing 
its applications in various fields of engineering and technology. 

The application of Kalman filter theory requires the definition of a 
linear mathematical model describing the system for which the application 

is intended. 

1.3 CONTINUOUS-TIME KALMAN-BUCY FILTER 

The dynamic model for the continuous-time case is described by a vector 
first-order differential equation of the form [2-41 

.;i= FX -I-Gu (1.16) 

where x is an rz-dimensional state vector and iis its time derivative. F is an 
n x n matrix, G is an tz x r matrix, and U is an r-dimensional white noise 
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vector with covariance 

E [ u ( ~ ) u ~ ( T ) ]= Q6(t - T )  

where iS(t - z) is a Dirac delta function. The output of the measurement 
system is given by 

z = H x  + v (1.17) 

z is an m-dimensional vector and v is an m-dimensional white noise vector 

with covariance given by 

E[v(r)vT(,)]= Rd(t- z) 

The problem is to find the best estimate in the mean square sense of x(t), 

i ( t l t ) ,given Z ( T )  for 0 5 z 5 t .  The optimal filter is a linear dynamical system 

of the form 

-i(tlt)= F i ( t ( t )+ K(?)[Z-H;(tl t)]  (1.18) 

whose initial state is SO, and where 

K ( t )= P(t)H*R-'  (1.19) 

P(t)  is the covariance matrix of the optimal error 

P( t )= E{[s( t )- "? ( t I t ) ] [X ( t )  - (1.20) 

This covariance matrix is given by a solution to the matrix Riccati equation 

P = FP + P F ~- P H ~ R - ~ H P+ G Q G ~  (1.21) 

1.4 CONTINUOUS-DISCRETE-TIME KALMAN-BUCY FILTER 

The linear dynamical system is described by the differential equation [2,3] as 

dx, = F(t)x,dt + G(t)dp, t 2 to (1.22) 

where x, is an 12-dimensional state vector, F and G are 11 x n and 11 x r con- 
tinuous-matrix-time functions, and f3, is an r-dimensional process noise 
vector with covariance 

E{d/l ,df3;') = Q(t )dt 

The discrete linear observations are taken at  time instants t k  and the 
measurement equation is described by 
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where z k  is an m-dimensional observation vector, H is an m x n observation 
matrix, and vk is an nz-dimensional vector white Gaussian sequence with 

zero mean and covariance R k .  

Integrating (1.22) over the interval [ t k ,  t k + l ] ,  we get 

(1.24) 

where F is a state transition matrix of (1.22). Equation (1.24) niay be written 

as 

Xk+l = F"q.+ IZ'k+l (1.25) 

where 

f h i l  

Wk+l = IfkW)4 4  

wk is a zero mean white gaussian sequence with covariance Q k .  Thus the 
continuous-discrete-time filter is expressed as a discrete filter and the 
properties of the continuous-discrete-time filter are the same as the discrete 

filter [31. 

1.5 SUMMARY 

The discrete-time formulation of the Kalman filter is presented in Section 
1.2. The continuous-time Kalman-Bucy filter is given in Section 1.3. The 
continuous-discrete Kalman filter is discussed in Section I .4. The details 
of derivation of these filters are omitted here and are available in Refs. 
1 to 6. 
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2.1 INTRODUCTION 

The advent of Kalman filter theory provided significant impetus to the 
development of sophisticated digital filter algorithms for tracking space 
vehicles making use of the noisy measurements obtained by a 
track-while-scan radar sensor. 

9 
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A number of Kalman filter-based algorithms are available for 
performing the aircraft-tracking operation either in the cartesian coordinate 
system or in the polar coordinate system or other coordinate systems. In 

each system of tracking operation, there are algorithms dealing with aircraft 
moving with constant velocity perturbed by a zero mean random acceler- 
ation or those moving with constant acceleration perturbed by a zero mean 
plant noise which accounts for maneuvers and/or  other random factors, 
etc. In each of these cases, algorithms may be further classified as dealing 
with one-, two- or three-dimensional models. 

Turns, evasive maneuvers, acceleration due to atmospheric 
turbulence, etc. are all regarded as perturbations upon the aircraft 

trajectory. 
The application of Kalman filtering techniques for the development of 

one-dimensional trackers for estimating position, velocity, and acceleration 
of a space vehicle is illustrated and three models are presented in this 
chapter. 

2.2 A TWO-STATE FILTER: FRIEDLAND’S MODEL* 

Consider an aircraft or similar space vehicle moving with constant velocity 
perturbed by a zero mean random acceleration. The position of the vehicle 
is assumed to be measured by a track-while-scan radar sensor at uniform 

sampling intervals of time T seconds and all measurements are noisy. 
The problem is to obtain the optimum estimates of position and velocity 
of the vehicle. 

This model, developed by Friedland [ I ] ,  assumes that each component 

of the vehicle position is independently measured by a radar sensor in the 
cartesian coordinate system with constant accuracy, and that the obser- 

vation errors have zero mean and are uncorrelated. 

2.2.1 Dynamic Model 

As the model assumes that each position coordinate is measured 

independently, each coordinate is uncoupled from the other two and hence 
can be treated separately. For each coordinate, the vehicle dynamics is 
assumed to be described by 

* 0 Kearfott Guidance and Navigation Corporation, Wayne, New Jersey. 
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where x,, = vehicle position at  scan 12 

in= vehicle velocity a t  scan n 
a,, = acceleration acting on the vehicle at  scan n 
T = interval between observations 

In the model given by (2.1 ), the acceleration is assumed to be a random 
constant between successive observations with zero mean and uncorrelated 
with its values a t  other intervals, i.e., 

(2.2) 

In the vector-matrix form, the vehicle dynamics (2.1) may be written as 

X+I = FX,+ GQ,, (2.3) 

with 

and 

X,, is the vehicle state vector consisting of position and velocity components, 
F is the transition matrix, and G is the input distribution matrix. 

2.2.2 Measurement Model 

The position of the vehicle is assumed to be measured by a radar at  uniform 

intervals of time T seconds and each observation is noisy. The measurement 
equation is given by 

. X , J I ? )  = X,?+ 1’1, (2.7) 

where 

~ , ~ ~ ( n )= measured position at scan n 
x,~= the true position at scan n 
v,, = random noise corrupting the measurement at scan n 
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The statistical properties of the noise are assumed to be 

E{v,,I = 0 (2.8) 
2 2E{v,} = o.y= constant for all IZ 

E{v,vk} = 0 for 11 # k 

In terms of the state vector Xi,,  (2.7) may be written as 

Jd4= H X ,  + v/, (2.9) 

with 

H = [ I  01 (2.10) 

2.2.3 Filtering Equations 

Now (2.3) and (2.9) are in the standard format for application of the 
Kalman filter theory. Hence from (1.8) and (1.9), the optimum estimate 
of the state vector is given by 

kiz + KiI[-xt,i(tz)-HX,,] (2.11) 

with 
I h 

XI2 = FXi,-I (2.12) 

where 

is the optimum estimate of the state vector after the measurement . x t I l ( ~ z ) is 
processed, and 

is the optimum estimate of the state vector before the measurement ~ , , ~ ( r z )is 
processed. 

The Kalman gain matrix K,, is given by 

K ,  = Pi,H7'(HP,,H"+ R)-l (2.13) 

where R = G:. is the variance of the measurement noise and Pn is the 
covariance matrix of estimation errors before processing the measurement 
x,,,(u) computed recursively using the variance equation (1.1 1) as 

(2.14) 
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where Q = is the variance of random acceleration and Fll is the 
covariance matrix of estimation errors after processing the measurement 

xpt l (~z) .From (1.12), ktlis given by 

(2.15) 

2.2.4 Steady State Analysis 

In  the steady state ( r z  + m), 

P,/+I= PI/ = p (say) (2.16) 

k/l+l= >n = k 

K/,+I = 4,= K 

Hence, in  the steady state, Eqs. (2.13) to (2.15) may be written as: 

K = P H ~ ( H P H ~+ R)-' (2.17) 

P = F F F ~+ G Q G ~  (2.1a)  

ij = ( r  - K H ) P  (2.19) 

Equations (2.18) and (2.19) may be combined into a single equation as 

P - G Q G ~= F ( Z- K H ) P F ~  (2.20) 

2.2.5 Steady State P Matrix 

If the covariance matrix p is defined as 

(2.21) 

then the normalized covariances may be expressed as: 

61 = P l l / O ? .  (2.22) 

r,,= ~ 1 2 / ( w ,T )  

v,, = &/(@2) 
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Now evaluating (2.20) gives rise to the following three nonlinear equations: 

4(1 + PII)(2rY12 +4Y22 + 1) = (rY11 +4Y12)’ (2.23) 

2( 1 + YId(2Y22 + 1) = Y12(1.PII + 4 h 2 )  (2.24) 

(1 + PI,) = q2 (2.25) 

where 

r = 4 a & J 2 )  (2.26) 

The ratio r is a dimensionless parameter. Friedland [ 13 has termed this 
as a sort of noise-to-signal ratio since o, is the sensor standard deviation (ft) 
and C J ( ~ T ~ / ~  is the position error due to a constant acceleration of o,, (ft/s2). 

The solution to  the three nonlinear equations (2.23) to (2.25) is given 
separately in Appendix 2A. After considerable algebraic manipulations, 
the steady state predicted covariances may be found as: 

(2.27) 

where 

2.2.6 Steady State Gain Vector 

In the steady state, the gain vector is a constant. Let K be defined as 

(2.28)
= [E:]  

Putting H and from (2.10) and (2.21) in (2.17) and simplifying using 
(2.25), we get 

K1 = Pll/P;2 (2.29) 

Using (2.27), (2.29) may be written as 

K I  = d(d - 1)’/r2 (2.30) 

K2 = 2 ( J  - 1)’/Tr2 
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If the normalized gains are defined as 

GI  = KI (2.31) 

G 2  = T K 2  

then using (2.30) in (2.31), we get 

GI = d(d - l)2/r2 (2.32) 

G 2  = 2(d - l)2/r2 

2.2.7 Steady State b Matrix 

If the filtered covariaiice matrix is defined as 

(2.33) 

then the normalized elements of the @ matrix may be written as: 

i.,l = FI1/cJ<. (2.34) 

i.12 = k 2 / ( c J . Y c J J )  

i r22  = P 2 2 / ( c J ; T 2 )  

(2.33) and (2.34) are the same as those defined in (2.21) and (2.22) except 
that the tildes are replaced by hats. Using (2.21) and (2.28) in (2.19), 
the k matrix may be written as 

(2.35) 

Using (2.29), (2.22), and (2.25) in (2.35), the normalized elements of the $ 
matrix may be derived as 

= r,, /Ff2 (2.36) 

P I 2  = 1 / &  
* 

Y*2 = Y22 - 1 

Using (2.27) in (2.36), we get, after simplification, 

PI I = n(n- I )2/r .2  (2.37) 

i.12 = (d- 1)?/2r. 

i r22 = (d - 1)/2 
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2.2.8 Numerical Results 

From (2.27), (2.32), and (2.37), it is seen that all the steady state normalized 

covariances and gains are functions of the dimensioiiless parameter I’. As an 

example, for 

1 ’ =  10.0 (say) 

the steady state p, ?, and G matrices can be evaluated from Eqs. (2.27), 
(2.37), and (2.32) and the results may be found as given below. 

1.4282 1.55831 

1,5583 2.7913

[ 0.5882 0.64171 
Y =  

0.6417 1.7913 

The graphs of and k11are plotted against I’ i n  Figure 2.1. The 

velocity accuracy before and after position determination is plotted against 

I’ in Figure 2.2, and the normalized velocity gain is plotted against I’ in 

Figure 2.3. 

Figure 2.1 Position accuracy before and after measurements. (From Ref. 1; 

0 1973-IEEE.) 
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Figure 2.2 Velocity accuracy before and after measurements. (From Ref. I ;  
0 1973-IEEE.) 

Figure 2.3 Normalized velocity gain as a fhc t ion  of I’. (From Ref. I ;  0 1973-IEEE.) 
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The unnormalized covariances and gains may be evaluated for known 
values of o', or ox and 7'. Let 

T = 4 s  

oil = 0.01414 nm/s2 

then from (2.26), for r = 10, we get 

o.y= 0.5656 nm 

As k, ?, and G matrices are known for these parameters, p ,  p .  and K 

matrices may be evaluated from (2.22), (2.34), and (2.31) as 

0.4569 0.0498 

0.0498 0.0089 

i.=[ 0.1882 0.0205 

0.0205 0.0057 

If P ,  k , and K matrices are evaluated by executing the Kalman filter matrix 
equations (2.17) to (2.19) recursively to the steady state, we get the same 

results as given above. 

2.2.9 Interpretation of Steady State Results 

From (2.27) and (2.37), it is seen that the steady state covariance matrices 
before and after processing a measurement are not the same: p # p .  In fact, 

k < ?). This means that errors are reduced due to the processing of an 
observation. However, during the intervals between two observations, 

the errors increase in accordance with (2.18) due to random acceleration. 
The steady state is attained when the decrease in error obtained by each 

observation is exactly equal to the increase in error between observations 

[U  

2.2.10 Mean Square Values of the Ripple 

If the estimates of position and velocity are to be coupled to an automatic 
control system (e.g., for automatic landing), a high-frequency ripple is pro- 
duced due to the jumps that occur each time the position and velocity 
are updated using (2.1 I ) .  The covariance matrix of this ripple is given 

by P I  
7'] -E[& - .?/J(.t,l- i,,)= P/,- P,, (2.38) 
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From (2.27) and (2.37), the mean square values of the ripple in position and 

velocity are given by 

- = 4df/r2 (2.39) 

y22 - Y 2 2  = 1 

2.2.11 Design Formula for Suitable Sampling Time 

For a high level of random acceleration, the past estimates of position and 
velocity are not of much value i n  reducing position errors significantly below 
the level of sensor accuracy. For a very low level of random acceleration, the 
estimates of position and velocity are highly correlated with previous 
estimates. Hence the vehicle position can be estimated with greater accyracy 
than is inherent i n  the sensor [I]. From Figure 2.1, it may be seen that Yl I is 
less than unity, whereas can be greater or smaller than unity and the 
crossover point occurs for 

Y 16.6 (2.40) 

Hence from (2.26), 

CT(, T2= 0 . 2 4 ~ , ~  (2.41) 

From (2.41), it is seen that for sufficiently small sampling interval T and/or  
perturbing acceleration, the position error can be kept below the sensor 
error even just before observations are made, when the error is highest. This 
may be realised by using a sampling time T given by 

T < 0.49Jo,/a,, (2.42) 

Equation (2.42) is obtained from (2.41) and represents a reasonable 
design formula for determining a suitable sampling time [I]. 

2.3 A THREE-STATE FILTER: RAMACHANDRA’S MODEL I 

Ramachandra’s model I [2] is a one-dimensional model for estimating the 
optimum steady state position, velocity, and acceleration of an aircraft 
or similar vehicle moving with a constant acceleration perturbed by a zero 
mean plant noise which accounts for maneuvers and/or  other random 
factors. The position coordinate of the vehicle is assumed to be measured 
by radar at  uniform intervals of time T seconds through random noise. 
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2.3.1 Dynamic Model 

Each position coordinate of the vehicle is assumed to be described by the 
following equations of motion: 

X,+I = x,, + -inT +S,,T2/2 (2.43) 

Iit,+ = + T 

i,l+I= -gl+ U,, 

where 

xn = vehicle position at scan rz  
-ktl = vehicle velocity a t  scan rz  

kit= vehicle acceleration at  scan rz 

a,, = plant noise that perturbs the acceleration of the vehicle and 
accounts for both maneuvers and other modeling errors 

T = sampling time 

is assumed to be zero mean and of constant variance ci and also 
uncorrelated with its values at  other inrevals; i.e., ( 1 ,  satisfies the statistical 
properties given by (2.2). 

In vector-matrix form, Eqs. (2.43) can be written as 

& + I  = FX,+ Ail (2.44) 

where 

(2.45) 

(2.46)F =  [ a0 :I T:211 

(2.47) 

An = [I] 
2.3.2 Measurement Equation 

The measurement equation may be written as 

X d f O  = HXI, + \'n (2.48) 

where x,,,(n) is the measured position at  scan n, v , ~is the random noise 
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corrupting the measurement at scan n, and 

H = [ I  0 01 (2.49) 

The statistical properties of the measurement noise are assumed to be the 
same as in (2.8). 

2.3.3 Filtering Equations 

Now Eqs. (2.44) and (2.48) are in the standard form for application of 

Kalman filtering algorithm. The optimal estimate of the state vector after 

the measurement is processed is given by 

%i = x i + K l l [ X , , , ( 1 ~ )- H’kI (2.50) 

and the state vector pllbefore the measurement is given by 

Xll = FX,-l (2.51 )  

The Kalman gain matrix is given by 

K,, = P,,H7’(HP,HT + R)-’ (2.52) 

The predicted covariance matrix P,, is given by 

PI,+,= FPllFT+ Q (2.53) 

and the filtered covariance k,?is given by 

kn= ( I  - K,,H)?i,, (2.54) 

Q is the covariance matrix of the plant noise and is given by 

Q =  O O O (2.55)[f, f, ::I  
2.3.4 Steady State Analysis 

In the steady state (n  3 CO), the relations (2.16) hold good and the relations 
(2.52) to (2.54) become 

(2.56) 

(2.57) 

(2.58) 
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Combining (2.57) and (2.58) in the steady state, we get 

P - Q = F ( Z  - KH)PF" (2.59) 

2.3.5 Steady State b Matrix 

I f  the predicted covariance matrix p is defined as the ( 3  x 3)  symmetrix 

matrix given by 

(2.60) 

PI3 p23 p33 

then the normalized covariances may be written as: 

r , l  = p11/0:. (2.61) 

h 2  = P 1 2 / ( w o 7 7  

r,, = P13/(c.dJd 

k22 = P22/(4T2> 

p23 = P23/(03J 
" 

" 2 
y33 = P33/0,, 

Now evaluating (2.59), we get the following six nonlinear equations: 

4Hi[r(2f12 + Y 1 3 )  + 4( k22 + k23) + k331 = Hi (2.62) 

Hi(rYi3+4~22+6Y23+2j7133)=H2(Y12+y13) (2.63) 

2H1(2YB+ k33) = H2 ?I, (2.64) 

NI(2223 + Y 3 3 )  = (PI2 + ? I d 2  (2.65) 

HI Y 3 3  = Y I 3 ( 6 2  + PI3) (2.66) 

HI = Y:3 (2.67) 

where 

HI = (1  + FII)  (2.68) 

H2 = [ ~ P I I+ 2(2p12 + F13)l 

r = 40,/(a,,T2) (2.69) 

The solution to the six nonlinear equations (2.62) to (2.67) is given separ- 

ately in  Appendix 2B. After considerable algebraic manipulations, the sol- 
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ution to nonlinear equations (2.62) to (2.67) may be obtained as 

YI1 = 132(1?? + 2) (2.70) 

r,,= rm2/2 

Y13 = 1 +n1 

F22 = 1’(3+ 2n?)/4
-
Y23 = 1’n1/2
-
Y33 = 2(1 + nz)/n1 

where the value of 171 is found by solving the cubic equation given by 

r11? - 2(r1z2i- 3112 + 2) = 0 (2.71) 

The solution of this cubic equation (2.71) is given separately in Appendix 

2 c .  
The quantity I’ is a dimensionless parameter proportional to the ratio 

of the positional observation error ox to the position error caused by a con- 
stant acceleration of (T,, (ft /s2),  and hence may be regarded as the 
noise- t o-sig na 1 rat i0. 

2.3.6 Steady State Gain Vector 

Let the steady state gain vector K be defined as 

K =  (2.72)[;;I  
Using (2.49), (2.60), and (2.67) in (2.56), the gain elements may be derived 
as: 

K1 = PI 1 / y:3 (2.73) 

K2 = 4k12/TTk;3 

K3 = 4/rT2F13 

If the normalized gains are defined as 

G1 = K1 (2.74) 

G2 = TK2 

c3= T‘K~ 
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From (2.73) and (2.70), (2.74) becomes 

G I  = m(m+ 2)/( 1 + n ~ ) ~  (2.75) 

2G2 = 2m2/(1 + m) 

G3 = 4/r( 1 +HZ) 

2.3.7 Steady State Matrix 

Let the filtered covariaiice matrix be defined as 

(2.76) 

(2.77) 

Putting (2.49), (2.60), and (2.72) in (2.58), the i) matrix may be found as 

- [
( 1  - K d t I I  (1 - Kdt12  ( 1  -h)& 

(2.78)p = PI2 - K2PII p 2 2  - K2pI2 P 2 3  - K 2 3 3  1p13- K I P I I  P23 - K3P12 P 3 3  - K3p13 

Using (2.73), (2.77), and (2.67) in (2.78), the normalized elements of the P 
matrix may be derived as 

i .11 = L/p:3 (2.79) 

i.12 = p12/y:3 

PI, = 1 / % 3  

P 2 2  = 1 , 2  - Y:2/ P;3
- - * 

y 2 3  = y 2 3  - YlZ/YI3 

i.33 = Y 3 3  - 1 
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Using (2.70) in (2.79), we get 

i., 1 = n?(n?+ 2)/( 1 + (2.80) 

i.,* = 1.m2/2(1 + 
P,J = 1 / 1  +nt  

k22 = r(3 + n2)/4(1 + I ? ? )  

P 2 3  = rn?/2(1 + I l l )  

P33.7 = ( I T ?  + 2)/17? 

2.3.8 Numerical Results 

From (2.70), (2.75), and (2.80), it is seen that all the steady state normalized 

covariances and gains are functions of the dimensionless parameter I - .As an 
example for 

r = 0.90 (say) 

the steady state ?, ?, and G matrices may be evaluated from Eqs. (2.70), 
(2.80), and (2.75) and the results are given below. 

-
25.0946 7.595 1 5.1083- 1Y =  7.5951 2.5237 1.8487 

- 5.1083 1.8487 2.4868 
-

0.9617 0.2911 0.1958 

Y =  0.2911 0.3131 0.3619 

-0.1958 0.3619 1.48681  
0.9617 

G =  1.2936 

0.8700 

The normalized covariances before and after position determination are 
plotted against r in Figures 2.4 to 2.6, and the normalized velocity and accel- 
eration gains are plotted in Figures 2.7 and 2.8 against r. 

For evaluating the unnormalized covariances and gains, let 

T = ~ s  

o ~ ,  = 0.01414 nm/s2 

then from (2.69), for i’ = 0.9, we get 

G . ~= 0.0509 
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Figure 2.4 Position accuracy before and after measurements. 

Figure 2.5 Velocity accuracy before and after position determination. 
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Figure 2.6 Acceleration accuracy before and after position determination. 

Figure 2.7 Normalized velocity gain K2T as a fbnction of Y. 
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Figure 2.8 Normalized acceleration gain as a hnction of r-. 

As k, ?, and G are known for these parameters, P ,  p ,  and K matrices may 
be evaluated from (2.61), (2.77), and (2.74) as 

-
0.0650 0.0219 0.0037-

P =  0.0219 0.0081 0.0015 

-0.0037 0.0015 0.0005 
-

0.0025 0.0008 0.0001 

P =  0.0008 0.0010 0.0003 

-0.0001 0.0003 0.0003 

0.9617 

K =  5.1744 

13.92071 
If P ,  >, and K matrices are evaluated by executing the Kalman filter matrix 
equations (2.56) to (2.58) recursively, we get the same values as given above. 
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2.3.9 Mean Square Values of the Ripple 

The mean square values of the ripple in position, velocity, aiid acceleration 
are given by 

2.3.10 Design Formula for Sampling Time 

From Figure 2.4, i t  is seen that i.11_< 1,whereas 1 can be larger or smaller 
than unity depending upon the level of plant noise. From this figure, it is seen 
that the crossover point occurs for I' 2 96. From this we obtain the relation 

T < 0.2041, /GG (2 .81)  

as the suitable sampling time which would keep the position error in a 
sampled data system below the inherent sensor error [2]. 

2.4 A THREE-STATE FILTER: RAMACHANDRA'S MODEL I I  

Ramachandra's model I1 [3] is also a one-dimensional dynamic model for 
estimating the optimum steady state position, velocity, aiid acceleration 
of an aircraft or similar vehicle moving with a constant acceleration and 
acted upon by a zero mean plant noise which perturbs its constant accel- 
eration motion and accounts for maiieuvers and / or other random factors. 
As in the previous two models, each position coordinate of the vehicle 
is assumed to be measured by a track-while-scan radar at uniform intervals 
of time 7' seconds through random noise. 
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2.4.1 Dynamic Model 

For each position coordinate of the vehicle, the dynamics of the target may 
be represented as 

x,+1 = x,, + i ,T + XnT2/2+ a,T3/6 (2.82) 

i,,+~+ 2tlT + at,T 2 / 2= in 

I = i n  + T 

where 

x,, = vehicle position at scan tz 

i,,= vehicle velocity at scan n 
x, = vehicle acceleration at scan rz  

a,, = plant noise (rate of change of acceleration in ft /s3) at scan n 

T = sampling time 

It is assumed that the plant noise is a random constant between successive 
observations having zero mean and constant variance CJ; and also 
uncorrelated with its values at other inrevals; i.e., a, satisfies the statistical 
properties (2.2). 

In vector-matrix form, Eqs. (2.82) can be written as 

(2.83) 

where A',, and F are as defined in (2.45) and (2.46). G is given by 

G =  (2.84)[ F$4] 

2.4.2 Measurement Equation 

The measurement equation is given by (2.48). 

2.4.3 Filtering Equations 

The filtering equations are given by (2 .I I )  to (2.15).Q = 0: is the variance of 

the plant noise. 
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2.4.4 Steady State fi  Matrix 

If the covariance matrix P is defined as 3 x 3 symmetric matrix given by 
(2.60), the normalized covariances for this model may be written as 

-
- 2

YII = h / a ,  (2.85) 

Y33 = F33/(a:T2) 

Evaluating the combined covariance equation (2.20) for this model, we get 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

(2.94) 

ter p Dportional to the atio of the 
positional observation error to the position error caused by a constant 
change of acceleration of U, (ft/s3) and hence may be regarded as the 

noise-to-signal ratio [31. 
The solution to the six nonlinear equations (2.86) to (2.91) is given 

separately in Appendix 2D. 
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After considerable algebraic manipulations, the steady state predicted 
covariances may be found as 

(2.95) 

where 

(2.96) 

s2 = J4s - 1 

A = A  

S is obtained by solving the biquadratic equation given by 

S4- 6S3+ 10S2- 6n2S + tz = 0 (2.97) 

where 191 and n are given by 

171 = 1 + 2r2 

n = 1 + 3r2 

The solution to this biquadratic equation may be found as: 

s = f (0 + (2.98) 

n = 3 + 1/22-1 (2.99) 

b = z - J.9 - ( 1  + 31.2) 

z = u - V + ?  

U = (D- cp3 
v = ( D  + cp3 
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2.4.5 Steady State Gain Vector 

If the steady state gain vector K is defined as in (2.72), then its normalized 
elements may written as given in  (2.74). The normalized elements of K 
for this model may be derived as 

GI = 2S(S1 - S)/l.* (2.100) 

2.4.6 Steady State Covariance Matrix P 

The normalized elements of f' matrix may be found as 

? , I  = 2S(& - S)/r2 (2.101) 

k 3  = (S2 -A ) / ( 2 4  

where Fv are as defined in (2.85) by replacing tildes by hats on both sides. 

2.4.7 Numerical Results 

From (2.95), (2.101), and (2.100), it is seen that all the steady state 

normalized covariances and gains are functions of the dimensionless par- 
ameter r .  As an example, for 

I" = 4.00 (say) 
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the steady state ?, k, and G matrices may be evaluated from Eqs. (2.951, 

(2.101), and (2.100), and the results may be found as follows: 

16.3186 13.2410 4.1616 

13.2410 36.1068 4.3717 

4.16 16 4.37 17 2.0909 1 
0.9423 0.7646 0.2403 

0.7646 5.7366 1.1900 

0.2403 1.1900 1.0909 1  
0.9423 

G =  [ 1.1468 

0.7209] 

The normalized covariances before and after position determination 

and the normalized velocity and acceleration gains are plotted in Figures 
2.9 to 2.13 against I". 

Figure 2.9 Position accuracy before and after position determination. (From Ref. 3; 

0 1987-IEEE.) 
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Figure 2.10 Velocity accuracy before and after position determination. 

Figure 2.11 Acceleration accuracy before and after position determination. 
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Figure 2.12 Normalized velocity gain K1T as a function of I’. 

Figure 2.13 Normalized acceleration gain K3T2 as a function of I’. 
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For evaluating the unnormalized covariances and gains, let 

T = 4 s  

ot,= 0.01414 nm/s3 

then from (2.94), for I* = 4.0, we get 

u , ~= 0.3017 nm 

Knowing r, ?, aiid G matrices for these parameters, P ,  h, and K matrices 
may be evaluated as 

1.4849 0.9036 0.0710 

0.9036 1.8481 0.0559 

0.0710 0.0559 0.0067 1 
0.0857 0.0522 0.0041 

0.0522 0.2936 0.0152 

0.0041 0.0152 0.0035 1 
0.9423 

K = 4.587'31[ 
11.5341 

If P,h,and K matrices are evaluated by executing the Kalman filter matrix 
equations (2.17) to (2.19) recursively to the steady state, we get the same 

values as given above. 

2.4.8 Mean Square Values of the Ripple 

The mean square values of the ripple in position, velocity, and acceleration 
are given by 

(2.102) 

p22 - +22 

0: T4 
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2.4.9 Design Formula for Sampling Time 

From Figure 2.9, it is seen that k115 I ,  whereas PI1 can be larger or  smaller 
than unity depending upon the level of plant noise. From this figure, it is seen 
that the crossover point occurs for r ~r287.62. From this we obtain the 
relation 

T c 0.3468[~,/0,l'/~ (2.103) 

as the suitable sampling time which would keep the position error in a 
sampled data system below the inherent sensor error [3]. 

2.5 SUMMARY 

A one-dimensional two-state model of Friedland [ 11 for estimating the pos- 
ition and velocity of an aircraft or similar vehicle moving in straight line 
path perturbed by a zero mean random acceleration is discussed in Section 
2.2. Two models for estimating position, velocity, and acceleration based 

on Kalman filtering techniques are discussed in Sections 2.3 and 2.4. In 

all three models, each position coordinate of the vehicle is assumed to 
be measured independently in the cartesian coordinate system. The steady 
state characteristics of the models are analytically obtained by directly 
solving the discrete Riccati equation. 

Bridgewater [4] has presented an analysis of second- and third-order 
steady state tracking filters. A general algorithm is presented for recursively 

computing Kalman gains. Changes in sampling time and variances of meas- 
urement noise and target maneuver can be readily incorporated in the com- 
putation of gains. Steady state expressions for a- /] and a - B - y filters 

are presented in Ref. 4. 
The two-state filter requires two measurements for its initialization, 

and three measurements are required for initializing the three-state filter. 
The steady state results presented here for a single physical dimension 

can be readily applied for the range-bearing, range-bearing-elevation, 
and bearing-elevation sensor measurement sets provided by any of radar, 
sonar, and IR sensors. 
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Chapter 2 

APPENDIX 2A: SOLUTION OF NONLINEAR EQUATIONS OF 
FRIEDLAND’S MODEL 

From (2.24) and (2.25), 

Pi2 = ( 1 + J1+2r)’/(2r) 

Y” can be obtained from (2.25) and (A2). 
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APPENDIX 28: SOLUTION OF SIX NONLINEAR EQUATIONS OF 

RAMACHANDRA'S MODEL I 

From (2.67), 

" 2
YII = y , ,  - 1 

Using (2.67) in (2.66), 

or 

P33 = 1 + Y12/YI3 ( B 3  

Using (2.67) in (2.65), 

2Y23 = M Y 3 3  - 1) (B4) 

Dividing (2.63) by (2.64) and simplifying using (B2) and (B4), 

I " P 1 3  +4P22 = 2?23(2k33 - 1 )  (B5) 

Squaring (2.64) and dividing by (2.62) and simplifying using (B2),( B4), 
and (B5), 

rY,2 = 2k i3  (B6) 

From (2.64), (2.67), and (B4), 

H2 = 2Pl3k:3 (B7) 

Dividing (2.64) by (2.65) and simplifying using (Bl) ,  (B7), and (2.68), 
we get 

From (2.68), (Bl) ,  (B2), (B6), and (B7), we get the following quadratic 

in Y23: 

4Pz', - 4&3 P23 + r2(k;3 - 1)  = 0 (B9) 

Solving (B9), the two roots of k23 may be found as: 

Putting (BlO) in (B6), 

I " -
y 1 2  = -( Y13 - I)?

2 
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Let 
-

m =  Y13-1 

Putting (B13) in (B12), 

- rrn'
Y12 = -

2 

Putting (B13) in (B8), 

r
Pf2= ?rn(rn + l ) ( tn + 2) (B 15) 

Putting the value of 1 1 2  from (B14) in (B15), we get 

(B16) is the cubic equation given by (2.71). in is obtained by solving 
(B16). The solution of this cubic is given in Appendix 2C. 

Putting (B13) in (Bl) ,  is obtained. is obtained from (B14), and 

Y13 froin (B13). Putting (B13) i n  (BIO), p23 is obtained. 
Putting the values of and 3 from (B 14) and ( B  13) in (B3), we get 

From (B16), 

- Putting (B18) in (B17), y33 may also be expressed as given in (2.70). 
Y22 is obtained from (B5). 

Thus all predicted covariances are determined as given in (2.70). 
The other root of p23given by (B1 1 )  is discarded since its value does 

not tally with that obtained by executing the Kalman filter matrix equations. 



43 Discrete-Time One-Dimensional Filters 

APPENDIX 2C: SOLUTION OF THE CUBIC EQUATION 

The solution of the cubic equation (2.71) may be obtained as follows: Let 

E = 27r2 

If E > 1, then nz is given by 

131 = 0 + h +-2 

3r 

where 

LI = (c +d p 3  

h = (c - d) ' I3  

with 

If E < 1, then m is given by 

112 = 2[; + s cos(;)] 

where 

If E = 1, then nz is given by 
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APPENDIX 2D: SOLUTION OF SIX NONLINEAR EQUATIONS OF 
RAMACHANDRA'S MODEL II 

The solution to (2.86) to (2.91) is obtained as follows. From (2.90) and 
(2.91), we get 

PI2 + PI3  = 2Yl3 h 3  

From (2.89) to (2.91), we get 

From (2.88), (Dl),  (D2), and (2.91), we get after simplification 

2S(& + S )
YII = 

r2 

- S l + S  
y13 =-

I' 

where 

s = 3F&- 3f-33 + 1 

From (2.88) and (2.90), we get 

- s2 F l 3
Y12 =-

A 

From ( D l )  and (D6), 

From (2.87), 

- 3  -
y22 = 6Yj3 - y33 - rYI3 

Using the above results, we get from (2.86), 

S4- 6s' + 10S2- 6nzS + n = 0 

where 

Solving the biquadratic (D9), the value of S is determined. k33 is found from 
(D5). Y I I and are determined from (D3) and (D4). ?I2 is then found 
from (D6). P22 and ?23 are found using (D8) and (D2). 
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3.1 INTRODUCTION 

The uncoupled one-dimensional tracking filters described in Chapter 2 may 
be extended to two dimensions to develop two-dimensional trackers for esti- 
mating the position, velocity, and also acceleration of an aircraft with the 
range I’ and bearing H measurements obtained by a two-dimensional 
track-while-scan radar sensor. The techniques and matrix transformations 
to develop two-dimensional trackers are presented in this chapter. 

The measurements obtained at  discrete intervals of time 7‘ seconds are 
assumed to be corrupted with range noise and angular noise. The tracking 
operation is assumed to be performed in the cartesian coordinate system. 
The coupling between the quantities measured by the radar ( r , 0) and 

45 
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the two-dimensional cartesian coordinate system selected for tracking oper- 
ation is explicitly considered in the development of the two-dimensional 
models. 

The steady state filter characteristics of the two-dimensional trackers 

are analytically determined making use of the properties of the uncoupled 

one-dimensional trackers discussed in Chapter 2. These results are of prac-
tical interest in developing trackers for tracking aircraft and similar vehicles. 

These results also eliminate the real time execution of the complete Kalman 
filter matrix equations, providing a significant reduction in tracking and 
updating time. This is illustrated in the extension of the one-dimensional 

Friedland’s model and Ramachandra’s model I to two dimensions. 

3.2 TECHNIQUES AND MATRIX TRANSFORMATIONS 

In Ref. 1, Fitzgerald gives the techniques and also the necessary matrix 
transformation equations for developing two-dimensional tracking filters. 
Using these techniques, the steady state results of the two-dimensional filters 
may be expressed in a concise form. The technique involves the deternii- 
nation of covariances and gains in an uncoupled system and then transforms 
them for application in the coupled system. 

3.2.1 Two-DimensionaI Two-State Fi Iters 

Consider the case of tracking an aircraft or similar vehicle in the 
two-dimensional cartesian coordinate system with two-state filters. Let 
the state vector be represented as 

X T  = [x Y x Yl (3.1) 

A two-dimensional track-while-scan radar sensor is assumed to 

measure the range r and bearing 8 of the vehicle at uniform sampling 
intervals of time T seconds, and a11 measurements are assumed to be 
corrupted with range noise and angular noise. 

If PO and KO denote the covariance matrix and the corresponding filter 
gain matrix for tracking along the x axis corresponding to fj = 0, then for 
tracking at  an arbitrary angle fl, Fitzgerald [ I ]  shows that the covariances 
and gain matrices may be expressed as 
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where 

cos8 -s in8 
(3.4)

A 2 = [  sin 8 cos0 I 
A ~ z = [ ~ I0 A2 (3.5) 

A2 is the rotational matrix and A22 is a 4 x 4 matrix used for two dimensions 
and two-state filters. Equation (3.2) is valid for both predicted and filtered 
covariance matrices p and k. 

The application of this technique for two-dimensional two-state filters 
is presented in Section 3.3 in the extension of Friedland's model to two 
dimensions. 

3.2.2 Two-DimensionaI Three-State FiIters 

For three-state filters in two dimensions, the state vector is assumed to be 

arranged as 

X T  = [s y "i j .k i;] (3.6) 

If POand KOare the covariance matrix and the corresponding Kalman 
filter gain matrix for tracking along the x axis corresponding to 8 = 0, then 

for tracking at an arbitrary angle 0, Fitzgerald [ I ]  shows that the covariances 

and gain matrices may be expressed as: 

(3.7) 

(3.8) 

(3.9) 

A2 is the rotational matrix given in (3.4) and A23 is a 6 x 6 matrix used for 
two-dimensional three-state filters. Equation (3.7) holds good for both pre- 
dicted and filtered covariance matrices p and p .  

When (3.2) and (3.3) or (3.7) and (3.8) are used for tracking in  the 
two-dimensional cartesian coordinate system for any bearing angle 8, 
the tracking will still be nearly optimum provided the rate of change of 

bearing is slow [l]. 
This technique for two-dimensional three-state filters is applied for 

extension of Ramachandra's model I to two dimensions in Section 3.4. 
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3.3 CASTELLA-DUNNEBACKE’S MODEL: AN EXTENSION OF 

FRIEDLAND’S MODEL TO TWO DIMENSIONS 

In this section, a two-dimensional tracking filter developed by Castella and 
Dunnebacke [2] for estimating the position and velocity of an aircraft or 
similar vehicle is discussed. The vehicle is assumed to be moving with a 
constant velocity motion perturbed by a zero mean random acceleration. 

The vehicle range r and bearing 8 are assumed to be measured by a 
two-dimensional track-while-scan radar sensor at uniform sampling 
intervals of time T seconds and all measurements are noisy. 

In this model, the coupling between the quantities measured by the 
radar and the cartesian xy coordinate system selected for tracking operation 
is explicitly considered. The steady state characteristics of the filter are ana- 
lytically determined under the assumption of a white noise maneuver model 
in two dimensions. This model is an extension of Friedland’s model to two 

dimensions. 

3.3.1 Dynamic Model 

In two dimensions, the vehicle dynamics may be represented by the 
vector-matrix equation of the form 

& + I  = Fx, + Go, (3.10) 

where 

(3.11) 

(3.12) 

(3.13) 

where I is a 2 x 2 identity matrix and 0 is a 2 x 2 null matrix. F is a 4 x 4 
matrix and G is a 4 x 2 matrix. a,, is the random acceleration acting on 

the vehicle with variance Q = 02. The random acceleration is assumed 
to be of equal variance and also independent along the x and y axes. This 
maneuver model also assumes that the acceleration along the x or y axis 
is a random constant between successive scans with zero mean and constant 
variance OZ. Acceleration values at  different scans are assumed to be 

uncorrelated (white noise maneuver model). 
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3.3.2 Measurement Model 

The measurement equation may be written as 

z,, = HX,, + V/l (3.14) 

where 

(3.15) 

1 0 0 0  

.=[o 1 0 0 1  
(3.16) 

and 

(3.17) 

x , , , ( I I )  = measured s coordinate at scan P I  

J * , , , ( I I )= measured y coordinate at scan IZ  

Y , ( I Z )  = random noise on x measurement at  scan 11 

v , . ( I I )  = random noise on ~1 measurement at scan 11 

From the tracking geometry illustrated in Figure 3.1, 

x,, = r(n)cos H ( n )  (3.18) 

yrl= r(n)sin H( iz )  

Figure 3.1 Two-dimensiona 1 tracking geometry. 



50 Chapter 3 

As the measurements are in polar coordinates and tracking is done in 
cartesian coordinates, the measurements are coupled. The covariance 
matrix of the measurement noise V,, may be written as 

(3.19) 

and is given by 

R, = A ~ R O A ;  (3.20) 

where 

(3.21) 

A2 is defined in (3.4). o: is the variance of the range measurement noise, 0; is 

the variance of the bearing measurement noise, and r is the vehicle range. 

3.3.3 Filtering Equations 

The optimal estimates of the state vector after the measurement is given by 

it,= 2, + K,,(Z,,- H i t , )  (3.22) 

where i,,the optimum estimate of the state vector before the measurement is 
given by (2.12). The Kalman gain matrix is given by (2.13). The predicted 
and filtered covariances are given by (2.14) and (2.13, respectively, where 

the quantities are as applicable to this model. 

3.3.4 Steady State Results 

For 8 = 0 (along the s axis), the tracker described above decouples into two 
independent one-dimensional trackers of the Friedland’s model whose 
steady state gains and covariances are known. Hence, F, I;, and K matrices 

for the target at any bearing 8 can be expressed in terms of those applicable 
for bearing 8= 0. From (3.2) and (3.3), 

(3.24) 

(3.25) 
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3.3.5 Steady State Covariance Matrix PO 
can be written as a partitioned matrix 

(3.26) 

where 2, b, and 2. are (2 x 2) diagonal matrices. 
If &, B k k ,  and p k k  (for k = 1,2)  are the unnormalized diagonal 

elements of 2, 5, and c, then they are determined as follows: 

1. Replace d by dk and r by rk in Eqs. (2.27). 
2. Use them in (2.22) to determine P I , ,p12, and &, replacing (T, by 

6’k . 
3. Comparing (3.26) and (2.21), &,+,B k k ,  and C k k  are obtained. 

In this case, we get 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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3.3.6 Steady State Covariance Matrix PO 

The steady state filtered covariance matrix may also be written as the 
partitioned matrix 

. - (3.3 1) 

where A,Ah,and k are x 2 diagonal matrices. 

If A k k ,  * B k k ,  and ,Chk (for k = I ,  2) are the unnormalized diagonal 
elements of A ,  B, and C, then they are determined as follows: 

1. Replace d by dk and r by r k  in Eqs. (2.37). 
2. Use them in (2.34) to determine p11, PI*,and ?*2, replacing B, by 

ek. 

3. comparing (3,31) and (2.33) and equating element to element, 
A k k ,  B k k ,  and C k k  are obtained as in the case of given by (3.27). 

3.3.7 Steady State Gain Matrix KO 

KO may be partitioned in terms of two 2 x 2 diagonal matrices as 

(3.32) 

Comparing (3.32) with (2.28), the unnormalized diagonal elements G k k  and 
k f k k  for k = 1, 2 may be expressed as i n  (2.30), replacing d by dk and r 
by r k .  

3.3.8 Numerical Results 

The steady state p ,  p ,  and K matrices are evaluated from Eqs. (3.23) to 
(3.25) for the following values of the parameters. The results are presented 
below. 
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Pflrol?leters 

or = 0.16 nm 

(TO = 0.23 degrees = 0.0040143 rad 

T = 4 s  

r =  100 nm 

8 = 0,30 degrees 

ot,= 0.01414 nm/s2  

Coniputer Results 

- !
.1058E+00 
.0000E+00 

= .2050E-01 
.0000E+00 

.1541E+00 

i j =  
-.8373E-01 

.2497E-01
[

-.7738E-O2 

.2061E-01 

.0000E+00 

.3994E-O2 

.0000E+00 

.4164E-01 
-.3642E-O1 

.6354E-02 
-.4087E-02 

.8052E+00 

.0000E+00 

.1560E+00 

.0000E+00 

.0000E+00 .2050E-01 .0000E+00 

.2992E+OO .0000E+00 .3837E-01 

.0000E+00 S727E-02 .0000E+00 1.3837E-01 .0000E+00 .7835E-02 

-.8373E-01 .2497E-01 -.7738E-02 
.2508E+00 -.7738E-02 .3391E-02 

-.7738E-02 .6254E-02 -.9127E-03 
.3391E-01 -.9127E-03 .7308E-02 

.0000E+00 .3994E-02 .0000E+00 

.1047E+00 .0000E+00 .1343E-01 

.0000E+00 .2528E-02 .0000E+00 1.1343E-01 .0000E+00 .4635E-02 

-.3642E-01 .6354E-02 
.8370E-01 -.4087E-02 

-.4087E-02 .3055E-02 
. I  107E-01 -.9127E-03 

.0000E+00 

.6499E+00 

.0000E+00 

.8336E-01 

-.4087E-02 
. I  107E-01 

-.9127E-03 1.4109E-02 

.7664E+OO .6723E-01 

.6723E-O1 .6887E+OO
K =  

.1379E+00 .3 146E-01 1[

.3146E-01 .1015E+00 
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When these matrices are evaluated by executing the Kalman filter matrix 
equations (2.17) to (2.19) for this model to steady state, we get nearly 

the same result. Comparing the values off‘  and i) matrices, it may be noted 
that the covariaiice goes down as a result of making ail observation, even 
though the filter is in steady state. 

3.4 TWO-DIMENSIONAL THREE-STATE FILTER: EXTENSION 

OF RAMACHANDRA’S MODEL I TO TWO DIMENSIONS 

In this section, the one-dimensional model I of Ramachandra discussed in 
Chapter 2 is extended to two dimensions using the techniques and matrix 
transformation equations of Section 3.2. This two-dimensional model esti- 
mates the position, velocity, and acceleration of an aircraft moving with 
constant acceleration perturbed by a zero mean plant noise which accounts 
for maneuver and/or  other random factors. 

3.4.1 Dynamic Model 

The equations of motion of the target are assumed to be described by the 
vector-matrix equation of the form (3.10) where 

. . ..Txn = [-% Y n  -Yfl Yn *%z j 1 1 1  (3.33) 

(3.34) 

and 

G=[!] (3.35) 

Idenotes the 2 x 2 identity matrix, and 0 the 2 x 2 null matrix. F is a 6 x 6 

transition matrix and G is a 6 x 2 input distribution matrix. ci,, is the process 
noise perturbing the acceleration of the target with variance Q = as 
described in Castella-Dunnebacke’s model (Section 3.3.1). 
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3.4.2 Measurement Model 

The range r and bearing 8 of the target are assumed to be measured by a 
two-dimensional track-while-scan radar at  uniform sampling intervals of 
time T seconds and all measurements are noisy. The measurement equation 
is the same as given by (3.14). The covariance matrix of measurement errors 

in cartesian coordinates is given by (3.20). 

3.4.3 Filtering Equations 

The filtering equations are given by (3.22) and (2.51) to (2.54) with quan- 
tities as applicable to this model. 

3.4.4 Steady State Results 

For 8 = 0 (along the x axis), this two-dimensional tracker decouples into 

two independent one-dimensional trackers of Ramachandra’s model I 
whose properties are known. Hence the steady state covariance and gain 
matrices of the two-dimensional tracker may be expressed in terms of 
the known covariance and gain matrices of the one-dimensional tracker as 

P = A23PoAT3 (3.36) 

P = A23PoAL (3.37) 

K = A23KoAT (3.38) 

where A2 is defined in (3.4) and A23 in (3.9). 

3.4.5 Steady State Covariance Matrix 6, 
The PO matrix may be written as the partitioned matrix 

- I 

A B i 2 .  

I 

PO = (3.39) 

where the submatrices are all 2 x 2 diagonal matrices. 
If i k k ,  B k k ,  k k k ,  D k k ,  &;J, and &k ( fork  = 1, 2) are the unnormalized 

diagonal elements of 2, E, C, b, k, and E, then they are determined as 
follows: 
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1 .  Replace rn by m"I\.and r by r k  in Eqs. (2.70). 
2. Use them in (2.61) to determine PI 1 ,  ?>12, Pi3, &, P 2 3 ,  ?>33, replac-

ing g.y by e"~\.. 
3. Comparing (3.39) and (2.60) and equating element to element, &I 

is determined. 

m"I\.is obtained by solving the cubic equation 

rknii - 2[n4 + 3r22k + 21 = o (3.40) 

3.4.6 Steady State Covariance Matrix bo 

The i)o matrix may also be expressed as 

- . - - . -

(3.41) 

- . - - . -

where th,e submat$ceshare all (2 x 2) diagonal matrices. 
If A k k ,  B k k ,  C k k ,  D k k ,  E k k ,  and F k k  (for k = 1 ,  2)  are the unnormalized 

diagonal elements of submatrices of PO,then they are determined as follows: 

1. Replace m by nzk and r by r k  in Eqs. (2.80). 
2. Use them in (2.77) to determine $1 1 ,  $12, b13, $22, $23, $33, replac-

ing o,yby C'k. 

3. Comparing (3.41) and (2.76), is obtained. 

3.4.7 Steady State Gain Matrix KO 

The gain matrix KOmay be defined as 

(3.42) 
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where G,  M ,  and N are 2 x 2 diagonal matrices. Comparing (3.42) with 
(2.72), the unnormalized diagonal elements G k k ,  Mkk, and N k k  for 
k = 1, 2 may be obtained by replacing n? by n ~ kand r by Q. in (2.75) 
and using them in (2.74) to determine the unnormalized elements. 

The filter is initialized on the basis of three measurements. 

3.4.8 Numerical Results 

The steady state P ,  h, and K matrices are evaluated from Eqs. (3.36) to 
(3.38) for the same values of parameters used in the numerical results of 

Castella-Dunnebacke's model (Section 3.3.8) and the results are presented 
below. 

CompU ter ResuIts 

.21E+OO .00E+00 .55E-01 .00E+00 .69E-02 .00E+00 

.00E+00 .68E+00 .00E+00 . I  3E+00 .00E+00 . I  3E-01 

.55E-01 .00E+00 .16E-01 .00E+00 .23E-02 .00E+00
PO = 

.00E+00 .13E+00 .00E+00 .32E-0 1 .00E+00 .36E-02 

.69E-02 .00E+00 .23E-02 .00E+00 .59E-03 .00E+00 

.00E+00 .13E-01 .00E+00 .36E-02 .00E+00 .71 E-03 

- .33E+00 -.20E+00 .74E-01 -.34E-01 .84E-02 -.26E-02 
-.20E+00 .56E+00 -.34E-01 . I  1E+00 -.26E-02 .11E-01 

.74E-01 -.34E-01 .20E-01 -.67E-02 .27E-02 -.57E-03
P =  

-.34E-01 . I  IE+00 -.67E-02 .28E-01 -.57E-03 .33E-02 
.84E-02 -.26E-02 .27E-02 -.57E-03 .62E-03 -.51 E-04 

-.26E-02 .1 IE-01 -.57E-03 .33E-02 -.51E-04 .68E-03
L 

.23E-01 .00E+00 .58E-02 .00E+00 .74E-03 .00E+00 

.00E+00 . I  3E+00 .00E+00 .25E-01 .00E+00 .25E-02 

.58E-02 .00E+00 -.25E-02 .00E+00 .76E-03 .00E+00 
PO = .00E+00 .25E-01 .00E+00 .18E-03 .00E+00 .16E-02 

.74E-03 .00E+00 .76E-03 .00E+00 .39E-03 .00E+00 

.00E+00 .25E-02 .00E+00 .16E-02 .00E+00 .5 1 E-03 

.50E-01 -.46E-0 . I  1E-01 -.85E-02 .12E-02 -.76E-03 
-.46E-01 .IOE+00 -.85E-02 .21E-01 -.76E-03 .20E-02 

.11E-01 -.85E-02 -.18E-02 -.11E-02 .97E-03 -.36E-03
P =  

-.85E-02 .21E-01 -.11E-02 -.48E-03 -.36E-03 .14E-02 
.12E-02 -.76E-03 .97E-03 -.36E-03 .42E-03 -.51E-04 

-.76E-03 .20E-02 -.36E-03 .14E-02 - .51 E-04 .48E-03 
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-
.89E+00 .00E+00 
.00E+00 .81E+OO 
.23E+00 .00E+00 
.00E+00 . l  GE+OO 
.29E-01 .00E+00 

- .00E+00 .15E-01 

- .87E+00 .37E-O1-
.37E-01 .83E+00 

.21E+00 .30E-01
K =  

.30E-01 .18E+00 

.25E-01 .58E-02 
- .58E-O2 .19E-01 

When these matrices are evaluated by executing the Kalman filter 
matrix equations (2.56) to (2.58) for this model, we get nearly the same 
result. 

3.5 SUMMARY/SUGGESTED READING 

The techniques and matrix transformation equations [I] for developing 

two-dimensional models for tracking in two-dimensional cartesian 

coordinates are given in Section 3.2. Using these techniques, the uncoupled 
one-dimensional trackers described in Chapter 1 may be extended to 
two dimensions for estimating position, velocity, and acceleration of an air- 

craft or similar vehicle. 
In Section 3.3, Castella-Dunnebacke’s model, which is an extension of 

Friedland’s model to two dimensions for estimating position and velocity in 
the Cartesian coordinate system, is discussed and the steady state charac- 
teristics are expressed in compact forms using the techniques given in Sec- 

tion 3.2. In Section 3.4, a two-dimensional extension of Ramachandra’s 
model I is given. This is also discussed in Ref. 3. The results of Ref. 3 will 
hold good only when the process noise along the x and v axes are of equal 
variance [ 13. This restriction is eliminated in the two-dimensional three-state 
model described in Ref. 4. In Ref. 5 ,  the one-dimensional model 11 of 

Ramachandra described in Section 2.4 is extended to two dimensions. 
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4.1 INTRODUCTION 

In this chapter, three-dimensional tracking filters are discussed for estimat- 

ing the position, velocity, and also acceleration of an aircraft when the range 
r ,  bearing 0, and elevation q of the target are measured at  uniform sampling 
intervals of time T seconds through random noise by a three-dimensional 
radar sensor. The tracking operation is assumed to be performed in the 
cartesian coordinate system. The coupling between the quantities measured 

by the radar ( r , 0, q ) and the cartesian coordinate system selected for tra- 
cking operation is explicitly considered in the development of the three 
dime11sion a 1 models. 

The steady state filter characteristics of the three dimensional trackers 
are analytically determined making use of the properties of the uncoupled 
one-dimensional trackers discussed in  Chapter 2. These results are of prac- 

61 
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tical interest in developing trackers for tracking aircraft and similar vehicles. 
These results also eliminate the real time execution of the complete filter 
equations, providing a significant saving in tracking and updating time. 

4.2 TECHNIQUES AND MATRIX TRANSFORMATIONS 

Fitzgerald Cl] discusses the techniques and also the necessary matrix 
transformation equations for developing three-dimensional tracking filters. 
Using these techniques, we can express the steady state results of the 

three-dimensional filters in a concise form. If the covariances and gains 
are known in a system where there is no coupling, then the methods of 
transforming them for use in the coupled system are discussed in this section 
for three-dimensional two-state and three state filters separately. 

4.2.1 Three-Dimensional Two-State Filters 

Consider the case of tracking an aircraft or similar vehicle in the 
three-dimensional cartesian coordinate system with two state filters. Let 
the state vector be arranged as 

x T = [x $' z ,i: j 4 (4.1) 

A three-dimensional track-while-scan radar sensor is assumed to 
measure the range I', bearing 8, and elevation cp of the vehicle a t  uniform 

sampling intervals of time T seconds and all measurements are noisy. 
If POand KOdenote the covariance and Kalman gain matrices for tra- 

cking along the x axis corresponding to N = 0 and cp = 0, then for tracking 

at  any arbitrary angles 8 and cp, the covariance and gain matrices may 
be expressed as 

p = A32PO42 (4.2) 

K = A32KOAT (4.3) 

where 

with 

cos 8cos cp sin 0 -cos 0 sin cp 

sinflcoscp -cos8 -sinhrsincp (4.5) 
sin cp 0 cos cp 1  
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A3 is the rotational matrix and A32 is a 6 x 6 matrix used for 

three-dimensional two-state filters. Equation (4.2) is applicable for both pre- 
dicted and filtered covariance matrices p and ?. 

4.2.2 Three-Dimensional Three-State Filters 

For tracking an aircraft or similar vehicle in three dimensions, the state 

vector is assumed to be arranged as 

p - = [ x  y ji j: i ;I: j ;  4 (4.6) 

If POand KOare the covariance and gain matrices for tracking along 
the x axis corresponding to 8 = 0 and cp = 0, then for tracking at any arbi- 

trary angles 8 and cp, the covariance and gain matrices may be expressed 

as 

where 

(4.9) 

A3 is the rotational matrix given by (4.5)and A33 is the 9 x 9 matrix used for 
three-dimensional three-state filters. Equation (4.7) is valid for both p and k 
matrices. With (4.2) and (4.3) or (4.7) and (4.8), tracking is still nearly 
optimum if the rates of change of angles are slow [ I ] .  

4.3 RAMACHANDRA-SRINIVASAN’S MODEL: AN EXTENSION 

OF FRIEDLAND’S MODEL TO THREE DIMENSIONS 

In this section, Ramachandra-Srinivasan’s model [2], which is an extension 
of Friedland’s model to three dimensions for estimating the position and 
velocity of an aircraft or similar vehicle, is discussed. The vehicle is assumed 
to be moving with a constant velocity motion perturbed by a zero mean 
random acceleration. The vehicle range r ,  bearing 8, and elevation cp are 

assumed to be measured by a three-dimensional track-while-scan radar 
at  uniform sampling intervals of time T seconds and all measurements 

are noisy. 
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In this model, the coupling between the quantities measured by the 
radar and the cartesian xyz coordinate system selected for tracking oper- 
ation is explicitly considered. The steady state characteristics of the filter 

are analytically determined under the assumption of a white noise maneuver 
model in three dimensions. 

4.3.1 Dynamic Model 

In three dimensions, the vehicle dynamics may be represented by the 
vector-matrix equation of the form (3.10) where the state vector is given by 

. .Txn = [”% yn ztt xt, yn i n 1  (4.10) 

F and G are also of the same form given by (3.12) and (3.13), where I is a 
3 x 3 identity matrix and 0 is a 3 x 3 null matrix. F is a 6 x 6 matrix 
and G is a 6 x 3 matrix. a,, is the random acceleration acting on the vehicle 

with zero mean and constant variance Q = o;?,and is assumed to be of equal 
variance and also independent along the s, y ,  and z axes. Acceleration values 
at  different scans are assumed to be uncorrelated (white noise maneuver 
nodel). 

4.3.2 Measurement Model 

The measurement equation may be written as (3.14) where 

(4.11) 

H =  0 1 0  0 0 0 (4.12)[: : 1 I I I]
and 

(4.13) 

xnl(n)= measured x coordinate at  scan n 
y,,l(n)= measured y coordinate at scan n 
z,,l(iz) = measured z coordinate at  scan iz 

v , (n )  = random noise on x measurement a t  scan n 
v, , (n)= random noise on 4) measurement at  scan n 

v2(n) = random noise on z measurement at  scan n 
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Y  

0  

Figure 4.1 Three-dimensional tracking geometry. 

Let the target range Y, bearing 8, and elevation cp be measured by a 
three-dimensional radar sensor. 

From the tracking geometry illustrated in Figure 4.1, 

s,, = v ( n )cos 8(n)cos q(n) (4.14) 

yn = ~ ( n )sin H ( n )  cos cp(tz) 

z,?= ~ ( n )sin q(n) 

As the measurements are in polar coordinates and tracking is done in 
cartesian coordinates, the measurements are coupled. The covariance 
matrix of the measurement errors in cartesian coordinates will be of the 

(4.15) 
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and is given by 

R,  = A3RoAT (4.16) 

where 

(4.17) 

4.3.3 Filtering Equations 

The filtering equations are given by (3.22) and (2.12) to (2.15) with quan- 
tities as applicable to this model. 

4.3.4 Steady State Results 

For 0 = cp = 0 (along the x axis), the tracker described so far degenerates to 
three independent one-dimensional trackers of Friedland's model whose 
characteristics are known. Hence the steady state covariance and gain 
matrices are given by 

(4.18) 

(4.19) 

(4.20) 

is the partitioned matrix of the form given by (3.26) where 2, b,and c a r e  
3 x 3 diagonal matrices with their diagonal elements given by (3.27) for 

k = 1,  2, 3. 
F o r k  = 1 ,2, the values of ek are given in (3.29) and (3.30). Fo rk  = 3, 

e3 = rcq 

i'o is of the form given by (3.31) where 2. 2, and ? are 3 x 3 diagonal 

matrices with their diagonal elements determined as in the case of the 
two-dimensional model for k = 1, 2, 3. 

Ko may be expressed as the partitioned matrix of the form (3.32), 
where G and A4 are 3 x 3 diagonal matrices. The diagonal elements of these 
submatrices are determined in the same way as in the two-dimensional 
model for k = I ,  2, 3. 
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4.3.5 Numerical Results 

The steady state p ,  k, and K matrices are evaluated from Eqs. (4.18) to 
(4.20) for the values of parameters used in the numerical results of 

Castella-Dunnebacke's model (Section 3.3 .8)  along with 

U,,-, = I degree = 0.017450 rad 

q~ = 0.30 degrees 

and the results are presented below: 

- . I  1E+OO .00E+00 .00E+00 .2 1E-0 I .00E+00 .00E+00 
.00E+00 .30E+00 .00E+00 .00E+00 .38E-0 1 .00E+00 
.00E+00 .00E-+00 .20E+01 .00E+00 .00E+00 . I  3E+00

P" = 
.21E-01 .00E+00 .00E+00 .57E-02 .00E+00 .00E+00 
.00E+00 .38E-0 1 .00E+00 .00E+00 .78E-02 .00E+00 
.00E+00 .00E+00 . I  3E+00 .00E+00 .00E+00 .14E-01 

.51E+00 .12E+00 -.72E+00 .45E-01 .38E-02 -.40E--01 

.12E+00 .37E+00 -.41E+00 .38E-02 .41E-01 -.23E-01 
-.72E+00 -.41E+00 .15E+01 -.40E-01 -.23E-01 .IOE+OO

P =  
.45E-01 .38E-02 -.40E-01 .79E-02 . I  2E-04 -.32E-02 
.38E-02 .41E-01 -.23E-01 .12E-04 .78E-02 -.18E-02 

-.40E-01 -.23E-01 .10E+00 -.32E-02 -.18E-02 .12E-01 

.2 1 E-01 .00E+00 .00E+00 .40E-02 .00E+00 .00E+00 

.00E+00 . I  OE+OO .00E+00 .00E+00 . I  3E-0 1 .00E+00 

.00E+00 .00E+00 .I2E+OI .00E+00 .00E+00 .77E-01
PO = .40E-02 .00E+00 .00E+00 .25E-02 .00E+00 .00E+00 

.00E+00 .13E-01 .00E+00 .00E+00 .46E-02 .00E+00 

.00E+00 .00E+00 .77E-01 .00E+00 .00E+00 . I  1E-01 

.27E+00 .93E-01 -.45E+00 .20E-01 .38E-02 -.27E-01 

.93E-01 .16E+00 -.26E+00 .38€-02 .16E-01 -.16E-01 
-.45E+00 -.26E+00 .91E+OO -.27E-01 -.16E-01 .58E-01 

.20E-01 .38E-02 -.27E-01 .47E-02 .12E-04 -.32E-02 

.38E-02 .16E-01 -.16E-01 .12E-04 .46E-02 -.18E-02 
-.27E-01 -.16E-01 .58E-01 -.32E-02 -.18E-02 .89€-02 

.8 1E+OO .00E+00 .00E+00 

.00E+00 .65E+00 .00E+00 

.00E+00 .00E+00 .40E+00 

.16E+00 .00E+00 .00E+00 

.00E+00 33E-01 .00E+00 

.00E+00 .00E+00 .25E-01 
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- .69E+00 .23E-01 . I  5E+00 

.23E-01 .66E+00 .88E-01 

K =  
.15E+00 
.11E+00 

.88E-01 

.17E-01 
.50E+00 
.49E-01 

.17E-01 .93E-01 .28E-01 

.49E-01 .28E-01 .58E-01 

When these matrices are evaluated by executing the Kalman filter matrix 

equations (2.17) to (2.19) for this model to steady state, we get nearly 
the same results. It may be observed that the covariance goes down as a 
result of making an observation, even though the filter is in steady state. 

4.4 EXTENSION OF RAMACHANDRA'S MODEL II TO THREE 
DIMENSIONS 

In this section, the one-dimensional model I1 of Ramachandra is extended to 
three dimensions using the techniques and matrix transformation equations 
of Section 4.2, and a three-dimensional tracker is developed. This tracker 
estimates the position, velocity, and acceleration of an aircraft moving with 
constant acceleration and is acted upon by a zero mean random rate of 

change of acceleration which accounts for maneuvers and/or  other random 

factors. 

4.4.1 Dynamic Model 

In three-dimensional cartesian coordinate system, the equations of motion 
of the target are assumed to be described by the vector-matrix equation 

of the form ( 3 .lO), where A',, is the vehicle state vector consisting of position, 
velocity, and acceleration components and is a nine-element vector defined 
as 

* .x;f = [x, y,, z,, s,, y ,  ill iIIj n  Z,,] (4.22) 

F is the transition matrix of dimension 9 x 9 and is given by 

I ( T ) I  (T*/2)I 
(4.23) 

0 0 

G is the input distribution matrix of dimension 9 x 3 and is given by 

(4.24) 
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I denotes the 3 x 3 identity matrix. a,, is the rate of change of acceleration 
assumed to be a random constant between successive scans with zero mean 
and constant variance ci. It is assumed to be of equal variance and also 
independent along x, y ,  and z axes. The values of U,, at different scans 
are assumed to be uncorrelated (white noise maneuver model). 

4.4.2 Measurement Model 

The range 1’, bearing 8, and elevation 43 of the target are assumed to be 
measured by a three-dimensional track-while-scan radar at  uniform sam- 
pling intervals of time T seconds and all measurements are assumed to 
be corrupted with range noise and angular noise. The tracking geometry 
is illustrated in Figure 4.1. The measurement equation is of the form given 

by (3.14), where Z,?,H ,  and V, are as defined in (4.1 I )  to (4.13). The 
covariance matrix of measurement noise is given by (4.16). 

4.4.3 Filtering Equations 

The optimal estimates of state vector after the measurement is given by 
(3.22), and before the measurement by (2.12). The Kalman gain matrix 
is given by (2.13). The predicted and filtered covariance are given by (2.14) 
and (2. I5), respectively, 

4.4.4 Steady State Results 

For 8 = 43 = 0 (along the x axis), this three-dimensional tracker decouples 
into three one-dimensional trackers of Ramachandra’s model I1 whose 

steady state covariances and gains are known. Using the matrix 
transformation equations (4.7) and (4.8), the steady state covariance and 
gain matrices of the three dimensional tracker are given by 

(4.25) 

(4.26) 

(4.27) 

The P O  matrix is as defined by (3.39), and its submatrices are all 3 x 3 diag-
onal matrices whose diagonal elements are determined as follows: 

1. Replace S by Sk and I’ by ~ ‘ kin Eqs. (2.95). 
2. Use them in (2.85) to determine the unnormalized covariances, 

replacing c.vby f?k. 
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3. Comparing (3.39) and (2.60) and equating element to element, 
is obtained where 

(4.28) 

F o r k  = I ,  2,3, el and e2 are as given in (3.29) and (3.30). c3 is given in (4.21). 
Sk is obtained by solving the biquadratic equation 

S: - 6s: + 10s: - 6nzSk + n = 0 (4.29) 

for k = 1, 2, 3. 
The ?o matrix may also be expressed as (3.41) where the submatrices 

are all 3 x 3 diagonal matrices whose diagonal elements are determined 

as follows: 

1. Replace s by & and r by rk  in Eqs. (2.101). 
2. Use them in (2.85), which is equally applicable for filtered 

covariances also (replacing tildes by hats on both sides), to deter- 
mine the unnormalized filtered covariances, replacing 0,. by q,. 

3. Comparing (3.41) and (2.76) and equating element to element, PO 
is obtained. 

The KO matrix is given by (3.42) as a partitioned matrix and its 
submatrices are determined as follows: 

1. Replace S by sk and I' by r k  in Eqs. (2.100). 
2. Use them in (2.74), which is equally applicable for this model, to 

determine the unnormalized gains. 
3. Comparing (3.42) and (2.72) and equating element to element, KO 

is obtained. 

The filter is initialized on the basis of the first three measurements. 

4.4.5 Numerical Results 

The steady state P ,  p ,  and K matrices are evaluated from Eqs. (4.25) to 
(4.27) for the values of parameters used in the numerical results of Section 
4.3.5, and the results are tabulated. 

-.83E+00 .00E+00 .00E+00 .00E+00 S2E-01 .00E+U0 .00E+00 

.00E+00 .20E+01 .00E+00 .00E+00 .00E+00 .83E-UI .00E+00 

.00E+00 .00E+00 . I2E+02 .23E+OI .00E+00 .00E+00 .22E+00 

.29E+OO .00E+00 .00E+U0 .00E+00 .23E-01 .00E+00 .00E+00 
PO = .00E+00 .57 E t00 .OOEtO0 .00Et00 .00Et0U .31E-01 .00EtOU 

.00I+00 .00E+00 .23E+OI .53E+00 .00E+00 .00E+00 .62E-O1 

.52E-0 I .OOE+00 .00E+00 .OOE+00 .hUE-02 .00Et00 .00E+00 

.00E+00 .X3E-01 .00E+00 .00E+00 .00E+00 .71E-02 .00E+00 

.00E+00 .OOE t o 0  .22E+00 .62 E- 0 I .00E+00 .00Et00 ,99E-02 
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.32E+OI .71 E+OO -.42E+OI .73E+00 .95E-01 -.75E+O0 .91E-O1 .47E-02 -.63E-01 

.71E+00 .24E+OI -.24E+OI .95E-01 .62E+00 -.43E+OO .47E-02 .86E-O1 -.36E-01 
-.42E+01 -.. 24E+O 1 .92E+01 -.75E+00 -.43E+O0 .IXE+OI -.63E-O1 -.36E-01 . I  8E+00 

.73E+00 .95E-01 - .75EfOO .21 E+OO .13E-01 -.I hE+OO .32E-O I .46E-O3 - . I  SE-01 
P =  .95E-OI .62E+OO -.4 3 E+OO .I3E-01 ,I91;+00 -.91 E-01 .46E-03 .32E-01 -.84E-02 

-.75E+00 --.43E+00 .IXE+OI -.16E+00 -.91 E-01 .43E+00 -. I5E-01 -.X4E-02 S2E-01 
.Y I E-0 I .47E-O2 -.h?E-Ol .3 2 E -0 I .46E-03 -.15E-01 .70E-02 -.30E-04 -. 15E-01 
.47E.- 0 2  

- . m - n i  --.36E-01 

.86E-0 I -.3hE-Ol 
. I  XE+OO 

.4SE-03 
-.lSE-OI 

, 32F -0 I 
-.84E-02 

-.84E-02 

.52E-01 
-.ME-04 

-.15E-02 
.701-02 

-.85E-03 

-.XSE-O? 

.89E-02 

.0OE+00 .86E-02 .00E+O0 .0OE+O0 .I6E-02 .00E+00 .0OE+00 

. ISE+00 .OOE+OO .42E-OI .00E+00 .0OE+00 .62E-02 .00E+00 

.00F+00 .OOE+OO .00E+00 .46E+00 .0OE+00 .OOE+OO .44E-O1 

.OOE+OO .I?E-OI .OOE+OO .00E+00 .49E-02 .OOE+00 .0OE+00 
P" = .42E-0 I .00E+00 .34E-01 .00E+00 .UOE+OO .Y4E-02 .00E+O0 

.0()F+00 .00E+00 .00E+00 .IXE+00 .0OE+00 .0OE+00 .28E-O1 

.00E+O0 .4YE-O? .00E+00 .OOE+OO .28E-02 .OOE+00 .00E+00 

.62E-O2 .OOE+00 .94E-O2 .OO E+00 .00E+00 .3YE-02 .0OE+00 

.00E+00 .OOE+OO .00E+00 .28E-01 .00E+00 .OOE+OO .67E-O2 

.51E+O0 .21 E+OO -.90E+00 .I OE+(m .34E-01 -.17E+00 . I  IE-01 .26E-02 -. I6E-01 

.21E+O0 .2 7 E+OO -.52E+00 .34E-01 .62E-O1 -.98E-01 .26E-02 .77E-02 -.93E-02 
-.9OE+OO -.52E+00 .IXE+Ol -.17E+00 -.98E-0 I .35E+00 -. IhE-01 -.93E-02 .34E-01 

.IOE+00 .34E-01 -. 17Ef00 .5OE-01 .9 IE-02 -.65E-01 . I  OE-01 .6OE-03 -.87E-02 
P =  .33t-OI .62k-01 -.WE-OI .91E-02 .39E-01 -.37E-01 .60E-03 .97E-O2 -.50E-02 

- .17E+00 -.9XE-01 .35E+00 -.65E-01 - , 37E -0 I .I4E +oo -.87E-02 -.SOE-02 .2?E-01 

. l l E - 0 1  .26E-02 -.IhE-Ol .IOE-01 .hOE-03 -.X7E-02 .3XE-O2 -.36E-04 -.I 5E-02 

.26E-O2 .77E-O2 -.93E-02 .60E-03 .97E-02 - .5OF-02 -.361-04 .39E-02 -.85E-03 
-_IhE-0 I -.03E-02 .34E-0 1 -.87E-02 -.SOE-02 22E-01 -.I 5E-02 -.8SE-03 .57E-02 

- .97E+00 .00E+00 .00E+00 
.00E+00 .93E+00 .00E+00 
.00E+00 .00E+00 .80E+00 
.34E+00 .OOE+00 .00E+00 

KO= .00E+00 .26E+00 .00E+00 
.00E+00 .00E+00 .15E+00 
.61E-01 .00E+00 .00E+00 
.00E+00 .38E-01 .00E+00 

- .00E+00 .00E+00 .15E-01 

- .93E+00 .69E-03 .64E-01-

.69E-O3 .93E+00 .37E-01 

.64E-01 .37E-01 .84E+00 

.28E+00 .12E-01 .70E-01 

K =  .12E-01 .27E+00 .40E-01 
.70E-01 .40E-0 1 .20E+00 
.47E-0 I .48E-O2 .I7E-01 

.48E-O2 .41E-01 .lOE-01 

- .17E-01 . l  OE-0 1 .26E-01-

When these matrices are evaluated by executing the Kalman filter matrix 
equations (2.17) to (2.19) to steady state with quantities as applicable to 

this model, it may be verified that we get nearly the same result. 
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4.5 SUMMARY/SUGGESTED READING 

The techniques and necessary matrix transformation equations for 
developing three-dimensional models for tracking in cartesian coordinates 
are given in Section 4.2. Using these techniques, the uncoupled one 
dimensional trackers described in Chapter 2 may be extended to three 
dimensioiis for estimating position, velocity, and acceleration of an aircraft 

or similar vehicles. In Section 4.3, the one dimensional Friedland’s model 

is extended to three dimensions and the steady state characteristics are 
expressed in compact forms using the techniques given in Section 4.2. 
The covariance and Kalman gain matrices are expressed in terms of those 
matrices which are applicable for tracking along the x axis. In  Refs. 2 
and 3, this model is discussed and the steady state results are given in scalar 
forms. In Ref. 4, Ramachandra’s model I 1  is extended to three dimensions 
and the steady state results are analytically determined. 

In extending the uncoupled models to higher dimensions for tracking 
in cartesian coordinate system, the following two assumptions have been 
made. 

1. The maneuvers along the s, y ,  and z axes are independent. 

2. The maneuver noise is of equal variance along the x, y ,  and z axes. 

These assumptions are eliminated in the alternate maneuver model dis- 
cussed in Ref. 5 .  There it is assumed that both the maneuver characteristics 
and the measurement uncertainties are known in polar coordinates. These 
are coupled to the cartesian coordinate system, explicitly assuming that 
the axes of the plant noise ellipsoid aiid the measurement noise ellipsoid 
are parallel. The covariance and Kalman gain matrices are expressed in 
terms of those matrices which are applicable for tracking in polar 

coordinates. 
In Ref. 6, Baheti presents an efficient approximation of the Kalman 

filter for target tracking. The filter gains aiid the tracking errors of the 
approximate method are shown to be identical to the extended Kalman filter 
with reduced computation requirements. 
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5.1 INTRODUCTION 

The continuous-time exponentially correlated velocity and acceleration 
(ECV and ECA) models of Fitzgerald [ I ]  are presented in this chapter 
for continuous position measurements. Their steady state solutions are also 

discussed. 

75  
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5.2 FITZGERALD'S CONTINUOUS-TIME ECV TARGET 

TRACKING FILTER 

Consider a continuous-time one-dimensional two-state Kalman-Bucy filter 
for tracking a vehicle such as an aircraft moving with an exponentially cor- 
related velocity (ECV) perturbed by a white noise process of spectral density 

y. The position of the target is assumed to be measured continuously with a 
white measurement noise of spectral density ro. 

5.2.1 Dynamic Model 

The ECV tracking model [ 11 is described by the equations of motion given by 

X = F X + W  (5.1) 

where 

F = [ ' 0 - l / z  ] (5.2) 

(5 .3)x = [l] 
and 

(5.4)
= [(:I  

X is the state vector consisting of the target position x and target velocity k 
at  time t ,  and W is a white noise vector with covariance Q given by 

E ( W ( t )W 7 ( t ~ ) )= Qd(t - U )  (5 .5)  

The covariance matrix Q is given by 

:] (5 .6)
Q = [ :  

y is the spectral density of the white noise process cu given by 

where o,, is the standard deviation of the target velocity. 
The resulting jc  process is exponentially correlated with correlation 

time t and variance a: = qr /2 .  
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5.2.2 Measurement Model 

The position of the target is assumed to be measured continuously. The 
measurement equation is given by 

-Y,~,= H X  + 11 (5.8) 

where 

H = [I 01 

U is a white measurement noise of spectral density R = ro. 

5.2.3 Covariance Matrix 

The covariance matrix is given by 

P = F P + P F ~ - P H ~ R - ' H P + Q  (5.9) 

5.2.4 Kalman Gain Matrix 

The gain matrix is given by 

K = PHTR- '  (5.10) 

5.2.5 Steady State Covariance Matrix 

A closed-form steady state solution for the Kalman filter covariance matrix 
is analytically obtained in [l]  by directly solving the algebraic Riccati 

equation (5.9). 
Let the error covariance matrix P and its derivative i) be defined as 

(5.11) 

(5.12) 

This satisfies the differential equation (5.9) which is equivalent to the 
following three scalar differential equations: 

(5.13) 

(5.14) 

(5.15) 



78 Chapter 5 

Let the normalized covariances be defined as 

(5.16) 

The steady state solution is one which drives all the derivatives in 
(5.13) to (5.15) to zero. Thus, in the steady state we have from (5.13) to 
(5.15) and (5.16), 

(5.17) 

(5.18) 

(5.19) 

where 

r = q z4 /ro (5.20) 

Let 

Yll = a (5.21) 

Then from (5.17), 

Y12 = a2/2 (5.22) 

and from (5.18) and (5.22), we get 

Y22 = n2( 1 + 4 / 2  (5.23) 

Putting (5.22) and (5.23) in (5.19) yields 

n2(a+ 2)2 = 4r 

or 

or 

a =  - I  + JG (5.24) 

and hence YII,  Y12, and Y13 are obtained from (5.21) to (5.23). 
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5.2.6 Steady State Gains 

The gain given by (5.10) is equivalent to 

PI I
K1 =- (5.25) 

I‘o 

(5.26) 

5.3 RANDOM WALK VELOCITY MODEL 

As z -+ 00, the ECV model reduces to a random walk velocity (RWV) or 
white acceleration model. By equating the derivatives to zero and letting 
z -+ 00 in (5.13) to (5.15), the steady state solution for this case becomes 

PI 1 / I ’o  = f i (q/I’0)”4 (5.27) 

5.4 NASH’S GENERAL SOLUTION TO ECV FILTER 

The steady state solution obtained by Nash [2] is given by 

PlI/(I’A)= &/A = 1/1+201- 1 (5.30) 

p12/(rA2) K2/A2 = a + 1 - (5.31)= 

where 

a = ( l / ; 1 2 ) f i  (5.33) 

and 

l /z  (5.34)/I= 

It may be easily seen that the steady state solutions of Fitzgerald and Nash 
are identical. 
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5.5 FITZGERALD’S CONTINUOUS-TIME ECA TARGET 

TRACKING FILTER 

Consider a continuous-time one-dimensional three-state Kalman-Bucy filter 
for tracking a vehicle such as an aircraft moving with an exponentially cor- 
related acceleration (ECA) perturbed by a white noise process of spectral 
density q. The position of the target is assumed to be measured continuously 

with a white measurement noise of spectral density 1’0. 

5.5.1 Dynamic Model 

The ECA tracking filter [11 is described by equations of motion of the form 

given by (5.1) with 

x = [i] (5.35) 

0F =  [ 0 10 (5.36): ]
0 0 -l /z 

w = [ j  (5.37) 

X is the state vector consisting of the target position x, target velocity i,and 
target acceleration 2 at time t .  W is a white noise vector which satisfies (5 .5 ) .  

The covariance matrix Q is given by 

(5.38)Q=[i  91 
where q is the spectral density of the white noise process CO given by 

q = 2 4 / r  (5.39) 

C T ~is the standard deviation of the target acceleration. 
The resulting iprocess is exponentially correlated with correlation 

time z and variance 02 = q 2 / 2 .  
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5.5.2 Measurement Model 

The position of the target is assumed to be measured continuously with a 

white measurement noise U of spectral density 

R = 1’0 (5.40) 

The measurement equation is of tlie form given by (5.8) with 

H = [ l  0 01 (5.41) 

5.5.3 Covariance Matrix 

The covariance matrix satisfies the differential equation (5.9). 

5.5.4 Kalman Gain Matrix 

The Kalman gain matrix is given by (5.10). 

5.5.5 Steady State Covariance Matrix 

A closed-form steady state solution for the covariance matrix is analytically 

obtained by directly solving the algebraic Riccati equation (5.9). 
Let the error covariance matrix P and its derivative b be defined as 

(5.42) 

and 

(5.43) 

Let the normalized covariances be defined as 

(5.44) 
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Equation (5.9) is equivalent to the following six scalar differential 

equations: 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

The steady state solution is the one which drives all the derivatives to zero. 

Thus in the steady state, we have from (5.44) and (5.45) to (5 .50) ,  

(5.51) 

(5.52) 

(5 .53)  

(5.54) 

(5 .55)  

(5.56) 

where 

r = 32qzh/ro (5.57) 

Let 

Y,I = n (5 .58)  

Then from (5.51) to (5.55), we have 

Y12 = n2/2 (5.59) 

Y23 = n4/8 (5.60) 

y13 = n4//[8(1+ 4 1  (5.61) 

Y22 = d ( 3 n  + 4)/[8( 1 + U ) ]  (5.62) 

Y33 = [2r- 2 / ( l  + (5.63) 

Putting the values in (5.56) and simplifying, we get 

a4(n+ 214 = 2 4  + 
or 

n2(n+ 2)2= 2/z;( 1 + a )  (5.64) 
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The biquadratic equation (5.64) can be solved by standard procedures. It has 
two real roots, and the solutioii given below can be shown to be the only 
positive one [l]. 

where 

4 
17 = bi i-h2 -I-5 (5.66) 

with 

hl = ($?$+ r + / r 2  + 128r/27)'/' (5.67) 

h2 = (3+ r - J r 2  + 128r/27)1/3 (5.68) 

Using (5.44) in (5.58) to (5.60), PIl, P12, and P22 may be written as 

PI1 = r f )  (5.69) 

ro a
P12 = - ( - ) 2  (5.70)

2 r  

r() a 
p23 = jJ (J4 (5.71) 

From (5.69) to (5.71), i t  may be noted that for a fixed 1'0, P11, P12, and 
are proportional to a power of a / r .  If PI2 and P23 are interpreted as 

derivatives of autocorrelation functions of position and velocity errors 

[3, p. 3161, then i t  may be concluded that the value of r which maximizes 
the position error variance P I1 also maximizes the initial slopes of the pos-
ition and velocity error autocorrelation functions. Hence, Fitzgerald [I]  
interprets this roughly as a minimization of the memory length of the filter. 

5.5.6 Kalman Filter Gains 

From (5.10), the Kalman filter gains are given by 

(5.72) 
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5.6 RANDOM WALK ACCELERATION MODEL 

A special case of the above solution is found when z is allowed to approach 
infinity. In the three-state case, this produces an integrated white noise 
or "random walk" acceleration (RWA) or a "white jerk" model. In the 
limit, the solution may be found as: 

(5.73) 

The elements of the gain vector are given by 

K ,  = 2(q/r") l /6  (5.74) 

K2 = 2 ( q / r p  

K3 = ( q / d112 

The above results are strictly valid only when the pertinent parameters 
are time invariant. In other cases, they may be used successfully if the par- 
ameters vary slowly enough [I]. As an example, the gains given by (5.74) 

converted to discrete gains [4, sec. 4.31 have been used with considerable 

success in missile intercept problems [ 5 ] .  I n  such problems, the target 
maneuvers are approximated by a step change in acceleration: The 
RWA filter follows such a maneuver with zero steady state error. Fitzgerald 

has also shown that the RWA model is a theoretically correct one, when the 
target maneuver is an acceleration step occurring at  a random time [6]. 

Faruqi and Davis [7] present a pseudo steady state solution for the 
three-state RWA problem, for the case in which 1'0 varies with target range 

in such a way as the radar thermal noise proportional to the sixth power 
of range when expressed in target displacement unit. For constant range 
rate, the covariance matrix elements vary with range as given in (5.73) 
but their actual magnitudes depend on the range rate [ l ] .  

5.7 SUMMARY 

In this chapter, the two-state ECV model is discussed in Section 5.2 and the 

steady state solution of Fitzgerald is presented. The solution to the random 
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walk velocity model is obtained as a special case of the ECV model and is 
given in Section 5.3. The general solution to the ECV filter obtained by Nash 
is given in Section 5.4. The solutions obtained by Fitzgerald [ 13 and Nash [2] 
are identical. The continuous-time ECA target tracking filter is discussed in 
Section 5.5 and the closed-form solution obtained by Fitzgerald is pre- 
sented. The solution to the random walk acceleration model is obtained 
as a special case of the ECA model and is given in Section 5.6. 
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6.1 INTRODUCTION 

The continuous-discrete-time one-dimensional exponentially correlated vel- 
ocity and acceleratioii (ECV and ECA) target tracking filters are discussed 
in this chapter for discrete position measurements obtained by a 
track-while-scan radar sensor. Exact closed-form solutions of the steady 
state ECV and ECA filters are presented. 

87  
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Gupta and Ahn [I] have obtained the exact closed-form solutions for 
the discrete ECV and ECA tracking filters without any assumptions based 

on the system’s parameters. Simple process noise matrices with only one 
nonzero element are considered in Ref. 1 as given by (5.6) for the ECV model 
and as given by (2.55) for the ECA model, and the steady state character- 
istics of the filters have been analytically obtained. In the ECV/ECA models 
considered in Ref. 1 ,  it is assumed that the target velocity/acceleration 
decays exponentially between measurements with no continuous process 
noise and undergoes an instantaneous random change at  each sampling 
time. Gupta and Ahn applied Kalman’s recursive algorithm and also 
Vaughan’s nonrecursive algorithm [2] to obtain separate solutions for 
the discrete ECV tracking model. For the ECA model, they demonstrated 
that Kalman’s recursive algorithm fails to yield a closed-form solution. 
However, Vaughan’s nonrecursive algorithm has been applied successfully 
to obtain solutions for both ECV and ECA models. 

Gupta [3] considered a more general process noise matrix with all the 
elements present for the ECV and ECA models and obtained exact steady 
state solutions applying Vaughan’s nonrecursive algorithm. 

In Ref. 4, a closed-form solution for ECV filter is obtained for the most 
general process noise matrix with known system’s parameters. 

6.2 ECV TARGET TRACKING FILTER 

Consider a vehicle such as an aircraft moving with a random exponentially 
correlated velocity (ECV) perturbed by a white noise process. 

6.2.1 Dynamic Model 

If the continuous-time dynamic model of the vehicle described by Eq. (5.1) is 
sampled at  discrete times, then the discrete-time dynamic model may be 
described by a vector matrix equation of the form [4] 

& + I  = Fx, + Un (6.1) 

where 

1 T ( 1  - e )  

. = [ o  e I 
The covariance matrix of Uplis assumed to be given by [3, 41 

[::lQ =  q i 2 ]  
q 2 2  
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where 

(11 i = z24[4e- 3 - e2 + 201 (6.5) 
2

912 = q , [ I  - e]' 
2 

9 2 2  = a# - e2] 

with 

e = e x p ( 4 )  

H = T / s  

T is the sampling time, a: is the variance of the target velocity, and z is its 
correlation time. 

6.2.2 Measurement Equation 

The position of the target is assumed to be measured by a radar at  discrete 
intervals of time T seconds and all measurements are noisy. The measure- 
ment equation is given by 

x,d/O= HX,, + hf (6.7) 

where 

H = [ I  01 

and the variance of un is R = 0.2,. 

6.2.3 Steady State Predicted Covariance Matrix 

The steady state predicted covariance matrix is given by 

P - Q = F(1+PHTR- 'H) - 'PF7 '  (6.9) 

If i) is defined as in (2.21), then the normalized covariances may be denoted 
as 

Vll = &/.2 (6.10) 
" 

" 2 
y12 = r(l - e)P12/0,, 

Y22 = r2(1- e)2F22/Cr: 

Then equation (6.9) gives rise to the following three nonlinear equations: 

(6.1 1) 

(6.12) 

(6.13) 
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where 

H I  = 1 + (6.14) 

H2 = Y22H1 - Y;2 

rl =.f’[20 - ( I  - e)(3 - c.)] 

r2 =f (  1 - e)-
3 

I’3 = r2(1 + e)  

f’ = l/(r0I2 (6.15) 

with 

r = ax/(a,,T) (6.16) 

Let 
-
Y,1 = x (6.17) 

Putting (6.1 1 )  in (6.12) and rearranging yields 

- ex2 + ( I  + x)r4 
(6.18)y12 = 

I + c . + . Y  

with 

r4 = r2 - er1 =.f’(l - e2 
- 2eO) (6.19) 

Putting (6.11) in (6.13) and rearranging using (6.18), we get 

(6.20) 

with 

r5 = r3 - e2rl =.f‘[(l - e )2 + 2e2 ( 1  - e - o)] (6.21) 

Putting (6.18) and (6.20) in (6.13) and simplifying, we get the following 
biquadratic equation: 

x4+ a 3 2  + a2x2+ nlx + a0 = o (6.22) 

where 

a3 = 2a + 2f[n( 1 + 0) - 201 (6.23) 

a2 = a* + ri + 2f*[a(1+ a - (1) - 201 

a1 = 2 4  + 2qf’[~1(1- 0) - 201 

2no = r4 - 2af[a(0 - ae) - 4e( 1 + e)] 
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with 

n = l - e  2 (6.24) 

x- may be found by solving (6.22) using standard procedure. Then Y12 and 
Y22 are found from (6.18) and (6.20), respectively. It can be shown that 
the polynomial (6.22) will have only one acceptable real and positive sol- 

ution [ l ,  31. 

6.2.4 Steady State Filtered Covariance Matrix 

Let the normalized steady state elements of the filtered covariance matrix be 
also defined as in (6.10), replacing tildes by hats on both sides. Then they 
may be derived in terms of the normalized elements of the p matrix as 

i .11 = s/( 1 +x) (6.25) 

i.12 = k,2/(1 +x)  

i r22 = y z 2  - Y;2/( 1 + x) 

6.2.5 Steady State Gain Matrix 

If the steady state normalized gain elements are written as 

GI = K I  (6.26) 

G2 = Z( I - e)K2 

then they may be shown to be given by 

GI = yii (6.27) 

Thus the normalized covariances and gains of the ECV filter are 
expressed only in terms of two independent dimensionless parameters 8 
and r .  

6.3 VAUGHAN’S NONRECURSIVE ALGORITHM 

Vaughan [2] derived a nonrecursive algebraic solution for the discrete 
Riccati equation in which f,, is computed directly from the initial covariance 
matrix PO.In the steady state ( 1 2  -+ oo), Vaughan established that is inde-
pendent of PO. The method of determining the steady state p matrix is 
as follows [2, 11: 
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1. Given the matrices F ,  H ,  R, and Q of the model, the Hamiltonian 
of the system (n  x r z )  is given by 

(6.28) 

2. The eigenvalues of K f  outside the unit circle are determined. If A is 
an eigenvalue of Kf' ,  then 1/A is also an eigenvalue. 

3. Determine the eigenvector matrix W partitioned as 

W =  
WII r'] (6.29) 

.w21 w22 

and satisfying 

WD = K1.W (6.30) 

where 

D =  

A 

_ . _  '11 (6.31) 

, 0  A - '  

(6.32) 

4. The steady state I; matrix is then given by 

F = W?,W,' (6.33) 

6.4 STEADY STATE ECV FILTER BY VAUGHAN'S METHOD 

Analytical solution of the ECV target tracking filter based on Vaughan's 

iionrecursive algorithm is presented in this section. 
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6.4.1 Characteristic Equation 

By Vaughan’s algorithm [2], the solution of the filter equation (6.9) is deter- 
niined by the eigenvectors of the matrix given by (6.28), where F and H are 

given by (6.3) and (6.8) and Q is giveii by (6.4). By substituting all the 
matrices in  (6.28), we get 

where 

(6.35) 

a = e + y  (6.36) 

h = 0 - J )  

j’ = l / c  

The characteristic equation is given by 

( K f- IAI = 0 (6.37) 

where I is a 4 x 4 identity matrix. By direct evaluation of the determinant 
equation (6.37), the characteristic polynomial may be obtained as 

A4 - aA3 + p i 2 - cd + 1 = 0 (6.38) 

where 

(6.39) 

,f is given by (6.15). 

6.4.2 Eigenvectors Determination 

The eigenvectors corresponding to the eigenvalues Aj can be determined 
from the matrix equation given by 

(Kr - AI)V = 0 (6.40) 
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By direct evaluation of (6.40), the eigenvectors may be found as 

(6.41) 

where 

.rot - 1)L; 
(6.42)d; = 

J.’ - A; 

e; = (A; - l)a,2 

o 3 ( 2  - a)&(1 + AJ
.h = 

(e  - L ; ) ( _ J ~- Ai) 

i =  1, 2. 

6.4.3 Steady State Results 

By Vaughan’s algorithm the steady state p matrix is now given by (6.33), 

where WIl and W21 may be written as 

(6.43) 

(6.44) 

The elements of W I ~and F t 5 1  are obtained by putting i = 1, 2 in (6.42). 
From (6.33), we have 

(6.45) 

From (6.45), the elements of p matrix may be written as 

(6.46) 

Using (6.42) in (6.46) and simplifying, the normalized elements of the 
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matrix may be found as 

(6.47) 

- f ( e - I y [ l  - ( I  + O ) S 2 + S I I
Y22 =‘ 

e - SI +ys2 

where 

(6.48) 

and./’ is given by (6.15). In Ref. 5, Ekstrand expressed the sum and product 
of eigenvalues 11 and A2 in terms of the coefficients of the characteristic 

polynomial as 

(6.49) 

where cc and /j are given by (6.39). Using (6.49), ? , I ,  p12,and ?22 can be 
determined from (6.47) without evaluating the eigenvalues. From (6.25), 
?lI, ?12, and ?22 are given by 

(6.50) 

From (6.27), the steady state normalized gain elements may be found. 

6.4.4 Numerical Results 

The steady state normalized covariances and gains are evaluated for the 
following values of the parameters and the results are given below: 

Parameters 

8 = 0.05 

r = 0.6 
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Figure 6.1 Position accuracy before and after measurements. 

Computer Resu Its 

- [ 1.6587 0.75731 
Y =  

0.7573 0.5915 

,. [ 0.6239 0.28491 
Y =  

0.2849 0.3758 

For Q = 0.05, the position accuracy before and after position measure- 
ments is plotted against r in Figure 6.1, the velocity accuracy before and 
after position measurement is plotted against r in Figure 6.2, and the 
normalized velocity gain against r is shown in Figure 6.3. 

6.5 THE DISCRETE ECA TARGET TRACKING FILTER: 

SINGER’S MODEL 

In Singer’s model [6], the maneuver equations are derived for the actual 
continuous-time target motion and are then expressed in discrete time 

according to the standard discretization procedure, thereby providing accu- 
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Figure 6.2 Velocity accuracy before and after measurements. 

Figure 6.3 Normalized velocity gain as a function of I’ 
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rate statistical representation of the true target behavior. In this way, 
maneuvering targets are well modeled by Singer assuming a linear acceler- 
ation model driven by random noise chosen according to a distribution 
of potential maneuver accelerations. This filter maintains track through 

the maneuver and also provides good estimates of position, velocity, 
and acceleration if the maneuver parameter is correctly chosen. 

6.5.1 Dynamic Model 

The target equations of motion in one dimension are represented as in (6.1) 
with 

["1Xtl = (6.5 1) 

"Yt1 

and 

(6.52) 

where 

a13 = z2 ( f l +  e - 1) (6.53) 

a23 = ~ ( l- e )  

a 3 3  = e 

8 = T / T  (6.54) 

e = exp(-O) 

T is the sampling time and z is the correlation time of the target acceleration. 
The process noise covariance Q is expressed as 

(6.55) 

where 

(6.56) 
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6.5.2 Measurement Equation 

The target position is assumed to be measured at uniform sampling intervals 
of time T seconds and all measurements are noisy. The measurement 

equation is given by (6.7) with 

H = [ I  0 01 (6.57) 

and 1 1 , ~  is the additive white noise with variance R = ot.. 

6.5.3 Filtering Equations 

The filtering equations for the ECA model are given by (2.50) to (2.54). 

6.5.4 Filter Initialization 

In Singer's model, the filter is initialized on the basis of the first two position 
measurements as 

(6.58) 

The corresponding covariance matrix is initialized as 

(6.59) 

where 

(6.60) 

a2 = - ( f l + e - 1 )4 7  

8 

When the acquisition of the target occurs before the target starts 
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maneuvering, the above covariance initialization reduces to 

(6.61) 

6.5.5 Maneuver Variance Deter mination 

In Singer's model [6], the target acceleration n(t) is modeled as a zero mean 

random process with exponential autocorrelation 

R(T)= E{n(t)cr(t+ z)} = O ; l d * '  (6.62) 

where (T: is the variance of the target acceleration and l l a  is the time con- 
stant of its autocorrelation. 

The variance 02 is given by 

of, = $ l
n2 

+4PM -PO)  (6.63) 

where PAdis the probability that the target moves with a maximum accel- 
eration nh1 (or -and )  and PO is the probability that the target has no 
acceleration. 

6.5.6 Special Cases 

When 8 is small, F reduces to the newtonian matrix of the form given by 
(2.46) and the process noise covariance matrix reduces to 

T 4 / 2 0  T 3 / 8  T 2 / 6  
T 3 / 8  T 2 / 3  T / 2 ]  (6.64) 

T 2 / 6  T / 2  1 

For a fixed sampling rate, z -+ 00, Q would reduce to the form given by 
(2.55). 

6.6 FITZGERALD'S STEADY STATE ANALYSIS 

The exponentially correlated acceleration (ECA) model of Singer described 
above is characterized by the following four independent parameters: 

z = correlation time 
T = the sampling time 

(T, = rms measurement error 
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o(l = rms acceleration 

Fitzgerald [7] has shown that Singer’s model can be completely speci- 
fied by only two independent dimensionless parameters if the filter is appro- 
priately normalized. The state variables of the model are redefined to be the 
three dimensionless quantities as 

(6.65) 

Then in the steady state, the rms estimation errors in the new state 

variables and the dimensionless optimum gains g ,  11, and k in the Kalman 
gain vector 

K =  h b  (6.66)[
2k/ T 2

] 
may be shown to depend on only two parameters rl and r2 given by 

1 . 1  = T / T  (6.67) 

r2 = a,T 
2 /a, 

Depending upon the situation when rl approaches zero, r2 may be replaced 

by a parameter r3 given by 

r3 = rirl = o:T3T/o: (6.68) 

and when rl approaches infinity (random walk acceleration model), r2 is 

replaced by a parameter 1’4 given by 

(6.69) 

The steady state solutions were generated in Ref. 7 for a wide range of rl and 
r2 by allowing the filter to run until the steady state was reached and the 
performance of the filter was evaluated. The data presented in Ref. 7 
are useful for a preliminary filter design and performance prediction. 

6.7 SINGER’S ECA MODEL BASED ON VAUGHAN’S 

ALGORITHM 

If the Q matrix elements given by (6.56) of Singer’s model are substituted in 
the steady state results of the Genaral ECA model of Gupta [3], the steady 

state characteristics of the Singer’s model can be obtained. 
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6.7.1 Characteristic Polynomial 

By putting all matrices in (6.28), the hamiltonian may be found as 

(6.70) 

(6.71) 

cr=e+y (6.72) 

h = e - y  

n1= 8 - 1 + e  

Cl2 = 0 + 1 -y 

From (6.37), the characteristic polynomial may be obtained as: 

1 6  - M A 5  + pn4 - y n 3  +pn2 - rxA + 1 = 0 (6.73) 

where 

(6.74) 
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with 

X I  = 4 + n  (6.75) 

a j  = h + 20 + R 3 / 3  

p1 = 7 + 4 a  

lJ3 = 4h + 2fl(cr + 2) + ( a  - 4)(f13/3) 

1'1 = 8 + 60 

73 = 6h +48(1 +0) + 2(1 - 2n)(H"/3) 

(6.76) 

6.7.2 Eigenvalues Determination 

Let 

ti = 3,; + I / &  i = I ,  2, 3 (6.77) 

Then 1; can be expressed i n  terms of ti as 

Ai = [tj 5 > I (6.78) 

As the inverse of an eigenvalue is also an eigenvalue of K,, the characteristic 
polynomial must be of the form given by 

fJ(1 - A;)()* - I/ ) ; )  = 0 (6.79) 
i =  I 

Expanding (6.79) and comparing it with (6.73), we find 

tl + t2 + t 3  = a (6.80) 

tlt2 + r2t3 + t3tl = p - 3 (6.8 1)  

tlt2t3 = y - 2a (6.82) 

From (6.80) and (6.82), we get 

t l ,  t2 = ;[(z - t3) f J(a - t d 2  - 4(y - 2a)/t3] (6.83) 

and using (6.81), we get a cubic equation in t3 as 

t; - at: + ( p  - 3)t3 - ( y  - 2a) = 0 (6.84) 

Equation (6.84) can be solved for t3 using standard procedure and then tl 
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and t 2  are obtained from (6.83). Knowing t j ,  Aj can be obtained from (6.78). 
If Ini( < 1, then it is replaced by 1/ L j  to get the eigenvalues lying outside the 
unit circle. 

6.7.3 Eig envec to r s Determination 

If l i  is an  eigenvalue of K f ,  then its corresponding eigenvector may be found 
from (6.40) by direct calculation as 

V =  (6.85) 

where 

(6.86) 

A;[bI(I + A,’) - h2A;] 

( L j  

h j  
- 1)b- J-;)(e - A j )  

with 

hi = h + 20 (6.87) 

6 4  = 2(2 - 0) + crO2 

0 2  = 83- 1 - y  
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6.7.4 Steady State b Matrix 

The steady state p matrix is given by (6.33), where W11 and W.1 are deter- 
mined by the eigenvectors as 

Wll = (6.89) 

w21 = (6.90) 

The inverse of W I Imay be found to be given by 

(6.91) 

where 

(6.92) 

In (6.92) and subsequent equations, the summation extends over three terms 
taken in cyclic order as 

Let the normalized covariances be defined as: 

(6.94) 

By direct evaluation of (6.33), the normalized elements of matrix may be 
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(6.95) 

where 

.f = l/(rU2)2 (6.96) 

6.7.5 Steady State Matrix 

If the normalized k matrix elements are defined as 

911 = ?11/0?. (6.97) 

P I 2  = 2 1 2 / 0 ; .  

= T2F13/0 :  

i;, = T 2 P 4  

- 3 n  2 
23 - T P23/0, 

4 ^  2
Y33 = 5 P33/0.u 

then from (2.56) and (2.58), they may be derived as 

PI1 = W H I  (6.98) 

h 2  = h 2 / H I  

PI3 = FdHI 

P 2 2  = F 2 2  - Ff2/H1 

P 2 3  = Y223 - h 2 Y 1 3 / H I  

k33 = F33 - ?:,/HI 
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(6.99) 

6.7.6 Steady State Gain Vector 

From (2.56), the normalized gain elements may be found as 

GI = Ki = Y11 (6.100) 

G2 = TKL,= Y12 

G~ = T ~ K ~= 

Thus all normalized covariances and gains are functions of only two inde- 
pendent dimensionless parameters I’ and 8. 

6.7.7 Numerical Results 

The normalized covariances and gains given by (6.95), (6.98), and (6.100) 
are evaluated for the following values of the parameters and the results 

are presented below. 

POrumeters 

I‘ = 0.4 

8 =  1.137078 

COI I  11, uteI’ ResuIts 

25 1. I866 325.9806 137.0729 

2. = [325.9806 464.6805 263.5614 

137.0729 263.5614 365.3249 1 
0.9960 1.2926 0.5435 

P = [1.2928 43.3127 86.3787 

0.5435 86.3787 290.820 1 
G = 1.2926[:::7 

If the steady state P ,  k, and K matrices are evaluated from the Kalman 
filtering matrix equations and then normalized as given by (6.94), (6.97), 
and (6.100), we get the same results. 
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6.8 BEUZIT’S STEADY STATE RESULTS 

The exact closed-form solution of the steady state ECA filter is presented in 
this section. These results are derived by Beuzit [8] based on a comparison 
between the Kalman and Wiener filter theories. 

6.8.1 Steady State Kalman Gain 

If the Kalman gain vector is defined as in (2.72), then the normalized gain 
elements of the ECA filter may be written as 

GI = K I  (6.101) 

G2 = z K ~  

G3 = 

The steady state normalized elements of the Kalman gain vector may 

be derived as [8] 

(6.102) 

where 

P = 1 -gl +g2 -g3 (6.103) 

s = 1 +g1 +g2 +g3 

c = (1  + e)/(l - e )  

with 

e = exp(-8) (6.I 04) 

-v = l/CJ 

and 

8 = T/7 

gl, g2,  and g3 are obtained as follows: Let 

r = MG2) (6.105) 

and 

b = 4C(C/  12 - C/H2+ 2/H3) (6.106) 
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then g3 is determined by the relation [S]: 

g: = h + 8t-)r2C2 (6.107) 

gl and g2 are obtained by solving the following two simultaneous equations 

PI: 

(6.108) 

(6.109) 

with 

g1g2 ' g 3  (6.1 10) 

where 

(6.1 1 I )  

(6.1 12) 

Eliminatinggl between (6.108) and (6.109), we get the following biquadratic 

in g2: 

g2 is obtained by solving the biquadratic (6.1 13), and then gl is determined 
using (6.108) or (6.109). g1, g2, and g 3  are real, positive and satisfy the 

inequality (6. I 10). 

6.8.2 Steady State b Matrix 

Let the normalized elements of the matrix be defined as in (6.97). Then 
these normalized covariances are derived in Ref. 8 as 

(6.114) 
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where 

1
j‘ = -

(fI2lj2 
(6.1 15) 

6.8.3 Steady State Matrix 

From (2.19), the predicted covariance matrix may be written as 

?) = ( I  - KH)-+ (6.1 16) 

If the normalized elements of the p matrix are also defined as in (6.94), 
then they may be derived as 

PI, = ? H A 1  -GI) (6.1 17) 

Thus the normalized gains and covariances are all expressed in terms 
of the dimensionless parameters r and fl. It may be noted that 8 and Y are, 
respectively, the reciprocals of the quantities 1’1 and 1’2 defined in (6.67). 

The steady state filter characteristics are evaluated for the following 
values of the parameters: 
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Parameters 

r = 2.0 

8 = 0.1 

For these values of the dimensionless parameters, gl, g2, and g3 are obtained 
as 

gi = 6.8088 

g2 = 22.1798 

g3 = 35.8085 

and hence, 

g = 65.7972 

/I = -19.4375 

C = 20.0167 

The normalized gains and covariances may be obtained from (6.102), 
(6. I 14), and (6. I 17) as 

G = [:::::I 3.6655 

0.6735 3.6655 9.1111 

P = [ 3.6655 38.9349 155.8860 

9.111 1 155.8860 1097.3300I  
2.0629 11.2272 27.9067 

V = [ 1I .2272 80.0887 258.1787 

27.9067 258.1787 1351.5910I  
TO evaluate i;, F, and K matrices, let 

(T, = 0.7040 nm 

and 

T = 4.0 s 

so that 

T = 40.0 s 

C T , ~= 0.0220 nm/s2 
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Using (6.94), (6.97), and (6. loo), the P ,  k, and K matrices may be obtained 
as 

1.0224 0.139 1 0.0086 

F = [0.1391 0.0248 0.0020 

0.0086 0.0020 0.00031 
0.3338 0.0454 0.0028 

k = [0.0454 0.0121 0.0012 

0.0028 0.0012 0.0002 

K = 0.0916[::::::I 
1 

If these matrices are evaluated using the Kalman filter matrix equations 
(2.56) to (2.58), we get the same results for the parameters used. 

For 0 = 0.05, the position accuracy before and after measurements is 
plotted against r in Figure 6.4, the velocity accuracy in Figure 6.5, the accel- 

eration accuracy in Figure 6.6. In Figure 6.7 the velocity gain is plotted 
against r ,  and in Figure 6.8 the acceleration gain is plotted against r. 

Figure 6.4 Position accuracy before and after measurements. 
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Figure 6.5 Velocity accuracy before and after measurements. 

Figure 6.6 Acceleration accuracy before and after measurements. 
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Figure 6.7 Normalized velocity gain as a function of I’ 

Figure 6.8 Normalized acceleration gain as a function of I’. 
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6.9 SUMMARY 

A closed-form solution of the steady state ECV filter obtained by the appli- 
cation of the Kalman recursive algorithm is presented in Section 6.2 for 
discrete position measurements made by a track-while-scan radar sensor. 
Vaughan’s nonrecursive algorithm for finding the predicted covariance 
matrix is briefly outlined in Section 6.3. Vaughan’s method of obtaining 
steady state results of the ECV filter is described in Section 6.4. Singer’s 
model of the discrete ECA target tracking filter is presented in Section 6.5. 
Fitzgerald’s steady state analysis of the Singer’s model is presented in Sec- 
tion 6.6. 

Two methods of analytically determining the steady state character- 
istics of the Singer’s ECA model are presented in Sections 6.7 and 6.8. 
The first method is based on Vaughan’s noiirecursive algorithm, and the 
second method worked out by Beuzit [8] is based on a comparison between 
the Kalman and Weiner filter theories. As demonstrated by Fitzgerald [7], 
the steady state normalized covariances and gains are shown to depend 
on only two independent dimensionless parameters in both methods. In 
Ref. 9, the Singer’s ECA target tracking filter is extended to two dimensions. 
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7.1 I NTRODUCTlO N 

Most of the tracking algorithms that have been developed make use of the 
position measurements only and the use of Doppler measurements has 
not often been considered in the tracking process. In  Refs. 1 to 5 and 7, 
it has been established in principle that more accurate state estimates 
are possible by the inclusion of Doppler data. 

In a track-while-scan system employing pulsed Doppler such as the 

moving target detector (MTD) [6], target Doppler is available as part of 
the measurement process. Experiments with MTD field data have shown 

that the measured data corresponds unambiguously to the range rate of 

the target approximately 85 percent of the time. This applies when both 
a high- and a low-pulse repetition rate (PRF) coherent processing 
interval are obtained during a single sweep past the target [l]. Simple 
rules can be formed to reject erroneous Doppler which occurs 15 percent 
of the time and is due mainly to jet engine and propeller modulations 

[l l .  
Thus it is of interest to incorporate valid Doppler data,accurate to a 

few knots, in the tracking process. Such data adds another dimension to 
the contact-to-track association process, is an early indication of track 
maneuvers, and can be used to improve the tracking accuracies [ I ] .  In 

Ref. 7, some of these advantages are demonstrated via Monte Carlo 
simulations for a radar system employing two MTD type radars at 
separated sites. 

In the two-state model [I], tracking accuracies for the radial 
component of motion are computed for the track-while-scan radar system 

which obtains position and rate data during the dwell time on the target. 

These results are of practical interest for developing trackers for pulse 
Doppler surveillance radars. 

The normalized accuracies, computed for a two-state Kalman tracking 
filter with white noise maneuver capability are shown to depend upon two 
independent dimensionless parameters [ I ] .  

In Ref. 1, the general case is described and the filter equations are 
obtained with position and rate measurements. The corresponding 
equations for the case when position measurements only are available (the 

conventional case) are obtained as a special case of the general model. 
Similarly, the results for the rate measurements only case are obtained 
as a special case of the general model 

By incorporating the rate measurements into the tracking process, 
Castella [ 13 has observed that lower steady state tracking errors are obtained 

and also steady state accuracies are attained much earlier. 
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I n  Ref. 1, three simultaneous nonlinear equations are derived for the 
predicted normalized covariances, and then the filter covariances and gains 
are computed for different values of parameters numerically via Newton’s 
method. Closed-form steady state solutions for these equations are obtained 
in Ref. 2 by directly solving the three nonlinear equations, and i n  Ref. 3, the 
solution is obtained by making use of Vaughan’s nonrecursive algebraic 

solution for the discrete Ricatti equation [8]. In  Ref. 4, it is shown that 
the two results are identical. 

Analytical results for the steady state one-dimensional two-state 
exponentially correlated velocity target tracking filter [9] is presented in this 
chapter for discrete position and velocity measurements. 

Ramachandra-Mohan-Geetha’s model [ 101, discussed in this chapter, 
is an extension of Castella’s model [ I ]  to the case of a three-state Kalman 
tracking filter utiliziiig position and rate measurements. A closed-form 
steady state solution is obtained for the problem making use of Vaughan’s 
nonrecursive solution for the discrete Ricatti equation [8]. The results 
for the position measurements only case are obtained as a special case 
of the general model. 

Fitzgerald’s steady state analysis of the ECA model [5]with position 
and rate measurements is presented in this chapter. Fitzgerald has estab- 
lished that the steady state results of the ECA model with position and vel- 
ocity measurements can be expressed in terms of only three independent 

dime11sion1ess parameters. 
In  Ref. 1 I ,  the steady state results of Singer’s ECA model extended to 

the case of position and velocity measurements by Fitzgerald [5] are 
obtained analytically. The results for the position measurements only case 
are obtained as a special case of the general model. 

7.2 CASTELLA’S MODEL: A TWO-STATE TRACKER WITH 

POSITION AND RATE MEASUREMENTS 

Consider a one-dimensional two-state Kalman tracking filter for estimating 
the range and range rate of a moving target such as an aircraft utilizing both 
the range and range rate measurements obtained by a track-while-scan 
radar system which employs pulsed Doppler processing such as a moving 
target detector providing unambiguous Doppler data. The measurements 
are obtained at  uniform sampling intervals of time T seconds and all 
measurements are assumed to be noisy. 
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7.2.1 Dynamic Model 

The dynamics of the target is assumed to be described by the vector matrix 

equation of the form 

Xn+l = F X ,  + to, (7.1) 

The state vector X consists of radial range x,, and range rate i,,and is 
of the form given by (2.4). F is the transition matrix given by (2.5). C O , ~  

is a stationary white noise process with covariance matrix Q,?given by 

q is the spectral density of the continuous white noise process and is equiv- 
alent to o:T of Friedland’s model given in (2.26). The matrix Q is obtained 
via the integration of a white noise process [12]. 

7.2.2 Measurement Model 

The measurement model is assumed to be given by 

2, = X ,  + v, (7.3) 

where 

x,>,(n)is the measured radial range at  scan n and &(n) is the measured range 
rate a t  scan n. As both range and range velocity of the target are measured, 
the observation matrix H is a 2 x 2 identity matrix and hence is not shown 
in (7.3). Vr, is the stationary white noise process with covariance matrix 

R,, given by 

02, is the variance of the range measurement error and oi  is the variance of 
the range rate (Doppler) measurement error. The range and range rate 
errors are assumed to be uncorrelated. The maneuver noise to is assumed 

to be independent of the measurement noise V .  
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7.2.3 FiItering Equations 

The optimal estimates of the state vector are given by the Kalman filtering 
algorithm as 

ktl= 2Fl+ Kn(Zn- kn) (7.6) 

%+I= Fkn (7.7) 

The steady state covariances and gain matrices are given by 

K = P ( P +  I?)-‘ (7.3) 

F = F ? F ~+ Q (7.9)

+ = (1 - K ) P  (7.10) 

Let the covariance matrices p and be defined as given in (2.21)and (2.33). 
Let the gain matrix be defined as 

(7.11) 

Initially, the ?U matrix is initialized as 

(7.12) 

On the basis of the first measurement, the initial state vector 2 0  is 
initialized as 

Splitting the covariance equation (7.9) into scalar equations, we get 

(7.14) 

From (7.7), the states are obtained as 

(7.15) 



122 Chapter 7 

From (7.8), the elements of the gain matrix are obtained as 

(7.16) 

where 

- Pf2 (7.17)A = (Pi1 + 0 i ) ( P 2 2  + ~ i )  

From (7.10), the elements of the h matrix are obtained as 

(7.18) 

Finally from (7.6), the optimal estimates of range and range rate are 
obtained as 

(7.19) 

It may be noted from (7.19) that both position and rate measurements 
update each element of the state vector. 

7.2.4 The Case When Only Position Measurements Are Available 

The corresponding filtering equations for the case when only position 
measurements are available (conventional case) are obtained by letting 
o,l --+ 00 in Eqs. (7.12) to (7.19). The results are 

(7.20) 
00"1 

(7.2 1) 
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The expressions for Pl l ,  Pl2, and P1.i will remain the same as in (7.14) 
and those of states remain the same as (7.15). The gain matrix elements 

given by (7.16) become 

(7.22) 

For position measurements only case, i) elements given by (7.18) 
become 

(7.23) 

Finally, the optimal estimates of the state vector given by (7.19) 
become 

.?I = -21 + KII[x,,,(1) - -211 (7.24) 
A * 

.kl = -i1 + K21[.y111(1)  - X-11 

7.2.5 The Case When Only Rate Measurements Are Available 

The corresponding filtering equations for the case when only rate measure- 
ments are available are obtained by letting ct, -+ 00 in Eqs. (7.12) to (7.19). 
The results are 

(7.25) 

= x,),(1) (guess value) 

i o  = .k,lz(1) (7.26) 

x,~(1) constitutes a guess value for this case. The expressions for P I1 ,  P12, and 
P 2 2  and also for the states will be the same as (7.14) and (7.15). The gain 
elements become 

(7.27) 



124 Chapter 7 

For range rate measurements only case, the elements of the i) matrix 
become 

(7.28) 

Finally, the optimal estimates of the state vector become 

(7.29) 

It may be noticed that there is a perfect symmetry in the results for the 
two cases. 

7.2.6 Steady State Analysis 

From (7.9) and (7.10), the combined steady state covariance equation for 
this model becomes 

P - Q = F ( I - K ) P F ~  (7.30) 

If the normalized covariances are defined as 
* 

- 2
YII = PIl/Q, (7.3I )  

r , 2  = h 2 / ( 4 / T )  

I . 2  = P 2 2 / ( d / T 2 )  

then splitting (7.30) into scalar equations, Castella obtained the following 
three nonlinear equations for the predicted normalized covariances: 

[( Y11 - A / 3 ) ] A1 = Y11( Y22 + s2)- Y:2 + 2 Y 1 2 . s ~+ A 2 s 2  (7.32) 

( p i 2  - A/2)  A I  s2(P i 2  + A 2 )  (7.33) 

( P 2 2  - A ) A I  = s 2 A 2  (7.34) 

(7.35) 

(7.36) 
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with 

(7.37) 

(7.38) 

(7.39) 

Castella numerically solved Eys. (7.32) to (7.34) for different values of 
I’ and s and obtained predicted normalized covariances. 

7.3 RAMACHANDRA’S STEADY STATE RESULTS 

A closed-form steady state solution of this model is obtained in Ref. 2 by 
solving the nonlinear Eqs. (7.32) to (7.34) algebraically. The results for 
the steady state normalized covariances and gains are given in this section. 

7.3.1 Predicted Normalized Covariances 

After considerable algebraic manipulations given in Appendix 7A, the 
steady state predicted nornialized covariances are obtaiiied as [2]: 

(7.40) 

(7.41) 

(7.42) 

I\1 -d2 
-x = 

+ tJ- 4(11& 
(7.43) 

di = B’ (7.44) 

d2 = 2BC - s2k2(s2- 4) 

d3 = C2- 4s2k3 

A = (4/i.)’ 

B = s4 + As2/3 - A (7.45) 

C = Ak(1 + s2/6) (7.46) 

k = A(s2 + A/4) (7.47) 

QI= B x ~+ s2kx+ C (7.48) 

Qz = Bx2 - s2k.x + C (7.49) 
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7.3.2 Steady State Gain Matrix 

The steady state components of the gain matrix are obtained as [2]: 

K1 I = [2ks4.v- Q2(A/2+ s ) ] / ( s 2 Q ~ )  (7.50) 

K~~= w 2 / ( 2 k s 4 )  

K21 = Q2/(2kTs2) 

K22 = (X - A/2) / s2  

7.3.3 Steady State P Matrix 

The steady state filtered normalized covariances may be found as 

PI1 = K11 (7.51) 

Pi2 = Q2/(2ks2) 

Y22 = x - A / 2  

Results (7.40) to (7.51) are of practical interest in developing trackers for 
pulse Doppler surveillance radars. These results eliminate the real time 
execution of the complete filter equations. 

7.4 EKSTRAND’S STEADY STATE RESULTS 

A closed-form steady state solution of Castella’s model [13 is also obtained in 
Ref. 3 making use of Vaughan’s nonrecursive algebraic solution [8] for the 
discrete Ricatti equation. The steady state results are given in  this section 
and the details of derivation are given sepatately in  Appendix 7B. 

7.4.1 Predicted Normalized Covariance Matrix 

The steady state solution of Ekstrand for the predicted normalized 
covariances is given by 

1 
YII r=&i-T7+ &126 - 1 (7.52) 

- 4 
= +m+Yl2 r JCc1p 
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wheke 

a =  a1 +a2 (7.53) 

a1 = 4/3 + 4/s2[1 + 2/ (3r2)]  

a2 = 

p = (7.54) 

6 = (7.56) 

with 

rl = (7.56) 

I' and s are defined in (7.38) and (7.39). 

7.4.2 Filtered Normalized Covariances 

The steady state solution of Ekstrand for the filtered normalized covariances 
is given by 

- 8 
i - 1 1   = YlI - , ( P J r Z - + )  (7.57)

i 

= t(JrZ7i712 - &)/?
r2 

7.4.3 Steady State Gains 

The steady state gains are given by 

K11 = y11 (7.58) 

K12/T = ?12/s2 

K21T = P i 2  

- 2 
K22 = y22/3 

In Figures 7.1 to 7.7 the normalized covariances and gains are plotted 
as functions of I' and s which are in turn functions of the four basic par- 
ameters cx, U", U(/, and T .  From these figures, one can assess how the accu- 
racy depends on various parameters and also what can be gained by 
including velocity (Doppler) measurements into the tracking process. 
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Figure 7.1 Predicted position accuracy as a function of I’ and s. (From Ref. 3, @I 
1983 IEEE.) 

Figure 7.2 Predicted velocity accuracy as a function of I’ and s. (From Ref. 3, 0 
1983 IEEE.) 
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Figure 7.3 Filtered positioii accuracy as a function of I’ and s. (From Ref. 3,o1983 

IEEE.) 

Figure 7.4 Filtered velocity accuracy as a function of rand  s. (From Ref. 3,o1983 

IEEE.) 
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Figure 7.5 G12 as a function of I’ and s. (From Ref. 3, 0 1983 IEEE.) 

Figure 7.6 Gz1 as a function of r and s. (From Ref. 3, 0 1983 IEEE.) 
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Figure 7.7 (322 as a function of I’ and s. (From Ref. 3, 0 1983 IEEE.) 

7.4.4 The Case with Position Measurements Only 

The case with position nieasurenients only is obtained by letting s -+ 00. For 

this case, we get 

2! = 1 + 1/3 + 2 J 9  + 1/3 (7.59) 

p = 1  
2’ = 1 

Substituting these parameters into (7 .52) ,  (7.57), and (7.58) will give the case 
with range measurements only. It may be seen that by deleting the terms in 

2, the results coincide with those of Friedland’s model discussed in Chapter 

2.  The main difference between this model and Friedland’s model is the 

one-to-one element of the Q matrix. Obviously, because of this, the terms 

f are involved in the expression for a. 
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7.5 IDENTICAL STEADY STATE RESULTS 

Although the closed-form steady state solutions (7.40) to (7.5 1 )  and (7.53) to 

(7.58) appear to be different for the same model, it is shown in Ref. 4 that 
they are identical with the following substitutions: 

a = 1 6x2k2s4/(AQ,Q2) (7.60) 

p = J G z 2 / ( 2 f i k S 2 )  

6 = (.y2 + A / 2  - s ) / s ~  

CI + r2 = 16(Bx2+ C)’/(AQ, Q2)

6s+ f i  = 4 4 m 

p& = 2.x/A 

where the quantities on the left-hand side of (7.60) are as defined in 

Ekstrand’s results [3] and those on the right-hand side are as defined in 

Ramachandra’s results [2]. 

7.6 ECV TARGET TRACKING FILTER 

Consider a one-dimensional two state exponentially correlated velocity tar- 

get tracking filter making use of discrete position and velocity measurements 
obtained by a track-while-scan radar system which employs pulsed Doppler 

processing such as a moving target detector providing unambiguous 

Doppler data. 

7.6.1 Dynamic Model 

The dynamic model is the same as that described in (6.1 ). 

7.6.2 Measurement Model 

The measurement model is the same as that described in (7.3). 

7.6.3 Filtering Equations 

The optimal estimates of the state vector are given by the Kalman filtering 

algorithm as given by (7.6) and (7.7). The steady state covariances and gain 
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matrices are given by (7.8) to (7.10). Let these matrices be defined as in 
(2.21), (2.33), and (7.11) 

7.6.4 Cha rac teristic Equation 

By Vaughan’s method, the steady state solution of the p matrix is given by 
(6.33). Putting all the matrices in (6.28), we get 

where u1, u2, and y are given by (6.35) and (6.36).412 and q 2 2  are given by 
(6.5).  Kj. is of order 4 since our system model is of order 2. If A is an 
eigenvalue of Kl., then I / A  is also an eigenvalue of K f .  Hence the eigenvalue 
problem is of older 2 only. The characteristic equation is obtained by direct 
evaluation of (6.37) as the fourth-order polynomial given by 

A4 - M A 3  + (2 + p ) A 2  - cd + 1 = 0 (7.62) 

where 

B1 = 2(2 - a)  - hfl (7.61) 

n = e + y  (7.62) 

e = exp(-O) (7.64) 

y = exp(+fl) 

0 = T / r  

(7.65) 

r2 = l / ( r e ) 2  

1’3 = r1r2 

r = a,/(a,.T) 

and s is as defined in (7.39). 
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7.6.5 Eigenvectors Determination 

The eigenvectors corresponding to the eigenvalues A; can be determined 

from (6.40) as 

(7.66) 

(7.67) 

with 

(7.68) 

7.6.6 Steady State b Matrix 

By Vaughan’s algorithm, the steady state p matrix is given by (6.33), where 

W I Iand W ~ Iare given by the eigenvectors. By (6.33), we have 

(7.69) 

Let the normalized elements of the p matrix be defined as in (6.10). 
Then, from (7.69), they may be derived as: 

- s 2
YII = -((aISI + a2S2 - h3) - 1 (7.70)

D  
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(7.71) 

(7.72) 

(7.73) 

(7.74) 

(7.75) 

7.6.7 Steady State b Matrix Elements 

Let the normalized elements of the h matrix be defined as in (6.10), replacing 
tildes by hats. Then they may be derived as: 

(7.76) 

(7.77) 

7.6.8 Steady State Gain Matrix Elements 

The elements of the steady state gain matrix may be derived as 

A 2 (7.78)KII = Pllla, 

A 2 
K12 = P12/an 

K21 = h 2 b : .  

K22 = h2dd 
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7.6.9 The Case with Range Measurements Only 

The results for the case with range measurements only is obtained by letting 
s + 00. For this case, the characteristic equation (7.62) reduces to (6.38), 
the eigenvectors (7.66) reduce to (6.42), and ? matrix elements (7.70)reduce 

to (6.47). 

7.7 RAMACHANDRA-MOHAN-GEETHA'S MODEL: A 

THREE-STATE TRACKER WITH POSITION AND RATE 

MEASUREMENTS 

A one-dimensional three-state Kalman tracker [ 101 is described in this sec- 
tion for tracking a moving target such as an aircraft. The tracker utilizes 
both the position and rate measurements obtained by a track-while-scan 
radar sensor which employs pulsed Doppler processing such as the moving 
target detector providing unambiguous Doppler data. The steady state filter 
parameters have been analytically obtained under the assumption of white 
noise maneuver capability. The numerical computations of these parameters 

are in excellent agreement with those obtained from the recursive Kalman 
filter matrix equations. The solution for the case when only the range 
measurements are available is obtained as a special case of this model. 
The radar sensor is assumed to measure the range and range rate of the 
target a t  uniform sampling intervals of time and both these measurements 
are corrupted with noise. 

7.7.1 Dynamic Equations 

The target dynamics is assumed to be described by the vector matrix 

equation of the form [lO] 

X,,, = FX, + Q, (7.79) 

F is the transition matrix as defined in (2.46) and X,, is the state vector con- 
sisting of the radial range, range rate, and range acceleration components 

denoted by xn,ill,and & respectively. wllis a stationary white noise process 
with covariaiice matrix Q,, given by 

T4/20 T'/8 T2/6 
= q TQn = E { ~ o , ~ o I ~ }  T'/8 T2/3 7'121 (7.80) 

T2/6  T / 2  1 
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q is the spectral density of the continuous white noise change in accel- 
eration process and is equivalent to criT where c r i  is the variance of the rate 
of change of acceleration noise as defined in (2.94). The derivation of 
the ellmatrix elements of (7.80) is given separately in Appendix 7C. 

7.7.2 Measure men t Equation 

The measurement model is assumed to be described by 

Z n  =I HXn + V/l (7.8 1)  

where 

(7.82) 

(7.83) 

x,,,(n)is the measured radial range at  scan n and &(n) is the measured range 

rate at  scan n. V,, is the stationary white noise process with covariance 

matrix Rn given by 

(7.84) 

0:. is the variance of the range measurement error and 0; is the variance of 

the range rate (Doppler) measurement error. The maneuver noise cc) is 
assumed to be independent of the measurement noise V .  

7.7.3 Filtering Eq u a t io ns 

The optimal estimates of the state vector are given by (3.22) and (2.12). The 
steady state gain and covariance matrices are given by (2.56) to (2.58). 

7.7.4 Steady State P Matrix 

Let the steady state covariance matrix p be defined as given in (2.60). Then 
the normalized elements of matrix may be defined as 

VlI = pll/o: (7.85) 

PI2 = Fl2/@:./n 

r,,= P13/(0:./T2) 
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Making use of the nonrecursive solution for the discrete Riccati 

equation [8],i t  can be shown after considerable algebraic calculations (given 
separately in Appendix 7D) that the normalized elements of the p matrix 

may be derived as 

- x 2 
Y1I = - ( a l x  +a2x+a3) (7.86)

D 
- 2x 
Y12 = -

D 
[a1(1 +x2)+ CIq-'C] 

- 4x
Y13 = -(6~11CC + 0 5 ~ )

D  
-
Y22 = -

2 
( 2 qx3+ a@2 + a7x - d )

D 
- 8x 
Y23 = -((~lgx+ay)

D  
8 

F3j = -(aI"x2 + a1 1x +a12)
D  

where 

D = dy(1 + x 2 )+a ]( I  - 47)x (7.87) 

a1 = 1 + 3a (7.88) 

a2 = 1.2da 

(13 = 4yg - ( 1 1  ( I  + 2 . 4 ~ ~ )  

a4 = (3a - 1)d 

U5 = (9%+ 1)dl + (3a - 1)d2  

U6 = 3 4 4 a  - I )  

a7 = 6 ~ i l (1 + 0.2/3)- 2g 

a8 = ( 1  + 12a)dl + (6a - l)d2 

a9 = 1.5u1p - g  

= ( 2 1 ~+ 1)dl + ( 1 5 ~- l)& 

a1 1 = 9al(P - 4a) - 2g 

a 1 2  = q(d1 - d 2 )  
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(7.89) 

(7.90) 

(7.91) 

(7.92) 

(7.93) 

(7.94) 

(7.95) 

(7.96) 

s is as defined in (7.39). x is obtained by the solution of the biquadratic 
equation given by 

.X4 - 4dlS3 6 ~ 1 . ~ ~- 4d2.X.+ 1 = 0 (7.97) 

where 

c1 = 1 + 0.2p - 4x (7.98) 

7.7.5 Steady State Matrix 

Let the normalized elements of the f' matrix be also defined as given by 

(7.85) replacing tildes by hats. Then they may be derived as 

(7.100) 



140 Chapter 7 

7.7.6 Steady State Gain Matrix 

The elements of the steady state Kalman gain matrix are given by 
h 

KII = y11 (7.101) 

Kl2 = 7 7 x 2  

K21 = h 2 / T  

K22 = 1’ y22 

K ~ I1 Pi3/T2 

K32 = y p23/T 

From (7.86) to (7.101), it is seen that the normalized covariances and 

gains are functions of the dimensionless parameters r and s which are 
functions of the four basic parameters G , ~ ,0 ~ 1 ,  oil, and T .  The normalized 
covariances and gains are plotted in Figures 7.8 to 7.17 as functions of 

r and s. These plots throw light on how the accuracies depend on different 
parameters and also the improvement achieved by incorporating velocity 

measurements into the filter. 
The details of derivation of this model are given separately in 

Appendix 7D. 

7.7.7 Results for Range Measurements Only 

The results for range measurements only are obtained by letting s + 00 or 

y -+ 0 and a -+ 0. Hence, for this conventional case, the normalized 
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Figure 7.8 Predicted position accuracy as a function of I' and S .  (From Kef. 10, 0 
1993 IEEE.) 

Figure 7.9 Predicted velocity accuracy as a function of Y and S. (From Ref. 10, 0 
1993 IEEE.) 
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Figure 7.10 Predicted acceleration accuracy as a function of r and S.  (From Ref. 

10, 0 1993 IEEE.) 

Figure 7.1 1 Filtered position accuracy as a function of I’ and S. (From Ref. 10, 0 
1993 IEEE.) 
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Figure 7.12 Filtered velocity accuracy as a function of I’ and S. (From Ref. 10, 0 
1993 IEEE.)  

Figure 7.13 Filtered acceleration accuracy as a function of I’ and S. (From Ref. 10, 

0 1993 IEEE.) 
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Figure 7.14 G z ~as a function of I’ and s. (From Ref. 10, 0 1993 IEEE.) 

Figure 7.15 Gzl as a function of i’ and S.  (From Ref. 10, KJ 1993 IEEE.) 
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Figure 7.16 G12 as a function of I’ and S.  (From Ref. 10, 0 1993 IEEE.) 

Figure 7.17 Gj? as a function of I’ and S.  (From Ref. 10, 0 1993 IEEE.) 
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elements of the matrix as defined in (2.85) are given by 

where 

(7.103) 

g = 3Jfi( 1 + 0.3P) 

where [3 is given by (7.94), and r by (7.96). The normalized elements of the k 
matrix for this special case are also given by (2.85)by replacing tildes by hats 
on both sides. The normalized elements may be derived as 

(7.104) 
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k23 r2 
- (cgx - c )

oZT3 18x 

r2 
= -[c(l

k33 

o;T2 18x 
+ -U2) - c9x] 

where 

(7.105) 

The steady state elements of the gain matrix for this case are given by 

K11 = YII (7.106) 

K2l = Fl2IT 

K3i = ?3i/T 

x is obtained from (7.97) putting a = 0 for this case. The numerical corn- 
putations of P ,  P, and K matrices from (7.102) to (7.106) are in good agree- 
ment with those given by (2.95) to (2.101). 

7.8 FITZGERALD’S STEADY STATE ANALYSIS OF ECA 

MODEL WITH POSITION AND VELOCITY 

MEASUREMENTS 

Fitzgerald’s ECA model [ 5 ]  is a three-state Kalman filter estimating 
position, velocity, and acceleration of a target. The model assumes that 
the target behavior may be represented by a random exponentially cor-
related acceleration. The model utilizes both position and velocity measure- 
ments as inputs to the tracking filter. 

The filter is of a predictor-corrector type and the filter gains are corn-
puted by the Kalman filtering algorithm. The correction operation which 
simultaneously incorporates the two measurements is of the form given 

by (3.22), where Zn is a two-dimensional vector containing the measured 
position and velocity values as given in (7.81). The filter is characterized 
by the following five independent parameters: 
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cll= rms target acceleration 

T = correlation time of target acceleration 

T = sampling time 

c , ~= rms position measurement error 
o1l= rms velocity measurement error 

Fitzgerald has shown that the model can be completely specified by only 
three independent dimensionless parameters if the filter is appropriately 
normalized. These three parameters are defined as 

PI =TIT (7.107) 

The filter gains and rms errors are normalized with respect to appropriate 

powers of T ,  G - ~ ,and/or  c ( ~ .For this model, Fitzgerald observed the 

following: 

1 .  For typical values of p2, the inclusion of velocity information can 

yield an improvement of an order of magnitude or more i n  pos-
ition estimation 

2. There exists a value ofp3 (depending mostly onp2 and less strongly 

on P I ) ,above which the velocity measurements do not help state 
estimation. There also exists a value of p3, below which additional 

velocity measurements accuracy does not provide additional 

improvements in estimation 

3. Although a long time may be required for the filter to reach a 
complete steady state, it was observed that the velocity errors con- 
verge rapidly but the steady state position errors may take much 

longer time when velocity measurement is used. 

7.9 ECA TARGET TRACKING FILTER WITH POSITION AND 
VELOCITY MEASUREMENTS 

In this section, the steady state results of Singer’s ECA model extended to 

the case of position and velocity measurements by Fitzgerald [ 5 ]  are 
obtained analytically. The results for the position measurements only case 

are obtained as a particular case of this general model 
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7.9.1' Dynamic Model 

The vehicle dynamics is of the form given by (6.1 ), where X,, F , and Q are as 
defined by (6.51) to (6.56). 

7.9.2 Measurement Model 

The measurement equation is the same as that given by (7.81) with H ,  Z,, 
and R given by (7.82) to (7.84). 

7.9.3 Filtering Equations 

The optimal estimates of the state vector are given by (3.22) and (2.12). The 

steady state gain and covariance matrices are given by (2.56) to (2.58). 

7.9.4 Characteristic Equation 

By Vaughan's method, the steady state solution of the matrix is given by 
(6.33). By putting all the matrices in (6.28), K f  is obtained as 

where U I , U2, U3, SI,S2, and S3 are as given by (6.71). 
K f  is of order 6 since our system model is of 3. If 2 is an eigenvalue of 

K,, then 1/R is also an eigenvalue of Kt.. Hence the eigenvalue problem 
is of order 3 only. The characteristic equation is obtained by direct evalu- 
ation of (6.37) as the sixth order polynomial of the form given by (6.73), 
where 
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with 

U1 = 4 + n  

f l ,  = 7 + 4 a  

y I  = 8 + 6c1 
~2 = h + 28 

/ j 2  = 4b + 28(a + 2)  

y 2  = 6b + 48(~l+1 )  

203 
1/3 = 1’2 + -(I  - 2 4

3 

s and 8 are as defined in (7.39) and (7.64). 

Chapter 7 

(7.1 10) 

(7.1 11) 

(7.1 12) 

(7.1 13) 

(7.114) 

(7.115) 

(7.1 16) 

(7.1 17) 

(7.118) 

(7.119) 

7.9.5 Eigenvalues Determination 

The eigenvalues are determined by (6.78) to (6.84) as given in Section 6.7.2. 
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7.9.6 Eigenvectors Determination 

If 1"; is an eigenvalue of K,,, then its corresponding eigeiivector V; may be 
found by direct evaluation of (6.40) as given by 

(7.120) 

where 

(7.121 )  

(7.122) 

n1 = 2 + n + r1(h + 26) (7.123) 

0 2  = I + n + r1(h + cics) 

(7.124) 

010 = fl - 2 - eL (7.126) 

= 2 - f l + f I 2 ( u - 1 )  
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(7.127) 

7.9.7 Steady State Matrix 

The steady state p matrix is given by (6.33), where W I Iand W21 are deter- 
mined by the eigenvectors as (7.120). If the normalized elements of matrix 

are defined as (6.94), then they are given by (6.95), where the eigeiivectors 
are determined by (7.120) to (7.127). 

f = r2 (7.128) 

7.9.8 Steady State @ Matrix 

If the normalized steady state P matrix elements are defined as in (6.97), they 
are given by 

(7.129) 

(7.130) 

7.9.9 Steady State K Matrix 

If the normalized elements of  the gain matrix are defined as 

GII = KII (7.1 31) 

G12 = &2/T 
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G21 = TK21 

G22 = K22 

ejl= T ~ K ~ ~  

G32 = TK32 

then 

(7.132) 

7.9.10 Results for Position Measurements Only Case 

The results for the case when only the range measurements are available are 
obtained as a special case of this general ECA model by letting s -+ 00. For 

this case we get from (7.116) and (7.1 18), 

I" -+ 0 (7.133) 

r3 -+0 

and the results (7.108) to (7.119) reduce (6.74) to (6.76). 

Eigenvalues corresponding to this case are found from (6.78) and the 
corresponding eigenvectors are determined from (7.120) where 

(7.134) 
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a 9 = ~ + 0 - 1  

a10 = n - 2 - o2 

a11 = 2 - n + O 2 ( a - 1) 

~ 1 2  b + 28 

~113= 36 + 28(1 + a )  

It can be verified that, with these substitutions, the eigenvectors given 
by (7.121) reduce to those given by (6.86). The normalized Pmatrix elements 
can now be obtained from (6.95). The normalized filtered covariances and 
gains may be found from (6.98) to (6.100). 

7.10 SUMMARY 

In a track-while-scan system employing pulsed Doppler such as the moving 

target detector, target Doppler is available as part of the measurement 
process. A two-state model for estimating position and velocity making 
use of position and Doppler information is discussed in Section 7.2. The 
steady state results for this model obtained by directly solving the nonlinear 
equations are given in Section 7.3, and those obtained by making use of 
Vaughan’s nonrecursive solution are given in Section 7.4. These two results 

are shown to be identical in Section 7.5. An ECV target tracking model 
is presented in Section 7.6. A three-state Kalman filter utilizing position 
and velocity information is discussed in Section 7.7. In Section 7.8, 
Fitzgerald’s steady state analysis of the ECA model with position and vel- 

ocity measurements is discussed. The steady state results of this model 
are analytically obtained in Section 7.9. 

The derivation of Ramachandra’s steady state results of Castella’s 
model is given in Appendix 7A. The derivation of Ekstrand’s steady state 
results of Castella’s model is given in Appendix 7B. The derivation of steady 
state results of Ramachandra-Mohan-Geetha’s model is given in Appendix 
7D. The derivation of the Q matrix of this model is given in Appendix 
7C. The values of symmetric functions are given in Appendix 7E. 
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APPENDIX 7A: DERIVATION OF RAMACHANDRA’S STEADY 

STATE RESULTS 

Using (7.36) in (7.35), 

A2 = A1 - ~ ’ ( 1+ Y l l )  

Using (7.34) in (7.33) and rearranging terms, 

s2r,,
A I  = -

Y I I  - Y22 + A/2  

Putting (7.35) and (7.36) in (7.34) and rearranging the terms, 

- P;2(‘ 3 2  - A - s2)
1 + YII = 1 

Y222- A Y 2 2  - As2 

Putting (A3) in (7.35) and simplifying, 

Equating (A2) and (A4) and simplifying by putting 

x = Y 2 2  - A/2  

y = sy12 

we get 

y b  - SX) = k - x2 047) 

where k is given by (7.47). Putting ( A l )  in (7.34) and rearranging terms, we 

get 

s4(1+ P I , )= A ~ ( H I-S) (AS) 

where 

m = s2+ A / 2  

Using (A5) and (A6)  in (A2), we get 

S2YA1 =------- (A 10)
s - SX 

Putting (AlO) in the right-hand side of (AS), we get 

- y(m - x) 
+ yI I = s2Q - sx) (A1 1 )  
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Split the right-hand side of (7.32) into two parts as 

A I  = ?11(?22 +s2)- Y:2 

A2 = 2s2P i 2  + s 2 A 2  

From (7.35), (A12) becomes 
-

A I  = A I  - Y22 - - s  2 

A 2  may be written as 

A2 = 2s2(?22 + AI) -A2s2 

Using (7.33) and (7.34) in (AlS) and simplifying, 

A2 = Al(2Ylz - ?22) 

Putting (A14) and (A16) in (7.32) and rearranging, 

A1 [( 1 + F1 I ) - 2 P i 2  + F 2 2  -A/3 - 21 = -( Y22 +s2) 

Using (AS) and (A6) in (A2), we get 

Using (A5), (A6) and (A18) in (A17), we get 

S)*[s(1 + P,1 )  +xs - 2y + 113 = -(x +nz)(Jv- SX) 

where 

n = s(A/6 - 2 )  

Using (A1 1) in (A19) and rearranging the terms, we get 

- sx)(sx - 2 ~ )j.I(r1.1 - s) +y s ~  +n)  + (x + n z ) b- sx)2 = o 

Using (A7) in (A21) and simplifying, we get 

2nz(k - x2)+ S X . ~ ( ~ Z S- ? I )  + ~ S ( H+ SX) = 2ks~l 

Treating (A7) as a quadratic in y and solving, we get the value of y as 

y = ~ [ S X+ Js2-u2+ 4(k - x2) (A23) 

where the positive root is chosen. Using (A23) in the right hand side of (A22) 
and simplifying, we get 

Bey2+ C = ksJ;1;*(S2- 4) + 4K (A24) 

where B and C are given by (7.45) and (7.46). Squaring (A24) and putting 

7 -
L - x 2 ( A 2 3  
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we get 

d l Z  +d2.2 +d3 = 0 (A261 

where d l ,  4,and d3 are given by (7.44). Hence from (A26) and (A25), s is 
obtained as given by (7.43). From (A5), v 2 2  is obtained as given by (7.42). 
From (A23) and (A24), we get 

QI
J’ = 2ks 

where Ql is given by (7.48). Hence from (A6), Y12 is obtained as given by 
(7.41). Using (A9) and (A27) in ( A I  I )  and simplifying, we get Y11 as given 

by (7.40). 
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APPENDIX 78: DERIVATION OF EKSTRAND'S STEADY STATE 
SOLUTION 

Putting all matrices in (6.28), K ,  may be obtained as: 

I 0 1/4 0 
-T 1 -T/O?, 1/4

Kr = 
-qT3/6 qT2/2 1 - qT3/(6.,2) T +q T 2 / ( 2 ~ $ )  
-yT2/2 (IT -4T2/(20:) I + 4 T / ~ r :  

Evaluating (6.37), the characteristic polynomial may be obtained as 

where 

Evaluating (6.40),the eigenvectors may be found as 

where 

where 
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The steady state matrix is now given by (6.33) where Wl1 and W21 
are determined by the eigenvectors as 

d2l l  

.fit’2I  
A1 and A2 are the eigenvalues outside the unit circle. Instead of determining 
the eigenvalues, i t  is possible to express matrix in terms of the sum 

and product of the eigenvalues as follows: 
As the inverse of an eigenvalue is also an eigenvalue, the characteristic 

equation may also be expressed as 

fJ(A - A;)@ - l /A ; )  = 0 (B7) 
i =  I 

Expressing (B7) as a polynomial in A and equating its coefficients with those 

of (B2), we get 

AI + l/Al + A 2  + l / A 2  = n 

( A I  + l/Ai)(A2 + 1/12) = b 

Equation (B8) can be written as 

s1 = nS2/(1 + S2) 

where 

SI = 21 + A2 

$2 = & A 2  

From (B9) and (BlO), we get 

(B12) is a quadratic in (S2 + 1/S2) whose solution is given by 

(S2 + I/&) = i [ b+ d ( b  + 4)2 - 4 d ]  = d (say) (B 13) 

From (B13), S2 may be obtained as 

s 2  = $ ( c l  + m) 
The positive signs are taken since S2 is a real number and we require the 
solution of eigenvalues outside the unit circle, By working out the solution 

(6.33) using (B10) to (B14), we get the results given by (7.52) to (7.56). 
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APPENDIX 7C: DERIVATION OF ELEMENTS OF Q MATRIX 

where 

to3(r) = SoT 4 7 ) d-c 

where n ( t ) is the random white noise change in acceleration process. If the Q 
matrix is defined as given by (6 .55) ,  then 

For a white noise process, 

E{n(r)n(v)}= 96(t - v )  

where y is the spectral density of the noise and 6 ( x )  is the Dirac-delta 
function. Hence (C3) becomes 
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q is equivalent to G:T, where 02 is the variance of the rnaneuver noise. 
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APPENDIX 7D: DETAILS OF DERIVATION OF STEADY STATE 

RESULTS OF RAMACHANDRA-MOHAN-GEETHA'S MODEL 

Putting all matrices in (6.28), Kj may be obtained as: 

(W 

Since our system model is of order 3, Kj. is of order 6. I f  ;1 is an 
eigenvalue of K f ,  then 1 / A  is also an eigenvalue of Kf  and hence the 
eigenvalue problem is of order 3 only. 

Eigenvectors Determination 

The eigenvectors corresponding to the eigenvalues 2; may be obtained by 
directly evaluating (6.40) as 

vi = 

where i = 1, 2, 3, 4, 5 ,  6 and 

c; =%[A: + (12a - l)Aj(Aj + 1) + 11
2D; 

f ;  = (A; - 1)Oi 

qT4A;
g; = -[A; + 1 lA ; (R;  + 1) + 11

24D; 
9T3& +/ I ;  = -[A; + 3 ( 2 ~  I)Aj(;1j - 1 )  - I ]
6D;  
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where 

Di = A: + 4(6~1- l)Aj(A? + 1 )  + 6( 16~1- l ) l ?  

with 

CI = l /T3/(6~$)= 24/(rs)* 

Characteristic Equation 

Using (6.37), the characteristic polynomial may be obtained as 

A6 -d5+ h i 4  - cA3 + bL2 -d + 1 = 0 

where 

16(1 + 0.28 - 4 ~ )  

b = 3[5 + 16~1+ 0.88(3~(- 13)] 

c = 4[5 + 3 6 ~+ 1.8p(6~+ 1 l ) ]  

x ,  /?,and r are given by (7.93), (7.94), and (7.96). s is defined in (7.39). 

Since the inverse of an eigenvalue is also an eigenvalue, the charac- 

teristic polynomial must be of the form 

where A I , 2 2 ,  and A3 are the eigenvalues outside the unit circle. Comparing 
( D l )  and (D5), we get after simplification, 

s2 + S l S 3  = f lS3  (D9) 

SI+ SiS2 + S 2 S 3  = hS3 ( D W  

I + s; + S,2 + s: = cs3 

where SI,S 2 ,  and S3 are given by 

Adding 2 times (D9) to ( D l l ) ,  we get 

(1  + S2)*+ (SI + S 3 ) 2  = (c + 24S3 

Addin S3 to both sides of (DIO), we get 

(1  + S 2 W I  + S 3 )  = ( h  + W 3  
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Solving ( D  13) and ( D  14) simultaneously for (I + S2)and (Sl + S3),we 

get 

where It’ and g are defined in (7.91) and (7.92). Using (D17) in (D15) 

S1 = 2dl.y - x2 
(D19) 

From (D16) 

S2 = 4d2.Y - I (D20) 

Using (D17), (D19), and (D20) in (D9), we get the biquadratic 

X4 - 4d1.X~+ - 4d2X + 1 = 0 (D2U 

where e1 is given by (7.98). 
When (6.33) is evaluated, it is found that the elements of ?) matrix niay 

be expressed in terms of the symmetric functions of eigenvalues. These sym- 
metric functions are evaluated in  terms of sums and products of SI,S2 and 
S3 as given separately in Appendix 7E. It is interesting to note that the 

undetermined factors in eigenvalues cancel out neatly. 
After considerable algebraic simplifications, the elements of the P 

matrix are obtained as given in (7.86). 
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APPENDIX 7E: VALUES OF SYMMETRIC FUNCTIONS 

When (6.33) is evaluated, the elements of the matrix are found to contain 

symmetric functions of eigenvalues. These are evaluated and given below. 
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8.1 INTRODUCTION 

In  this chapter, the random walk velocity (RWV) and the random walk 
acceleration (RWA) models of continuous-time Kalman tracking filters 
are discussed. The steady state covariances and gains are obtained analyti- 
cally for both the models. The position and velocity measurements are 
assumed to be obtained continuously, and both these measurements are 
incorporated in the filtering processes of the two models. The filtering sol- 

ution for a continuous time system may be found in two ways: 

167  
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1. By a limiting operation on the known solution for the correspond- 

ing discrete-time case 
2. By directly solving the algebraic Riccati equation 

Both methods are demonstrated in this chapter. The results for the corre- 
sponding filters in which measurements of one state alone are available 
are obtained as special cases of these models. 

In Ref. 1, Ekstrand discusses the RWV model of a continuous-time 
Kalman tracking filter. Analytical expressions are given for the steady state 
solution of the model. The position and velocity measurements are assumed 
to be obtained continuously, and both these measurements are utilized in the 

RWV model. Ekstrand obtained the solution by a limiting operation on the 
known solution for the corresponding discrete-time case [3]. Pachter [2] 
obtained the solution for the same problem by directly solving the algebraic 
Riccati equation (ARE). The results for the corresponding filter in which 
measurements of one state alone are available are obtained by Ekstrand 
as a special case of this model [ l ] .  These results are shown to be the same 
as the RWV solution of Fitzgerald [4] and also the solution for the special 
case A = 0 in the ECV model of Nash [5] .  

Ekstrand [ I ]  demonstrates in his model that if the filter solution is 
known for a discrete time solution which is obtained by sampling some con- 

tinuous-time system, then the filtering solution for the continuous-time sys- 
tem can also be found by a limiting operation. The transfer functions of 
the filter for the case when measurements of two states are available 
and for the case when measurements of one state only are available are also 

given by Ekstrand. 
In Ref. 6, Ramachandra-Mohan-Geetha’s RWA model for a con- 

tinuous-time Kalman tracking filter is discussed. Steady state covariances 
and gains are obtained analytically in this model. As in Ekstrand’s model 
the first two states of the filter are assumed to be measured continuously 
and both these measurements are incorporated in the filtering process. 
The solution is obtained by directly solving the algebraic Riccati equation. 
The results for the corresponding filter in which measurements of one state 

alone are available are obtained as a special case of this model. These results 
are in excellent agreement with those of Fitzgerald [4], discussed in Section 
5.3. The solutions are visualized in two graphs. 

8.2 EKSTRAND’S RWV MODEL 

Ekstrand’s model [ I ]  deals with a continuous-time one-dimensional Kalman 

tracking filter. It is a two-state RWV model where both states are measured 
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continuously. The steady state results of the continuous-time system are 
obtained from the known steady state solution to the Kalman filter for 
the discrete-time system obtained by sampling the continuous RWV system 

[3]. The continuous-time system is considered as the limit case of the dis- 
crete-time system as the sampling time T tends to zero. 

8.2.1 Dynamic Model 

The dynamic model is represented by the following linear continuous-time 

constant coefficient system: 

k = F X + U  (8.1 ) 

where 

and 

x =  (8.3)[:;I 
If the application is for the development of tracking system as in Fitzgerald’s 
model [4], then xi is the position and x2 is the velocity of the target. The 

process noise U given by 

(;=[:I  
is assumed to be a white noise process with covariance Q given by 

a u r w = Q6(t - T) 

where 

Q = [ 2  :] 
and 6 is the Dirac delta function. 

8.2.2 Measurement Model 

The measurement model is simply given by 

z = x + v  
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where 

z=[f;] ( 8 . 7 )  

and 

= [:::I  
Z I and 2 2  are the measurements of the two-state variables XI and x 2 .  V is the 
white noise measurement process with covariance R given by 

E{ V ( t ) V T ( ~ ) ]R6(t - T )= 

where 

The white noise process U is assumed to be independent of the white 
noise measurement process V. Further, the position measurement process 
is also assumed to be independent of the velocity measurement process. 

8.2.3 Filtering Equations 

The steady state solution to the Kalman filter for this system is determined 
by the solution to the algebraic Riccati equation 

F P + P F ~ - P R - ' P + Q = O  (8.10) 

The gain matrix is given by 

K = P R - I  (8.11)  

Let the covariance matrix be defined as given in (5.11). Then (8.10) 
gives rise to the following three nonlinear equations: 

(8.12) 

(8.13) 

(8.14) 
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8.2.4 Continuous-Time Filter Solution 

The continuous-time filter steady state solution can be obtained by applying 
the following limiting operation: 

T + - 0  (8.15) 

a.fT-+ ro 

o$T -+ rrl 

in the coiitiiiuous discrete-time filter steady state solution. This is the 
method of handling the transition formally from discrete- to continuous- 
time systems as given in  Refs. 7 and 8. 

8.2.5 Steady State Covariances 

Consider the case where discrete-time measurements on the continuous-time 
system are available. This is the continuous-discrete-time case discussed in 
Chapter 7. Ekstrand's steady state solution for the predicted covariance 

k is given by (7.52). It may be noted that the predicted covariance k tends 
to the filtered covariance as the sampling time T -+ 0. Let this simply 
be denoted as P. Then applying the limiting operatiom (8.15) in ( 7 . 5 2 ) ,  
the normalized covariances may be obtained as 

(8.16) 

I'
Y12 = -

I + r  

y22 = YII 

where the normalized dimensionless covariances are given by [I] 

(8.17) 

with 

(8.18) 

(8.19) 
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8.2.6 Steady State Gains 

If the gain matrix is defined as 

(8.20) 

then from (8.1 I ) ,  the normalized gains are given by 

G11 = y11 (8.2 1) 

G2I = y12 

where the normalized dimensionless gains are defined as [l]  

G11 = K11/& (8.22) 

(312 = K12 

where 

8.2.7 Transfer Function of the Filter 

The filter equations are given by 

k = ( F -~ ) i  (8.23)+ KZ 

where 2 is an estimate of X and Z is the measurement vector. With F and K 

defined in (8.2) and (8.20), we get the following transfer function from 
measurements to estimates: 

(8.24) 
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(8.25) 

Thus, we have a stable filter as expected from filter theory. It is to be 
noted that i n  addition to the two stable poles, there are zeroes which influ- 

ence the filter performance. 

8.2.8 RWV Model with Position Measurements Only 

The case with position measurements only is obtained by letting r d  + 00 in 
(8.12) to (8.14). When this is done, we obtain 

P:llI'o = 2P12 (8.26) 

PI I P12/I'o = p 2 2  

p:,/I'o = 9 

Solving (8.26), the solution may be obtained as 

PI1 = d%i (8.27) 

PI2 = qo 

p22 = J%Yo 

As rd -+ 00, I' -+ 00 and we have from (8.21), 

(8.28) 

(8.27)and (8.28) are the same as the solutions for the special case A = 0 in the 
ECV model given in Ref. 5 .  They are the same as the RWV solution [4] given 
by (5.27) to (5.29). The results (8.27) and (8.28) may be obtained directly by 

putting r -+ 00 in (8.16) and (8.21). 
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8.2.9 Transfer Function of the Filter with Position Measurements 

Only 

For the case with position measurements only, the transfer function from 
position measurement to estimates is obtained by letting r --+ 00 in (8.24). 
The result is 

(8.29) 

(8.30) 

8.2.10 Interpretation of Results 

1.  In the basic system model, there are three independent parameters q),r ( / ,  

and q which can influence the solution. However, the normalized solution is 
expressed as a function of only one parameter r .  

2. Yll = Y22 = G11 and Y12 = G ~ Isince they have the same solution. 
Hence the solution is conveniently summarized in two graphs with only two 

curves in each graph, as illustrated i n  Figures 8.1 and 8.2. Comparing this 
with the discrete-time case where more graphs with several curves in each 
graph were needed, we see that it is easier to get a view of the solution 
in the continuous-time case. One reason for the increased complexity in 
the discrete-time case is the addition of one more parameter, the sampling 
interval T .  

3.  In (8.17), the solution is normalized by the solution (8.27) which is 
valid for the case with position measurements only. This choice of 
normalization enables us to see directly from Figure 8.1 the accuracy 

improvement obtained by incorporating velocity measurements into the 
filter. It may be noted that calculated as a percentage, the improvement 
is the same for the position and velocity estimates. 

4. From (8.25) and (8.30), it is seen that the natural resonent fre- 
quency COO is independent of the velocity measurement accuracy rcf; thus 
we get the same value of QO wheather the velocity measurements are used 
or not. 
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Figure 8.1 Normalized covariances and gains of a function of I’. (From Ref. 1, 0 
1985 IEEE.) 

Figure 8.2 Normalized covariances and gains as a function of I’. (From Ref. 1, 0 
1985 IEEE.) 
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5. From (8.25), it is seen that the damping factor { 2 1/& whereas 
from (8.30), [ = 1/&! for the case with position measurements only. Thus, 
using velocity measurements gives a steady state filter with increased 
damping factor {. 

6. The natural frequency (00 is the same for the ECV model [5]and 
for the RWV model with or without velocity measurements. 

7. It is easily demonstrated that if the filter solution is known for a 
discrete time system, then the fiter solution for the continuous-time system 
can also be found by a limiting operation. 

8.3 PACHTER'S STEADY STATE SOLUTION 

In Ref. 2, Pachter directly solved the continuous time algebraic Riccati 
equation (ARE) of Ekstrand's RWV model and obtained the steady state 

solution. 
In (8.12)-(8.14), ro, r, / ,  and q are assumed to be greater than zero. 

Rearranging (8.13), P22 may be put as 

(8.31)  

(8.32) 

Putting (8.31) into (8.14), we get 

% [ 1 + - 3 ] = q  (8.33)I'o 

From (8.12) and (8.32), PT, may be written as 

P:I = r 0 ~ 1 2 ( 1+ y )  (8.34) 

Inserting (8.34) into (8.33), we get 

(8.35) 

From (8.32), 

PI2 = r d u  - J9 (8.36) 

Putting (8.36) in (8.34), we get 

(8.37) 
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Putting (8.36) and (8.37) in (8.31) 

(8.38) 

If we substitute (8.36) into (8.35) and simplify, we obtain the scalar 
quadratic equation: 

( I  - y)2 = y2/r.2 (8.39) 

where r is defined in (8.19). The two solutions of (8.39) are 

)’I = r / ( r + 1)  (8.40) 

and 

1’2 = r / ( r- 1 )  (8.41) 

The largest solution of the ARE (in the sense of positive definite 
matrices) corresponds to the solution y = 2’1. When y = y1 is inserted into 
Eqs. (8.36) to (8.38), we get the solutions identical to (8.16). 

Two additional real solutions of the ARE (that correspond to J’ =I ji2) 

exist provided 0 < r < i. They are 

JV(+ - r )  
Y , ,  = f (8.42)

Ir- 11 
r 

Y12 =-
I - r  

y22 = YII 

8.4 RAMACHANDRA-MOHAN-GEETHA’S MODEL: A 

THREE-STATE CONTINUOUS-TIME KALMAN TRACKING 

FILTER 

8.4.1 Introduction 

I n  Ref. 4, solutions for the continuous-time Kalman filters for the two-state 
exponentially correlated velocity model and the three-state exponentially 
correlated acceleration model are given for the case of position measure- 
ments only. Solutions for the special cases of these system models, the 
so-called random walk velocity model and the random walk acceleration 
model, are also given in Ref. 4. In  these cases, the Kalman filter is based 

on the continuous measurements of the position state variable only. 
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In this section, the steady state continuous-time solution is obtained 
for the three-state random walk acceleration model case where both position 
and velocity states are measured continuously. Here the solution is obtained 
by directly solving the algebraic Riccati equation. 

8.4.2 Filter Equations 

Consider a linear continuous-time constant coefficient system given by (8. l ) ,  
where 

x =  (8.43)[;;] 
(8.44) 

(8.45) 

XI is the position, x2 is the velocity, and x j  is the acceleration. The 
process noise U is assumed to be a white noise process given by 

E[U(t )U(z)T]= Qd(t - t) 

where Q is given by (5.38) and S is the Dirac delta function. 

8.4.3 Measurement Model 

The measurement equation is given by 

Z = H X + E  (8.46) 

where 

(8.47) 

1 0 0  
(8.48)

.=[U 1 0 1  

(8.49)
E = [::I  

zl and z2 are the measurements of xi and x2, respectively. The covariance of 
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the measurement noise process is given by 

E [ E ( ~ ) E ( T ) ~ ]= R6(t - T )  

where 

(8 .50 )  

Thus the position measurement process is assumed to be independent of the 
velocity measurement process. Also, the process noise U is independent of 

the of the white noise measurement process E. 

8.4.4 Filtering Equations 

The steady state solution to the Kalman filter for this system is determined 
by the solution to the algebraic Riccati equation: 

FP+ P F ~- P H ~ R - ~ H P +Q = o (8 .51 )  

The gain matrix is given by 

K = PHTR-I (8 .52 )  

If the covariance matrix P is defined as (5 .42 ) ,  then from (8 .51 ) ,  we get the 
following six nonlinear equations: 

p:, p:2-+ -= 2P12 (8 .53 )  
I'o I'd 

PI 1 y12 + p12p22-= PI3 + P22 
I'o I'd 
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Let the normalized dimensionless covariances be defined as 

(8.54) 

Then the six nonlinear equations (8.53) may be expressed in terms of 
normalized quantities (8.54) as 

y:2Y2 +-=2Yy12
' I  r 

(8.55) 

Y:, + -y222 = 2 Y23 
r 

(8.56) 

Y2 + - = Iy;3 
r13 (8.57) 

YII y12 + 7= Y13 + Y22
y12 y22 

(8.58) 

YII y13 +-y12 y23 
r 

= y23 (8.59) 

(8.60) 

where 

(8.61) 

Solving Eqs. (8.55) to (8.60), we get 

YI I = J%/h (8.62) 

Y12 = y2/h 

YI3 = l / h  

Y22 = (y3g/h)- 1 
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where 

g = 42 + y2/r (8.63) 

12 = 1 + y 2 / r  

.I’= (h+ &)/2 

1.’ = 2&&--?7r - U 

z r = A + B  

A = [4(1 +.f*)]’13 

B = [4(1 -.f)] ’13 

.j’= JX 
Thus all the normalized covariances are expressed as functions of a single 

parameter r defined in (8.61). 

8.4.5 Steady State Gain Matrix 

If the gain matrix is defined as 

(8.64)K =  [i;;21 
then we have 

(8.65) 
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If the normalized gains are defined as 

(8.66) 

G12 = KI2 

then they may be derived as 

(8.67) 

Thus the normalized covariances and gains are all expressed in terms of a 
single parameter r and hence are plotted against this parameter in Figures 

8.3 and 8.4. We also note that 

(8.68) 

as the normalized solution is the same in respect of these covariaiices and 

gains. 



183 Position and Velocity Measurements 

Figure 8.3 Normalized covariances and gains as functions of I’. 

Figure 8.4 Nornialized gains as functions of I ’ .  
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8.4.6 The Case with Position Measurements Only 

The case with position measurements only is obtained by letting r tend to 
infinity. For this case we obtain from (8.63): 

f = 1  (8.69) 

B = O  

A = U = U = 2 

y = g = . / z  

and 

h =  1 (8.69) 

From (8 .62)  we get 

YII = 2 (8.70) 

Y12 = 2 

y13 = 1 

Y22 = 3 

y23 = 2 

(8.70) 

(8.71) 

and from (8 .66) ,  

KI I = W / h P  (8.72) 

K21 = 2 ( q / r p  

K3I = (cl/ro)1/2 

and K12 = K22 = K32 = 0 as expected. The solutions (8.71) and (8.72) are in 
perfect agreement with the solutions given in Ref. 4 for the case of random 

walk acceleration model as given in equations (5.73) and (5.74). 
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The details of solving the six nonlinear equations (8.55) to (8.60) are 
given separately in Appendix 8B. 

8.5 SUMMARY 

Ekstrand’s RWV model [I] of a continuous-time Kalman tracking filter is 

discussed in Section 8.2. Analytical expressions are given for the steady state 
solution of the model. The position and velocity measurements are assumed 
to be obtained continuously and both these measurements are utilized in 
Ekstrand’s model. Ekstrand obtained the solution by a limiting operation 
on the known solution for the corresponding discrete-time case [3]. The 
results for the corresponding filter in which measurements of one state alone 

are available are obtained by Ekstrand as a special case of this model [l]. 
These results are shown to be the same as the RWV solution of Fitzgerald 
[4] and also the solution for the special case 3, = 0 in the ECV model of 

Nash [5]. The transfer functions of the filter for both the cases are given. 
In Section 8.3, the solution obtained by Pachter [2] by directly solving 
the algebraic Riccati equation is given. A continuous-time three-state 

Kalman filter in which two states are measured is discussed in Section 8.4. 
The covariances and gains are analytically determined by directly solving 
the algebraic Riccati equation and are expressed as functions of a single 
parameter. The results for the case when only measurements of one state 
variable are available are obtained as a special case of this model and these 

results are i n  excellent agreement with the results of the random walk accel- 
eration model case of Fitzgerald [4]. The solutions are visualized in two 
graphs. 
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APPENDIX 8A: DERIVATION OF STEADY STATE RESULTS 

BASED ON LIMITING OPERATION 

I n  Ref. 1,  Ekstraiid demonstrates the application of limiting operation given 
in (8.15) to obtain the steady state results. From (7.52) and (7.31), ri2 is 

given by 

Making a slight rearrangement, we may write ( A l )  as 

where r and s are given by 

or 

Now consider the factor x / r :  

311-=-+- a2 

I’ I’ I’ 

where 
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we have 

where from (8.18), 

cjo = l/rlro 

From (A4), (A9), and (AlO), (A7) and (A8) become 

-a1 -,$ 

I' rd 

M 2
- + 2  
r 

and hence, from (A6) 

a qo
- + - + 2  
I' I'd 

From (7.54), /j is given by 

1 + 4/(rs)2 1 

" = \lil + [4/(rs2)](x/r) 
--,-

1 + 1/1' 

From (A2), 

or 

which is the solution given in (8.16) for Y12. Similarly, the solutions for Y I1 

and Y22 may be obtained in a straightforward manner. 
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APPENDIX 88: SOLUTION OF NONLINEAR EQUATIONS 

The method of solving equations (8.55) to (8.60) is briefly given below: 
From (8.59) we obtain 

y:, y:3 = Y&(1 - Y12/rI2 (B1) 

Putting the values of Y:, from (8.55) and Y.& from (8.57) in ( B l )  and 
simplifying, we get 

y13 = 1 - Y12/r 

Putting (B2) in (Bl),we get 

YII = y23 

Using (B2) and (B3) in (8.57), we get 

Y:, = r(1 - Y:3) 

From (8.58) and (B2), we get 

(YII y12 - Y13)? = y;2 y1?3 

From (8.56) and (B3), 

Y;* = r(2Y,1 - Y;*) (B6) 

Using (B2), (B4), and (B6) in (B5) and simplifying we get 

[r2(1- Y I ~ ) ~+ Y?3l2= 4r3(1 - Y:3)Y;3 

Dividing (B7) throughtout by r6Yf3and putting 

and simplifying, we get 

r 2 w 2  - 2 6 - l / r  = 0 

Putting 

Y = &  

in (B9), we get 

=y4  - 2 1 / 2 ~+ I / ~ .o ( B l U  

Solving this biquadratic (B1 I ) ,  we get the value of Y as given in (8.63). 

Knowing Y ,  11’is obtained from (B10) and hence Y13 is obtained from (B8). 
Using Y13 i n  (B2), Y12 is obtained. Using Y12, Y11 is obtained from (8.55) 
and this is also equal to Y23 as given in (B3). 
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Using the values of YII,Y12, and Y13, Y22 and Y33 are obtained from 
(8.58) and (8.60), respectively. Thus the complete solution (8.62) is obtained 
in this way as a function of a single parameter r given by (8.61). 
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9.1 INTRODUCTION 

In designing tracking filters for civil and defense applications, a 

maneuvering aircraft can be modeled by a linear system with random noise 

accelerations, as discussed in earlier chapters. The trackers provide 
optimum estimates of the aircraft’s position and velocity provided the 
dynamic model on which the filter is based is a correct representation of 

the actual nature of flight path. Models based on the assumption that 
the aircraft flies a constant velocity, straight-line trajectory will eventually 
lose track if the aircraft deviates from the type of flight path. 

Maneuvering targets are well modeled by Singer [I]  assuming a linear 
acceleration model driven by random noise with variance chosen according 

to a distribution of the potential maneuver accelerations. This filter not only 
maintains track through the maneuver but also provides good estimates of 
position, velocity, and acceleration if the maneuver parameter is correctly 
chosen. If the aircraft is not maneuvering, then there will be a degradation 
in the performance of the filter compared to simpler filters based on the 
constant velocity straight -1ine m ot ion. 

191 
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Hence some sort of an adaptivity should be built into the tracker so 
that a more general algorithm is used only when the aircraft is maneuvering. 
Usually a statistical decision test is applied to detect a maneuver [2]. As long 
as no maneuver is detected, a simpler filter based on a constant velocity 
model is used for tracking an aircraft. When a maneuver is detected, the 
tracker is reinitialized using stored data. Algorithms incorporating such 

an adaptivity are called maneuver detectors. In its simplest form, usually 
two Kalman filters are used, one appropriate for the constant velocity 
motion and the other more appropriate for tracking maneuvering targets. 
The decision as to which filter is to be used depends upon the value of a 
test statistic related to a measurement residual. If the test statistic exceeds 
a certain threshold, then a maneuver is declared and the filter appropriate 
for the maneuvering target is used. The general theory for tracking 
maneuvering targets is given in Ref. 2. Several models [4-311 deal with 
the problem of tracking maneuvering targets based on Kalman filter theory. 
The performance evaluation of some of these models is given in Ref. 3.  

In this chapter, the following two models for maneuvering target tra- 
cking are discussed. 

1.  Bar-Shalom-Birmiwal’s model 

2. Blom-Bar-Shalom’s interacting multiple model 

Bar-Shalom and Birmiwal [24] proposed a tracking scheme which will 
guarantee optimum performance for both nonmaneuvering and 
maneuvering portions of the trajectory. This scheme consists of a quiescent 
two-state constant velocity model for nonmaneuvering targets, a maneuver 
following logic, and a three-state constant acceleration model for the 

maneuvering trajectories. Once a maneuver is detected, it is assumed that 

the actual maneuver started a few measurements earlier. Then using the 
stored measurements, the higher-order acceleration filter is initiated. The 
filter will be cycled through the stored measurements to reach the current 
data point. Then the acceleration filter will run i n  real time with the arrival 
of new measurements. Now an end-of-maneuver detector will monitor 
the estimated accelerations. Once the acceleration estimate becomes stat- 
istically insignificant, an end-of-maneuver is declared and the constant vel- 

ocity filter takes over. Thus the switching between the velocity and 
acceleration filters will take place depending on whether the target is 
maneuvering or not. 

The main disadvantage of this algorithm is that model switching 
always happens with a time lag due to maneuver detection. During this 
period, tracking errors increase nonlinearly and may not be acceptable 
in many applications. 
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In the multiple-model approach [25], several models for target 

dynamics are postulated. A filter is set up for each and based on their 
likelihood functions, the probability for each model being the correct rep- 
resentative of the target dynamics is computed. The state estimate is the 
weighted average of the model-conditioned estimates with the computed 
probabilities as weights. But, in practice, the model estimate with the highest 
probability may be taken as the final estimate. One advantage of this 

approach is that there is no maneuver following scheme and the 

probabilities will get adjusted automatically. But the computational com- 
plexity of this approach is more compared to Bar-Shalom-Birmiwal’s 

model. 
Blom and Bar-Shalom [26] proposed a scheme which is sequel to the 

multilpe-model approach. This algorithm is called the interacting multiple 
model ( IMM) algorithm. IMM also uses a bank of filters. But the filters, 
instead of working independently, interact with each other in a probabilistic 
manner. Due to this interaction, individual filters could adjust their par- 
ameters and provide optimum output corresponding to the input. For 
the purpose of system output, a weighted average of the individual filter 

outputs is taken [26-311. The weighting factors are available as part of 
the filter formulation. Also, there is no need for a separate maneuver detec- 
tor as i n  the case of Bar-Shalom-Birmiwal’s model. I n  Ref. 31, Mazor, 
Averbuch, Bar-Sholoni, and Dayan give an exhaustive survey of IMM 
methods in  target tracking. 

9.2 BAR-SHALOM-BIRMIWAL’S MODEL 

In this section, Bar-Shalom-Birniiwal’s model [24] for tracking a 

maneuvering target is discussed. I n  this approach, two Kalman filters of 
different dimensions are used. A constant velocity model is used when 
the target is not maneuvering, and a constant acceleration model is used 
during a maneuver. 

9.2.1 Dynamic Models 

In the absence of maneuver, the target dynamics is modeled as [24] 

X ( k + 1 )  = F X ( k )+ G W ( k )  
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where 

T / 2  0 

G = [  f 2 ]; 
and 

The statistical properties of the process noise are 

E{W ( k ) }= 0 

E{W ( k )W T ( j ) }= Q h k j  

Let the initial state estimate be k(O(0)with covariance &OlO). 
In the presence of a maneuver, the target dynamics is modeled as [24] 

Y Z ( k+ I )  = F"'X"'(k)+ G"' W"'(k) (9.2) 

where 
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l T O O  T 2 / 2  0 -
0 1 0 0  T 0 

F”’ = O O l T  0 T2/2 

0 0 0 1  0 T 

0 0 0 0  1 0 

0 0 0 0  0 1 -

‘T2/4 0 

T / 2  0 

G”’ = 0 T 2 / 4  

0 T / 2  

1 0 

. o  1 -

and 

The statistical properties of the process noise are 

E{ W”’(k)}= 0 

E {  W”’(k)W”’T(j)}= Q’”6k.j 

The algorithm is not restricted to the above two models only. Any 
other suitable models may be employed. 

9.2.2 Measurement Models 

In the absence of maneuver, the measurement equation is given by 

Z ( k )= H X ( k )+ V ( k )  (9.3) 

where 

and 
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The statistical properties of the measurement noise are 

E{ V ( k ) ]= 0 

and 

E{V(k)V’(j) = R6kj 

In the presence of maneuver, the measurement equation is given by 

Z(k)= H‘”X”’(k)+ V ( k )  

with 

1 0 0 0 0 0
HtT‘ = 

0 0 1 0 0 0  1 
9.2.3 Maneuver Detector 

A detectioii statistic that determines whether a maneuver has occurred is 

developed as follows. Let the matrix {Sk be defined as 

i jk = vT(k)S-’(k)v(k) (9.4) 

where v(k) is the measurement residual with covariance Sk. A “fading 

memory” average of the innovations is constructed as 

p(k)= CIp(k - 1 )  + 6(k) (9.5) 

where 

p(0) = 0 

and 

O s a t l   

The quantity 

A = 1/(1 - CI) (9.6) 

may be considered as an effective window length over which the presence of 

a maneuver is detected. A maneuver is declared i f  a t  time k ,  it is found that 

IPu(k)l 2 2 (9.7) 

where 2 is some chosen threshold. Then the estimator switches from the 
constant velocity model to the maneuveriiig model. 

When using the constant acceleration filter, at each time point k the 
test statistic 
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is calculated where Li(klk) is the estimate of the acceleration and PE1(klk)is 
the corresponding block from the error covariance matrix. Let p be a 
window length in time. If the quantity 

falls below some chosen threshold, the maneuver is deemed to have ended 
and the filter switches back to the constant velocity filter. 

9.2.4 State Estimation 

When a maneuver is detected at  time k ,  the filter is initialized by assuming 
that the maneuver occurred at  some time point ( k  - A - 1). Let 

1 1 = k - A  

111 = n - 1 

A is the effective window length given by (9.6).The state estimates within the 
window are then modified as follows. 

The estimates of the acceleration components at  n are given by 

The estimates of the position components a t  11 are given by 

92 i - , ( n ( n )= Zj(ll) i = I ,  2 (9. I I )  

The estimates of the velocity components are corrected with the accel- 
eration estimates as 

(9.12) 
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Let the covariance matrix associated with the modified state estimates 
as given by (9.10) to (9.12) be denoted as P”’(nIn).Then the elements of this 
matrix are derived as [24] 

(9.13) 

In this model, it is assumed that x and y coordinates are independent. 
x, i,and 2 correspond to components 1, 2, and 5 of the state vector 
X‘”. The covariance matrix elements corresponding to these x components 

are given by (9.13). Similarly, the covariance matrix corresponding to Y ,  

j ,  and j ;  are components 3 ,  4, and 6 of the state vector and may be obtained 
as 

(9.14) 

As the model does not require the a priori knowledge of the 
maneuvering characteristics of the target, it may be regarded as 
nonparametric. Bar-Shalom and Birmiwal have demonstrated the eflective- 
ness of the algorithm i n  tracking some typical maneuvers through computer 
simulation. Also, through a rigorous statistical analysis, it is shown that 
significant performance improvement is provided by this algorithm when 
compared with the input estimation algorithm of Chan [ l l ] .  
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9.3 BLOM-BAR-SHALOM’S INTERACTING MULTIPLE MODEL 

(IMM) 

9.3.I Introduction 

The JMM estimator is a suboptimal hybrid filter. This estimator has the 

ability to estimate the state of a dynamic system with several behavior 

modes which can switch from one to another. This can be considered to 
be a self-adjusting variable bandwidth filter and hence very well suited 
for tracking maneuvering targets [26-3 I]. 

The hybrid systems are characterized by the following. 

1.  State (consisting of kinematic components and possibly feature 
components also) that evolves according to a stochastic difference 
(or differential) equation model. 

2. Model that is governed by a discrete stochastic process: It is one of 
a finite number of possible models (each corresponding to a 

behavior mode) that undergoes jumps (switches) from one model 

(behaviour mode) to another according to a set of transition 
probabilities. 

The highlight of hybrid models for tracking algorithms is that the 
occurance of target maneuvers can be explicitly included in the kinamatic 
equations through regime jumps. The multiple-model adaptive estimation 
approach is based on the fact that the behavior of the target cannot be 
characterized by a single model, but a finite number of models can 
adequately describe its behavior in different regimes. 

9.3.2 Design Parameters of an IMM Algorithm 

There are three design parameters that characterize an IMM algorithm 

[26-3 I]: 

1. The set of models for various regimes and their structure. 

2. The process noise iiitensities for various models, in particular the 
nonmaneuvering model with low-level process noise and the 
maneuvering model(s) with certain higher noise levels, determined 
by the assumed maneuverability of the targets. 

3.  The jump structure (usually Markov) and the transition 
probabilities between the models from the selected sets. The 

probabilities are chosen according to the designer’s belief about 
the frequency of the regime switches and can be subsequently 
adjusted based on Monte Carlo simulation results. 
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9.3.3 Properties of an IMM Algorithm 

The IMM algorithm has the following three desirable properties: 

1.  It is recursive. 
2. It is modular. 
3. It has fixed computation requirements per cycle. 

9.3.4 Three Major Steps of an IMM Algorithm in Each Cycle 

In each cycle, the IMM algorithm consists of the following three major 
steps: 

Step 1: Interaction/Mixing 

Step 2: Filtering 
Step 3: Combination 

9.3.5 Interaction 

At each time, the initial condition of the filter matched to a certain mode (a  

module) is obtained by mixing the state estimates of all filters at  the previous 

time under the assumption that this particular mode is in effect at  the current 

time. 

9.3.6 Filtering 

The interaction is followed by a regular filtering (prediction and update) step 
performed in parallel for each mode. 

9.3.7 Combination 

A combination/weighted sum of the updated state estimates of all filters 
yields the state estimate. The probability of a mode being in effect plays 

a key role in the weighting of the mixing and the combination of states 
and covariances. 

9.3.8 IMM Algorithm 

A jump linear fixed structure hybrid system with mode transition modeled 
by a semi-Markov process can be described by the equations given by Refs 
26 to 31: 

Dynamic model: XX.+I= & ( ~ ) X X .+ r,(k)vj(k) (9.15) 
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Measurement model: z k  = Hj(k)xk 4- Wj(k) (9.16) 

Equations (9.15) and (9.16) represent the simplest hybrid system with 
mode transition governed by a first-order homogeneous Markov chain given 

by 

where pij is the Markov transition probability from mode i to mode j .  

n?j(k) { n ~ ( k )= J }  (9.18) 

is the event that mode j is in effect at  time k. m(k)is the modal state (system 
mode index) at time k ,  which denotes the mode in effect during the sampling 
period ending at  k .  

In (9.15) and (9.16), it is assumed that the process and measurement 
noises are gaussian mutually uncorrelated with zero mean and known 

covariances Qi and Rj, respectively. 

Each mode-matched filter is a standard Kalman filter. 
I n  a fixed structure (or fixed mode set) hybrid system, a set of mode 

must be selected i n  advance. 
The switching process considered is of the semi-Markov type. The pro- 

cess is specified by a family of transition matrices p;j(Zi) where ~i is the 

sojourn time of the system in model i . The current probabilities of transition 

are defined as 

t ; (k )is the sojourn time in state i at time k .  F o r k  = 0, z = 1. Thus the values 
of z are taken from 1 to the maximum, which at time k is then k + 1. 

The TMM algorithm basically consists of a group of Y filters which run 

in parallel, and a global computation process collects the results of the filters 
and produces output estimation. One cycle of the IMM algorithm consists 
of the following steps: 

9.3.8.1 Interaction/Mixing 

The mixing probability at time k - 1 (the weights with which the estimates 
from the previous cycle are given to each filter at the beginning ofthe current 

cycle) is given by 

1 
/.I..41

. (k- I Jk- 1)  = rp;j/.c;(k- 1 )  (9.20) 
Cf 

where i ,j = 1,2, . . . , r ,  p;(k - 1) is the mode probability at time k - 1 and Cj 
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is the normalization factor given by 

r 

(9.21) 
i =  I 

j =  1 , 2, . . . , r .  

The mixed initial condition of the state estimate for mode matched 
fi l terj  at  time k - 1 is given by 

I' 

i-Uj(k - 1 lk - 1 )  = i-i(k - 1~k- 1)/l,l;(k- 1lk - 1) (9.22) 
i =  I 

where piI,(k- 1Ik - 1) is given by (9.20). The covariance corresponding to 
the estimate (9.22) is given by 

r 

P"j(k - Ilk - I )  = C { P / ( k- Ilk - 1) + A;A,T]/lili(k- Ilk - 1)  
i =  I 

(9.23) 

where 

Aj = k/(k- 1 Ik - 1) - &(k - 1 Ik - 1) (9.24) 

, j= 1,2, . . , , r .  The estimate (9.22) and covariance (9.23) are used as input to 
the mode matched Kalman filter j .  

9.3.8.2 Filtering 

The optimal predicted estimate of the state vector in mode matched filterj is 
given by 

i , (k lk  - 1) = F,(k - l) i",(k- 1Ik - 1) (9.25) 

The predicted covariance matrix of estimation errors in mode matched 
filter j is given by 

q k l k  - 1 )  = ~ , ( k- 1) ~ ( , , ( k- 1 ~k- 1 )~,'(k - 1)  + r,(k - 1 ) ~ , ( k- 1 ) rT(k - 1 )  

(9.26) 

The optimal filtered estimate of the state vector in mode matched filter 
j is given by 

*(klk) = X,(klk - 1 )  + W,(k)r#) (9.27) 

where the residual rl  is given by 

rj(k)= Z(k )- Zj(klk - 1 )  (9.28) 
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where Zj(klk - 1 )  is the measurement prediction given by 

kj(klk - 1 )  = Hj(k)ij(klk- 1 )  (9.29) 

The filtered covariance matrix in mode-matched filter j is given by 

Pj(klk)= Pj(klk - 1) - Wj(k)Sj(k) ~ : ( k )  (9.30) 

where Sj(k) is the covariance of the residual given by 

Sj(k)= Hj(k)Pj(k(k- I )HT(k)+ Rj(k) (9.31) 

(9.32) 

The likelihood function of mode matched filter j is given by 

A / ( k )= N[rj(k);0, Sj(k)] (9.33) 

where N[rj(k);0, Sj(k)]denotes the multivariate gaussian density function of 
residual r j (k )with mean 0 and covariance Sj(k)and j = 1,2, . . . ,r .  

The updated mode probability at  time k is given by 

(9.34) 

Using the normalization factor given by (9.21) in (9.34), we get 

where the likelihood function Aj(k) is given by (9.33) and I' is the 
normalization constant given by 

I 

I' = Aj(k)?j (9.36) 
/ = 1  

9.3.8.3 Combination 

Finally, for output only, the latest state estimates and covariances are 
obtained according to mixture equations 

r 

(9.37) 

, j =  1 
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where Bj is defined as 

Bj = kj(kJk) - X(klk)  (9.39) 

9.3.9 Advantages of an IMM Algorithm 

Adapted from Ref. 31, the advantages of an IMM algorithm are: 

1. It has the ability to estimate the state of a dynamic system with 

several behavior modes which can switch from one to another. 
2. It is a self-adjusting variable bandwidth filter which makes it natu- 

ral for tracking maneuvering targets. 

3. It is the best compromise available currently between complexity 

and performance. 

4. Its computational requirements are nearly linear in the size of the 
problem (number of models), while its performance is almost 

the same as that of an algorithm with quadratic complexity. 

5.  For problems like tracking, the IMM interaction is so effective 

that IMM algorithm performs almost like the bayesian filter. 

6. The IMM requires a far lower computational power than other 
hig h -per fo r m a nce a 1go r it h m s fo r t r ac k in g mane u ve r ing t a r g e t s. 

7. The IMM estimator is one of the most effective and simple 

schemes for the estimation in hybrid systems and therefore is suit- 
able for multitarget multisensor tracking. 

8. The IMM procedure is well established based on a solid theoreti- 

cal foundation and proved to be appropriate for the maneuvering 
target tracking problem. 

9. It is recursive and modular. It does not require a separate 

maneuvering following logic. 

9.4 SUMMARY 

Bar-Shalom-Birmiwal’s model is based on the assumption that an aircraft 
moving with a constant velocity or  a constant acceleration motion will 

eventually lose track if the aircraft deviates from the assumed flight path. 

Hence a statistical decision test is applied to detect a maneuver. As long 
as no maneuver is detected, a simpler filter based on a constant velocity 
model is used for tracking the aircraft. When a maneuver is detected, 

the tracker is reinitialized using stored data for a higher-order maneuvering 
model. Then the acceleration filter will run in real time with the arrival of 

new measurements. Now an end-of-maneuver will monitor the estimated 
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accelerations. Once the acceleration estimate becomes insignificant an 
end-of-maneuver is declared and the constant velocity filter takes over. Thus 
the switching between velocity and acceleration filters will take place 
depending on whether the target is maneuvering or not. 

Blom-Bar-Shalom’s IMM algorithm uses a bank of parallel filters. 

The filters, instead of working independently, react with eachother in a 
probabilistic manner. Due to this interaction the individual filters could 
adjust their parameters and provide optimum output corresponding to 
the input. For the purpose of the system output, a weighted average of 
the individual filter outputs could be taken. The weighting factors are avail- 
able as part of the filter formulation. There is no need for a separate man- 
euver detector as in the case of Bar-Shalom-Birmiwal’s model. 
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10.1 INTRODUCTION 

I n  previous chapters, many algorithms were discussed for tracking a target 
in a clean environment. Also it was assumed that the return from the target 
was always received at each scan to update the state estimates of the target 
(probability of detection is unity). This is only an ideal situation. 

In practical applications, this situation may not exist and tracking may 
have to be performed in an environment of randomly distributed clutter. 
Clutter refers to radar returns from nearby objects like buildings, water 
towers, mountains and rains, etc. These false returns are generally random 
in number, location, and intensity. Even if there is oiily one target ofinterest, 
the number of returns received may be more than one due to clutter and false 
alarms. This introduces an additional uncertainty regarding the origin of 
measurements. The problem now is to find out which measurement 

originated from the target of interest, if it is detected. 

209 
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Sittler [I] was the pioneer to work out a reasonable method of incor- 

porating measurements of uncertain origin into the existing tracks. This 

was done before the Kalman filter became popular. Since then several 

algorithms have been developed based on the Kalman filtering techniques. 
The algorithms developed so far for tracking in clutter environment 

may be classified as non-bayesian and bayesian. The non-bayesian 

algorithms make decisions to accept or reject possible trajectories based 

on likelihood functions and then estimate the state, conditioned upon 

the correctness of these decisions. The resulting state estimates and 
covariances do not account for the fact that these decisions may be 

incorrect. 

In bayesian methods, the probability that each measurement might be 
spurious is considered and incorporated into the Kalman filter. A detailed 

survey of some of these methods is given in  Ref. 2, and a comparison 
of some algorithms is given in Ref. 3.  

The problem of tracking a maneuvering target in clutter consists of the 
following two steps: 

1. The association of several detections over a period of time 

2. A decision that accepts these detections as having originated from 

the same target 

Prominent among the several algorithms available for tracking a 

maneuvering target in a clutter environment [ 1-42] are the probabilistic data 
association filter (PDAF) developed by Bar-Shalom and Tse [4-81 and the 

multiple hypotheses tracker (MHT) developed by Reid [ 5 , 9-1 I]. 
The PDAF is a suboptimal bayesian algorithm which assumes that 

there is only one target of interest whose track has been initialized. At each 

sampling, a validation region is set up. Among the possibly several validated 

measurements, one can be target originated if the target is detected. The 
remaining measurements are assumed to be false alarms or residual clutter 

and are modeled as independent, identically distributed random variables 

with uniform spatial distributions. This algorithm is discussed in this 

chapter without details of derivation. 
The initial significant work of Blom [13] and his subsequent contri- 

bution with Bar-Shalom [ 141 on interacting multiple model ( IMM) esti-

mator boosted the development of algorithms for tracking a 

maneuvering target in clutter. 

I n  Ref. 15, Blom combined the PDAF with the IMM algorithm in the 
development of a sophisticated tracking algorithm for ATC surveillance 

data. In Ref. 16, Houles and Bar-Shalom considered a combination of 
multisensor PDAF with the IMM algorithm for tracking a highly 
maneuvering target in clutter with multisensors. 
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’ The PDAF in combination with IMM estimator [12, 15, 161 has 
emerged as the best technique for tracking a maneuvering target in the 

presence of clutter since it is a recursive algorithm with fixed computation 
and memory requirements and a minimum of modeling parameters. Also, 
it achieved an excellent compromise between performance and complexity. 

The only disadvantage of the original version of PDAF is that it could 
not initiate or delete tracks. Recently, Colgrove, Davis, and Ayliffe [7] 
augmented the PDAF to include initiation and deletion by adding in the 

association an event corresponding to “unobservable target,” which is 
equivalent to no target. This work motivated the work of Bar-Shalom, 
Chang, and Blom [ 121in  developing an algorithm for track formation within 

the general context of hybrid state (dynamic multiple model) estimation 
[20]. This algorithm is discussed in this chapter. 

10.2 CHANGE OF NOTATIONS 

Since the problem is becoming more and more complex, the simple 
notations used so far are inadequate to describe the complex situations 
and hence a slight change of notation is introduced henceforth as follows: 

The state vector Xk will be denoted as X(kj , its filtered estimate i k  will 
be denoted as i ( k l k ) , its predicted state estimate x k  as k(k lk  - I) ,  the 
filtered covariance p k  as P(k(k) , and the predicted covariance P k  as 
P(klk - l ) ,  unless otherwise stated. 

10.3 VALIDATION REGION OR GATE 

Consider a target track that has already been initiated. The predicted meas- 
urement is given by 

&(k - 1) = H i ( k ( k- I )  (10.1) 

where k ( k ( k- 1) is the predicted estimate of the state vector and H is the 
observation matrix. The covariance matrix associated with it is given by 

S(k )= HP(klk - l)HT+ R(k)  ( 10.2) 

Then a validation region or gate in the measurement space where the meas- 
urement is likely to be found with some high probability [I 11 is defined as 

U” = vT(k)s-’(k)v(k)  ( 10.3) 
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where v(k) is the innovation given by 

v(k)= Z ( k )- Z(klk - 1) (10.4) 

The validation or gating is then performed by comparing d2to a threshold as 

d2 5 G (10.5) 

Measurements that lie inside the gate are considered valid and those that lie 
outside are discarded. The parameter G in (10.5) is obtained from the tables 

of chi-square distribution, since the weighted norm of the innovation (also 
called the statistical distance) that defines the gate is chi-square distributed 
with number of degrees of freedom equal to the dimension of the measure- 
ment vector. 

10.4 PROBABlLlSTlC DATA ASSOCIATION FILTER (PDAF) 

The state of the target is assumed to be described by the dynamic equation 

X ( k  + 1) = F ( k ) X ( k )+ W ( k )  ( 10.6) 

with the measurement given by 

Z ( k ) = H X ( k )+ V ( k )  (10.7) 

where W and V are zero mean, mutually independent white gaussian noise 
sequences with known covariance matrices Q(k )  and R(k) ,  respectively. 
Tracks are assumed to be initiated at  k = 0. 

At each scan, a validation gate given by (10.5), centered around the 

predicted measurement of the target, is set up to select the measurements 

to be associated probabilistically to the target. 
The simplest approach for tracking a target in a cluttered environment 

is to select the validated measurement that is closest to the predicted meas- 

urement and use it in the tracking filter as if it were the correct one. 
The gate or validation region is the region in which the true measure- 

ment will appear with a high probability. I f  more than one measurement 
is found in the validation region at a given time for a certain target, then 

any of these validated measurements could have originated from the target. 

Thus all the measurements in the validation region have to be considered in 
some way. 

In PDAF, the latest set of validated measurements are dealt with. It 
computes the probabilities of being correct for each validated measurement 
at the current time, It associates probabilistically all the neighbors to the 
target of interest. This probabilistic information used in PDAF accounts 

for the origin uncertainty. 
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The set of validated measurements a t  time k is given by 

(10.8) 

and the cumulative set of measurements is given by 

in(k) is the number of measurements i n  the validation region. The PDAF 
decomposes the estimation with respect to the origin of each element of 
the latest set of measurements (10.8). 

One cycle of the PDAF [4, 51 is given below without details of 
derivation. 

The best estimate of the target's state is the conditional mean of the 
state at time k based upon all the observations that with some nonzero prob- 
ability originated from the target and is given by 

where / j j (k)represents the association probabilities and 

/>';(k)= 1 (10.11) 
; = o  

k;(klk)is the updated state estimate that the ith validated measurement is 
correct and is given by 

where i = 1,  , . , ,m(k) and 

v;(k)= Z;(k)- H i ( k l k  - 1) (10.13) 

K ( k ) in (10.12) is the gain matrix given by 

K(k)= P(klk - 1 ) H Y ' ( k )  (10.14) 

where S(k ) is the measurement prediction covariance given by (10.2). 
For i = 0, i.e., if none of the measurements is correct, then the estimate 

is 

&,(kJk)= i ( k l k  - 1 )  (10.15) 
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Combining ( 10.12) and (10.15) into (10.10) and using ( 10.1 l), we get 

i j ( k l k ) = k(klk - 1) + ~ ( k ) \ r ( k )  (10.16) 

where 

v(k)= / j , (k)v;(k) (10.17) 
i =  1 

is known as the combined innovation which uses all the validated 

measurements. 
The error covariance associated with the updated state estimate 

(10.16) is given by the PDAF [4, 51 as 

where Pk(kJk) is the filtered Kalman covariance matrix that would be com- 
puted if a single return were present in the validation region and is given 

by 

Pk(klk)= [ I  - K(k)H]P(klk- 1) (10.19) 

and P*(k)is an increment added to reflect the effect of uncertain correlation 
and is given by 

( 10.20) 

The predicted state is given by the Kalman filter as 

X(k + 1Jk)= F(k)k (k lk )  (10.21) 

and the covariance of the predicted state is given by 

The association probabilities for the parametric PDAF with the 
Poisson clutter model are given by [4, 51 

( 10.23) 

(1 0.24) 
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where i = 1,  , .. ,m(k)  and from Refs. 4 and 5 ,  ei and h are defined as 

( 10.25) 

( 1  0.26) 

( I  0.27) 

where A4 is the dimension of the measurement vector and Chf is the volume 
of the M-dimensional unit hypersphere ( C ,= 2, C2 = n, (’3 = 4n/3, and 
so on [21]. 

The nonparametric version of the PDAF [5] is the same as above 
except for replacing A Vj,.by m ( k )in (10.27). For this case, ej and h may also 
be defined as [ 121 

(10.28) 

( 1  0.29) 

PD is the probability of detection, N[Vi;0, S(k)]is the normal probability 
density function (pdf) with argument \’j, mean zero, and variance S(k); 
P G  is the probability that the target measurement falls in the validation 
region, V ( k )is the volume of the validation region. For a two-dimensional 
validation region (“g-sigma gate”), the volume is given by [12] 

V ( k )= g 2 n ( S ( k ) p 2  (10.30) 

IS(k))is the determinant of S(k). 

10.4.1 Advantages of PDAF 

1. This is a recursive filter. 

2. It has fixed computational requirements, being slightly more 
complex than a standard Kalman filter. 

3. It requires only a minimum of modeling parameters. 

The only disadvantage of PDAF is that it cannot initiate or delete 
tracks. In Ref. 7, Colgrove, Davis, and Ayliffe have augmented the PDAF 
to include track initiation and deletion by adding in the association an event 
corresponding to “unobservable target,” which is equivalent to “no target.” 
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10.5 BAR-SHALOM-CHANG-BLOM’S MODEL FOR 

AUTOMATIC TRACK FORMATION 

Bar-Shalom-Chang-Blom’s model is a recursive track formation algorithm 
[I21 for tracking a maneuvering target in a cluttered environment. This 
model consists of a combination of the IMM (with two models: “true 
target” and “no target”) with the PDAF to associate the measurements 
to the tracks that are formed. The PDAF calculates the probabilities of each 
measurement falling in the validation region that it originated from the tar- 
get of interest. The nonparametric version of the PDAF [4, 51 is used here. 
This assumes a known target detection probability, but it does not need 
the spatial density of the false measurements and hence is suitable for 
an environment where the false detection rate might change drastically 

within the surveillance region [ 121. 

10.5.1 Model Formulation 

Consider two models, one for observable (“true”) target designated as 
model t = 2 and the other for unobservable target (“false target”) desig- 

nated as model t = 1. 

In model t ,  let a target originated measurement be detected with prob- 
ability Pil. Then for the observable target, P i  = P D ,  the target detection 
probability, and for the unoservable target, PL = 0. 

10.5.2 Dynamic Model 

Tracking is assumed to be done in the two-dimensional cartesiaii coordinate 
system, and the equations of motion of the target are given by 

X,(k + 1) = F,X,(k) + W,(k) t = 1,2  (10.31) 

where X,(k) , the state vector of the target at  time k for model t ,  is the same 
for both models and is given by 

(10.32).[;I  
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F1 is the transition matrix of niodel t for he sampling per od T given by 

r l  T o 01 
(10.33) 

L o  0 0 1j  

Wt(k)is the zero-mean white gaussian process noise with known variance 

E[W / ( k )wT(j)l = Q / 4 k 7 j >  (10.34) 

where 

(10.35) 

and 

(10.36) 

Here, q1is the variance of the process noise modeling the motion uncertainty 
(acceleration) in model t .  

The state vectors for the two models can be different [15, 161. In the 
sequel, the subscript will be dropped for simplicity wherever this does 

not cause ambiguity. 

10.5.3 Measurement Model 

The target originated measurements, which occur with probability PO,are 

modeled as 

Z ( k )= H X ( k )+ V ( k )  (10.37) 

where 

(10.38) 

V ( k )is a zero-mean white gaussian measurement noise with known variance 

given by 

E[U k )V 3 A I  = R t W , j )  (10.39) 

where 

( 10.40) 
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10.5.4 False Measurements Model 

The locations of the false measurements are modeled as uniformly dis-
tributed. The number of fdse measurements is assumed to have a “diffuse 

prior” (any number of false measurements is equiprobable) distribution [5], 
which allows a state estimation algorithm that does not require the spatial 

density of the false measurements (clutter) [121. 

10.5.5 Model Transition Probabilities 

The observable and unobservable situations are modeled by a Markov chain 
as follows. Denoting the model in effect during period k by M(k) ,  the 
following transition (model switching) probabilities are assumed: 

P { M ( k+ 1) = unobservable IM(k )= unobservable} 

-- P I [  = 1 - c 1  (10.41) 

P ( M ( k+ 1) = observable IM(k) = unobservable} 

--PI2 = E l  ( 10.42) 

P ( M ( k+ 1) = unobservable ( M ( k )= observable} 

--y21 = 1 -c2 (10.43) 

P { M ( k+ 1 )  = observable IM(k)= observable) 

-- p22 = 1 - c2 (10.44) 

That is, transitions between the models are assumed with some low 

probability . 

10.5.6 The IMMPDAF 

In Chapter 9, it was assumed that only one measurement, Z(k) , is given by 
the sensor. The extension of IMM to the situation with clutter is obtained 
as follows: 

1. The standard filters in the IMM configuration are replaced by 
PDAFs of nonparametric version. 

2. The calculation of the model probabilities conditioned on the 

measurements is made using the likelihood function of the PDAF. 

Let M,(k)  denote the event that model t is in effect during the kth 
sampling period. Then M,,(k- 1)  denotes the event that model s is in effect 
during period k - 1. 

One cycle of the IMMPDAF algorithm for two models consists of the 
fo11owing four steps. 
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STEP I .  This is an IMM step [13, 141 described in Chapter 9. Starting 
with f $ ( k- 1Ik - I ) ,  the mixed initial condition for the filter matched to 

model t is computed as 

2 

i ( , , ( k- 1 Ik - 1) = i s ( k- 1(k- l)p,q,(k - 1Ik - 1) ( 10.45) 
.F = 1 

where 

(10.46) 

where 

( 10.47) 

and pSlis the assumed Markov model-switching probability giving the jump 
probability from model s at time k - 1 to model t at time k .  These model 
transition probabilities are assumed known: They are part of the design 
process, similar to the choice of the model parameters. 

The covariance corresponding to ( 10.45) is 

L 

P()/(k- 1Ik - 1) = pL& - 1Ik - l){P,(k- 1Ik - 1) + A A T )  
s =  I 

( 10.48) 

where 

A = i .$(k- 1Ik - 1) - i”, (k- Ilk - 1) (10.49) 

The estimate (10.45) and covariance (10.48) are used as input to the 
filter matched to model t to yield i , ( k l k ) and P,(klk). 

STEP 2. This is a PDA step [4, 51 discussed in Section 10.4. In the 

presence of clutter (for a nonparametric PDAF), the likelihood function 
is the joint probability density function of the innovation, written as 

(10.50) 

STEP 3. This is a multiple model PDA step [5, 221. The model 

probabilities are updated as follows: 

1 
& ( k )  = ; A r ( W ,  (10.51) 

where ?, is the expression from (10.47) and A,(k) is given in (10.50). 
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STEP 4 ( f o r  output only). The model conditioned estimates and 
covariances are combined according to the following equations: 

hw)= 

2 

X(k I&m ( 1  0.52) 
f =  I 

2 

P(klk) = Pf(k)Wf(klk) + BBTl (10.53) 
f = l  

with 

B = i f ( k l k )- i ( k l k )  (10.54) 

10.5.7 Automatic Track Formation Algorithm 

The automatic track formation algorithm implemented in Ref. 17 is 
described in Ref. 12. The tracking operation is done in the two-dimensional 
cartesian coordinate system. The algorithm is briefly given below: 

1 .  A tentative track is initiated for every detection in the first scan. 

2. The velocity of the target along coordinate i is assumed to lie in the 
interval [- V;,,,,,,],i = 1 ,  2. A rectangular gate is chosen with 
its area given by 

l ~ , s ~ + ~ ~ ~ 1 ~ ~V(2) = ~ ~ ~ ~ * (10.55) ~ ~ 

Each measurement in the gate yields an initiating pair from which 

a preliminary track is formed, and the state estimate is initialized 

based on the first two measurements. 
3.  From the third scan, the two-model PDAF is run on each prelimi- 

nary track. A Markov chain transition matrix is assumed between 
the two models as given in (10.41) to (10.44). Each model is 
assumed to have initial probability 0.5. 

4. The true target probability (TTP) of eack track is computed, and if 
it falls below a certain threshold, the track is discarded. 

5 .  A test of similarity is done according to the track-to-track associ- 
ation technique [ 5 ] to eliminate redundant tracks. 

10.5.8 Advantages of Bar-Shalom -Chang -Blom’s Model 

1. It is a recursive algorithm. 
2. I t  has fixed computational and memory requirements. 
3. It can initiate tracks, maintain tracks in the presence of man- 

euvers, and terminate tracks if warranted. 
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4. It is useful for situations of low signal-to-noise ratios where the 
detection threshold has to be set low to detect the targets, this 
leading to a high rate of false alarms for which logic-based tech- 
niques are not adequate. 

5 .  The algorithm yields model probabilities, which provide the true 
target probability for each track under consideration. 

6. The algorithm can assess its own reliability (track loss) and hence 
may be called “intelligent tracker.” 

10.6 SUMMARY 

Tracking of a maiieuvering target in clutter is discussed in this chapter. A 
change of notations is introduced in Section 10.2. Even if there is only 
one target of interest, the number of returns received may be more than 
one due to clutter of false alarms. This introduces an additional uncertainty 
regarding the origin of measurements. The problem now is to find out which 
measurement originated from the target of interest, if it is detected. For this 

a gate or validation region is set up around the predicted measurement a t  
each scan. The gate or validation region is the region in which the true meas- 
urement will appear with a high probability. Measurements that lie inside 

the gate are considered as valid, and those that lie outside the gate are dis- 
carded. This is discussed in  Section 10.3. If more than one measurement 
is found in the validation region at  a given time for a certain target, then 
any of these validated measurements could have originated from the target. 
Thus, all the measurements in the validation region must be considered in 

some way. 
The probabilistic data association filter (PDAF) is a suboptimal 

bayesian algorithm which assumes that there is only one target of interest 
whose track has been initialized. I n  PDAF, the latest set of validated 
measurements are dealt with. I t  computes the probabilities of being correct 
for each validated measurement at the current time. It associates 
probabilistically all the neighbors to the target of interest. This probabilistic 
information used in PDAF accounts for the origin uncertainty. This is dis- 
cussed i n  Section 10.4. PDAF is a recursive filter with fixed computational 
requirements and a minimum of modeling parameters. The only disadvan-
tage of the original version of PDAF is that it cannot initiate or delete 

tracks. Recently, Colgrove, Davis, and Ayliffe [7] augmented the PDAF 
to include track initiation and deletion by adding in the association an event 

corresponding to “unobservable target” which can represent either a true 
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target outside the sensor coverage or an erroneously hypothesized target 
which is equivalent to “no target.” This technique enabled PDAF to initiate 
or delete tracks. 

Bar-Shalom-Chang-Blom’s model [121 is a recursive track formation 
algorithm. It consists of a combination of IMM (with two models; “true 
target” and “no target”) with the PDAF to associate the measurements 
to the tracks that are formed. The PDAF calculates the probabilities of each 
measurement fdling in the validation region that it originated from the tar- 
get of interest. The nonparametric version of the PDAF is used in this 
model. This assumes a known target detection probability, but it does 
not need the spatial density of the false measurements, which makes it suit- 
able for an environment where the fdse detection rate might change dras- 
tically within the surveillance region. 
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11.1 INTRODUCTION 

Besides the measurement inaccuracies and inadequacies of maneuver 
models to represent the true target characteristics, the actual tracking prob- 

lem is much more complicated because of the presence of radar clutter plots 
or false reports, missing reports due to probability of detection being less 
than unity, presence of several targets (multiple targets), and also unknown 
targets requiring track initiation. This introduces an additional uncertainty 
regarding the origin of measurements, i.e., whether a measurement has 
originated from a target of interest or not. The number of targets present 
may also be unknown. This multitarget tracking problem has evoked great 
interest in recent years because of its application in both military and civ- 
ilian areas such as ballistic missile defense, air defense, ocean surveillance, 
battlefield surveillance, air traffic control, etc. Several multitarget tracking 
algorithms have been developed [ 1-19] and recent books [6-8, 17-19] discuss 
the application of these algorithms. 

In this chapter, the joint probabilistic data association filter and Reid’s 
multiple hypotheses tracker are briefly mentioned. 

227 
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11.2 JOINT PROBABlLlSTlC DATA ASSOCIATION FILTER 

(J P D A F) 

The JPDAF [ l -8 ,  171 is identical to PDAF except that association 
probabilities are now computed using all observations and all tracks. 
The state estimates, gain, and covariance of JPDAF are computed using 
(10.14) to (10.20). The probability computations of (10.23) and (10.24) 
are now extended to include multiple tracks. 

11.3 REID’S MULTIPLE HYPOTHESES TRACKER 

Reid’s algorithm [9] deals with tracking multiple targets in a cluttered 

environment. This algorithm is capable of initiating tracks, accounting 
for false reports due to clutter or missing reports due to probability of detec- 

tion being less than unity and also processing sets of dependent reports. In 
this algorithm, as each measurement is received, probabilities are calculated 
for the data association hypotheses that the measurement came from the 

previously known targets in a target file, or that the measurement came 
from a new target requiring track initiation, or that the measurement is 
false due to a clutter plot. Estimation of target states is made for each such 
data association hypothesis using a Kalman filter. When more measure- 
ments are received, the probabilities of joint hypotheses are calculated 

recursively using all available information such as density of unknown 
targets, density of Fdlse targets, the probability of detection and the location 
uncertainty. The number of hypotheses is kept reasonably small by elim- 

inating the unlikely hypotheses and also combining the hypotheses with 

similar target estimates. The unlikely hypotheses are eliminated if their 
probabilities are below a specified threshold. Computational requirements 
are minimized by dividing the entire set of targets and measurements into 
clusters which are independently solved. 

The highlight of the algorithm is to generate a set of data-association 
hypotheses to account for all possible origins of every measurement. 
Another interesting feature of this algorithm is the generation of 

measurement-oriented hypothesis as against the target-oriented hypothesis 
developed by Bar-Shalom [ 5 ] .  In the target-oriented hypothesis scheme, 
every possible measurement is listed for each target, whereas in the 
measurement-oriented hypothesis scheme, every possible target is listed 
against each measurement. 

Before a new hypothesis is generated, the candidate target must satisfy 
the following three conditions: 
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1. If the target is a tentative target, its existence must be implied by 
the prior hypothesis from which it is branching. 

2. Each target is associated with only one measurement. 
3.  A target is associated with a measurement only if the measurement 

falls within the validation region of the target. 

The validation region is fixed as given in Section 10.3. Each measure- 
ment of the data set is associated with a cluster if it falls within a validation 
region of any target of that cluster for any data association hypothesis 
of that cluster. A new cluster is formed for each measurement which cannot 
be associated with any prior cluster. If any measurement is associated with 
two or more clusters, then those clusters are combined into a super-cluster. 

Thus Reid’s algorithm [9] incorporates a wide range of capabilities 
such as a robust data association scheme, track initiation, multiscan 
correlation, the ability to process data sets with false or missing reports, 
clustering and recursiveness. The fundamental contribution of this algo- 
rithm is the bayesian formulation for determining the probabilities of data 

to target association hypothesis. 
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