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Preface

This	book	is	based	on	lecture	notes	for	a	three-course	sequence	in	radar	taught	by	Dr.	Budge
at	the	University	of	Alabama	in	Huntsville.	To	create	this	book,	we	filled	in	some	details	that
are	normally	covered	 in	 lectures	 and	added	 information	 in	 the	areas	of	 losses,	waveforms,
and	signal	processing.	We	also	added	a	chapter	on	receiver	basics.

The	 first	of	 the	 three	courses,	which	 focuses	on	 the	 radar	 range	equation	and	 its	various
progressions,	provides	an	introduction	to	basic	radar	analysis	covered	in	Chapters	1	through
9	 of	 this	 book.	 Chapter	 1	 begins	 with	 definitions	 of	 radar-related	 terms	 and	 terminology,
which	 is	 followed	 in	 Chapter	 2	 by	 a	 detailed	 derivation	 of	 the	 radar	 range	 equation	 and
discussions	of	 its	 various	parameters.	Following	 that,	 in	Chapter	3,	we	 discuss	 radar	 cross
section	 (RCS)	 with	 emphasis	 on	 the	 Swerling	 RCS	 models.	 We	 next	 discuss	 noise,	 noise
temperature,	and	noise	figure	in	Chapter	4	and	losses	in	Chapter	5	to	round	out	our	treatment
of	the	radar	range	equation.	Following	this,	in	Chapter	6,	we	discuss	one	of	the	main	uses	of
radar,	which	is	the	detection	of	target	signals	embedded	in	noise.	We	address	detection	theory
for	several	radar	receiver	configurations	and	Swerling	RCS	models.	This	leads	naturally	to
matched	filter	 theory,	discussed	 in	Chapter	7,	and	 its	extension	 to	 the	ambiguity	 function	of
Chapter	 9.	We	 complete	 discussions	 of	 the	 radar	 range	 equation	 and	 detection	 theory	with
discussions	 of	 methods	 of	 increasing	 detection	 probability	 and	 decreasing	 false	 alarm
probability	in	Chapter	8.	This	includes	coherent	integration,	noncoherent	integration,	m-of-n
detectors,	and	cumulative	detection	probability.

The	second	course	covers	the	material	in	Chapters	12	and	13.	Chapter	12	includes	analysis
of	phased	array	antennas	and	signal	processing.	The	phased	array	discussions	include	linear
and	 planar	 phased	 arrays	 and	 provide	 explanations	 of	 efficient	 methods	 for	 generating
antenna	 radiation	 patterns	 and	 computing	 directivity.	 The	 phased	 array	 discussions	 also
include	 discussions	 of	 time	 delay	 steering,	 phase	 steering,	 phase	 shifters,	 element	 patterns,
grating	 lobes,	 feeds,	 and	 polarization.	 The	 signal	 processor	 studies	 of	 Chapter	 13	 include
ground	and	rain	clutter	modeling,	and	the	analysis	of	the	clutter	rejection	and	signal-to-noise
improvement	of	moving	target	 indicator	(MTI)	and	pulsed-Doppler	signal	processors.	Also
included	are	detailed	discussions	of	phase	noise	and	range	correlation,	plus	chaff	modeling
and	analysis.	Chapter	14	 contains	 a	 discussion	of	 basic	 receiver	 analysis,	which	we	plan	 to
include	in	future	courses.

Finally,	the	third	course	covers	advanced	topics	that	include	stretch	processing,	covered	in
Chapter	11;	phase	coded	waveforms,	discussed	in	Chapter	10;	synthetic	aperture	radar	(SAR)
processing,	 discussed	 in	 Chapter	 15;	 space-time	 adaptive	 processing	 (STAP),	 covered	 in
Chapter	16;	and	sidelobe	cancellation	(SLC),	covered	in	Chapter	17.	In	all	of	these	areas	we
focus	on	 implementation.	For	example,	we	discuss	how	to	 implement	a	SAR	processor	and
process	actual	SAR	data	from	the	RADARSAT	I	SAR	platform.	We	show	how	to	implement	a
stretch	processor,	STAP	processors,	and	both	open-	and	closed-loop	SLCs.

The	main	 audience	 for	 the	 courses,	 and	 the	 intended	 audience	 for	 this	 book,	 consists	 of
practicing	radar	engineers	who	are	pursuing	an	advanced	degree	with	a	radar	specialization,



or	have	a	need	for	a	detailed	understanding	of	 radar	analysis.	As	such,	 the	courses	and	 this
book	focus	on	providing	the	theory	and	tools	radar	engineers	need	to	perform	their	day-to-
day	work	 in	 the	 fields	 of	 radar	 analysis,	 radar	modeling	 and	 simulation,	 and	 radar	 design.
The	homework	exercises	and	the	examples	in	this	book	are	derived	from	real-world	analysis
problems.	In	fact,	one	of	 the	common	phrases	of	radar	engineers	working	at	Dynetics,	Inc.,
the	authors’	company,	is	that	the	project	they	are	working	on	is	“Homework	16.”

This	 book	 focuses	 on	 analysis	 of	 radars	 and	 developing	 a	 firm	 understanding	 of	 how
radars	 and	 their	 various	 components	 work.	 As	 such,	 it	 does	 not	 avoid	 the	 sometimes
complicated	mathematics	needed	to	fully	understand	some	of	the	concepts	associated	with	the
analysis	 and	 design	 of	 radars.	 However,	 we	 try	 to	 summarize	 the	 results	 of	 mathematical
derivations	into	easily	usable	equations	and,	in	some	instances,	convenient	rules	of	thumb.	We
hope	you	find	this	book	useful,	and	we	welcome	your	feedback.
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Chapter	1

Radar	Basics

1.1 INTRODUCTION

According	 to	 Skolnik	 and	 other	 sources,	 the	 first	 attempt	 to	 detect	 targets	 using
electromagnetic	 radiation	 took	 place	 in	 1904	 (patent	 date	 for	 the	 telemobiloscope),	 when
Düsseldorf	engineer	Christian	Hülsmeyer	bounced	waves	off	a	ship	[1–5].	During	the	1920s,
several	researchers,	including	R.	C.	Newhouse,	G.	Breit,	M.	A.	Tuve,	G.	Marconi,	L.	S.	Alder,
and	probably	many	others	in	the	United	States	and	other	countries,	were	obtaining	patents	on,
and	 conducting	 experiments	 with,	 radar.	 Although	 these	 appear	 to	 be	 the	 first	 instances	 of
radar	usage,	the	term	“radar”	was	not	applied	then.	The	name	for	radar	was	coined	in	1940	by
two	 U.S.	 Navy	 officers	 (Lieutenant	 Commanders	 Samuel	 M.	 Tucker	 and	 F.	 R.	 Furth)	 as	 a
contraction	 of	 RAdio	 Detection	 And	 Ranging	 [6–8].	 As	 with	 many	 other	 technological
advancements,	 significant	early	achievements	 in	 radar	occurred	during	World	War	 II.	Since
then,	radar	technology	has	grown	rapidly	and	continues	to	advance	at	a	quick	pace.	We	now
see	 wide	 application	 of	 radars	 in	 both	 commercial	 (airport	 radars,	 police	 radars,	 weather
radars)	and	military	(search	radars,	track	radars)	arenas.

1.2 RADAR	TYPES

Radars	can	use	two	types	of	signals:

• Pulsed,	where	the	radar	transmits	a	sequence	of	pulses	of	radio	frequency	(RF)	energy;
• Continuous	wave	(CW),	where	the	radar	transmits	a	continuous	signal.

When	Hülsmeyer	bounced	electromagnetic	waves	off	a	ship,	he	used	a	CW	radar;	Breit	and
Tuve	used	a	pulsed	radar.

CW	 radars	 typically	 use	 separate	 transmit	 and	 receive	 antennas	 because	 it	 is	 not	 usually
possible	 to	 receive	 with	 full	 sensitivity	 through	 an	 antenna	 while	 it	 is	 transmitting	 a	 high
power	 signal.	 Pulsed	 radars	 avoid	 this	 problem	 by	 using	 what	 we	 might	 think	 of	 as	 time
multiplexing.	 Specifically,	 the	 antenna	 connects	 to	 the	 transmitter	while	 the	 pulse	 transmits
and	connects	 to	 the	 receiver	after	 the	 transmit	phase.	A	 transmit/receive	 (T/R)	 switch	 in	 the
radar	 performs	 this	 switching	 function.	 Such	 pulsed-signal	 radars	 constitute	 the	 most
common	type	because	they	require	only	one	antenna.

The	two	basic	types	of	radars	are	monostatic	or	bistatic	radars:

• In	a	monostatic	 radar,	 the	 transmitter	and	 receiver	 (as	well	 as	 their	 associated	antennas)
are	collocated.	This	is	the	most	common	type	of	radar	because	it	is	the	most	compact.	A
pulsed	monostatic	radar	usually	employs	the	same	antenna	for	transmit	and	receive.	A	CW
monostatic	 radar	 usually	 employs	 separate	 transmit	 and	 receive	 antennas,	with	 a	 shield



between	them.
• In	a	bistatic	radar,	the	transmitter	and	receiver	are	separated,	often	by	very	large	distances
(>	1	km).	Such	a	radar	might	be	used	in	a	missile	seeker,	with	the	transmitter	located	on
the	ground	or	in	an	aircraft	and	the	receiver	located	in	the	missile.

As	indicated	previously,	the	word	radar	is	a	contraction	of	RAdio	Detection	And	Ranging.
This	 contraction	 implies	 that	 radars	 both	 detect	 the	 presence	 of	 a	 target	 and	 determine	 its
location.	 The	 contraction	 also	 implies	 that	 the	 quantity	 measured	 is	 range.	 While	 these
suppositions	are	 correct,	modern	 radars	 can	also	measure	 range	 rate	 and	angle.	Measuring
such	parameters	permits	reasonably	accurate	calculations	of	the	x-y-z	location	and	velocity	of
a	target,	and	in	some	instances,	reasonable	estimates	of	the	higher	derivatives	of	x,	y,	and	z.

Radars	operate	in	the	RF	band	of	the	electromagnetic	spectrum	between	about	5	MHz	(high
frequency,	HF)	 and	 300	GHz	 (millimeter	wave,	mm).	Table	 1.1	 lists	 frequency	 bands	 [U.S.
Institute	 of	 Electrical	 and	 Electronics	 Engineers	 (IEEE)	 waveband	 specifications]	 and
associated	frequencies.	Another	set	of	waveband	specifications,	 the	European	and	U.S.	ECM
(electronic	countermeasure)	 experienced	 some	popularity	 in	 recent	 times,	 but	 has	waned	 in
the	past	10	or	so	years.

Typically,	but	not	always,

• Search	radars	operate	at	very	high	frequency	(VHF)	to	C-band;
• Track	radars	operate	in	S-,	C-,	X-,	and	Ku-bands,	and	sometimes	in	Ka-band;
• Active	missile	seekers	operate	in	X-,	Ku-,	K-,	and	Ka-bands;
• Instrumentation	 radars	 and	 short-range	 radars	 sometimes	 operate	 in	 the	 Ka-band	 and
above.

Some	notes	on	operating	frequency	considerations	[9]:

• Low-frequency	radars	require	large	antennas	or	have	broader	beams	(broader	distribution
of	 energy	 in	 angle	 space—think	 of	 the	 beam	 of	 a	 flashlight).	 They	 are	 not	 usually
associated	with	accurate	angle	measurement.

• Low-frequency	 radars	 have	 limitations	 on	 range	 measurement	 accuracy	 because	 fine
range	 measurement	 implies	 large	 instantaneous	 bandwidth	 of	 the	 transmit	 signal.	 This
causes	 problems	 with	 the	 transmitter	 and	 receiver	 design	 because	 the	 bandwidth	 could
represent	a	significant	percentage	of	transmit	frequency.

• Range-rate	 measurement	 is	 not	 accurate	 in	 low-frequency	 radars	 because	 Doppler
frequency	is	directly	related	to	transmit	frequency.

• High	power	is	easier	to	generate	at	low	frequencies	because	the	devices	can	be	larger,	thus
accommodating	higher	voltages	and	currents.

• Search	calls	for	high	power	but	not	necessarily	fine	range	or	angle	measurement.	Thus,
search	radars	tend	to	use	lower	frequencies.

• Track	calls	for	fine	range	and	angle	measurement	but	not	necessarily	high	power.	Thus,
track	radars	tend	to	use	higher	frequencies.

• The	 above	 notes	 often	 lead	 to	 the	 assignment	 of	 search	 and	 track	 functions	 to	 different
radars.	However,	modern	radars	tend	to	be	“multifunction,”	incorporating	both	purposes
in	one.	This	usage	often	leads	to	tradeoffs	in	operating	frequency	and	in	search	and	track



functions.

Table	1.1
Radar	Frequency	Bands

Band Frequency	Range Origin	of	Name

HF 3–30	MHz High	frequency

VHF 30–300	MHz Very	high	frequency

UHF 300–1,000	MHz Ultrahigh	frequency

L 1–2	GHz Long	wave

S 2–4	GHz Short	wave

C 4–8	GHz Compromise	between	S-	and	X-bands

X 8–12	GHz Described	fire	control	radars	in	World	War	II.	X	stands	for	“cross,”	as	in
“crosshairs”

Ku 12–18	GHz Kurz—under

K 18–27	GHz Kurz—German	for	“short	wave”

Ka 27–40	GHz Kurz—above

V 40–75	GHz Very	short

W 75–110	GHz W	follows	V	in	the	alphabet

mm 110–300	GHz millimeter
Source:	[10–12].

1.3 RANGE	MEASUREMENT

The	 common	 way	 to	 measure	 range	 with	 a	 radar	 is	 to	 measure	 the	 time	 delay	 from
transmission	to	reception	of	a	pulse.	Figure	1.1	illustrates	this	notion.	Since	RF	energy	travels
at	the	speed	of	light,	c	≈	3	×	108	m/s,1	 the	time	required	for	the	transmit	pulse	to	travel	to	a
target	at	a	range	of	R	is

The	time	required	for	the	pulse	to	return	from	the	target	back	to	the	radar	is

Thus,	the	total	round-trip	delay	between	transmission	and	reception	of	the	pulse	is

Since	we	can	measure	τR	in	a	radar,	we	can	compute	range	by	solving	(1.3)	for	R,	that	is,



As	a	note,	the	term	slant	range	suggests	measurement	along	a	line	(often	slanted)	from	the
radar	 to	 the	 target;	as	such,	 the	 term	applies	here	 to	R.	The	 term	ground	range,	 the	distance
from	the	radar	to	the	vertical	projection	of	the	target	onto	the	ground,	will	be	discussed	later.

A	rule	of	 thumb	for	 range	measurement	can	be	derived	as	 follows.	Suppose	τR	=	τ	 μs.	 In
other	 words,	 suppose	 we	 express	 the	 time	 delay,	 often	 called	 range	 delay,	 in	 units	 of
microseconds.	We	can	then	write

Thus,	we	can	compute	the	range	by	multiplying	the	range	delay,	in	microseconds,	by	150
m;	the	range	computation	scaling	factor	is	150	m/μs.

Figure	1.1	Illustration	of	range	delay.

1.4 AMBIGUOUS	RANGE

Since	 pulsed	 radars	 transmit	 a	 sequence	 of	 pulses,	 the	 determination	 of	 range	 to	 the	 target
poses	a	problem.	The	issue	is	where	we	choose	t	=	0	to	compute	range	delay.	The	common
method	is	to	choose	t	=	0	at	the	time	of	a	transmit	pulse;	thus,	t	=	0	resets	upon	each	transmit
pulse.

To	define	 the	 problem,	 consider	Figure	1.2,	which	 shows	 transmit	 pulses	 spaced	 400	 µs
apart.	Given	a	target	range	of	90	km,	the	range	delay	to	the	target	is

This	means	the	return	from	pulse	1	is	not	received	until	after	pulse	2	is	transmitted;	the	return
from	pulse	2	 is	not	 received	until	 after	pulse	3	 is	 transmitted;	and	so	on.	Since	all	 transmit
pulses	 are	 the	 same	 and	 all	 received	 pulses	 are	 the	 same,	 we	 have	 no	 way	 of	 associating
received	pulse	1	with	 transmit	pulse	1.	 In	 fact,	 since	 the	 radar	 resets	 t	=	0	on	 each	 transmit
pulse,	it	will	associate	received	pulse	k	with	transmit	pulse	k	+	1.	Further,	it	would	measure	the



range	delay	as	200	µs	and	conclude,	in	error,	that	the	target	range	is

Because	of	this,	we	say	that	we	have	an	ambiguity,	or	uncertainty,	in	measuring	range.

If	the	spacing	between	pulses	is	τPRI,	we	say	the	radar	has	an	unambiguous	range	of

Figure	1.2	Illustration	of	ambiguous	range.

If	 the	 target	 range	 is	 less	 than	Ramb,	 the	 radar	 can	measure	 its	 range	unambiguously.	For	 a
target	range	greater	than	Ramb,	the	radar	cannot	measure	its	range	unambiguously.

In	 the	 notation	 above,	 the	 term	 PRI	 stands	 for	 pulse	 repetition	 interval,	 or	 the	 spacing
between	transmit	pulses.	A	related	term,	pulse	repetition	frequency,	or	PRF,	is	 the	reciprocal
of	the	PRI.

To	 avoid	 range	 ambiguities,	 radar	 designers	 typically	 choose	 the	PRI	of	 a	 pulse	 train	 (a
group	 of	 two	 or	 more	 pulses)	 to	 exceed	 the	 range	 delay	 of	 the	 longest	 range	 targets	 of
interest.	 They	 also	 select	 transmit	 power	 to	 further	 diminish	 the	 possibility	 for	 long-range
target	detection	by	the	radar.

Ambiguous	 range	 sometimes	presents	 a	problem	 in	 search,	but	generally	not	 in	 track.	 In
track,	 the	 radar	 tracking	 filters	 or	 algorithms	 provide	 an	 estimate	 of	 target	 range,	 which
enables	the	radar	to	“look”	in	the	proper	place,	even	given	ambiguous	returns.

Using	 waveforms	 with	 multiple	 PRIs	 provides	 another	 method	 for	 circumventing
ambiguous	 range	 problems.	 Figure	 1.3	 depicts	 an	 example	 of	 a	 multiple	 PRI	 transmit
waveform	and	appropriate	received	signal.	 In	 this	example,	 the	spacings	between	pulses	are
400	µs,	 300	µs,	 and	350	µs.	As	 in	 the	previous	 example,	 a	 target	 range	delay	of	 600	µs	 is
posited.	 It	 will	 be	 noted	 that	 the	 time	 delay	 between	 the	 number	 1	 received	 pulse	 and	 the
number	2	 transmit	pulse	 is	200	µs,	and	 the	 time	delay	between	 the	number	2	received	pulse
and	 the	 number	 3	 transmit	 pulse	 is	 300	 µs.	 The	 fact	 that	 the	 time	 delay	 between	 the	 most
recently	transmitted	and	received	pulses	is	changing	can	be	used	to	indicate	ambiguous	range
operation.	The	radar	can	use	this	property	to	ignore	the	ambiguous	returns.



Alternatively,	the	radar	could	use	the	measured	range	delays	in	a	range	resolve	algorithm	to
compute	the	true	target	range.	Such	an	approach	is	used	in	pulsed	Doppler	radars	because	the
PRIs	used	in	these	radars	almost	always	result	in	ambiguous	range	operation.

Figure	1.3	Staggered	PRI	waveform	and	ambiguous	range.

Changing	 the	 operating	 frequency,	 fc,	 on	 each	 pulse	 provides	 yet	 another	 method	 of
circumventing	the	ambiguous	range	problem.	In	this	case,	if	the	return	from	pulse	k	arrives
after	the	transmission	of	pulse	k	+	1,	the	receiver	will	be	tuned	to	the	frequency	of	pulse	k	+	1
and	will	not	“see”	the	return	from	pulse	k.

Phased	array	radars,	which	steer	the	antenna	beam	electronically	rather	than	mechanically,
often	transmit	a	single	pulse	and	then	re-steer	the	beam	to	a	different	angular	position.	In	this
situation,	the	concept	of	a	PRI,	and	thus	unambiguous	range,	is	not	strictly	defined	since	there
is	 only	 one	pulse.	The	 term	 is	 used	 in	 such	 cases,	 nevertheless.	The	unambiguous	 range	 is
taken	 to	 be	 the	 range	delay	during	which	 the	beam	 stays	 in	 one	position	before	moving	 to
another	position.	The	time	the	beam	stays	in	one	position	is	termed	a	beam	dwell.

1.5 USABLE	RANGE	AND	INSTRUMENTED	RANGE

The	preceding	discussion	of	 ambiguous	 range	might	 lead	one	 to	 conclude	 that	 a	 radar	 can
detect	(and	track)	targets	at	all	ranges	between	0	and	Ramb.	However,	in	practice,	this	is	not	the
case.	 The	 pulse	 received	 from	 a	 target	 at	 a	 range	 of	 zero	 would	 arrive	 at	 the	 radar
simultaneously	with	the	transmission	of	 the	sounding	pulse.	Since	the	receiver	is	off	during
this	time,	it	cannot	process	the	pulse.	The	minimum	usable	range	is	therefore	equal	to

where	τp	is	the	radar	pulsewidth.

Similarly,	 a	 pulse	 from	 a	 target	 arriving	 at	 the	 receiver	 too	 near	 the	 next	 transmit	 pulse
prevents	the	entire	pulse	from	entering	the	receiver	before	the	receiver	turns	off	for	the	next
transmit	pulse.	Thus,	the	receiver	cannot	completely	process	the	received	signal.	This	leads	to
the	conclusion	that	the	maximum	usable	range	is



That	is,	the	maximum	usable	range	extends	to	one	pulsewidth	before	the	next	transmit	pulse.
We	define	 the	 time	 interval	 between	Rmin	 and	Rmax	 as	 the	processing	window.	 Occasionally,
these	bounds	can	be	exceeded	 somewhat;	however,	 this	does	not	often	occur	because	 it	 can
lead	to	processing	difficulties.

Although	 Rmax	 defines	 the	 maximum	 usable	 range,	 most	 radars	 operate	 over	 a	 shorter
range	 interval,	 termed	 the	 instrumented	 range.	 The	 instrumented	 range	 is	 set	 by	 system
requirements	 and	 allows	 for	 factors	 such	 as	 display	 limits,	 circuit	 transients,	 radar
calibration,	radar	mode	changes,	and	the	like.

1.6 RANGE-RATE	MEASUREMENT	(DOPPLER)

In	addition	to	measuring	range,	radars	can	also	measure	the	rate	of	change	of	range,	or	range
rate.	The	radar	accomplishes	this	by	measuring	the	Doppler	frequency;	that	is,	the	frequency
difference	between	the	transmitted	and	received	signals.	To	examine	this	further,	consider	the
geometry	of	Figure	1.4.	The	aircraft	in	this	figure	moves	in	a	straight	line	at	a	velocity	of	v.
As	a	result,	the	range	to	the	target	changes	continually.	Indeed,	over	a	differential	time	of	dt,
the	range	changes	by	an	amount	dR,	from	R	to	R	+	dR.	The	resulting	range	rate	is

We	note	that	the	range	rate	of	Figure	1.4	is	negative	because	the	range	decreases	from	time	t
to	time	t	+	dt.	Also,	in	general,	Ṙ	≠	v.	Equality	holds	only	if	the	target	flies	along	a	radial	path
relative	to	the	radar.

Figure	1.4	Geometry	for	Doppler	calculation.



Figure	1.5	Depiction	of	a	transmit	pulse.

We	will	 briefly	 digress	 to	 consider	 the	 relationship	 of	 range	 rate	 to	 target	 position	 and
velocity	in	a	Cartesian	coordinate	system	centered	at	the	radar.	Suppose	the	target	position	and
velocity	state	vector	is	given	by

where	the	superscript	T	denotes	the	transpose.	We	can	write	the	target	range	as

and	the	range	rate	as

Now,	let’s	return	to	the	problem	of	measuring	range	rate	with	a	radar.	To	start,	think	about
the	nature	of	the	transmit	pulse.	In	its	simplest	form,	the	transmit	pulse	constitutes	a	snippet	of
a	sinusoid,	whose	frequency	is	equal	to	the	operating	frequency	of	the	radar	(e.g.,	100	×	106

Hz	or	100	MHz	for	a	radar	operating	at	VHF,	109	Hz	or	1	GHz	for	a	radar	operating	at	L-
band,	 or	 10	 ×	 109	 Hz	 or	 10	GHz	 for	 a	 radar	 operating	 at	X-band).	We	 normally	 term	 the
operating	 frequency	 the	 carrier	 frequency	 of	 the	 radar	 and	 denote	 it	 as	 fc	 or	 fo.	 Figure	 1.5
depicts	a	transmit	pulse	example.	This	figure	is	not	to	scale,	as	it	shows	only	10	cycles	of	the
carrier	 over	 the	 duration	 of	 the	 pulse.	 For	 an	 X-band	 radar	 and	 a	 pulse	 duration,	 or
pulsewidth,	of	τp	=	1	μs,	 there	will	be	10,000	cycles	of	 the	carrier	over	 the	duration	of	 the
pulse.

We	can	mathematically	represent	the	transmit	pulse	as

where



Ideally,	the	radar	receives	an	attenuated,	delayed	version	of	the	transmit	signal,	that	is,

where	the	amplitude	scaling	factor,	A,	comes	from	the	radar	range	equation	(see	Chapter	2),
and	 the	delay,	τR,	 is	 the	 range	delay	discussed	 in	 the	previous	 section.	To	compute	Doppler
frequency,	we	acknowledge	that	the	range	delay	in	(1.17)	is	a	function	of	time,	t,	and	write

Substituting	(1.18)	into	(1.17)	gives

The	 argument	 of	 the	 cosine	 term	 contains	 the	 necessary	 information.2	 We	 wish,	 then,	 to
examine

Expanding	R(t)	into	its	Taylor	series	about	t	=	0	gives

Substituting	(1.21)	into	(1.20)	yields

or



In	(1.23),

• φR	=	−2πfc(2R/c)	is	a	phase	shift	due	to	range	delay	and	is	of	little	use	in	practical	radars.
• g′(t2,	t3,...)	=	−4πfcg(t2,	t3,	…)/c	is	a	nonlinear	phase	term	usually	ignored	(until	it	creates
problems	in	advanced	signal	processors).

• fd	=	−fc(2Ṙ/c)	is	the	Doppler	frequency	of	the	target.

Recalling	the	radar	wavelength,	λ,	is	given	by

allows	us	to	rewrite	fd	in	its	more	standard	form

Dropping	the	g′(t2,	t3,	…)	term	and	substituting	(1.23)	into	(1.19),	we	get

where	we	have	used	τR	=	2R(0)/c.	In	(1.26),	we	note	that	the	frequency	of	the	returned	signal	is
fc	 +	 fd,	 instead	 of	 simply	 fc.	 Thus,	 comparing	 the	 frequency	 of	 the	 transmit	 signal	 to	 the
frequency	of	the	received	signal	permits	us	to	determine	the	Doppler	frequency,	fd.	Obtaining
fd	allows	computation	of	the	range	rate	from	(1.25).

In	practice,	it	is	not	as	easy	to	measure	Doppler	frequency	as	the	calculations	above	imply.
The	 problem	 lies	 in	 the	 relative	magnitudes	 of	 fd	 and	 fc.	 Consider	 the	 following	 example,
whereby	a	 target	 travels	at	approximately	Mach	0.5,	or	about	150	m/s.	For	now,	assume	the
target	 flies	directly	 toward	 the	 radar,	 so	Ṙ	=	−v	 =	−150	m/s.	Assume,	 furthermore,	 that	 the
radar	 operates	 at	 X-band	 with	 a	 specific	 carrier	 frequency	 of	 fc	 =	 10	 GHz.	 With	 these
assumptions,	we	get

and



Comparing	fc	to	fd	yields	the	observation	that	fd	is	a	million	times	smaller	than	fc.

While	measuring	Doppler	frequency	is	not	easy,	it	is	achievable.	Such	Doppler	frequency
measurement	 requires	 a	 very	 long	 transmit	 pulse	 (on	 the	order	 of	milliseconds	 rather	 than
microseconds)	or	the	processing	of	several	pulses.

1.7 DECIBELS

A	measurement	convention	commonly	used	in	radar	analyses	is	the	decibel.	Engineers	at	Bell
Telephone	Laboratories	(now	“Bell	Labs”)	originally	formulated	the	concept	of	the	decibel	to
measure	 losses	 over	 given	 distances	 of	 telephone	 cable	 [13].	 By	 definition,	 a	 decibel
representation	of	a	quantity	equals	10	times	the	logarithm	to	the	base	10	of	that	quantity.	As
implied	by	its	name,	a	decibel	is	1/10	of	a	bel,	a	logarithm	of	quantity	that	was	coined	by	the
Bell	Labs	engineers	to	honor	Alexander	Graham	Bell.

The	 decibel,	 abbreviated	 dB,	 is	 useful	 in	 radar	 analyses	 because	 of	 the	 large	 range	 of
numbers	encountered	in	such	analyses.	The	abbreviation	“dB,”	by	itself,	means	10log	(power
ratio).	Thus,	the	signal-to-noise	ratio	in	decibels	is	computed	using

where	PS	 is	 the	 signal	power	 [in	watts	 (W),	milliwatts	 (mW),	kilowatts	 (kW),	and	so	 forth]
and	PN	is	the	noise	power	in	the	same	units	as	PS.

Equation	(1.29)	provides	the	“standard”	use	for	the	decibel,	as	originally	conceived	by	Bell
Labs.	 Since	 then,	 analysts	 in	 the	 fields	 of	 radar,	 electronics,	 and	 communications	 have
expanded	the	definition	of	the	decibel	to	include	many	other	forms:

• The	abbreviation	“dBW”	denotes	power	level	relative	to	1	watt,	or	10log(P),	where	P	 is
power	in	watts.

• The	abbreviation	“dBm”	denotes	power	level	relative	to	1	milliwatt,	or	10log(P/0.001)	=
30	+	10log	(P).

• The	abbreviation	“dBV”	denotes	voltage	level	relative	to	1	volt	root	mean	square	(rms),
or	20log(|V|).3

• The	 abbreviation	 “dBsm”	 denotes	 area	 in	 square	meters	 relative	 to	 1	 square	meter,	 or
10log(A),	 where	 A	 is	 area	 in	 square	 meters.	 We	 use	 this	 to	 represent	 the	 radar	 cross
section	of	a	target.

• The	abbreviation	“dBi”	denotes	antenna	directivity	(gain)	relative	to	the	directivity	of	an
isotropic	antenna,	or	10log(G),	where	G	is	the	antenna	directivity	in	watts	per	watt	(W/W).
The	gain	of	an	isotropic	antenna	is	taken	to	be	1	W/W.

1.8 dB	ARITHMETIC

In	radar	analyses,	it	 is	often	convenient	or	necessary	to	perform	conversions	from	ratios	to



dB	values	without	a	calculator.	To	aid	in	this,	some	common	relations	between	ratios	and	dB
are	 contained	 in	 Table	 1.2.	 These	 relations	 can	 be	 used	 to	 find	 other	 conversions	 by
remembering	that	multiplication	of	ratios	translates	to	addition	of	dB	values.	For	example,	to
compute	 the	 dB	 value	 for	 a	 ratio	 of	 4,	 we	 recognize	 that	 4	 =	 2	 ×	 2.	 Thus,	 the	 dB	 value
corresponding	to	a	ratio	of	4	is	3	+	3	=	6	dB.	As	another	example,	the	dB	value	for	a	ratio	of
50	can	be	found	by	recognizing	that	50	=	10	×	10/2,	and	thus	the	dB	value	is	10	+	10	−	3	=	17
dB.

Table	1.2
Relation	Between	Ratios	and	Decibels

dB Power	Ratio

−10 0.1000

−9 0.1259

−6 0.2512

−3 0.5012

0 1.0000

3 1.9953

6 3.9811

10 10

20 100

30 1,000

1.9 COMPLEX	SIGNAL	NOTATION

When	we	wrote	 the	equations	for	vT(t)	and	vR(t)	 in	 (1.15)	and	(1.19),	we	used	what	we	 term
real	 signal	 notation.	With	 this	 notation,	 the	 signal	 equations	 are	 real	 functions	 of	 time	 that
include	sines	and	cosines.	We	find	that	when	we	need	to	work	with	such	real	functions,	we	are
faced	with	the	manipulation	of	these	sines	and	cosines,	which	can	be	cumbersome	because	of
the	need	to	use	trigonometric	identities.

To	circumvent	 the	problems	associated	with	 the	manipulation	of	 sines	and	cosines,	 radar
analysts	commonly	use	an	alternate	signal	notation	termed	complex	signal	notation.	With	this
notation,	 signals	are	 represented	as	complex	 functions	 through	 the	use	of	exponentials	with
complex	 arguments.	For	 example,	we	would	write	 the	 transmit	 signal	 of	 (1.15)	 in	 complex
signal	notation	as

and	the	receive	signal	as



where	 the	 superscript	 c	 is	 used	 to	 distinguish	 these	 signals	 from	 vT(t)	 and	 vR(t).	 In	 these
equations,	 .

Through	the	use	of	the	Euler	identity

we	can	relate	vT(t)	and	vR(t)	to	their	complex	signal	counterparts	as

and

In	these	equations,	real[x]	denotes	the	real	part	of	the	complex	number	x.	The	imaginary	part
would	be	denoted	as	imag[x].

The	 primary	 reason	 for	 using	 complex	 signal	 notation	 is	 ease	 of	 mathematical
manipulation.	 Specifically,	 multiplying	 exponentials	 is	 easier	 than	 multiplying	 sines	 and
cosines.	However,	we	also	find	that	complex	signal	notation	often	provides	a	convenient	and
clear	 means	 of	 describing	 signal	 properties.	 For	 example,	 a	 complex	 signal	 notation	 for
(1.25)	might	be

In	this	equation,	we	recognize	Arect[(t	−	τR−	τp/2)/τp]	as	the	magnitude	of	the	complex	(and
real)	signal.	We	recognize	ϕR	as	a	constant	phase	part	of	the	signal	(since	it	is	the	argument	of



the	 complex	 exponential,	 ejϕR).	 The	 term	 2πfdt	 is	 a	 phase	 that	 depends	 on	 the	 Doppler
frequency.	We	recognize	the	last	term	as	the	carrier	frequency	part	of	the	signal.	Thus,	with
complex	signal	notation,	we	can	conveniently	characterize	the	various	properties	of	the	signal
by	separating	them	into	separate	complex	exponential	and	magnitude	terms.

An	extension	of	complex	signal	notation	is	baseband	signal	notation.	With	this	notation,	we
drop	the	carrier	exponential.	This	is	the	approach	commonly	used	in	alternating	current	(AC)
circuit	 analysis	 (steady-state	 analysis	 of	 resistor-inductor-capacitor	 circuits	 excited	 by	 a
sinusoid).	 In	 those	 analyses,	 the	 sinusoid	 is	 not	 explicitly	 used.	 Instead,	 the	 voltages	 and
currents	 in	 the	circuit	are	represented	by	 their	amplitude	and	phase,	and	 the	circuit	analyses
are	performed	using	complex	mathematics.

A	means	of	“dropping”	 the	carrier	 term	is	 to	set	 fc	 to	zero.	This	 is	 the	basis	of	 the	word
“baseband.”	That	is,	baseband	signals	are	assumed	to	have	a	carrier	frequency	of	zero.

We	will	use	all	three	signal	notations	in	this	book,	depending	on	need.	Generally,	we	will
use	real	signals	when	we	need	to	specifically	address	the	real	properties	of	signals.	We	will
use	complex	signal	notation	when	we	need	to	explicitly	discuss	the	operating	frequency	but	do
not	want	to	have	to	manipulate	real	signals.	We	will	use	baseband	signal	notation	when	we	are
not	 specifically	 concerned	 with	 the	 operating	 frequency	 of	 the	 signal.	 We	 will	 also	 use
baseband	 signal	 notation	 when	 we	 discuss	 signal	 processing,	 since	 many	 digital	 signal
processors	explicitly	operate	on	baseband	signals.

1.10 RADAR	BLOCK	DIAGRAM

Figure	 1.6	 contains	 a	 generic	 radar	 block	 diagram	 that	 includes	 the	 major	 areas	 we	 will
discuss	in	this	book.	We	start	in	Chapter	2	by	tracing	a	signal	from	the	transmitter	throught	the
antenna	 to	 the	 target	 and	 back	 to	 the	 matched	 filter	 (through	 the	 antenna	 and	 receiver)	 to
derive	one	of	the	key	equations	of	radar	theory:	the	radar	range	equation.	We	follow	that	in
Chapters	3,	4,	and	5	with	discussions	of	the	radar	cross	section,	noise,	and	loss	terms	of	the
radar	range	equation.	In	Chapter	6,	we	present	detailed	discussions	of	false	alarm	probability
and	detection	probability	for	the	Swerling	target	types	and	targets	with	a	constant	radar	cross
section.	The	discussions	of	detection	theory	naturally	lead	to	matched	filter	theory,	which	we
cover	 in	 Chapter	 7.	 In	 Chapter	 8,	 we	 discuss	 signal	 processing	 from	 the	 perspective	 of
improving	 detection	 probability.	 Later,	 in	 Chapter	 13,	 we	 provide	 detailed	 discussions	 of
signal	 processing	 from	 the	 perspective	 of	 clutter	 mitigation.	 In	 Chapter	 14,	 we	 discuss
receivers,	including	the	modern	field	of	digital	receivers.

In	 Chapters	 9	 and	 10,	 we	 address	 the	 waveform	 generator	 portion	 of	 the	 radar	 by
discussing	the	ambiguity	function	and	an	assortment	of	waveform	codings.	In	Chapter	12,	we
move	to	the	antenna	and	present	a	discussion	of	phased	array	antennas.	The	remainder	of	the
text	 is	 devoted	 to	 a	 discussion	 of	 advanced	 topics,	 including	 stretch	 processing,	 synthetic
aperture	radar,	space-time	adaptive	processing,	sidelobe	cancellation,	and	others.



Figure	1.6	Generic	radar	block	diagram.

1.11 EXERCISES

1. Find	the	round-trip	time	delay	for	a	target	at	the	following	ranges:

a) 15	km
b) 37	mi
c) 350	kft
d) 673	nmi

2. What	minimum	PRIs	does	a	radar	require	in	order	to	operate	unambiguously	in	range
for	 the	 target	 cases	 of	 Exercise	 1?	 What	 PRFs	 correspond	 to	 these	 minimum	 PRIs?
Ignore	 pulsewidth	 in	 formulating	 your	 answer.	 What	 would	 your	 answers	 be	 if	 you
include	a	pulsewidth	of	200	µs?

3. Find	the	Doppler	frequencies	for	an	8-GHz	(low	X-band)	radar	and	the	following	target
range	rates:

a) −100	m/s
b) 150	mph
c) −30	m/s

4. A	target	has	a	state	vector	given	by

where	the	state	vector	is	referenced	to	the	radar.	Find	the	range	(R)	and	range	rate	(Ṙ)	of
the	target.	Find	the	round-trip	time	delay	(τR)	 to	 the	 target.	Find	the	Doppler	frequency
for	a	radar	operating	at	8.5	GHz.

5. Skolnik	[1]	poses	an	interesting	problem:	if	the	moon	is	located	approximately	384,400



km	from	the	Earth,	what	is	the	range	(time)	delay	(τR)	to	the	moon?	What	PRF	should	we
use	to	operate	unambiguously	in	range?

6. In	Section	1.6,	we	chose	to	ignore	the	term

We	want	to	verify	this	as	a	valid	assumption,	at	least	for	the	second	derivative	term.	In
particular,	we	want	to	show,	for	a	specific,	realistic	example,	that	the	variation	across	the
pulse	of	the	phase

is	small	compared	to	the	variation	across	the	pulse	of	the	phase

To	do	this,	compare

to

We	intend	for	you	to	show	∆ϕg	≪	∆ϕd.	For	the	equation	above,	t0	=	τR	=	2R/c,	the	time	it
takes	for	the	pulse	to	return	from	the	target.	For	this	exercise,	use

a	pulsewidth	of	τp	=	1μs,	and	a	carrier	frequency	of	fc	=	10	GHz	(X-band).	Assume	the
higher	 derivatives	 of	 x,	 y,	 and	 z	 equal	 zero.	 Verify	 the	 assumption	 by	 computing	 the
following:



a) Ṙ
b)
c) fd
d) Δϕg
e) Δϕd
Is	the	assumption	valid?	Explain	briefly.

7. If	a	radar	generates	a	power	of	100	kW	(100,000	W),	what	is	the	power	in	dBW?	What	is
the	power	in	dBm?

8. If	the	radar	in	Exercise	7	receives	a	return	target	power	of	-84	dBm,	what	is	the	received
power	 in	 decibels	 relative	 to	 1	W?	What	 is	 the	 received	 power	 in	watts?	What	 is	 the
received	power	in	milliwatts	(1	milliwatt	=	10−3	W)?
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Chapter	2

Radar	Range	Equation

2.1 INTRODUCTION

One	of	the	simpler	equations	of	radar	theory	is	the	radar	range	equation.	Although	it	is	one	of
the	simpler	equations,	 ironically,	 it	 is	an	equation	 that	 is	easily	misunderstood	and	misused.
The	problem	lies	not	with	the	equation	itself,	but	with	the	various	terms	that	it	is	composed	of.
It	is	our	belief	that	an	understanding	of	the	radar	range	equation	leads	to	a	solid	foundation	in
the	 fundamentals	 of	 radar	 theory.	 Because	 of	 the	 difficulties	 associated	 with	 using	 and
understanding	the	radar	range	equation,	a	considerable	portion	of	this	book	is	devoted	to	its
terms	and	the	items	it	impacts,	such	as	antennas,	receivers,	matched	filters,	signal	processors,
and	detection	theory.

According	to	David	K.	Barton,	the	radar	range	equation	was	developed	during	World	War
II,	with	the	earliest	associated	literature	subject	to	military	security	restrictions	[1].	Kenneth	A.
Norton	 and	 Arthur	 C.	 Omberg	 of	 the	 U.S.	 Naval	 Research	 Laboratory	 authored	 the	 first
published	paper	on	the	radar	range	equation	in	1947,	titled	“The	Maximum	Range	of	a	Radar
Set”	[1–3].

2.2 BASIC	RADAR	RANGE	EQUATION

One	form	of	the	basic	radar	range	equation	is

where	[4]

• SNR	denotes	 the	signal-to-noise	 ratio	 in	units	of	 joules	per	 joule,	or	 J/J.	The	equivalent
units	are	watt-seconds	per	watt-seconds,	or	W-s/W-s.

• ES	 denotes	 the	 signal	 energy,	 in	 joules	 (J)	 or	watt-seconds	 (W-s),	 at	 some	 point	 in	 the
radar	receiver—usually	at	the	output	of	the	matched	filter	or	the	signal	processor.

• EN	denotes	the	noise	energy,	in	joules,	at	the	same	point	that	Es	is	specified.
• PT,	 termed	 the	 peak	 transmit	 power,	 denotes	 the	 average	 power,	 in	 watts,	 during	 radar
signal	 transmission.	Although	PT	 can	 be	 specified	 at	 the	 output	 of	 the	 transmitter	 or	 at
some	other	point,	such	as	the	output	of	the	antenna	feed,	we	specify	it	here	as	the	power	at
the	output	of	the	transmitter.

• GT	denotes	the	directivity,	or	directive	gain,	of	 the	transmit	antenna	in	units	of	watts	per
watt.



• GR	denotes	 the	directivity,	or	directive	gain,	of	 the	 receive	antenna	 in	units	of	watts	per
watt.	In	many	cases,	GR	=	GT.

• λ	denotes	the	radar	wavelength	in	units	of	meters.
• σ	denotes	the	average	target	radar	cross	section	(RCS)	in	units	of	square	meters.
• τp	is	the	transmit	pulsewidth,	in	seconds.	In	this	book,	we	assume	the	transmit	pulse	has	a
rect[x]	function	envelope.1	τp	is	the	width	of	that	rect[x]	function.

• R	denotes	the	slant	range	from	the	radar	to	the	target	in	units	of	meters.
• k	 denotes	Boltzmann’s	 constant	 and	 is	 equal	 to	 1.3806503×10−23	W/(Hz	K)	 or	 (W-s)/K,
although	it	is	often	truncated	to	1.38×10−23	(W-s)/K.

• Ts	=	Ta	+	(Fn	−	1)	T0	W-s	is	 the	system	noise	temperature,	where	Ta	 is	an	antenna	noise
temperature	used	to	characterize	environment	noise.

• T0	denotes	a	reference	temperature	in	degrees	kelvin	(K).	The	IEEE	defines	noise	figure
in	 terms	 of	 a	 noise	 temperature	 of	T0	 =	 290	K	 [5],	 which	 results	 in	 the	 rule	 of	 thumb
approximation	of	kT0	=	4×10−21	W/Hz.

• Fn	 denotes	 the	 overall	 radar	noise	 figure2	 and	 is	 dimensionless	 or	 in	 units	 of	watts	 per
watt.

• L	denotes	all	the	losses	one	takes	into	consideration	when	using	the	radar	range	equation.
This	 term,	which	 accounts	 for	 losses	 that	 apply	 to	 the	 signal	 and	 not	 the	 noise,	 has	 the
units	 of	 watts	 per	 watt.	 L	 accounts	 for	 a	 multitude	 of	 factors	 that	 degrade	 radar
performance,	 including	 those	 related	 to	 the	 radar	 itself,	 the	 environment	 in	 which	 the
radar	operates,	the	operator	of	the	radar,	and,	often,	the	inexperience	of	the	radar	analyst.
Loss	factors	are	covered	in	more	detail	in	Chapter	5.

The	radar	range	equation	of	(2.1)	is	termed	the	single-pulse	radar	range	equation	because
the	SNR	calculation	 is	based	on	a	single	 transmit	pulse.	 If	 the	radar	 transmits	and	processes
several	 pulses,	 the	 equation	 can	 be	 modified	 by	 adding	 a	 multiplicative	 term,	 GSP,	 that
accounts	for	the	transmission	and	processing	of	multiple	pulses.	This	is	addressed	in	Chapter
8.

The	 form	 of	 the	 radar	 range	 equation	 of	 (2.1)	 is	 nontraditional	 [7–9]	 in	 that	 SNR	 is
specified	as	an	energy	ratio	rather	than	a	power	ratio.	The	latter	form	is	briefly	discussed	in
Section	2.3.	The	energy	ratio	form	is	used	in	this	book	because	the	power	ratio	form	requires
specification	 of	 a	 noise	 bandwidth.	 It	 has	 been	 the	 authors’	 experience	 that	 this	 sometimes
causes	 confusion	 for	 both	 students	 and	 practicing	 radar	 analysts.	 The	 energy	 ratio
formulation	circumvents	this	problem	by	using	τp	instead	of	a	noise	bandwidth.	As	a	note,	τp
is	the	uncompressed	pulsewidth;	it	is	the	width	of	the	envelope	of	the	transmit	pulse.	Any	phase
(or	 frequency)	modulation	 on	 the	 pulse	 is	 not	 a	 factor	 in	 the	 radar	 range	 equation,	 except,
possibly,	 as	 a	 loss	 due	 to	 differences	 between	 the	 received	 pulse	 and	 the	 matched	 filter
impulse	response	(see	Chapter	5).

We	will	derive	the	radar	range	equation	and	attempt	to	carefully	explain	its	various	terms
and	 their	origins.	We	start	by	deriving	ES,	 the	signal	energy	component,	and	follow	this	by
deriving	EN,	the	noise	energy	component.



2.2.1 Derivation	of	Es

2.2.1.1 The	Transmitter

We	begin	the	derivation	at	 the	transmitter	output	and	go	through	the	waveguide	and	antenna
out	into	space	(see	Figure	2.1).	For	now,	assume	the	radar	is	in	free	space.	We	can	account	for
the	effects	of	the	atmosphere	in	the	loss	term,	L.	We	assume	the	transmitter	generates	a	single
pulse	 with	 a	 rectangular	 envelope	 that	 has	 a	 width	 of	 τp.	 Figure	 2.2	 contains	 a	 simplified
representation	of	this	pulse.	In	this	example,	the	pulse	is	modulated	with	a	constant	frequency
of	fc,	the	carrier	frequency.3

Figure	2.1	Transmit	section	of	a	radar.

Figure	2.2	Depiction	of	a	transmit	pulse.

The	average	transmit	power	in	the	signal	over	the	duration	of	the	pulse,	is	termed	the	peak
transmit	 power	 and	 is	 denoted	 as	PT.	We	 term	 this	 power	 the	 peak	 transmit	 power	 because
later	we	will	consider	the	transmit	power	averaged	over	many	pulses.

The	waveguide	 in	 Figure	 2.1	 carries	 the	 signal	 from	 the	 transmitter	 to	 the	 antenna	 feed
input.	The	waveguide’s	only	feature	of	interest	in	the	radar	range	equation	is	that	it	is	a	lossy
device	 that	attenuates	 the	 signal.	Although	we	only	 refer	 to	 the	“waveguide”	here,	 there	are
several	 devices	 included	 between	 the	 transmitter	 and	 antenna	 feed	 of	 a	 practical	 radar	 (see
Chapter	5).

Because	it	is	a	lossy	device,	we	characterize	the	waveguide	in	terms	of	its	loss,	which	we
denote	as	Lt	and	 term	 transmit	 loss.	Since	Lt	 is	a	 loss,	 it	 is	greater	 than	unity.	With	 this,	 the
power	at	the	input	to	the	antenna	feed	takes	the	form



Generally,	the	feed	and	other	components	of	the	antenna	attenuate	the	signal	further.	If	we
consolidate	all	these	losses	into	an	antenna	loss	term,	Lant,	the	radar	finally	radiates	the	power

Since	the	pulse	envelope	width	is	τp,	the	energy	radiated	by	the	antenna	is

2.2.1.2 The	Antenna

The	purpose	of	 the	radar	antenna	 is	 to	concentrate,	or	 focus,	 the	radiated	energy	 in	a	small
angular	sector	of	space.	As	an	analogy,	the	radar	antenna	works	much	like	the	reflector	in	a
flashlight.	 Like	 a	 flashlight,	 a	 radar	 antenna	 does	 not	 perfectly	 focus	 the	 beam.	 For	 now,
however,	we	will	 assume	 it	 does.	Later,	we	will	 account	 for	 imperfect	 focusing	by	using	 a
scaling	term.

Given	 the	 purpose	 above,	we	 assume	 all	 the	 radiated	 energy	 is	 concentrated	 in	 the	 area,
Abeam,	indicated	in	Figure	2.3.	With	this,	the	energy	density	over	Abeam	is

To	extend	(2.5)	to	the	next	step,	we	need	an	equation	for	Abeam.	Given	lengths	for	the	major
and	minor	 axes	 of	 the	 ellipse	 in	 Figure	 2.3	 of	RθA	 and	RθB,	 we	 can	 write	 the	 area	 of	 the
ellipse:

We	recognize	 that	 the	energy	 is	not	uniformly	distributed	across	Aellipse	and	 that	some	of
the	 energy	 will	 “spill”	 out	 of	 the	 area	Aellipse	 (i.e.,	 the	 antenna	 does	 not	 focus	 the	 energy
perfectly,	 as	 indicated	earlier).	We	account	 for	 this	by	 replacing	π/4	with	 a	 scale	 factor	KA.
Further	discussion	of	KA	will	follow	shortly.	We	can	write	Abeam,	then,	as	follows:

Substituting	(2.7)	into	(2.5)	produces	the	following:



We	now	define	a	term,	GT,	the	transmit	antenna	directivity,	or	directive	gain,	as

Using	(2.9)	to	rewrite	(2.8),	we	get

Figure	2.3	Radiation	sphere	with	antenna	beam.

We	reiterate:	the	form	of	antenna	directivity	given	in	(2.9)	depends	upon	the	assumption	that
Lant	captures	the	losses	associated	with	the	feed	and	other	components	of	 the	antenna.	Some
analysts	combine	the	feed	and	antenna	losses	with	the	transmit	antenna	directivity	and	term	the
result	the	power	gain,	or	simply	gain,	of	the	antenna	[10].	We	will	avoid	doing	so	here,	owing
to	the	confusion	it	produces	when	using	(2.9)	and	the	difficulties	associated	with	another	form
of	directivity,	presented	shortly.

The	form	of	GT	 in	 (2.10)	and	 the	 radar	 range	equation	 tacitly	assume	an	antenna	pointed
directly	at	the	target.	If	the	antenna	is	not	pointed	at	the	target,	we	must	modify	GT	to	account
for	this.	We	do	this	by	means	of	an	antenna	pattern,	which	is	a	function	that	gives	the	value	of
GT	at	the	target,	relative	to	the	antenna’s	pointing	direction.

2.2.1.3 Effective	Radiated	Power

We	 temporarily	 interrupt	 our	 derivation	 to	 define	 the	 quantity	 termed	 effective	 radiated



power.	To	do	so,	we	ask	the	question:	What	power	would	we	need	at	the	output	of	an	isotropic
radiator	to	produce	an	energy	density	of	SR	at	all	points	on	a	sphere	of	radius	R?	An	isotropic
radiator	(ideal	point	source)	is	a	hypothetical	antenna	that	does	not	focus	energy	but	instead
distributes	it	uniformly	over	the	surface	of	a	sphere	centered	on	the	antenna.	Though	it	cannot
exist	in	the	real	world,	the	isotropic	radiator	serves	a	mathematical	and	conceptual	function	in
radar	theory,	not	unlike	that	of	the	impulse	function	in	mathematical	theory.
By	denoting	the	effective	radiated	power	as	Peff	and	recalling	the	surface	area	of	a	sphere

of	radius	R	is	4πR2,	we	can	write	the	energy	density	on	the	surface	of	the	sphere	(assuming
lossless	propagation)	as

If	we	equate	(2.10)	and	(2.11)	and	solve	for	Peff,	we	obtain

as	the	effective	radiated	power	(ERP).

We	emphasize	that	Peff	is	not	the	power	at	the	output	of	the	antenna.	The	power	at	the	output
of	 the	 antenna	 is	PT/LtLant.	 The	 antenna’s	 purpose	 is	 to	 focus	 this	 power	 over	 a	 relatively
small	angular	sector.

2.2.1.4 Antenna	Directivity

We	turn	next	to	the	factor	KA	in	(2.9).	As	we	indicated,	KA	accounts	for	the	properties	of	the
antenna.	Specifically,	it	accounts	for	two	facts:

• The	energy	is	not	uniformly	distributed	over	the	ellipse.
• Not	all	of	the	energy	is	concentrated	in	the	antenna	beam	(the	ellipse	of	Figure	2.3).	Some
energy	“spills”	out	the	ellipse	into	what	we	term	the	antenna	sidelobes.

The	value	1.65	is	a	somewhat	common	value	for	KA	[11,	p.	143].	Using	this	figure,	we	can
write	the	antenna	directivity	as

We	term	the	quantities	θA	and	θB	the	antenna	beamwidths,	which	have	the	units	of	radians.	In
many	applications,	θA	and	θB	are	specified	in	degrees.	In	this	case,	we	can	write	the	directivity
as



where	 the	 two	 beamwidths	 in	 the	 denominator	 are	 in	 degrees.	 The	 derivation	 of	 (2.14)	 is
straightforward	and	left	as	an	exercise.

While	 (2.14)	 uses	 a	 numerator	 of	 25,000,	 various	 authors	 provide	 alternative
approximations,	 accounting	 for	 factors	 such	 as	 antenna	 type,	 beamshape,	 sidelobe
characteristics,	 and	 so	 on.	 For	 example,	 some	 authors	 use	 41,253,	which	would	 apply	 to	 a
rectangular	beam	pattern	with	no	sidelobes	and	would	be	indicative	of	an	ideal	antenna	with
maximum	directivity	[7].	Similarly,	some	authors	use	32,383	for	a	rectangular	aperture	with
uniform	 illumination	 and	 33,709	 for	 circular	 apertures	with	 uniform	 illumination	 [10].	 As
still	 another	 variant,	 some	 authors	 prefer	 26,000	 over	 25,000	 [10].	 It	 has	 been	 the	 authors’
experience	 that	25,000	or	26,000	apply	well	 to	antennas	 that	use	 some	 type	of	weighting	 to
reduce	 sidelobes.	As	 a	 note,	 the	different	 approximations	 correspond	 to	 different	 values	 of
KA.

To	 visualize	 the	 concept	 of	 beamwidth,	 consider	 Figure	 2.4,	 which	 is	 a	 plot	 of	GT(α,ε)
versus	α	 for	ε	 =	 0.	As	discussed	 in	Chapter	12,	GT(α,ε)	 is	 a	means	 of	 representing	 antenna
directivity	as	a	function	of	target	location	relative	to	antenna	pointing	angles.	If	α	=	0	and	ε	=
0,	 the	beam	is	pointed	directly	at	 the	target	and	the	directivity	is	maximum.	As	illustrated	in
Chapter	 12,	 α	 and	 ε	 are	 orthogonal	 angles	 roughly	 related	 to	 azimuth	 and	 elevation,
respectively.

The	unit	of	measurement	on	 the	vertical	axis	of	Figure	2.4	 is	dBi,	or	decibels	 relative	 to
isotropic	(see	Chapter	1),	the	common	unit	of	measurement	for	GT	in	radar	applications.	We
define	the	antenna	beamwidth	as	the	distance	between	the	3-dB	points4	of	Figure	2.4.	These	3-
dB	points	are	the	angles	where	GT(α,ε)	is	3	dB	below	its	maximum	value.	With	this,	we	find
the	antenna	represented	in	Figure	2.4	has	a	beamwidth	of	2°.	We	might	call	this	θB,	of	Figure
2.3	and	(2.14).	If	we	were	to	plot	GT(α,ε)	versus	ε	for	α	=	0,	and	find	a	distance	between	the	3-
dB	 points	 of	 2.5°.	We	would	 then	 say	 the	 beamwidth,	 θA,	 was	 2.5°	 The	 antenna	 directivity
would	be	computed	as



Figure	2.4	Sample	antenna	pattern.

In	subsequent	sections,	we	drop	the	notation	dBi	and	use	dB.

The	humps	on	either	side	of	the	central	antenna	beam	depicted	in	Figure	2.4	are	the	antenna
sidelobes	discussed	above.

2.2.1.5 The	Target	and	Radar	Cross	Section

To	return	to	our	derivation,	we	have	an	equation	for	SR,	the	energy	density	at	the	location	of
the	 target.	 As	 the	 electromagnetic	 wave	 passes	 the	 target,	 the	 target	 captures	 some	 of	 its
energy	and	reradiates	it	toward	the	radar.	More	accurately,	the	electromagnetic	wave	induces
currents	on	the	target,	and	the	currents	generate	another	electromagnetic	wave	that	propagates
away	from	the	target.	Analysts	occasionally	designate	this	as	energy	reflection,	a	technically
incorrect	term.	The	process	of	capturing	and	reradiating	energy	is	very	complicated	and	the
subject	of	much	research.	For	now,	we	take	a	simplified	approach	to	the	process	by	using	the
concept	of	radar	cross	section	(or	RCS).	We	note	that	SR	has	the	units	of	W-s/m2.	Therefore,	if
we	were	to	multiply	SR	by	an	area,	we	would	convert	it	to	an	energy.	This	is	what	we	do	with
RCS,	which	we	denote	by	σ	and	ascribe	the	units	of	m2,	or	dBsm	if	represented	in	dB	units.
Hence,	we	represent	the	energy	captured	and	reradiated	by	the	target	as

To	continue	our	idealized	assumption,	we	posit	the	target	acts	as	an	isotropic	radiator	and
radiates	 Etgt	 uniformly	 in	 all	 directions.	 The	 target,	 in	 fact,	 behaves	 much	 like	 an	 actual
antenna	and	radiates	energy	with	different	amplitudes	in	different	directions.

Given	 the	assumption	 that	Etgt	 is	 the	energy	 radiated	by	a	 target	 and	 the	 target	 acts	 as	 an
isotropic	antenna,	we	can	represent	the	energy	density	at	the	radar	as



or,	by	substituting	(2.10)	into	(2.16)	and	the	result	into	(2.17),

2.2.1.6 Antenna	Again

As	the	electromagnetic	wave	from	the	target	passes	the	radar,	the	radar	antenna	captures	a	part
of	this	wave	and	sends	it	to	the	radar	receiver.	If	we	extend	the	logic	we	applied	to	the	target,
we	can	formulate	the	energy	at	the	output	of	the	antenna	feed	as

where	Ae	denotes	the	effective	area	of	 the	antenna	and	is	a	measure	describing	the	antenna’s
ability	 to	 capture	 the	 returned	 electromagnetic	 energy	 and	 convert	 it	 into	 usable	 power.	 A
more	common	term	for	Ae	is	effective	aperture	of	the	antenna.

The	effective	aperture	is	related	to	the	physical	area	of	the	antenna.	That	is,

where	Aant	 is	 the	 area	 of	 the	 antenna	 projected	 onto	 a	 plane	 placed	 directly	 in	 front	 of	 the
antenna	and	ρant	denotes	the	antenna	efficiency.	We	make	this	clarification	of	area	because	we
do	 not	 want	 to	 confuse	 it	 with	 the	 actual	 surface	 area	 of	 the	 antenna.	 For	 example,	 if	 the
antenna	is	a	parabola	of	revolution	(a	paraboloid),	a	common	type	of	antenna,	the	actual	area
of	the	antenna	would	be	the	area	of	the	paraboloidal	surface	of	the	antenna,	whereas	Aant	is	the
area	of	the	disc	defined	by	the	front	rim	of	the	antenna.	In	most	phased	array	antennas	(flat-
face	phased	array	antennas),	Aant	 is	 the	 area	of	 the	part	 of	 the	 antenna	 containing	 the	 array
elements.

While	the	antenna	efficiency	can	take	on	any	value	between	0	and	1,	it	is	seldom	below	0.5
or	above	0.8	[12].	A	rule	of	thumb	for	the	antenna	efficiency	value	is	ρant	=	0.6.

Substituting	(2.18)	into	(2.19)	yields

2.2.1.7 Antenna	Directivity	Again

Equation	(2.21)	is	not	very	easy	to	use	because	of	the	Ae	term.	We	can	characterize	the	antenna
more	 conveniently	 by	 using	 directivity,	much	 as	we	 did	 on	 transmit.	According	 to	 antenna
theory,	we	can	relate	antenna	directivity	to	effective	aperture	by	the	equation	[13,	p.	61;	8,	p.	6]



Substituting	(2.22)	into	(2.21)	produces	the	following:

We	next	 need	 to	 propagate	 the	 signal	 through	 the	 receiver.	We	 do	 this	 by	 including	 a	 gain
term,	G,	which	accounts	for	all	of	the	receiver	components	up	to	the	point	where	we	measure
SNR.	With	this,	we	get

2.2.1.8 Losses

As	a	final	step	in	this	part	of	the	development,	we	need	to	account	for	losses	we	have	ignored
thus	far.	There	are	many	losses	that	we	will	need	to	account	for	(see	Chapter	5).	For	now,	we
will	consolidate	all	these	losses	with	LtLant	and	denote	them	by	L.	Using	this	approach,	we	say
the	signal	energy	in	the	radar	is	given	by

which	is	Erec,	with	the	additional	losses	included.

We	 said	ES	 denotes	 the	 signal	 energy	 in	 the	 radar,	 although	we	did	 not	 say	where	 in	 the
radar.	We	will	defer	this	discussion	for	now	and	turn	our	attention	to	the	noise	energy	term,
EN.

2.2.2 Derivation	of	EN

The	 two	 main	 contributors	 to	 noise	 in	 radars	 are	 the	 environment	 and	 the	 electronic
components	 of	 the	 receiver.	 Environment	 noise	 includes	 radiation	 from	 the	 earth,	 galactic
noise,	 atmospheric	 noise,	 and,	 in	 some	 instances,	 manmade	 noise	 such	 as	 noise	 jammers.
Galactic	 noise	 includes	 cosmic	 background	 radiation	 and	 solar	 or	 other	 star	 noise.	 The
environment	noise	we	consider	is	earth	and	galactic	noise.

Electronic	equipment	noise	is	termed	thermal	noise	(also	known	as	Johnson	noise)	and	arises
from	agitation	of	electrons	caused	by	heat	[14,	p.	752;	15].	This	form	of	noise	was	discovered
by	Johnson	[15]	and	first	analyzed	by	Nyquist	[16].	One	of	 the	equations	 in	Nyquist’s	paper
leads	to	a	definition	of	noise	power	spectral	density,	or	energy,	for	resistive	devices	as



where	 k	 =	 1.38×10−23	 W-s/K	 denotes	 Boltzmann’s	 constant	 and	 T	 denotes	 the	 noise
temperature	of	the	resistor	in	degrees	kelvin	(K).

Equation	(2.26)	 is	actually	a	 limiting	case	of	one	form	of	Planck’s	 law.	This	 is	discussed
further	in	Chapter	4.	An	implication	of	(2.26)	is	that	the	noise	energy	(in	resistive	devices)	is
independent	of	frequency.

Device	manufacturers	and	communication	analysts	[17,	18]	have	adopted	a	modified	form
of	(2.26)	for	electronic	devices	given	by

where	F	is	termed	the	noise	figure	of	the	device	and	T0	is	the	previously	discussed	reference
temperature	normally	referred	to	as	“room	temperature.”	In	fact,	T0	=	290	K	or	16.84ºC	(0ºC
=	 273.16	 K),	 or	 about	 62ºF,	 which,	 by	 some	 standards,	 may	 be	 room	 temperature.	 It	 is
interesting	to	note	that	kT0	=	4×10−21	W/Hz,	which	makes	one	think	the	(somewhat	arbitrary)
value	of	T0	 =	 290	K	was	 chosen	 to	make	kT0	 a	 “nice”	 number,	 and	not	 because	 it	 is	 room
temperature.	While	T0	=	290	K	is	now	the	standard	(the	IEEE	defines	noise	figure	in	terms	of
a	noise	 temperature	of	290	K	 [5]),	 other	 reference	 temperatures	 have	been	used	 in	 the	 past
(e.g.,	291,	292,	293,	and	300	K	[2,	19–22]).

The	N0	 terms	 of	 (2.26)	 and	 (2.27)	 were	 developed	 for	 electronic	 components	 and	 not
environment	noise.	However,	 radar	analysts	have	adopted	 (2.26)	 as	 a	way	of	 characterizing
the	energy	in	a	radar	due	to	noise	in	the	environment	as	well	as	in	the	electronics.	We	will	do
the	same	here.	Thus,	we	define	the	noise	energy	at	the	input	to	the	matched	filter	as

In	this	equation,	G	is	the	same	overall	receiver	gain	that	appeared	in	(2.25).	Ts	is	termed	the
system	noise	 temperature	 and	Ta	 is	 termed	 the	antenna	 temperature.	Fn	 is	 the	 overall	 noise
figure	of	 the	radar	 from	the	“antenna	face”	 to	 the	 input	 to	 the	matched	filter.	 It	 includes	 the
noise	figures	of	all	active	and	passive	devices	in	the	radar,	including	any	antenna	components
(e.g.,	phase	shifters,	waveguides,	feeds,	combiners)	that	exhibit	an	ohmic,	or	dissipative,	loss.
Equation	(2.28)	is	derived	in	Chapter	4.

The	antenna	temperature,	Ta,	provides	a	means	of	characterizing	the	environment	noise	in
the	radar.	Blake	[23]	provides	an	equation	for	Ta	for	the	case	where	the	radar	beam	is	pointing
into	the	sky	but	not	directly	at	the	sun	or	a	star	(an	example	of	the	latter	is	given	in	Chapter	4).
His	equation	is

This	equation	also	takes	into	consideration	that	earth	noise	is	entering	through	the	antenna



sidelobes	and	backlobes.	It	assumes	an	antenna	without	ohmic	losses,	which	would	be	the	case
here	 since	 the	 ohmic	 losses	 of	 the	 antenna	 are	 included	 in	 Fn.	 The	 temperature,	 T′a,	 is
determined	from	Figure	2.5,	which	comes	from	[23].	In	the	figure,	θ	is	the	elevation	angle	of
the	radar	beam,	relative	to	the	horizon.	The	assumptions	upon	which	the	figure	is	based	are
provided	after	Figure	2.5	as	a	quote	from	Blake’s	NRL	report.

Figure	2.5	Noise	temperature	of	an	idealized	antenna.	[Source:	L.	V.	Blake,	“A	Guide	to	Basic	Pulse-Radar	Maximum-Range
Calculation,”	NRL	Report	6930,	Naval	Research	Report	Laboratory	(1969).]

As	Blake	describes	in	NRL	Report	6930	[23],	Figure	2.5	shows	the

noise	temperature	of	an	idealized	antenna	(lossless,	no	earth-directed	side	lobes)	at	the
earth’s	surface	as	a	function	of	frequency	for	a	number	of	beam	elevation	angles.	The
solid	curves	are	for	the	geometric-mean	galactic	temperature,	sun	noise	10	times	the
quiet	level,	the	sun	in	a	unity-gain	side	lobe,	a	cool	temperate-zone	troposphere,	30ºK
cosmic	 blackbody	 radiation,	 and	 zero	 ground	 noise.	 The	 upper	 dashed	 curve	 is	 for
maximum	galactic	noise	(center	of	galaxy,	narrow-beam	antenna),	sun	noise	100	times
the	quiet	level,	zero	elevation	angle,	and	other	factors	the	same	as	for	the	solid	curves.
The	 lower	 dashed	 curve	 is	 for	 minimum	 galactic	 noise,	 zero	 sun	 noise,	 and	 a	 90º



elevation	angle.	The	slight	bump	in	the	curves	at	about	500	MHz	is	due	to	the	sun	noise
characteristic.	The	curves	for	low	elevation	angles	lie	below	those	for	high	angles	at
frequencies	below	400	MHz	because	of	the	reduction	of	galactic	noise	by	atmospheric
absorption.	The	maxima	at	22.2	GHz	and	60	GHz	are	due	to	water-vapor	and	oxygen
absorption	resonances.

An	alternative	to	the	system	noise	temperature,	Ts	=	Ta	+	(Fn	−	1)	T0,	used	in	(2.28)	is

This	form	uses	the	assumption	Ta	=T0	and	would	be	a	reasonable	approximation	for	the	case
where	Fn	was	large	(greater	than	about	7	dB)	or	where	one	was	performing	preliminary	radar
range	equation	calculations.	Otherwise,	the	Ts	of	(2.28)	should	be	used.	As	a	note,	[11]	points
out	that	Ta	would	equal	T0	if	the	radar	beam	was	pointing	directly	at	the	ground,	an	unlikely
event	in	ground-based	radars.

An	important	reminder	is	the	overall	radar	noise	figure,	Fn,	contains	all	of	the	ohmic	loss
terms	 of	 the	 receive	 path	 of	 the	 radar,	 including	 antenna	 ohmic	 losses.	 As	 a	 result,	 those
losses	should	not	be	included	in	the	loss	term,	L,	of	(2.25).	This	is	a	common	mistake	that	is
easily	made	by	both	novice	and	experienced	radar	analysts.

Combining	(2.29)	and	(2.28)	with	the	relation	SNR	=	ES/EN	results	in	(2.1),	or

Neither	(2.1)	nor	(2.31)	states	where	the	radar	characterization	of	the	SNR	takes	place.	Such
characterization	occurs	at	the	matched	filter	output,	as	discussed	in	Chapter	7.

2.3 A	POWER	APPROACH	TO	SNR

This	approach	defines	the	SNR	as	the	ratio	of	signal	power	to	noise	power.	Recall	that	(2.25)
denotes	the	signal	energy	in	the	radar	while	(2.28)	denotes	the	noise	energy.	We	use	these	to
write	(2.31)	in	a	different	form	as

If	we	move	τp	from	the	numerator	to	denominator	and	define



we	get

which	is	SNR	expressed	as	a	power	ratio.

Note	 that	 we	 defined	 Beff	 as	 1/τp.	 It	 must	 be	 emphasized	 that	 Beff	 may	 not	 be	 an	 actual
bandwidth	anywhere	 in	 the	 radar.	Because	of	 the	possibility	of	misinterpreting	Beff,	 readers
are	 advised	 to	 avoid	 using	 (2.34)	 and	use	only	 (2.1).	An	 exception	 to	 this	 recommendation
would	be	for	the	case	of	CW	radars.	In	these	types	of	radars,	it	would	be	appropriate	to	use
(2.34)	with	Beff	 equal	 to	 the	 bandwidth	 of	 the	Doppler	 filter	 of	 the	 signal	 processor.	 In	 that
case,	SNR	would	be	the	SNR	at	the	output	of	the	Doppler	filter.

2.4 EXAMPLE	1

To	 illustrate	 the	 use	 of	 the	 radar	 range	 equation,	we	 consider	 an	 example	 of	 a	monostatic
radar	with	the	parameters	given	in	Table	2.1.

We	wish	 to	 compute	 the	 SNR	 on	 a	 6-dBsm	 target	 at	 a	 range	 of	 60	 km.	 To	 perform	 the
computation,	we	need	to	find	the	parameters	of	the	radar	range	equation	[(2.1)	or	(2.31)]	and
ensure	 that	 they	 are	 in	 consistent	 units.	Most	 of	 the	 parameters	 are	 in	 Table	 2.1	 or	 can	 be
derived	from	the	parameters	of	Table	2.1.	The	two	remaining	parameters	are	the	target	range
and	 the	 target	RCS,	which	are	given	above.	We	will	need	 to	compute	 the	wavelength,	λ,	 the
total	losses,	and	the	system	noise	temperature,	Ts.	Table	2.2	gives	the	appropriate	parameters
in	dB	units	and	MKS	units	and	show	the	calculation	of	λ	and	L.	Ts	was	computed	from	[see
(2.28)]

and	[see	(2.29)]

Table	2.1
Radar	Parameters

Radar	Parameter Value

Peak	transmit	power	at	power	tube,	PT 1	MW

Transmit	losses,	including	feed	and	antenna,	LtLant 2	dB

Pulsewidth,	τp 0.4	µs

Antenna	directivity,	GT,	GR 38	dB

Operating	frequency,	fc 8	GHz



System	noise	figure	Fn 8	dB

Other	losses,	Lother 2	dB

Table	2.2
Radar	Range	Equation	Parameters

Radar	Range	Equation	Parameter Value	(MKS) Value	(dB)

PT 106	W 60	dBW

GT 6,309.6	W/W 38	dB

GR 6,309.6	W/W 38	dB

λ	=	c/fc 0.0375	m −14.26	dB(m)

σ 3.98	m2 6	dBsm

R 60×103	m 47.78	dB(m)

k 1.38×10−23	W-s/K −228.6	dB(W-s/K)

τp 0.4×10−6	s −64	dB(s)

L	=	LtLantLother 2.51	W/W 4	dB

Ts 3,423	K 35.3	dB(K)

T′a	≈	30	K	was	obtained	from	Figure	2.5	using	θ	=	5°.

Substituting	the	MKS	values	from	Table	2.2	into	(2.31)	yields

To	double	check,	we	compute	(2.31)	using	dB	values,	using

where	all	quantities	are	the	dB	units	from	Table	2.2.	Substituting	yields



which	agrees	with	(2.37).

2.5 DETECTION	RANGE

An	important	use	of	the	radar	range	equation	is	the	determination	of	detection	range,	or	 the
maximum	range	at	which	a	 target	has	a	given	probability	of	being	detected	by	a	 radar.	The
criterion	for	detecting	a	target	is	that	the	SNR	be	above	some	threshold	value.	If	we	consider
the	above	radar	range	equation,	we	note	that	SNR	varies	 inversely	with	the	fourth	power	of
range.	This	means	that	if	the	SNR	is	a	certain	value	at	a	given	range,	it	will	increase	as	range
decreases.	We	therefore	define	the	detection	range	as	the	range	at	which	we	achieve	a	certain
SNR.	To	find	the	detection	range,	we	solve	the	radar	range	equation	for	R.	Doing	so	by	using
(2.1)	as	the	starting	point	yields

Suppose,	 for	example,	we	want	 the	range	at	which	 the	SNR	on	a	6-dBsm	target	 is	13	dB.
Using	the	Table	2.2	values	in	(2.40)	yields

This	means	target	detection	occurs	at	a	maximum	range	of	66	km	or	at	all	ranges	of	66	km
or	less.

The	 value	 of	 13	 dB	 used	 in	 this	 example	 is	 a	 somewhat	 standard	 detection	 threshold.	 In
Chapter	6,	we	show	that	an	SNR	threshold	of	13	dB	yields	a	single-pulse	detection	probability
of	0.5	on	an	aircraft-type	target	(a	Swerling	1	target).

2.6 SEARCH	RADAR	RANGE	EQUATION

We	now	want	to	discuss	an	extension	to	the	radar	range	equation	used	to	analyze	and	design



search	radars.	Its	most	common	use	is	in	the	initial	sizing	of	search	radars	in	terms	of	power
and	physical	size.	In	fact,	the	measure	of	performance	usually	used	to	characterize	these	types
of	 radars	 is	 average	 power-aperture	 product,	PAAe	 [8,	 p.	 311],	 which	 is	 the	 product	 of	 the
average	power	times	the	effective	aperture	of	the	radar.

We	begin	by	assuming	the	radar	searches	an	angular	region,	or	sector,	denoted	Ω.	The	term
Ω	takes	units	of	rad2	or	steradians.	One	of	the	more	common	search	sectors	is	a	section	of	the
surface	 of	 a	 sphere	 bounded	 by	 some	 elevation	 and	 azimuth	 extents;	 Figure	 2.6	 shows	 an
example	 of	 such	 a	 surface.	 The	 figure	 indicates	 an	 azimuth	 extent	 of	 ∆α	 and	 an	 elevation
extent	from	ε1	to	ε2.	As	shown	in	the	appendices,	the	angular	area	of	this	search	sector	is

where	all	angles	are	in	radians.

Figure	2.6	Search	sector	illustration.

In	 Section	 2.2.1.2,	 it	 was	 shown	 that	 the	 area	 of	 the	 beam	 on	 the	 surface	 of	 a	 sphere	 of
radius	R	could	be	written	as

Dividing	by	R2	results	in	an	angular	beam	area	of

This	gives	the	number	of	beams	required	to	cover	the	search	sector	as

Equation	 (2.46)	 is	 ideal	 in	 that	 it	 essentially	 assumes	 a	 rectangular	 search	 sector	 and
rectangular	beams.	In	practice,	the	number	of	beams	required	to	fill	a	search	sector	is	given
by



where	Kpack	denotes	the	packing	factor	and	accounts	for	how	the	beams	are	arranged	within
the	search	sector	[24].	For	the	simple	case	of	rectangular	beams,	or	elliptical	beams	that	touch
at	their	3-dB	points,	Kpack	=	1.	If	the	radar	uses	anything	other	than	rectangular	packing	or	if
the	beams	touch	somewhere	other	than	their	3-dB	points,	Kpack	will	deviate	from	unity.

Recall	 that	 one	 of	 the	 parameters	 of	 PAAe	 is	 the	 average	 power,	 PA.	 If	 the	 radar	 has	 a
pulsewidth	of	τp	and	a	PRI	of	T,	the	average	power	is

where	d	represents	the	duty	cycle	of	the	radar.

One	of	the	requirements	imposed	on	a	search	radar	is	that	it	must	cover	the	search	sector	in
Tscan	seconds.	This	means	that	the	radar	must	process	signals	from	n	beams	in	Tscan	seconds.
Given	this	requirement,	the	time	allotted	to	each	beam	is

Allowing	one	PRI	per	beam	gives

Equation	(2.47)	suggests	n	=	KpackΩ/KAθAθB,	which	we	can	combine	with	(2.51)	to	get

We	use	d	=	τp/T	to	obtain

Substituting	(2.52)	and	(2.48)	into	the	radar	range	equation	(2.1)	produces



Finally,	we	arrive	at	the	search	radar	range	equation	by	using	(2.9)	and	(2.22)	in	(2.53):

In	 arriving	 at	 (2.53),	we	made	 the	 assumption	GT	 =	GR.	We	 leave	 the	 details	 of	 deriving
(2.54)	as	an	exercise.

Note	(2.54)	does	not	explicitly	depend	upon	operating	frequency	(via	λ),	antenna	directivity,
or	pulsewidth—as	does	the	standard	radar	range	equation.	This	can	be	of	value	in	performing
preliminary	search	radar	designs	because	we	need	not	specify	a	lot	of	parameters.

It	must	 be	 emphasized	 that	 the	 search	 radar	 range	 equation	 leads	 to	 a	 preliminary	 radar
design.	At	best,	 it	provides	a	starting	point	 for	a	more	detailed	design	 in	which	 the	specific
parameters	not	in	(2.53)	are	defined.	This	will	be	discussed	further	in	the	following	example.

2.7 EXAMPLE	25

As	 an	 interesting	 example,	 we	 consider	 a	 requirement	 placed	 on	 search	 radars	 used	 for
ballistic	missile	defense.	Specifically,	 the	Strategic	Arms	Limitation	Talks	 I	 (SALT	I)	 treaty
specifies	that	the	power	aperture	product	be	limited	to	3×106	W-m2[25].	Given	this	limitation,
we	wish	to	perform	a	first-cut	design	of	a	radar	to	be	used	for	ballistic	missile	search.

We	begin	by	assuming	the	search	will	cover	a	region	of	space	that	extends	from	0°	to	45°
in	elevation	and	30°	 in	azimuth.	Further,	we	wish	 to	 traverse	 the	 search	 sector	 in	10	 s.	The
targets	of	interest	have	an	RCS	of	-10	dBsm	and	we	must	achieve	an	SNR	of	13	dB	to	declare
a	detection.	Current	technology	for	this	hypothetical	radar	supports	a	noise	figure	of	4	dB	and
total	losses	of	6	dB.	We	assume	an	average	beam	(elevation)	angle	of	10°,	which,	from	Figure
2.5,	gives	Ta′	=	15	K.	This,	with	(2.35)	and	(2.36),	leads	to	Ts	=	487	K.	We	assume	Kpack	=	1	for
this	preliminary	design.	Table	2.3	summarizes	these	parameters.

To	determine	the	detection	range	of	the	radar,	we	first	solve	(2.54)	for	R:



Table	2.3
Search	Radar	Range	Equation	Parameters

Parameter Value

Azimuth	search	extent 30°

Elevation	search	extent 0–45°

Power	aperture	product 3×106	W-m2

Search	scan	time,	Tscan 10	s

Target	RCS,	σ −10	dBsm

Detection	SNR 13	dB

Total	losses,	L 6	dB

Packing	factor,	Kpack 1

System	noise	temperature,	Ts 487	K

We	compute	Ω	from	(2.40):

which,	when	combined	with	the	values	in	Table	2.3,	yields:

which	we	hope	will	prove	sufficient.

We	extend	the	example	and	establish	some	additional	characteristics	for	this	radar.	We	start
by	requiring	the	radar	operate	unambiguously	in	range.	The	means	that	we	need	to	choose	the
PRI,	T,	to	satisfy	the	following	equation:

We	choose	T	=	7.5	ms.

If	we	 devote	 one	PRI	 per	 beam,	 over	 the	 course	 of	 10	 s	we	would	 need	 to	 transmit	 and
receive



By	assuming	a	circular	beam,	we	can	use	(2.46)	to	calculate	the	beamwidth:

If	we	operate	the	radar	at	a	frequency	of	1	GHz	(L-band),	we	get	a	wavelength	of

From	(2.14)	we	have

Using	(2.22),	we	can	write

If	we	assume	an	antenna	efficiency	of	60%,	we	compute	a	physical	area:

Finally,	by	assuming	a	circular	aperture,	we	obtain	an	antenna	diameter	of

which	is	approximately	the	height	of	a	seven-story	building.

Our	 final	 calculation	 yields	 the	 peak	 power	 of	 the	 radar.	 We	 assume	 we	 want	 a	 range
resolution	of	150	m,	which	 translates	 to	a	1-µs	pulsewidth	 if	we	use	an	unmodulated	pulse.
With	the	computed	PRI	of	7.5	ms,	we	can	calculate	the	duty	cycle	as

From	(2.63)	and	the	given	average	power	aperture	of	3×106	W-m2,	we	compute	an	average
power	of



Combining	this	result	with	(2.66)	leads	us	to	compute	a	peak	power	of

which	is	larger	than	desired.

We	can	reduce	the	peak	power	by	using	a	longer	pulse	and	pulse	compression	(see	Chapter
10).	 A	 100-µs	 pulse,	 with	 pulse	 compression,	 would	 reduce	 peak	 power	 to	 the	 more
reasonable	value	of	690	kW.

This	completes	our	preliminary	design	for	a	search	radar.	In	practice,	this	would	serve	as	a
starting	point	for	a	much	more	detailed	design	where	we	would	specifically	revisit	all	of	the
terms	of	the	radar	range	equation	(not	the	search	radar	range	equation)	with	actual	hardware
constraints.

2.8 RADAR	RANGE	EQUATION	SUMMARY

Table	2.4	and	Table	2.5	summarize	various	equations	related	to	the	radar	range	equation	and
the	search	radar	range	equation.

Table	2.4
Radar	Range	Equation	Summary

Equation	Name Equation

Radar	range	equation

Antenna	directivity	(GT,	GR) 	or	 	where	Ae	=	ρAant	and	ρ	=	0.6

Effective	radiated	power

System	noise	temperature Ts	=	Ta	+	(Fn	−	1)T0

Antenna	temperature Ta	=	0.8767T′a	+	36	where	Ta′	is	from	Figure	2.5

Table	2.5
Search	Radar	Range	Equation	Summary

Equation	Name Equation

Search	radar	range	equation

Average	power ΡΑ=Ρττp/Τ,	T	=	PRI



Effective	aperture Ae	=	PantAant

Scan	period Tscan:	time	to	cover	search	volume

Search	solid	angle Ω	=	2Aα(sinε2	−	sinε1)

∆α:	azimuth	extent	of	search	sector

ε1:	lower	elevation	limit	of	search	sector

ε2:	upper	elevation	limit	of	search	sector

2.9 EXERCISES

1. Derive	the	equation

from

In	 these	 equations,	 θA	 and	 θB	 denote	 beamwidths	 in	 degrees	 and	 	 and	 	 denote
beamwidths	in	radians.	KA	=	1.65.

2. A	radar	has	a	peak	power	of	1	MW,	combined	transmit	and	antenna	losses	of	1	dB,	and	a
transmit	 antenna	directivity	 of	 41	dB.	The	 radar	 is	 operating	 in	 free	 space	 so	 there	 is
nothing	to	absorb	the	radiated	energy.	It	uses	a	pulse	with	an	envelope	width	of	1	µs.

a) Calculate	the	total	energy	on	the	surface	of	a	(hypothetical)	sphere	with	a	radius	of
100	km	centered	on	the	radar.

b) Repeat	part	a)	for	a	sphere	with	a	radius	of	200	km	centered	on	the	radar.
c) Do	your	answers	make	sense?	Explain.

3. Consider	a	monostatic	radar	with	the	following	parameters:

• Peak	transmit	power	at	the	power	amp	output—10	kW
• Transmit	losses—1	dB
• Antenna	losses—1	dB	(transmit)
• Antenna	losses—1	dB	(receive)
• Operating	frequency—6	GHz
• PRF—1,000	Hz
• Pulsewidth—100	µs
• Transmit	antenna	effective	aperture—0.58	m2

• Receive	antenna	beamwidth—1.2°	Az	×	2.5°	El	 (the	radar	has	separate	 transmit	and
receive	antennas	positioned	next	to	each	other)

• Other	losses—8	dB



• System	noise	temperature,	Ts—1,155	K

a) Calculate	the	transmit	antenna	directivity,	in	dB.
b) Calculate	the	effective	aperture,	in	square	meters,	for	the	receive	antenna,	given	an

antenna	efficiency	of	60%.
c) Calculate	the	ERP	for	the	radar,	in	dBW.
d) Given	a	detection	threshold	of	20	dB,	what	is	the	detection	range,	in	km,	for	a	target

with	a	radar	cross	section	of	10	dBsm?

4. Consider	a	monostatic	radar	that	has	the	following	parameters:

• Peak	transmit	power	at	power	amp	output—100	kW
• Transmit	and	antenna	losses—2	dB
• Operating	frequency—10	GHz
• PRF—2,000	Hz
• Antenna	diameter—1.5	m	(circular	aperture)
• Antenna	efficiency—60%
• Other	losses—12	dB
• Noise	figure—4	dB
• The	radar	transmits	a	10-µs	rectangular	pulse.
• The	beam	elevation	angle	is	in	the	range	of	1º	to	5º.

a) Create	 a	 table	 containing	 all	 parameters	 necessary	 for	 the	 radar	 range	 equation.
Derive	 those	 parameters	 missing	 explicit	 values	 above.	 List	 as	 TBD	 those
parameters	with	insufficient	information	for	entering	a	value.

b) Calculate	the	unambiguous	range	of	the	radar.
c) Plot	 SNR,	 in	 dB,	 versus	 target	 range,	 in	 km,	 for	 a	 6-dBsm	 target.	Vary	 the	 range

from	5	km	to	the	radar ’s	unambiguous	range.
d) Given	a	13-dB	SNR	requirement	for	detection,	calculate	the	detection	range,	in	km,

for	a	6-dBsm	RCS	target.
e) What	 is	 the	maximum	 detection	 range,	 in	 km,	 if	 the	minimum	 SNR	 required	 for

detection	is	raised	to	20	dB?
f) Calculate	the	antenna	beamwidth,	in	degrees.

5. A	radar	generates	200	kW	of	peak	power	at	the	power	tube	and	has	2	dB	of	loss	between
the	power	tube	and	the	antenna.	The	radar	is	monostatic	with	a	single	antenna	that	has	a
directivity	 of	 36	 dB	 and	 a	 loss	 of	 1	 dB.	The	 radar	 operates	 at	 a	 frequency	 of	 5	GHz.
Determine	 the	ERP,	 in	 dBW,	 for	 the	 radar.	Determine	 the	ERP	 in	watts.	Determine	 the
power	at	the	receive	antenna	output,	in	dBm,	for	the	following	conditions:

a) A	1.5-m2	RCS	target	at	a	range	of	20	km
b) A	20-dBsm	target	at	a	range	of	100	km

6. How	does	doubling	the	range	change	the	powers	in	Exercise	5?	Give	your	answer	in	dB.
This	problem	illustrates	an	important	rule	of	thumb	for	the	radar	range	equation.

7. A	 radar	with	 losses	 of	 13	 dB	 and	 a	 noise	 figure	 of	 8	 dB	must	 detect	 targets	within	 a
search	sector	360°	in	azimuth	and	from	0°	to	20°	in	elevation.	The	radar	must	cover	the



search	 sector	 in	 6	 s.	 The	 targets	 of	 interest	 have	 an	 RCS	 of	 6	 dBsm,	 and	 the	 radar
requires	20	dB	of	SNR	to	declare	a	detection.	The	radar	must	have	a	detection	range	of
75	km.	Calculate	the	average	power	aperture	(PavgAe),	in	W-m2,	required	by	the	radar	to
satisfy	the	search	requirements	above.

8. The	radar	of	Exercise	7	uses	an	antenna	with	fan	beamwidths	of	1°	in	azimuth	and	5°	in
elevation.	The	radar	operates	at	a	frequency	of	4	GHz.	What	average	power,	in	kW,	must
the	radar	have?	Given	an	antenna	efficiency	of	60%,	calculate	the	approximate	antenna
dimensions,	 in	 m.	 Hint:	 The	 relative	 height	 and	 width	 of	 the	 antenna	 are	 inversely
proportional	to	the	relative	beamwidths.

9. Assuming	 the	 radar	 of	 Exercise	 7	 uses	 one	 PRI	 per	 beam,	 determine	 the	 PRI	 for	 the
radar.	Can	the	radar	operate	unambiguously	in	range?	Explain.

10. We	 typically	 describe	 the	 range	 resolution	of	 a	 radar	 as	 the	width	of	 its	 pulses,	 if	 the
radar	uses	unmodulated	pulses.	What	pulsewidth	does	the	radar	of	Exercise	7	require	for
a	range	resolution	of	150	m?	What	is	the	peak	power	of	the	radar,	in	MKS	units?

11. Derive	(2.54).
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APPENDIX	2A:	DERIVATION	OF	SEARCH	SOLID	ANGLE	EQUATION

Figure	2A.1	Geometry	for	computing	solid	angle.

We	can	write	the	area	of	the	small	square	in	Figure	2A.1	as

or

To	get	the	total	area	over	the	angles	[ε1,	ε2],	we	integrate	(2A.1)	and	(2A.2)	over	these	angle
ranges.	This	yields

Performing	the	integral	results	in

Dividing	by	R2	yields	the	solid	angle	as



1	An	assumption	of	this	form	of	the	radar	range	equation	is	that	the	radar	is	pulsed,	not	CW.	For	CW	radars,	it	would	be	more
appropriate	to	use	the	form	of	Section	2.3.
2	Noise	figure	and	noise	factor	are	often	treated	as	synonyms,	although	some	authors	make	a	distinction	[6].	Specifically,	the
term	“noise	figure”	is	used	when	in	logarithmic	form,	while	noise	factor	is	used	when	in	linear	form.	We	will	use	noise	figure	for
both	the	W/W	and	dB	version	in	this	book.
3	We	assume	nothing	in	the	transmit,	propagation,	or	receive	path	of	the	radar,	up	to	the	matched	filter,	distorts	the	rectangular
pulse	 envelope.	 Clearly,	 this	 will	 not	 be	 the	 case,	 since	 a	 rectangular	 pulse	 has	 infinite	 bandwidth	 and	 the	 transmitter,
environment,	and	receiver	have	finite	bandwidth.	As	discussed	in	Chapters	5	and	7,	we	accommodate	envelope	distortion	by
including	a	loss	factor.	As	a	note,	in	practical	radars,	the	loss	due	to	pulse	envelope	distortion	is	usually	small	(<	1	dB).
4	The	concept	of	3-dB	points	 should	be	 familiar	 from	control	and	signal	processing	 theory	as	 the	standard	measure	used	 to
characterize	bandwidth.
5	This	example	is	adapted	from	lecture	notes	by	Dr.	Stephen	Gilbert.



Chapter	3

Radar	Cross	Section

3.1 INTRODUCTION

In	 this	 chapter,	 we	 discuss	 radar	 cross	 section,	 or	 RCS.	 The	 concept	 of	 scattering	 of
electromagnetic	waves	by	objects	(what	the	concept	of	RCS	attempts	to	quantify)	dates	back	to
1861,	 when	Alfred	 Clebsch	 discussed	 the	 topic	 in	 a	memoir	 [1].	 In	 1871,	 Lord	 Rayleigh,1
whose	name	 is	often	associated	with	electromagnetic	scattering	and	RCS,	published	a	paper
titled	“On	the	Incidence	of	Aerial	and	Electric	Waves	Upon	Small	Obstacles”	[2].

Although	many	authors	wrote	about	electromagnetic	scattering	in	the	late	1800s	and	early
1900s,	the	first	mention	of	RCS	did	not	occur	until	1947,	when	Ridenour	introduced	it	in	an
article	in	the	MIT	Radiation	Laboratory	Series	[3,	p.	21].	In	that	reference,	Ridenour	provided
a	definition	of	RCS	as

The	units	of	the	numerator	of	(3.1)	are	watts	while	the	units	of	the	denominator	are	watts/m2.
Thus,	the	unit	of	RCS	is	m2.

Two	of	the	key	phrases	in	the	definition	of	(3.1)	are	“reradiated”	and	“toward	the	source.”
This	says	the	RCS	parameter	attempts	to	capture,	in	a	single	number,	the	ability	of	the	target	to
capture	energy	from	the	radar	and	reradiate	it	back	toward	the	radar.

In	general,	computation	of	RCS	is	very	complicated.	In	fact,	except	for	some	very	simple
surfaces,	RCS	can	be	only	approximately	computed.	This	may	explain	why	 there	 is	 a	 large
amount	 of	 current	 research	 in	methods	 to	more	 reliably	 predict	 the	RCS	 characteristics	 of
practical	targets	[4–10].

3.2 RCS	OF	SIMPLE	SHAPES

In	general,	the	RCS	of	a	target	depends	upon	its	physical	size.	However,	this	is	not	always	the
case.	An	example	of	the	case	where	RCS	depends	upon	physical	size	is	a	sphere.	Specifically,
the	RCS	of	a	perfectly	conducting	sphere	of	radius	r	is

provided	r	≫	λ	[1,	p.	65].

A	case	where	RCS	does	not	depend	upon	physical	size	is	a	cone	where	the	nose	of	the	cone



is	facing	toward	the	radar,	as	shown	in	Figure	3.1.	For	the	case	of	Figure	3.1,	the	RCS	is	given
by	[11,	p.	89]

It	will	be	noted	that	the	RCS	is	proportional	to	wavelength	but	is	not	dependent	on	the	overall
size	of	the	cone.	If	the	cone	had	any	other	orientation	relative	to	the	line	of	sight	(LOS)	to	the
radar	(see	Figure	3.1	for	a	definition	of	LOS),	its	RCS	would	depend	upon	the	length	of	the
cone	and	the	diameter	of	the	base	[12].	Also,	if	the	point	of	the	cone	is	not	perfectly	sharp,	the
RCS	will	depend	upon	the	radius	of	the	nose	(see	Figure	3.2)	[13–15].

Figure	3.1	Cone	geometry.

Figure	3.2	Ideal	reentry	vehicle	RCS	(blunted	cone)—nose-on	aspect.

In	this	case,	the	RCS	[14]	is	the	sum	of	the	expressions	for	a	cone	[16]	and	the	rounded	tip
[17].	That	is,	σ	=	σcone	+	σtip	where



k	=	2π/λ,	θ	is	the	cone	half	angle,	n	=	3/2	+	α/π,	a	is	the	cone	base	radius,	and	b	is	the	sphere
radius.

In	most	cases,	the	RCS	is	dependent	on	both	the	size	of	the	object	and	the	radar	wavelength.
It	also	depends	on	what	the	object	is	made	of,	as	metal	objects	generally	have	a	larger	RCS
than	nonmetallic	objects	of	the	same	size.

Examples	of	other	simple	shapes	and	their	RCSs	are	contained	in	Figure	3.3	[11,	12,	18].2
For	the	case	of	the	chaff	dipole,	the	given	equation	for	RCS	as	a	function	of	only	wavelength
results	from	the	assumption	that	the	length	of	the	chaff	dipole	is	equal	to	the	wavelength	and
that	 the	dipole	 is	 oriented	normal	 to	 the	LOS.	 If	 one	were	 to	 consider	 all	 orientations	of	 a
chaff	dipole,	the	average	RCS	would	be	σavg	=	0.153λ2,	σavg	=	0.166λ2,	and	σavg	=	0.184λ2	for
half-wave,	full-wave,	and	1.5-wave	dipoles,	respectively	[19].

Figure	3.3	RCSs	of	some	simple	shapes.



Figure	3.4	Normalized	RCS	of	a	perfectly	conducting	sphere	vs.	normalized	size.

A	classical	plot	in	RCS	theory	is	shown	in	Figure	3.4	[3,	p.	65].	This	figure	contains	a	plot
of	normalized	RCS	versus	normalized	radius	for	a	perfectly	conducting	sphere.	It	provides	an
illustration	that	 the	RCS	of	an	object	 is	generally	a	complicated	function	of	both	the	size	of
the	object	and	the	wavelength	of	the	electromagnetic	wave	that	impinges	on	the	object.

The	equation	for	the	curve	of	Figure	3.4	is	[20,	pp.	35–36]

where
r	is	the	radius	of	the	sphere.
k	=	2π/λ	is	the	wave	number.
Jn(kr)	is	the	spherical	Bessel	function	of	the	first	kind	of	order	n	and	argument	kr.
Yn(kr)	is	the	spherical	Bessel	function	of	the	second	kind	of	order	n	and	argument	kr
(also	called	Weber ’s	function).

	is	the	spherical	Bessel	function	of	the	third	kind	of	order



n	and	argument	kr	(also	called	a	Hankel	function).

Equation	(3.6)	 is	usually	referred	to	as	 the	Mie3	series	and	is	one	of	 the	few	tractable	cross
section	equations	[21].

If	the	object	size	is	less	than	a	wavelength,	we	say	that	the	object	is	in	the	Rayleigh	region
of	the	incident	electromagnetic	wave.	In	this	region,	the	RCS	of	the	object	is	a	function	of	the
size	of	the	object	relative	to	a	wavelength.	As	an	example,	the	RCS	of	a	perfectly	conducting
sphere	whose	radius	places	it	in	the	Rayleigh	region	(see	Figure	3.4)	is	given	by	[22,	p.	101]

The	most	common	example	objects	that	are	in	the	Rayleigh	region	for	many	radars	are	rain
and	clouds	[23,	p.	149;	24,	p.	41].	Another	example	would	be	insects.

The	 center	 region	 of	 Figure	 3.4	 is	 termed	 the	 resonance,	 or	 Mie,	 region.	 The	 Mie
designation	 is	 in	 honor	 of	Gustav	Mie,	who	 first	 gave	 the	 exact	 equation	 for	 the	 curve	 of
Figure	3.4	[20].	 (This	equation	was	 later	detailed	by	Stratton	[25].)	 In	 this	 region,	 the	object
size	is	on	the	order	of	a	wavelength	and	the	RCS	is	transitioning	from	being	dependent	upon
both	object	size	and	wavelength	to	being	dependent	mainly	on	object	size.	As	indicated	in	this
figure,	the	RCS	of	a	sphere	can	appear	to	be	larger	than	dictated	by	its	size.	Typical	objects
that	could	be	in	the	resonance	region	would	be	birds,	bullets,	artillery	shells,	some	missiles,
and	very	small	aircraft,	depending	upon	frequency.

The	third	RCS	region	is	termed	the	“optical	region”	and	is	where	most	large	objects	fall.	In
this	 region,	 the	 object	 is	much	 larger	 than	 a	wavelength.	 Further,	 the	RCS	 is	 (or	 can	 be)	 a
strong	function	of	the	size	of	the	object.

In	general,	the	RCS	of	an	object	depends	upon	the	orientation	of	the	object	relative	to	the
LOS.	As	an	example,	the	RCS	of	the	flat	plate	illustrated	in	Figure	3.5	is	given	by	[22,	p.	105;
26,	p.	457]

where	sinc(x)	=	sin(πx)/(πx).



Figure	3.5	RCS	of	a	1-m2	flat	plate	at	a	frequency	of	1	GHz.

The	plot	of	Figure	3.5	was	created	for	a	flat	plate	with	d	=	w	=	1	m	and	ϕ	=	0	and	λ	=	0.3	m
(L-band).	As	can	be	seen,	the	RCS	varies	significantly	as	the	angle	of	the	LOS	changes.	It	will
also	be	noted	that	the	peak	RCS	is	significantly	larger	than	the	1-m2	area	of	the	plate.

Most	targets	of	interest	are	not	the	simple	shapes	indicated	thus	far.	In	fact,	targets	such	as
airplanes	 consist	 of	many	 different	 shapes	 that	 are	 in	 different	 orientations.	 Further,	 as	 the
targets	move	relative	to	the	radar	LOS,	the	relative	orientations	of	the	various	shapes	change
significantly.	As	a	result,	a	 typical	plot	of	 target	RCS	versus	orientation	relative	 to	 the	LOS
has	 a	 very	 complex	 appearance.	A	 classical	 plot	 that	 illustrates	 this	 variation	 of	 RCS	 is	 in
Figure	3.6	[3,	p.	77].	This	figure	shows	the	measured	variation	in	RCS	of	an	AT-11	Kansan	[a
twin	 engine	 aircraft	 used	 during	 World	 War	 II	 for	 bombing	 and	 gunnery	 training	 by	 the
United	States	Army	Air	Forces	(USAAF)]	as	a	function	of	azimuth	orientation	relative	to	the
LOS.	 As	 can	 be	 seen,	 the	 RCS	 varies	 by	 quite	 a	 large	 amount	 and	 in	 a	 random-looking
fashion.	 If	 one	 considers	 that	 the	 orientation	 of	 the	 aircraft	 will	 change	 continually	 as	 the
aircraft	flies	toward	the	radar,	the	angular	variation	in	RCS	will	translate	to	a	time	variation
of	RCS	that	would	look	random.



Figure	 3.6	 Experimental	 RCS	 of	 an	 AT-11	Kansan.	 (Source:	 L.	 N.	 Ridenour,	Radar	 System	Engineering,	 Vol.	 1	 of	 MIT
Radiation	Laboratory	Series,	1947.	Reprinted	with	permission.)

3.3 SWERLING	RCS	MODELS

In	an	attempt	to	capture	target	RCS	fluctuation	effects	in	a	mathematical	model	that	could	be
easily	used	 in	detection	 studies,	Peter	Swerling	 [27]	 developed	 statistical	 representations	 of
RCS,	which	are	commonly	referred	to	as	the	Swerling	RCS	models.	There	are	four	Swerling
models,	 termed	 Swerling	 1,	 Swerling	 2,	 Swerling	 3,	 and	 Swerling	 4.	Many	 radar	 analysts
refer	 to	a	fifth	Swerling	model	 that	 is	 termed	Swerling	0	or	Swerling	5.	The	fifth	Swerling
model	 is	 defined	 as	 a	 target	 that	 has	 a	 constant	 RCS.4	 This	 Swerling	 model	 would	 be
representative	of	a	sphere	since	the	ideal	RCS	of	a	sphere	is	a	constant	function	of	orientation
angle.



The	four	Swerling	models	attempt	 to	represent	both	statistical	and	temporal	variations	of
RCS.	The	statistical	properties	of	Swerling	1	and	Swerling	2	RCS	variations	(which	we	will
refer	 to	Swerling	1	or	Swerling	2	 targets,	 or	 SW1	 and	SW2	 targets)	 are	 the	 same	 and	 are
governed	by	the	density	function

where	U(σ)	is	the	unit	step	function.	Equation	(3.9)	is	the	equation	for	an	exponential	density
function.	σAV	is	the	average	RCS	of	the	target	and	is	the	value	that	would	be	used	in	the	radar
range	equation.

The	statistical	properties	of	SW3	and	SW4	targets	are	also	the	same	and	are	governed	by
the	density	function

Again,	σAV	is	the	average	RCS	of	the	target.

Equations	(3.9)	and	(3.10)	are	special	cases	of	the	chi-squared	density	function	[3].	Equation
(3.9)	 is	 a	 chi-squared	 density	 function	 with	 two	 degrees	 of	 freedom,	 and	 (3.10)	 is	 a	 chi-
squared	 density	 function	with	 four	 degrees	 of	 freedom.	The	 general,	 k-degree-of-freedom,
chi-squared	 density	 function	 is	 the	 density	 function	 of	 the	 sum	 of	 the	 squares	 of	 k,
independent,	zero-mean,	equal	variance	Gaussian	random	variables.

The	difference	between	a	SW1	and	SW2	target	lies	in	the	difference	in	the	time	variation	of
RCS.	 The	 same	 is	 true	 for	 a	 SW3	 and	 SW4	 target.	 With	 a	 SW1	 or	 SW3	 target,	 the	 RCS
fluctuates	slowly	over	 time	and	with	a	SW2	or	SW4	target,	 the	RCS	fluctuates	 rapidly	over
time.	 In	 the	 classical	 definitions	 given	 by	 Swerling	 [27],	 SW1	 and	 SW3	 targets	maintain	 a
constant	RCS	during	the	time	the	radar	illuminates	it	on	a	particular	scan,	but	its	RCS	changes
independently	(in	a	random	fashion)	on	a	scan-to-scan	basis.	For	SW2	and	SW4	targets,	 the
RCS	changes	independently	(and	randomly)	on	a	pulse-to-pulse	basis.

Scan-to-scan	means	that	the	radar	“looks”	at	the	target	infrequently—on	the	order	of	once
every	several	seconds.	Pulse-to-pulse	means	that	the	radar	“looks”	at	the	target	every	PRI.	The
phrase	scan-to-scan	derives	from	search	radar	terminology	where	the	radar	constantly	rotates
and	“scans”	by	the	target	only	every	few	seconds.5

3.3.1 Swerling	Statistics

Plots	of	the	density	functions	of	(3.9)	and	(3.10)	are	shown	in	Figure	3.7.	These	plots	indicate
that	the	RCS	values	for	SW1	and	SW2	targets	vary	about	a	value	below	σAV,	whereas	the	RCS
values	for	SW3	and	SW4	targets	are	concentrated	at	values	fairly	close	to	the	average	RCS.
This	 is	 further	 illustrated	 in	Figure	3.8,	which	 contains	 plots	 of	RCS	 versus	 dimensionless
time	for	SW1/SW2	and	SW3/SW4	targets	with	an	average	RCS	of	1	m2	or	0	dBsm.	As	will	be



noted,	the	RCS	values	for	the	SW1/SW2	case	tend	to	vary	significantly	about	a	value	below
the	average	RCS	of	0	dBsm,	whereas	 the	RCS	values	for	 the	SW3/SW4	case	 tend	to	cluster
more	tightly	around	a	value	slightly	below	the	average	RCS	of	0	dBsm.

Figure	3.7	Density	functions	for	Swerling	RCS	models.

Figure	3.8	RCS	vs.	time	for	SW1/SW2	and	SW3/SW4	targets.

3.3.2 Swerling	Fluctuation	Models

As	 was	 indicated	 earlier,	 the	 difference	 between	 SWodd	 (SW1,	 SW3)	 targets	 and	 SWeven
(SW2,	SW4)	targets	lies	in	the	rate	at	which	the	RCS	is	assumed	to	vary.	It	was	stated	that	the
SWodd	model	assumes	that	the	RCS	changes	on	a	scan-to-scan	basis.	In	the	search	radar	range



equation	 discussions	 of	 Chapter	 2,	 we	 referred	 to	 a	 search	 volume	 and	 indicated	 that	 the
search	radar	covers	the	search	volume	within	a	certain	time	we	termed	Tscan.	This	process	of
covering	 the	search	volume	 is	 termed	a	scan,	and	Tscan	 is	 termed	 the	 scan	 time.	 If	we	were
using	a	SWodd	target	model	in	the	search	radar	analysis,	we	would	assume	the	RCS	changed
from	scan	to	scan	but	stayed	constant	during	the	scan.	Thus,	we	would	assume	that	 the	RCS
changed	every	Tscan	seconds,	but	stayed	constant	over	any	specific	Tscan	interval.	If	we	were
using	a	SWeven	target	model,	we	would	assume	the	target	RCS	changed	every	PRI,	or	every	T
seconds.	 Thus,	 the	 SWeven	 RCS	models	 imply	 rapid	 RCS	 fluctuation,	 whereas	 the	 SWodd
models	 imply	 slow	 RCS	 fluctuation.	 This	 difference	 in	 RCS	 fluctuation	 is	 illustrated
notionally	 in	Figure	3.9,	which	 is	 a	 plot	 of	RCS	 versus	 pulse	 number,	 or	 PRI,	 for	 the	 two
cases.	 For	 the	 SW1	model,	 the	RCS	 changes	 every	 500	 pulses	 and	 the	RCS	 changes	 every
pulse	for	the	SW2	model.

The	 concept	 of	 SWodd	 and	 SWeven	 represents	 an	 idealization	 that	 is	 not	 achieved	 in
practice.	 Actual	 targets	 exhibit	 RCS	 variations	 that	 lie	 somewhere	 between	 SWodd	 and
SWeven.	How	close	 the	 fluctuation	 lies	 to	either	model	depends	upon	 the	complexity	of	 the
target,	 the	operating	 frequency	of	 the	 radar,	 and	 the	 time	between	RCS	observations.	As	an
example,	we	 consider	 a	 target	 that	we	 can	model	 by	 five	 spheres,	 or	 point	 sources.	 In	 this
example,	we	“fly”	the	target	model	toward	the	radar	with	a	constant	x	velocity	of	75	m/s	and	a
y	 and	 z	 velocity	 of	 zero.	The	 center	 starts	 at	x	 =	 20,100	m,	y	 =	 5,000	m,	 and	 z	 =	 0	m.	We
assume	all	of	the	scatterers	have	the	same	RCS	(1	m2)	and	compute	the	composite	RCS	(the
total	RCS	of	all	five	scatterers)	as	a	function	of	time.

Figure	3.10	contains	plots	of	composite	RCS	over	a	3-second	interval	for	cases	where	the
carrier	frequency	is	8.136	GHz	(low	X-band)	and	97.632	GHz	(W-band).

For	 the	 X-band	 case,	 the	 RCS	 remains	 fairly	 constant	 for	 time	 periods	 of	 tens	 of
milliseconds.	However,	 over	 periods	 of	 seconds,	 the	RCS	 variation	 becomes	 unpredictable
(i.e.,	random).	Thus,	at	X-band,	this	target	exhibits	an	RCS	behavior	that	is	consistent	with	a
SWodd	target.

For	 the	W-band	case,	 the	RCS	variation	 (with	 time)	 is	much	more	 rapid	 so	 that	 the	RCS
varies	 significantly	 over	 time	 intervals	 of	 tens	 of	 milliseconds.	 In	 this	 case,	 it	 might	 be
appropriate	to	represent	the	target	with	a	SWeven	model.



Figure	3.9	SW1	and	SW2	RCS	fluctuation	models.

Figure	3.10	Sample	RCS	variation.

3.3.3 Math	Behind	the	Fluctuation	Model

To	 understand	 the	 above	 relation	 between	 RCS	 variation	 rate	 and	 operating	 frequency,	 we
need	to	consider	how	the	signals	from	the	scatterers	combine	to	form	the	composite	signal	in



the	radar.	We	start	by	considering	the	unmodulated	pulse	we	discussed	earlier.	For	this	case,
we	can	write	the	voltage	pulse	at	the	transmitter	output	as

This	 voltage	 is	 converted	 to	 an	 electric	 field	 by	 the	 antenna	 and	 propagates	 to	 the	 target,
which	creates	another	electric	field.	The	electric	field	created	by	the	target	propagates	back	to
the	radar,	where	the	antenna	converts	it	to	a	voltage.	If	the	target	is	a	sphere	(a	point	scatterer),
the	voltage	at	the	antenna	output	or	some	point	in	the	receiver	(before	the	matched	filter)	can
be	written	as6

In	(3.11)	and	(3.12)

and

where	PT	 is	 the	 transmit	power	and	PS	 is	 the	 received	 signal	 power.	The	notation	∝	means
“proportional	to.”

If	we	have	N	 point	 targets	 clustered	 close	 together,	 their	 electric	 fields,	 at	 the	 radar,	will
add.	Because	of	this,	the	total	voltage	in	the	radar	receiver	is

where

In	(3.16),	σk	is	the	RCS	of	the	kth	scatterer	(sphere,	target)	and	Rk	is	the	range	to	that	scatterer.



If	we	assume	the	scatterers	are	close	together	so	that	the	various	Rk	are	close	to	the	average
range	to	the	cluster,	R,	we	can	write

where

With	some	manipulation,	(3.17)	becomes	[30]

Finally,	if	we	define	σ	as	the	net	RCS	of	the	N	scatterers,	we	can	write

where

and

With	some	thought,	it	will	be	observed	that	σ	is	a	strong	function	of	Rk.	Indeed,	variations
in	Rk	of	λ/2	can	cause	 the	phase	of	 the	voltage	from	the	kth	 scatterer	 to	vary	by	2π.	Thus,	 it
does	not	take	much	relative	movement	of	the	scatterers	to	dramatically	affect	the	value	of	the
sum	in	(3.21).	Also,	as	the	carrier	frequency	increases,	λ	decreases	and	smaller	changes	in	the
relative	positions	of	the	scatterers	can	have	larger	effects	on	the	variations	of	σ,	the	total	RCS.

The	above	 is	what	 led	 to	 the	difference	 in	RCS	variation	demonstrated	 in	Figure	3.10.	 In
both	cases	(top	plot	and	bottom	plot),	the	changes	in	the	relative	positions	of	the	scatterers	is
the	 same	over	 the	 three-second	period	considered.	However,	 at	 the	 lower	carrier	 frequency



(top	 plot),	 the	 relative	 positions	 change	 by	 less	 than	 a	 wavelength	 over	 the	 three-second
period.	On	the	other	hand,	for	the	higher	frequency,	the	relative	positions	change	by	several
wavelengths.

In	 addition	 to	 the	 changes	 in	 net	RCS,	 the	 variation	 in	 the	 phase	 of	 the	 return	 signal,	 as
given	by	 (3.22),	will	 exhibit	 similar	 differences	 in	 temporal	 behavior.	This	 is	 illustrated	 in
Figure	 3.11.	 As	 can	 be	 seen,	 the	 phase	 variations	 are	 more	 rapid	 for	 the	 higher	 carrier
frequency	than	for	 the	 lower	carrier	frequency.	We	will	make	use	of	 this	property	when	we
discuss	how	to	simulate	the	various	types	of	Swerling	targets.

Figure	3.11	Sample	signal	phase	variation.

3.4 RELATION	OF	SWERLING	MODELS	TO	ACTUAL	TARGETS

Our	discussions	of	the	Swerling	RCS	models	have	thus	far	been	theoretical.	To	be	of	use	in
practical	 radar	 problems,	we	 need	 to	 attempt	 to	 relate	 the	 various	models	 to	 actual	 targets.
One	of	 the	 standard	 assumptions	 is	 that	 the	SW1/SW2	RCS	 fluctuation	model	 is	 associated
with	complex	targets	such	as	aircraft,	tanks,	ships,	and	cruise	missiles.	These	would	be	targets
that	 have	 a	 large	 number	 of	 surfaces	 and	 joints,	 all	with	 different	 orientations.	 In	 practice,
detection	 measurements	 indicate	 that,	 indeed,	 the	 SW1/SW2	 model	 provides	 a	 reasonably
good	 representation	 of	 complex	 targets	 [31].	 Interestingly,	 in	 his	 paper,	 Swerling	 has	 an
underlined	 statement	 that	 states,	 “Most	 available	 observational	 data	 on	 aircraft	 targets
indicates	agreement	with	the	exponential	density…”	[27].	His	phrase	“exponential	density”	is
referring	to	an	equation	of	the	same	form	as	(3.9).

The	 standard	assumption	concerning	 the	SW3/SW4	fluctuation	model	 is	 that	 it	 applies	 to
somewhat	 simple	 targets	 such	 as	 bullets,	 artillery	 shells,	 and	 reentry	 vehicles	 and	 the	 like.



According	 Swerling,	 the	 SW3/SW4	 model	 is	 consistent	 with	 a	 target	 that	 consists	 of	 a
predominant	 scatterer	 and	 several	 smaller	 scatterers,	 or	 one	 large	 scatterer	 with	 small
changes	in	orientation	[27].	In	terms	of	application	to	practical	targets,	Swerling	goes	on	to
say,	 “More	 definite	 statements	 as	 to	 actual	 targets	 for	 which	 [the	 SW3/SW4]	 or	 the
nonfluctuating	[SW0/SW5]	model	apply	must	await	further	experimental	data.”

3.4.1 Simulating	Swerling	Targets

Analysts	and	radar	testers	often	have	a	need	to	simulate	the	returns	from	fluctuating	targets.
This	might	 occur	 in	 simulation	when	 attempting	 to	 reconcile	 the	 detection	 performance	 of
radar	 simulations	 with	 predictions	 based	 on	 theory.	 It	 can	 also	 occur	 when	 evaluating	 the
impact	of	target	RCS	fluctuations	on	target	acquisition	and	tracking.	In	tower	testing	of	actual
radars	(testing	with	signals	generated	from	a	test	tower	on	a	test	range	or	through	RF	or	IF
injection	 in	 a	 laboratory	 environment),	 the	 use	 of	 fluctuating	 target	 returns	 provides	more
realistic	 estimates	 of	 detection	 performance	 than	 does	 the	 use	 of	 constant	 amplitude	 target
returns.

Because	 of	 this	 perceived	 need,	 we	 present	 methods	 of	 simulating	 target	 returns	 with
Swerling-like	 fluctuation	 characteristics.	 The	 methods	 make	 use	 of	 the	 fact	 that	 Swerling
fluctuation	statistics	are	governed	by	chi-squared	probability	density	 functions.	As	 indicated
earlier,	 the	RCS	 (probability)	 density	 functions	 for	 SW1	 and	 SW2	 targets	 is	 a	 chi-squared
density	with	two	degrees	of	freedom.	This	means	the	density	results	from	summing	the	square
of	two	independent,	zero-mean,	equal	variance,	Gaussian	random	variables.	In	equation	form,
if	x1	and	x2	are	random	variables	with	the	properties	just	described,	then	the	random	variable

will	be	governed	by	a	chi-squared,	two-degree-of-freedom	density	function.	This	further	tells
us	 that,	 if	 we	 want	 to	 generate	 random	 numbers	 that	 have	 statistics	 consistent	 with	 the
SW1/SW2	RCS	model,	we	can	obtain	them	by	generating	two	independent,	zero-mean,	equal
variance,	Gaussian	 random	numbers,	 squaring	 them	 and	 taking	 the	 average	 of	 the	 squares.
The	variance	of	the	random	numbers	should	be	equal	to	the	average	RCS	of	the	target,	σAV.
The	resulting	random	variable	will	be	governed	by	the	density	function	of	(3.9).

To	simulate	a	SW2	target,	we	would	create	a	new	random	number	on	every	return	pulse.
This	stems	from	the	fact	that	SW2	RCS	values	are,	by	definition,	independent	from	pulse	to
pulse.

To	 simulate	 a	SW1	 target,	we	would	generate	 a	 random	number	 once	 every	group	of	N
pulses	and	maintain	that	as	the	RCS	over	the	N	pulses.	Here	N	would	be	the	number	of	pulses
processed	 by	 the	 coherent	 and/or	 noncoherent	 processor	 (see	 Chapter	 8).	 The	 idea	 of
maintaining	 the	 RCS	 constant	 over	 the	 N	 pulses	 stems	 from	 the	 definition	 of	 SW1	 RCS
fluctuations,	which	states	that	the	RCS	remains	constant	during	the	time	the	radar	beam	scans
by	the	target	on	a	particular	scan,	but	changes	randomly	from	scan	to	scan.



As	a	note,	 the	phase	of	 the	SW2	 target	also	varies	 randomly	 from	pulse	 to	pulse	and	 the
phase	of	 the	SW1	target	 remains	constant	over	 the	N	pulses,	but	varies	 randomly	 from	one
group	of	N	pulses	to	the	next.	We	can	achieve	this	phase	behavior	by	defining	the	phase	as

where	the	tan−1	is	the	four-quadrant	arctangent.	An	alternate	way	of	thinking	about	the	above
is	to	treat	x1	and	x2	as	the	real	and	imaginary	parts	of	a	complex	number	and	defining	the	RCS
as	one-half	times	the	magnitude	squared	and	phase	of	the	complex	number,	respectively.

While	 the	 above	method	of	generating	SW1	RCS	 fluctuations	 is	 accurate	 in	 terms	of	 the
SW1	fluctuation	model,	it	can	be	cumbersome	from	an	implementation	perspective	and	is	not
representative	of	the	fluctuation	of	RCS	for	actual	targets.	As	illustrated	in	Figures	3.10	and
3.11,	 RCS	 tends	 to	 fluctuate	 continuously	 over	 time	 at	 rates	 that	 depend	 upon	 carrier
frequency.

A	method	of	achieving	such	a	temporal	characteristic	and	maintaining	the	SW1	statistics	is
to	filter	the	Gaussian	random	numbers	before	squaring	and	adding	them.	Filtering	the	random
numbers	 correlates	 them	 but	 does	 not	 change	 their	 Gaussian	 statistics.7	 Thus,	 when	 the
random	numbers	at	 the	output	of	 the	filter	are	squared	and	added,	 the	result	will	be	a	set	of
correlated,	chi-squared,	 two	degree-of-freedom,	random	variables	 that	change	fairly	slowly
over	time.

A	block	diagram	of	the	proposed	method	for	generating	SW1-like	RCS	values	is	shown	in
Figure	3.12.	Sequences	of	independent,	zero-mean,	unit	variance,	Gaussian	random	numbers
are	 generated	 and	 combined	 into	 a	 sequence	 of	 complex	 random	 numbers.	 The	 complex
sequence	is	then	filtered	by	a	lowpass	filter	(LPF).	The	output	of	the	LPF	is	then	scaled	so	that
the	variance	of	 the	real	and	 imaginary	parts	 is	equal	 to	σAV.	After	scaling,	 the	square	of	 the
magnitude	is	computed	and	divided	by	two	[in	compliance	with	(3.23)]	to	obtain	the	RCS.	The
angle	of	 the	complex	number	 is	formed	to	obtain	 the	phase	of	 the	voltage	 that	would	result
when	the	RCS	is	used	to	generate	the	complex	return	signal	from	the	target.

In	 computer	 simulations,	we	 prefer	 implementing	 the	 filter	 as	 an	 ideal	 “brick	wall”	LPF
using	the	FFT.8	We	prefer	the	FFT	approach	over	a	recursive	filter	approach	because	of	the
need	to	consider	filter	transients	in	the	latter.	We	use	the	brick	wall	LFP	because	it	is	easy	to
implement.	The	length	of	the	FFT	is	determined	by	the	number	of	RCS	samples	needed	in	one
execution	of	the	simulation.

To	set	 the	 filter	bandwidth,	we	need	 the	 time	between	RCS	samples.	We	normally	choose
this	as	the	radar	PRI	for	testing	detection.	For	tracking	studies	we	use	the	track	update	period
or	the	PRI,	depending	upon	whether	or	not	we	are	modeling	the	signal	processor.

As	 indicated	by	Figures	3.10	and	3.11,	 the	bandwidth	of	 the	 filter	 should	be	based	on	 the
operating	 frequency	 of	 the	 radar.	 If	 we	 assume	 the	 behavior	 in	 Figures	 3.10	 and	 3.11	 is
representative,	we	would	choose	a	bandwidth	of	about	0.5	Hz	for	radars	operating	in	the	S-	to
X-band	and	scale	the	bandwidth	according	to	frequency	from	there.



In	testing	applications,	it	would	be	better	to	use	recursive	digital	filters	to	generate	the	RCS
values	because	the	signals	must	persist	over	long	time	periods.

Figure	3.12	Block	diagram	of	SW1	RCS	generation	algorithm.

Figures	 3.13	 and	 3.14	 contain	 plots	 that	 were	 generated	 by	 this	 technique.	 The	 filter
bandwidth	was	set	to	0.5	Hz	for	the	top	plot	of	the	figures	and	5	Hz	for	the	bottom	plot.	As	can
be	seen,	the	behavior	is	similar	to	the	five-scatterer	example	of	Figures	3.10	and	3.11.

Figure	3.13	RCS	vs.	time	for	SW1	RCS	model.



Figure	3.14	Phase	vs.	time	for	SW1	RCS	model.

The	RCS	generation	technique	for	SW3	and	SW4	targets	is	similar	to	the	method	used	for
SW1	and	SW2	targets	except	that	the	RCS	is	based	on	the	sum	of	four	terms	instead	of	two.
This	is	because	SW3	and	SW4	RCS	fluctuations	are	governed	by	a	chi-squared	density	with
four	degrees	of	freedom.	In	equation	form,

To	simulate	a	SW4	target,	we	would	create	a	new	random	number	on	every	return	pulse.	To
simulate	a	SW3	target,	we	would	generate	a	 random	number	once	every	group	of	N	pulses
and	maintain	that	as	the	RCS	over	the	N	pulses.

It	is	not	clear	how	the	phase	should	be	modeled	for	this	case.	One	approach	would	be	to	use
(3.24).	An	alternative	might	be	to	use

That	is,	average	the	phase	from	two	complex	numbers	represented	by	xa	=	x1	+	jx2	and	xb	=	x3
+	jx4.

An	alternative	for	the	SW3	case	would	be	to	use	an	extension	of	the	filter	method	suggested
for	SW1	targets.	A	block	diagram	of	this	method	is	shown	in	Figure	3.15.	As	can	be	seen,	the
method	uses	two	of	the	SW1	filters	and	then	averages	the	outputs	of	the	magnitude	square	and
angle	computation	blocks.



Figure	3.15	Block	diagram	of	SW3	RCS	generation	algorithm.

Figures	3.16	 and	3.17	 contain	 plots	 of	RCS	 and	phase	 generated	 by	 the	model	 of	Figure
3.15.	It	is	interesting	that	the	RCS	variations	of	Figure	3.16	appear	to	be	smaller	than	those	of
Figure	 3.13	 and	 tend	 to	 be	 closer	 to	 the	 average	RCS	 of	 5	m2.	 This	 is	 consistent	 with	 the
expected	difference	in	RCS	behavior	between	SW1	and	SW3	targets.

Figure	3.16	RCS	vs.	time	for	SW3	RCS	model.



Figure	3.17	Phase	vs.	time	for	SW3	RCS	model.

3.5 FREQUENCY	AGILITY	AND	SW2	OR	SW4	TARGETS

In	Chapter	8,	we	show	that	 if	 targets	exhibit	SW2	or	SW4	fluctuation	statistics,	noncoherent
integration	 can	provide	 a	 significant	 increase	 in	detection	probability	 relative	 to	 that	which
can	be	obtained	with	a	single	pulse.	As	an	example,	the	single-pulse	SNR	required	to	provide
a	detection	probability	of	0.9	with	a	false	alarm	probability	of	10−6	on	a	SW2	target	is	21	dB.
If	the	radar	noncoherently	integrates	10	pulses,	the	single-pulse	SNR	required	to	achieve	the
same	detection	 and	 false	 alarm	probabilities	 is	 reduced	by	14	dB	 to	 7	 dB.	This	 leads	 us	 to
consider	 whether	 there	 is	 anything	 that	 can	 be	 done	 in	 the	 radar	 to	 change	 the	 fluctuation
statistics	 from	SW1/SW3	to	SW2/SW4.	One	way	 is	 to	change	 the	operating	 frequency	on	a
pulse-to-pulse	basis.	The	question	is:	how	large	of	a	frequency	change	is	needed?

To	be	rigorously	applicable	to	target	detection	theory,	a	statistical	approach	is	used	here	to
address	 this	problem.	The	results	derived	here	 indicate	 that	 for	a	 target	with	a	 length	L,	 the
frequency	 separation	 required	 for	 target	 returns	 at	 the	 two	 frequencies	 to	 be	 statistically
uncorrelated	is	given	by

where	c	is	the	speed	of	light.

As	a	note,	 the	 fact	 that	 the	 target	 returns	are	statistically	uncorrelated	does	not	 imply	 that
they	are	statistically	independent.	However,	this	is	the	standard	assumption.



We	assume	the	target	consists	of	N	scatterers	distributed	across	range	in	some	fashion.	In
particular,	we	assume	 the	 ranges	 to	 the	 scatterers	are	 random	and	 that	 all	of	 the	 ranges	are
governed	by	the	same	density	function.	We	assume	each	scatterer	has	a	different	RCS	and	that
the	RCSs	are	random,	mutually	independent,	and	independent	of	the	ranges.

Let	 the	 target	 be	 illuminated	 by	 a	 pulse	whose	 compressed	 pulsewidth	 is	 larger	 than	 the
target	extent,	L,	in	range.	With	this,	we	can	write	the	peak	of	the	complex	voltage	at	the	output
of	the	matched	filter	as

where	fc	 is	 the	carrier	frequency,	Vk	 is	 the	complex	voltage	associated	with	 the	kth	 scatterer,
and	Rk	 is	 the	 (slant)	 range	 to	 the	 kth	 scatterer.	 The	magnitude	 of	Vk	 is	 related	 to	 the	 RCS
through	the	radar	range	equation,	and	it	is	assumed	that	the	phase	of	Vk	is	a	random	variable
uniformly	 distributed	 over	 2π.	 The	 phases	 are	 assumed	 to	 be	 mutually	 independent	 and
independent	 of	 the	 ranges	 and	 RCSs.	With	 this,	 the	 Vk	 are	 independent,	 complex,	 random
variables.	The	Vk	are	also	independent	of	the	Rk.

We	will	be	interested	in	deriving	the	correlation	coefficient	between	v(fc)	and	v(fc	+	Δf).	We
assume	that	Δf	is	small	relative	to	fc	(tens	of	MHz	versus	GHz).	We	use	this	assumption	so	we
can	further	assume	Vk	is	the	same	at	both	frequencies.	We	write	v(fc	+	Δf)	as

The	correlation	coefficient	between	v(fc)	and	v(fc	+	Δf)	can	be	written	as

where	C(Δf)	is	the	covariance	between	v(fc)	and	v(fc	+	Δf),	σ2(fc)	is	the	variance	on	v(fc),	and
σ2(fc	+	Δf)	is	the	variance	on	v(fc	+	Δf).

To	ease	the	computation	of	the	three	elements	of	r(Δf),	we	show	that	the	means	of	v(fc)	and
v(fc	+	Δf)	are	zero.	We	write

by	virtue	of	the	fact	that	the	phase	of	Vk	is	uniform	on	[0,2π],	E{Vk}	=	0,	and	thus	E{v(f)}	=	0.



Because	of	(3.31)	we	can	write

Recognizing	that	ej4πf(Rl	−	Rk)/c	=	1	when	l	=	k,	(3.32)	can	be	rewritten	as

where	Pk	 is	 the	 average	 power	 due	 to	 scatterer	 k,	 which	 is	 derived	 from	 the	 radar	 range
equation	using	the	average	RCS	of	scatterer	k.	The	double	sum	of	(3.33)	is	zero	by	virtue	of
the	fact	that

since	Vk	and	Vl	are	independent	for	l	≠	k	and	E{Vk}	=	E{V*l}	=	0.

We	can	write	the	covariance	as

From	 above,	 we	 recognize	 that	 E{VkV*l}	 =	 0	 for	 l	 ≠	 k,	 E{VkV*l}	 =	 Pk	 for	 l	 =	 k	 and	
	for	l	=	k.	With	this,	(3.35)	reduces	to

Or,	recognizing	that	 	is	the	same	for	all	k,

Substituting	(3.37)	and	(3.33)	into	(3.30)	yields



3.5.1 Special	Cases

For	the	case	where	the	target	scatterers	are	uniformly	distributed	over	some	R0±L/2,	we	can
compute	a	specific	function	for	r(Δf).	Specifically,	with

where

we	get

If	we	say	that	v(fc)	and	v(fc	+	Δf)	become	uncorrelated	for	all	Δf	greater	than	the	Δf	where	the
sinc	function	first	goes	to	zero,	then	v(fc)	and	v(fc	+	Δf)	become	uncorrelated	for

This	is	the	same	as	(3.27).

As	another	example,	we	consider	the	case	where	the	Rk	obey	a	Gaussian	distribution.	That
is,

In	this	case,	r(Δf)	becomes

If	we	let	σL	=	L/2,	95.5	percent	of	 the	scatterers	will	 lie	between	±L/2.	At	Δf	=	c/2L,	r(Δf)	=
0.007.	Thus,	we	can	say	that	the	returns	derived	from	carrier	frequencies	separated	by	this	Δf
are	uncorrelated.

The	 results	 presented	 herein	 indicate	 that	 Δf	 does	 not	 need	 to	 be	 large	 to	 cause



decorrelation	of	RCS	from	pulse	to	pulse.	For	example,	a	target	with	a	range	extent	of	15	m
requires	a	Δf	of	only	10	MHz	from	pulse	to	pulse.	For	larger	aircraft	such	as	a	Boeing	747,
which	is	about	71	m	long,	only	a	2.1-MHz	frequency	change	from	pulse	to	pulse	is	needed.
These	examples	used	the	assumption	that	 the	scatterers	were	distributed	across	the	length	of
the	 target.	 In	 practice,	 it	 is	 likely	 that	 this	 will	 not	 be	 the	 case.	 Instead,	 it	 is	 likely	 that	 the
scatterers	 will	 be	 grouped	 along	 different	 parts	 of	 the	 target	 (e.g.,	 near	 the	 nose,	 near	 the
wings,	and	near	the	tail	for	aircraft).	Because	of	this,	 the	lengths	of	the	groups	of	scatterers
will	be	smaller	than	the	length	of	the	aircraft.	This	means	that	the	frequency	changes	indicated
above	are	most	likely	low.	More	reasonable	values	may	be	in	the	range	of	tens	of	megahertz.

3.6 EXERCISES

1. A	 classical	 example	 in	 RCS	 discussions	 is	 termed	 the	 two-scatterer	 problem.	 In	 this
exercise,	we	seek	to	find	the	composite	RCS	of	two	equal-size	scatterers	separated	by	a
distance	of	2d.	The	geometry	for	this	exercise	is	shown	in	Figure	3.18.
Show	that	the	composite	RCS	is	given	by

where	σ0	is	the	RCS	of	each	scatterer.	Generate	plots	of	σ	versus	θ	for	d/λ	=	1	and	d/λ	=	3
with	 σ0	 =	 1	m2.	 These	 plots	 will	 demonstrate	 that	 the	 degree	 to	 which	 σ	 varies	 as	 a
function	 of	 θ	 depends	 upon	 the	 separation	 of	 the	 scatterers	 relative	 to	 the	 radar
wavelength.

2. Generate	plots	like	Figure	3.11	for	the	case	of	10	scatterers	randomly	located	in	a	square
with	x	and	y	dimensions	of	10	m.	Assume	all	of	the	scatterers	have	and	equal	RCS	of	1
m2.

3. Implement	 a	SW1	model	 as	discussed	 in	Section	3.5	 and	 generate	 curves	 like	Figures
3.13	and	3.14.

4. Repeat	Exercise	3	for	a	SW3	target	and	generate	curves	like	Figures	3.16	and	3.17.



Figure	3.18	Two-scatterer	RCS	problem.
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antenna	and	rectangular	when	it	reaches	the	input	to	the	matched	filter.
7	 This	 is	 an	 interesting	 property	 of	Gaussian	 random	processes	 that	 does	 not	 apply	 to	 random	processes	 governed	 by	 other
density	functions.
8	A	brick	wall	response	is	essentially	a	rect[x]	function.	It	is	unity	over	a	given	frequency	range	and	zero	elsewhere.
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Chapter	4

Noise

4.1 INTRODUCTION

In	 this	chapter,	we	discuss	 the	noise,	noise	 temperature,	and	noise	 figure	 terms	of	 the	radar
range	equation.	We	start	with	the	basic	definition	of	noise	as	it	applies	to	radar	theory	and	then
progress	to	the	topics	of	noise	temperature	and	noise	figure.

The	type	of	noise	of	interest	in	radar	theory	is	termed	thermal	noise	or	Johnson	noise	and
is	 generated	 by	 the	 random	motion	 of	 charges	 in	 conductors.	 John	 Bertrand	 Johnson	 and
Harry	Theodor	Nyquist	 discovered	 this	 type	 of	 noise	 in	 1927	 [1,	2].	 Johnson	 observed	 the
noise	in	experiments	and	Nyquist	developed	a	theoretical	basis	for	Johnson’s	measurements.
Their	papers	do	not	make	clear	whether	Nyquist	developed	 the	 theory	 to	support	Johnson’s
observations	or	Johnson	performed	the	experiments	to	verify	Nyquist’s	theory.	We	suspect	a
somewhat	collaborative	effort,	given	the	dates	of	the	papers.

One	of	the	equations	in	Nyquist’s	paper	defines	the	mean-square	voltage	appearing	across
the	terminals	of	a	resistor	of	R	ohms	at	a	temperature	T	kelvin,	in	a	(differential)	frequency
band	dv	hertz	wide,	as

where	k	=	1.38×10−23	W-s/K	is	Boltzmann’s	constant.	Johnson	had	a	similar	equation,	but	for
mean-square	current.

We	 retained	 Nyquist’s	 notation	 in	 (4.1);	 however,	 from	 here	 on,	 we	 will	 adopt	 a	 more
common	 notation.	 To	 that	 end,	 we	 denote	 the	 noise	 voltage	 generated	 by	 a	 resistor	 in	 a
differential	 frequency	 interval,	 df,	 as	 v(t).	 We	 stipulate	 v(t)	 is	 a	 zero-mean,	 wide-sense
stationary,	real	random	process	with	a	mean-square	value	and	variance	of

Since	v(t)	is	zero-mean,	its	mean-square	value	equals	its	variance.

The	 stipulation	 of	 zero-mean	 says	 the	 noise	 voltage	 does	 not	 have	 a	 direct	 current	 (DC)
component,	which	is	reasonable	since	such	a	component	would	have	been	noted	by	Johnson.
The	stipulation	of	wide-sense	stationary	implies	 the	mean	and	variance	are	constant.	This	 is
reasonable	 since	we	 already	 stipulated	 a	mean	of	 zero	 and	we	 expect	 the	noise	power	 (i.e.,
mean-square	value,	variance)	to	be	constant	over	any	time	period	of	interest	to	us.

Nyquist	showed	that	the	noise	energy	term	of	(4.2),	kT,	is	a	limiting	case	of	one	form	of	the
more	general	Planck’s	law,	which	is



where	h	=	6.6254×10−34	W-s2	is	the	Planck	constant	and	f	is	frequency,	in	Hz.	As	f	→	0,	this
degenerates	to

An	implication	of	(4.4)	is	that	E	is	constant	over	frequencies	applicable	to	most	radars	(see
Exercise	10).	This	further	implies	that	 	is	independent	of	frequency,	unless	R	is	a	function
of	frequency.

This	 background	prepares	 us	 to	 consider	 noise	 energy	 in	 a	 radar	 receiver.	However,	we
will	first	discuss	how	 	translates	to	power	and	energy	delivered	to	a	load.

4.2 NOISE	IN	RESISTIVE	NETWORKS

4.2.1 Thevenin	Equivalent	Circuit	of	a	Noisy	Resistor

Figure	4.1	 shows	 the	 Thevenin	 equivalent	 circuit	 of	 a	 noisy	 resistor.	 It	 consists	 of	 a	 noise
source	with	a	voltage	characterized	by	(4.2)	and	a	noiseless	resistor	with	a	value	of	R.

Figure	4.1	Thevenin	equivalent	circuit	of	a	noisy	resistor.

Figure	4.2	Diagram	for	computing	the	power	delivered	to	a	load.

If	we	connect	the	noisy	resistor	to	a	noiseless	resistor,	RL,	we	can	find	the	power	delivered
to	RL	by	 the	noisy	resistor	using	the	equivalent	circuit	of	Figure	4.1	 to	compute	 the	voltage
across	RL,	and	 then	use	 this	voltage	 to	 find	 the	power	delivered	 to	RL.	Figure	4.2	shows	 the
resulting	circuit.	The	voltage	across	RL	is	given	by

Using	(4.2),	the	power	delivered	to	RL	in	a	differential	bandwidth,	df,	is



If	the	load	is	matched	to	the	source	resistance	(i.e.,	if	RL	=	R),	we	have

If	we	divide	PL	by	df,	we	obtain	the	energy	delivered	to	the	load	as

which	is	the	familiar	form	used	in	the	radar	range	equation.

Figure	4.3	Schematic	diagrams	for	the	two-resistor	problem.

4.2.2 Multiple	Noisy	Resistors

If	 we	 have	 a	 network	 consisting	 of	 multiple	 noisy	 resistors,	 we	 can	 find	 its	 Thevenin
equivalent	circuit	by	using	superposition.	To	see	this,	consider	the	example	of	Figure	4.3.	The
left	schematic	of	the	figure	shows	two	parallel	noisy	resistors,	and	the	center	schematic	shows
their	equivalent	circuits	based	on	Figure	4.1.	The	right	schematic	shows	the	overall	Thevenin
equivalent	circuit	for	the	pair	of	resistors.	To	find	vo(t),	we	first	consider	one	voltage	source
at	a	time	and	short	all	other	sources.	Thus,	with	only	source	v1(t),	we	get

and	with	only	source	v2(t),	we	get

By	superposition,	we	have



To	get	the	equivalent	resistance,	we	short	both	voltage	sources	of	the	center	figure	and	find
the	equivalent	resistance	across	the	terminals.	When	we	short	the	sources,	we	note	that	R1	and
R2	are	in	parallel,	which	allows	us	to	compute	the	equivalent	resistance	as

We	next	need	to	compute	the	mean-square	value	of	vo(t).	To	facilitate	this,	we	must	further
stipulate	 that	 the	noise	voltages	generated	by	 the	noisy	 resistors	are	 independent.	We	 justify
this	restriction	by	rationalizing	that	the	random	motion	of	charges	in	one	resistor	should	be
independent	of	the	random	motion	of	charges	in	any	other	resistor.	With	this	restriction,	we
are	able	to	say

where	the	last	equality	is	because	v1(t)	and	v2(t)	are	zero-mean.	With	this	and	some	algebraic
manipulation,	we	have

where	we	have	made	use	of	(4.12),	 ,	and	 .	The	details	of	(4.14)
are	left	as	an	exercise.

4.3 EQUIVALENT/EFFECTIVE	NOISE	TEMPERATURE	FOR	ACTIVE
DEVICES

For	 passive	 devices,	 such	 as	 resistive	 attenuators,	 it	 is	 possible	 to	 find	 the	 noise	 energy
delivered	to	a	load	by	extending	the	technique	used	in	the	above	example.	For	active	devices,
this	is	not	possible.	Measurement	provides	the	only	method	for	determining	the	noise	energy
an	active	device	delivers	to	a	load.

In	general,	 the	noise	energy	delivered	to	the	load	depends	upon	the	input	noise	energy	to
the	device	and	the	internally	generated	noise.	The	standard	method	of	representing	this	is	to
write	 the	noise	energy	delivered	 to	 the	 load	as	 the	sum	of	 the	amplified	 input	noise	and	 the
noise	generated	internally	by	the	active	device	[3,	4]:1

where



• G	denotes	the	gain	of	the	device.
• kTa	denotes	the	input,	or	source,	noise	energy.
• Ta	denotes	the	noise	temperature	of	the	source.
• GkTe	denotes	the	noise	energy	generated	by	the	device.
• Te	denotes	the	equivalent/effective	noise	temperature	of	the	device.2

In	(4.15),	the	term	GEnin	represents	the	portion	of	the	output	noise	energy	due	only	to	the
noise	into	the	device.	This	component	of	the	output	noise	is	the	input	noise	amplified	by	the
gain	of	the	device.	The	term	GkTe	represents	the	energy	of	the	noise	generated	by	the	device.
Its	 form	 is	 chosen	 to	 be	 consistent	 with	 the	 standard	 kT	 representation	 discussed	 above.
Including	G	in	this	term	is	a	convenience	and	allows	us	to	write

thus	allowing	consistent	expression	for	the	noise	energy	equation.

In	(4.16),	Ts	denotes	the	noise	temperature,	or	combined	noise	temperature,	of	the	device.	It
is	 the	 combined	 temperature	 of	 the	 noise	 source	 and	 the	 equivalent/effective	 noise
temperature	of	 the	device.	We	 termed	 this	 the	 system	noise	 temperature	 in	Chapter	2.	 For	 a
radar,	Ta	represents	the	temperature	of	the	noise	entering	the	antenna	from	the	environment.
The	value	of	Ta	ranges	from	tens	of	degrees	kelvin	when	the	antenna	beam	points	at	clear	sky,
to	many	thousands	of	degrees	kelvin	when	the	beam	points	at	the	sun	[5,	p.	208].

For	 resistors,	Te	 is	 the	actual	 temperature	of	 the	 resistors.	For	active	devices,	 it	 is	not	an
actual	 temperature,	 but	 the	 temperature	 necessary	 for	 a	 resistor	 to	 produce	 the	 same	 noise
energy	as	the	active	device—thus	the	origin	of	the	words	equivalent	or	effective.

We	introduced	G	into	the	noise	power	equation	because	it	will	enter	into	computation	of	the
overall	Te	for	cascaded	devices	and	because	of	its	inclusion	in	the	radar	range	equation	(see
Chapter	2).

4.4 NOISE	FIGURE

4.4.1 Derivation	of	Noise	Figure

An	alternative	 to	 using	 equivalent/effective	noise	 temperature	 is	 to	 use	noise	 figure.	 Harald
Trap	Friis	formalized	the	early	research	on	noise	figure	in	a	1944	paper	[6]	that	defined	noise
figure	as	the	ratio	of	the	SNR	at	the	input	of	the	device	to	the	SNR	at	the	output	of	the	device.
In	equation	form,

where	Psin	 denotes	 the	 signal	 power	 into	 the	 device;	Pnin	 denotes	 the	 noise	 power	 into	 the



device;	Psout	denotes	the	signal	power	out	of	the	device;	and	Pnout	denotes	the	noise	power	out
of	the	device.

In	 this	book,	we	use	 the	 IEEE	definition	 [7].	An	 interpretation	 of	 that	 definition	 is:	 noise
figure	is	the	noise	energy	delivered	to	a	load	by	the	actual	device	divided	by	the	noise	energy
delivered	to	the	load	by	an	ideal	device	with	the	same	gain.	In	equation	form

where

and

The	IEEE	definition	goes	further	to	say	that	the	noise	figure	equation	is	defined	for	the	case
where	 the	noise	 temperature	of	 the	 input	 to	 the	device	 is	 the	reference	value	of	T0	=	290	K.
Using	this	and	(4.16)	gives

and

which	leads	to

Alternately,	we	can	solve	for	Te	in	terms	of	Fn	as

An	important	point	from	(4.23)	is	that	the	minimum	noise	figure	of	a	device	is	Fn	=	1.

4.4.2 Attenuators

For	 most	 devices,	 noise	 figure	 is	 determined	 by	 measurement.	 Attenuators	 represent	 the
exception	to	this	rule.	For	attenuators,	the	noise	figure	is	normally	taken	to	be	the	attenuation.
Thus,	for	an	attenuator	with	an	attenuation	of	L	(a	number	greater	than	1),	the	noise	figure	is
assumed	to	be



The	 rationale	 behind	 this	 is	 that	 an	 attenuator	 matched	 to	 the	 source	 and	 the	 load
impedances	(which	are	assumed	identical)	produces	a	noise	energy	out	of	the	attenuator	equal
to	the	noise	energy	input	to	the	attenuator	[8,	9].	Indeed,	using	(4.15)	with	Enout	=	Enin	and	G	=
1/L	gives

If	 we	 further	 assume	 a	 source	 temperature	 of	 T0	 (recall	 the	 necessity	 for	 using	 this
temperature	when	computing	noise	figure),	we	get

or

and,	by	association	with	(4.24),	Fn	=	L.

The	authors	have	always	been	concerned	with	the	assumption	that	the	noise	energy	out	of
an	attenuator	is	identical	to	the	noise	energy	into	the	attenuator.	To	investigate	this	further,	we
analyzed	a	T-type	attenuator	that	consisted	of	noisy	resistors.	Figure	4.4	contains	a	schematic
of	the	circuit	we	analyzed.	The	values	of	R1,	R2,	and	R3	were	computed	so	that	the	input	and
output	 resistance	 of	 the	 attenuator	 was	 R	 and	 the	 attenuation	 was	 L	 W/W.	 When	 the
temperature	of	the	source	and	the	three	resistors	of	the	attenuator	was	the	same,	we	found	the
energy	out	of	the	attenuator	was	the	same	as	the	energy	into	the	attenuator.	However,	when	the
temperature	of	the	source	differed	from	the	temperature	of	the	resistors,	the	energy	into	the
attenuator	did	not	 equal	 the	energy	out	of	 the	attenuator.	Thus,	 for	 this	 simple	example,	we
verified	 that	 the	 noise	 energy	 into	 and	 out	 of	 the	 attenuator	 are	 equal	 if	 the	 source	 and
resistors	are	at	the	same	temperature.	We	assume	this	is	also	the	case	for	a	general	attenuator.

Figure	4.4	Schematic	of	a	T-type	attenuator.

We	carried	the	T-type	attenuator	example	a	step	further	and	considered	some	cases	where
the	source	temperature	was	Ta	but	the	temperature	of	the	attenuator	resistors	was	some	other
temperature,	TR.	 We	 found,	 at	 least	 for	 the	 example	 cases	 we	 considered,	 an	 output	 noise
energy	given	by



We	derived	(4.29)	from	(4.26)	and	(4.28)	with	the	temperature	T0	replaced	by	TR	and	Enin	=
kTa.	This	handy	equation	 lets	us	analyze	attenuators	with	different	 source	noise	powers	and
circumstances	where	the	attenuator	is	not	at	a	temperature	of	T0.	We	caution	that	we	have	not
proved	(4.29)	valid	for	a	general	attenuator,	only	for	our	T-type	resistive	attenuator.	However,
it	agrees	with	a	similar	equation	in	Blake’s	NRL	report	[10].

For	 those	 (ambitious)	 readers	 who	 are	 interested,	 we	 included	 the	 above	 problem	 as
Exercise	7.

4.5 NOISE	FIGURE	OF	CASCADED	DEVICES

Since	 a	 typical	 radar	 has	 several	 devices	 that	 contribute	 to	 the	 overall	 equivalent/effective
noise	 temperature	or	noise	 figure,	we	need	a	method	of	 computing	 the	 equivalent/effective
noise	temperature	and	noise	figure	of	a	cascade	of	components.	To	this	end,	we	consider	the
block	 diagram	 of	 Figure	 4.5.	 In	 this	 figure,	 the	 circle	 to	 the	 left	 denotes	 a	 noise	 source,
represented	 in	 a	 radar	 by	 the	 antenna	 or	 other	 radar	 components.	 For	 the	 purpose	 of
computing	noise	figure,	we	assume	the	temperature	of	the	noise	source	is	T0	(consistent	with
the	definition	of	noise	figure).	The	blocks	following	the	noise	source	represent	various	radar
components,	 such	 as	 amplifiers,	 mixers,	 attenuators,	 and	 so	 on.	 The	 various	 blocks	 are
characterized	by	their	gain,	Gk,	noise	 figure,	Fk,	and	equivalent/effective	noise	 temperature,
Tk.

To	 derive	 the	 equation	 for	 the	 overall	 noise	 figure	 and	 equivalent/effective	 noise
temperature	 of	 the	N	 devices,	 we	will	 consider	 only	 Device	 1,	 then	Devices	 1	 and	 2,	 then
Devices	1,	2,	and	3,	and	so	forth.	This	will	allow	us	to	develop	a	pattern	we	can	extend	to	N
devices.

Figure	4.5	Block	diagram	for	computing	system	noise	figure.

Recalling	that	we	always	assume	a	source	temperature	of	T0	when	computing	noise	figure,
we	posit	an	input	noise	energy	for	Device	1:

The	noise	energy	out	of	Device	1	is	[see	(4.15)]



From	 (4.23),	 the	 system	 equivalent/effective	 noise	 temperature	 is	 Te1	 =	 T1	 and	 the	 system
noise	figure	from	the	source	through	Device	1	is

For	Device	2,	the	input	noise	energy	is

and	the	noise	energy	out	of	Device	2	is

From	(4.34),	we	see	the	equivalent/effective	noise	temperature	of	the	cascade	of	Devices	1	and
2	is

The	system	noise	figure	from	the	source	through	Device	2	is

or,	with	T2	=	T0(F2	–	1),

Notice	how	the	gain	of	the	first	device	reduces	the	equivalent/effective	noise	temperature	and
noise	figure	of	the	second	device.	We	will	examine	this	concept	again	in	an	example.	For	now,
we	 proceed	 with	 determining	 the	 system	 noise	 figure	 from	 the	 source	 through	 the	 third
device.

The	noise	energy	at	the	output	of	a	cascade	of	Devices	1,	2,	and	3	is



Rearranging	the	terms	yields

With	this	result,	the	equivalent/effective	noise	temperature	of	the	cascade	of	Devices	1,	2,	and
3	is

The	system	noise	figure	from	the	source	through	Device	3	is

or,	using	(4.24),

Here,	we	note	the	product	of	the	gains	of	the	preceding	two	devices	reduces	the	noise	figure
and	temperature	of	Device	3.

With	some	thought,	we	can	extend	(4.40)	and	(4.42)	to	write	 the	equivalent/effective	noise
temperature	of	the	system,	from	the	source	through	Device	N,	as	[11]

The	noise	figure	of	the	system,	from	the	source	through	Device	N,	is

In	 the	 equations	 above,	we	 found	 the	 system	 noise	 figure	 between	 the	 input	 of	Device	 1
through	 the	output	of	Device	N.	 If	we	wanted	 the	equivalent/effective	noise	 temperature	and
noise	 figure	 between	 the	 input	 of	 any	 other	 device	 (say,	Device	 k)	 and	 the	 output	 of	 some
other	 succeeding	 device	 (say,	 Device	m),	 we	 would	 assume	 the	 source	 of	 Figure	 4.5	 (at	 a
temperature	 of	T0)	 is	 connected	 to	 the	 input	 of	Device	 k	 and	we	would	 include	 terms	 like



(4.43)	 and	 (4.44)	 that	 would	 carry	 to	 the	 output	 of	 Device	 m.	 Thus,	 for	 example,	 the
equivalent/effective	noise	temperature	of	Devices	2,	3,	and	4	is

and	the	noise	figure	from	the	input	of	Device	2	to	the	output	of	Device	4	is

We	leave	the	derivation	of	(4.45)	and	(4.46)	as	an	exercise.

4.6 AN	INTERESTING	EXAMPLE

We	now	consider	an	example	of	why,	as	a	general	rule	of	 thumb,	radar	designers	normally
include	an	RF	amplifier	as	an	early	element	in	a	receiver.	In	this	example,	we	consider	the	two
options	of	Figure	4.6.	In	the	first	option,	we	have	an	amplifier	followed	by	an	attenuator,	and
in	the	second	option	we	reverse	the	order	of	the	two	components.	The	gains	and	noise	figures
of	the	two	devices	are	the	same	in	both	configurations.	For	Option	1,	the	noise	figure	from
the	input	of	the	first	device	to	the	output	of	the	second	device	is

Figure	4.6	Two	configurations	options.

For	the	second	option,	the	noise	figure	from	the	input	of	the	first	device	to	the	output	of	the
second	device	is

This	 is	 a	 dramatic	 difference	 in	 noise	 figure	 of	 the	 combined	 devices.	 In	 general,	 if	 the



preceding	devices	have	a	net	gain,	the	noise	contributed	by	a	device	is	reduced	relative	to	its
individual	noise	figure.	If	the	preceding	devices	have	a	net	loss,	the	noise	contributed	by	the
device	is	increased	relative	to	its	individual	noise	figure.
In	Option	1	of	the	example,	the	combination	of	the	two	devices	had	a	noise	figure	close	to

that	of	the	amplifier.	However,	for	the	second	option,	the	noise	figure	was	the	combined	noise
figures	of	the	two	devices.	This	is	why	radar	designers	like	to	include	an	amplifier	early	in
the	 receiver	 chain:	 it	 essentially	 sets	 the	 noise	 figure	 of	 the	 receiver.	As	 a	 general	 rule	 of
thumb,	a	nominal	gain	of	20	to	25	dB	in	the	RF	amplifier	usually	ensures	the	noise	figure	of
the	receiver	primarily	due	to	the	noise	figure	of	the	RF	amplifier.

4.7 OUTPUT	NOISE	POWER	WHEN	THE	SOURCE	TEMPERATURE	IS
NOT	T0

In	the	discussion	above,	we	considered	a	source	temperature	of	T0.	We	now	want	to	examine
how	to	compute	the	noise	energy	out	of	a	device	for	a	source	temperature	other	than	T0.	From
(4.15),	we	have

where	Ta	 is	 the	 noise	 temperature	 of	 the	 source.	 If	 we	 were	 to	 rewrite	 (4.49)	 using	 noise
figure,	we	would	have

If	we	have	a	cascade	of	N	devices,	G	denotes	the	combined	gain	of	the	N	devices;	Te	denotes
the	equivalent/effective	noise	temperature	of	the	N	devices;	and	Fn	denotes	the	noise	figure	of
the	 N	 devices.	 In	 the	 exercises,	 we	 consider	 specific	 examples	 of	 how	 different	 source
temperatures	can	affect	Pnout	and,	more	importantly,	SNR.

4.8 A	NOTE	ABOUT	CASCADED	DEVICES	AND	THE	RADAR	RANGE
EQUATION

Sometimes	 radar	 analysts	 are	 uncertain	 about	whether	 to	 include	 the	 loss	 of	 lossy,	 passive
components	between	the	antenna	and	the	first	active	device	in	the	loss	term	of	the	radar	range
equation,	 or	 in	 the	 equivalent/effective	 noise	 temperature,	Te,	 and	 noise	 figure.	 The	 simple
answer	is:	if	Ta	=	T0,	it	does	not	matter,	as	long	as	it	is	not	included	in	both	places.	If	Ta	≠	T0,
the	losses	should	be	included	in	Te	and	the	noise	figure.	If	it	is	not,	(2.29)—which	is	used	to
compute	Ts	in	Chapter	2—	would	be	invalid.

4.9 EXERCISES



1. A	 radar	 receiver	 has	 the	 components	 and	 parameters	 indicated	 in	 Table	 4.1.	 Their
relative	locations	are	as	in	the	table.

Table	4.1
Receiver	Components

Device Gain	(dB) Noise	Figure	(dB)

Waveguide	(attenuator) −2 N/A

RF	amplifier 20 6

First	mixer −3 10

IF	amplifier 100 20

a) Compute	 the	 noise	 figure	 through	 each	 of	 the	 four	 devices,	 referenced	 to	 the
waveguide	input.	Note	the	increase	in	noise	figure	each	device	causes.

b) Repeat	part	a)	for	the	case	where	the	RF	amplifier	has	a	low	noise	figure	of	2	dB.
Again,	 note	 the	 increase	 in	 noise	 figure	 created	 by	 each	 device.	 Note	 how	 the
devices	 following	 the	 low-noise	RF	 amplifier	 seem	 to	 have	more	 effect	 on	 noise
figure	than	does	the	RF	amplifier	with	the	higher	noise	figure.

c) What	is	the	equivalent/effective	noise	temperature,	in	kelvin,	of	the	RF	amplifier	of
part	a)?

d) Based	 on	 the	 values	 used	 for	 part	 a),	 what	 is	 the	 equivalent/effective	 noise
temperature,	 in	 kelvin,	 of	 the	 receiver,	 through	 the	 IF	 amplifier,	 referenced	 to	 the
waveguide	input?

e) Compute	the	noise	power,	in	dBm,	at	the	output	of	the	IF	amplifier,	assuming	a	noise
temperature	for	the	antenna	(input	to	the	waveguide)	of	290	K.	Use	the	values	from
part	a).	Assume	a	bandwidth	of	1	MHz.

f) Repeat	part	e)	using	an	antenna	noise	temperature	of	100	K.	Note	that	this	is	almost
the	 same	 as	 for	 290	K.	This	 indicates	 that	 the	 internal	 noise	 of	 the	 receiver	 is	 the
major	contributor	the	total	system	noise	energy	for	this	particular	case.

g) Repeat	part	d)	using	an	antenna	noise	temperature	of	6,000	K.	This	result	indicates
that	the	antenna	noise	propagated	through	the	receiver	is	the	major	contributor	to	the
total	system	noise	energy.

2. Assume	a	radar	with	noise	figure	Fn	=	6	dB	referenced	to	the	antenna	feed.

a) Compute	the	equivalent/effective	noise	temperature	of	the	receiver.
b) Assume	a	noise	bandwidth	of	1	MHz	and	a	 receiver	gain	of	100	dB.	Compute	 the

noise	power	in	dBW	at	the	receiver	output.

3. The	 radar	 of	 Exercise	 2	 has	 an	 SNR	 of	 20	 dB	 for	 a	 particular	 scenario.	 Suppose	 it
operates	at	night	and	looks	into	a	clear	sky	with	a	Ta′	of	10	K	(see	Chapter	2).

a) Assume	a	noise	bandwidth	of	1	MHz	and	a	 receiver	gain	of	100	dB.	Compute	 the
noise	power,	in	dBW	at	the	receiver	output.

b) What	is	the	change	in	SNR,	in	dB,	relative	to	the	case	of	Exercise	2?	In	Exercise	2,
we	assumed	a	Ta	=	T0.



4. Repeat	Exercise	3	with	Ta	=	20,000	K.

5. Derive	(4.14).

6. Derive	equations	for	the	three	resistors	of	the	attenuator	from	Figure	4.4,	in	terms	of	the
input	and	output	resistance,	R,	and	the	loss,	L.	The	loss	has	the	units	of	W/W.

7. Derive	an	equation	for	the	noise	energy	delivered	to	the	attenuator	of	Figure	4.4	by	the
source	 and	 the	 noise	 energy	 delivered	 to	 the	 load	 by	 the	 attenuator.	Assume	 a	 source
noise	temperature	of	Ta	and	a	noise	temperature	for	all	attenuator	resistors	of	TR.

8. Derive	(4.43).

9. Derive	(4.45)	and	(4.46).

10. Plot	E	in	(4.3)	versus	f.	Let	f	vary	logarithmically	from	1	GHz	to	1,000	GHz.	Plot	E	with
the	units	of	dB	relative	to	a	milli-joule.	Generate	curves	for	temperatures	of	2.9,	29,	and
290	 K.	 Does	 your	 plot	 support	 the	 statement	 that	E	 is	 insensitive	 to	 frequency	 in	 the
range	of	frequencies	used	in	radars?
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Chapter	5

Radar	Losses

5.1 INTRODUCTION

For	our	last	radar	range	equation-related	topic,	we	address	the	loss	term,	L.	Losses	have	been
included	 in	 the	 radar	 range	 equation	 since	 it	 first	 appeared	 in	Norton	 and	Omberg’s	 1947
paper	[1].	Losses	have	been	continuously	studied	and	new	loss	factors	have	been	introduced	as
radar	technology	has	advanced	[2–11].

In	an	attempt	to	organize	our	discussion	of	losses,	we	will	trace	the	losses	through	the	steps
we	used	to	derive	the	radar	range	equation	in	Chapter	2.	That	is,	we	start	with	the	transmitter
and	antenna	and	progress	to	propagation	losses.	On	receive,	we	will	address	losses	between
the	antenna	and	RF	amplifier,	which	we	term	RF	losses,	and	then	proceed	to	losses	associated
with	the	matched	filter,	signal	processor,	and	detection	process.

5.2 TRANSMIT	LOSSES

Transmit	 losses	 are	 losses	 in	 components	 between	 the	 final	 RF	 power	 source	 and	 antenna
feed.	Radars	that	use	reflector	antennas,	space-fed	phased	arrays,	or	constrained	feed-phased
arrays	could	have	the	components	shown	in	Table	5.1	[12–17];	however,	not	all	 radars	have
all	of	the	devices	listed.	As	examples,	Figure	5.1	contains	two	representative	transmitter	block
diagrams	illustrating	the	different	devices	that	might	be	included	in	each.

Waveguide	 run	 (sometimes	 referred	 to	 as	 “plumbing”)	 is	 all	 of	 the	 pieces	 of	waveguide
used	 between	 components	 as	 transmission	 line.	Waveguide	 is	 typically	 used	 because	 of	 its
extremely	 low	 loss	 and	high	power	handling	 capability.	Waveguide	 switches	 (which	 can	be
manual	 or	 automated)	 are	 used	 for	 routing	 signals.	 For	 example,	 the	 transmitter	 can	 be
switched	to	a	dummy	load	(high	power	terminator)	for	test	purposes.	Similarly,	a	waveguide
switch	 (usually	 manual)	 can	 be	 used	 to	 open	 a	 waveguide	 for	 test	 signal	 injection.	 Power
dividers	 in	 general	 (a	 12-way	 is	 given	 in	 Table	 5.1)	 are	 used	 for	 power	 distribution	 and
combining.	One	example	is	a	corporate	antenna	feed.

Table	5.1
Representative	RF	Losses

Component Loss	(dB)

Waveguide	run 0.1–0.3

Waveguide	switch 0.7

Power	divider	(12-way) 1.6

Duplexer 0.3–1.5

TR	switch 0.5–1.5

Circulator/isolator 0.3–0.5



Receiver	protection 0.2–1.0

Preselector	(receive	only) 0.5–2.5	(0.5	typical)

Directional	coupler 0.3–0.4

Rotary	joint 0.2–0.5

Mode	adapter 0.1

Waveguide	step	attenuator 0.8

Feed	(monopulse	or	simple) 0.2–0.5

Figure	5.1	Representative	transmitter	block	diagrams.

A	duplexer	 is	a	fast-acting,	nonreciprocal	device	 that	allows	for	a	common	antenna	to	be
used	for	 transmit	(Tx)	and	receive	(Rx)	in	a	radar	using	pulsed	waveforms	and	protects	 the
receiver	 from	high-power	 returns.	Often	 a	 high-power	 circulator	 serves	 as	 duplexer,	 but	 it
can	also	be	 implemented	using	a	balanced	network	of	 transmit-receive	 (TR)	switches	and	a
receiver	 protector	 [18].	 In	 transmit-receive	 (T/R)	 modules,	 the	 duplexer	 is	 usually	 a
circulator.	 In	high-power	radars,	 the	duplexer	can	be	a	TR	switch	of	 the	gas	discharge	 type
(T/R	 tube,	 see	 below)	 [18].	 A	 TR	 switch	 is	 an	 automatic	 device	 employed	 in	 a	 radar	 for
preventing	the	transmitted	energy	from	reaching	the	receiver	but	allowing	the	receive	energy
to	reach	the	receiver	without	appreciable	loss	[18].

Circulators	 are	 three	port	 devices	where	 the	 signal	 into	one	port	 can	only	 leave	 the	next



port,	and	so	on	(like	a	roundabout	where	you	must	exit	on	the	street	following	the	street	you
entered).	 Terminating	 one	 port	 of	 a	 circulator	 results	 in	 an	 isolator,	 which	 is	 a	 two-port
device	where	the	signal	can	travel	in	only	one	direction.	Any	reflected	energy	returned	to	the
isolator	 is	 shunted	 to	 a	 terminating	 load.	 Isolators	 are	 often	 used	 prior	 to	 poorly	matched
components	(e.g.,	a	filter	or	switch).

While	the	duplexer	provides	a	certain	amount	of	protection	for	the	receiver	against	high-
power	returns,	it	does	not	always	provide	enough	receiver	protection.	Receiver	protection	in
Table	 5.1	 refers	 to	 devices	 specifically	 used	 to	 protect	 the	 receiver	 (in	 addition	 to	 the
duplexer),	such	as	diode	or	ferrite	limiters.	A	TR	tube	is	a	gas-filled	RF	switching	tube.	When
high	power	from	the	transmitter	enters	the	TR	tube,	the	tube	arcs,	shorting	out,	which	reflects
the	incoming	power,	thus	protecting	the	receiver.	TR	tubes	are	very	fast	acting.

A	preselector	is	a	filter	(often	implemented	in	waveguide)	used	in	the	receiver	to	limit	the
bandwidth.	For	frequency	agile	radars,	 the	agility	bandwidth	is	passed;	for	single	frequency
radars,	the	preselector	is	matched	to	the	channel	bandwidth.	Directional	couplers	are	used	to
sample	or	couple	signals	out	of	the	transmitter	for	test	purposes.	The	power	ratio	between	the
input	 signal	 and	 the	 sampled	 signal	 is	 a	 calibrated	 amount	 (e.g.,	 10,	 20,	 40	 dB).	 A	 low
coupling	 ratio	 (e.g.,	 40	dB)	 allows	 transmitter	power	measurements	 to	be	made	using	 low-
power	test	equipment.

A	 rotary	 joint	 is	 a	 device	 used	 to	 couple	RF	 energy	 from	 a	 fixed	 transmission	 line	 to	 a
device	that	is	rotating,	such	as	an	antenna.	A	rotary	joint	can	also	be	used	with	antennas	that
stow	or	pack	 themselves.	A	mode	adapter	 is	generally	any	device	 that	changes	 the	mode	of
propagation	 (e.g.,	 from	 coaxial	 line	 transmission	 to	 rectangular	 waveguide	 transmission).
Waveguide	 attenuators	 are	 sometimes	used	 in	 front	 of	 the	 receiver	RF	 low	noise	 amplifier
(LNA)	for	automatic	gain	control/sensitivity	time	control	(AGC/STC)	(see	Chapter	14).

Figure	 5.2	 contains	 plots	 of	 theoretical	 waveguide	 loss	 versus	 frequency	 for	 several
standard	waveguides	[19,	20].	From	this	we	see	that	 the	waveguide	losses	 indicated	in	Table
5.1	 are	 representative	 of	 radars	 that	 contain	 from	 1	 to	 2	 m	 of	 waveguide	 connecting	 the
various	components	of	the	transmitter.



Figure	5.2	Theoretical	rectangular	waveguide	loss	(copper).

The	calculations	associated	with	the	theoretical	loss	in	a	rectangular	waveguide,	which	are
dependent	upon	the	broad	and	short	wall	dimensions,	the	permeability	and	permittivity	of	the
dielectric	 filling	 the	 waveguide,	 and	 the	 waveguide	 material,	 can	 be	 cumbersome	 (see
Appendix	5A).	Barton	presents	a	convenient	approximation	for	waveguide	loss	in	dB/m	of	[9,
p.	359]1

where	f	is	the	frequency	in	GHz	(f	<	200	GHz).	This	approximation	is	plotted	in	Figure	5.2	for
comparison	as	the	dashed	curve.

For	active	phased	arrays	that	use	T/R	modules	[21],	the	losses	are	primarily	due	to	a	switch
or	 circulator	 used	 to	 route	 signals	 from	 the	 power	 amplifier	 to	 the	 antenna	 and	 from	 the
antenna	 back	 to	 the	 receiver	 LNA.	 This	 is	 illustrated	 in	 Figure	 5.3.	 As	 a	 result	 of	 the	 T/R
modules’	collocation	with	associated	array	elements,	the	transmit	losses	associated	with	active
phased	 arrays	 are	 generally	much	 lower	 than	 those	 associated	with	 radars	 that	 use	 passive
antennas	such	as	reflectors,	space-fed	phased	arrays,	and	constrained	feed-phased	arrays.



Figure	5.3	Example	T/R	module	block	diagram.

As	an	example	of	total	transmit	RF	losses,	Table	5.2	contains	a	summary	of	these	losses	for
the	 three	 transmitter	 configurations	 of	 Figures	 5.1	 and	 5.3.	 In	 computing	 the	 waveguide
losses,	we	will	assume	the	radar	with	the	reflector	(top	drawing	of	Figure	5.1)	 is	an	L-band
search	 radar.	 The	 space-fed	 phased	 array	 in	 the	 lower	 drawing	 is	 an	 S-band	multifunction
radar	 and	 the	 T/R	 module	 in	 Figure	 5.3	 is	 used	 in	 an	 X-band	 multifunction	 radar.	 The
difference	in	operating	frequencies	is	the	reason	for	choosing	the	different	waveguide	losses.

Table	5.2
Example	Transmit	RF	Losses

5.3 ANTENNA	LOSSES

The	next	element	of	the	transmit	chain	is	the	antenna	and	its	associated	feed.	A	representative
list	of	losses	associated	with	the	various	feed	and	antenna	components	is	contained	in	Table



5.3.	The	entries	for	waveguide	and	stripline	feed	apply	to	antennas	that	use	constrained	feeds,
and	the	difference	between	parallel	and	series	feed	networks	is	illustrated	in	Figure	5.4	[22].	In
the	series	feed,	the	energy	enters	on	one	end	of	an	RF	transmission	line	(such	as	a	rectangular
waveguide,	 stripline,	 or	microstrip)	 and	 is	 extracted	 at	 different	 points	 along	 the	 line.	 In	 a
parallel	 feed	 network,	 the	 energy	 enters	 an	 RF	 transmission	 line	 and	 is	 subsequently	 split
several	times	before	being	delivered	to	the	radiating	elements.	As	a	note,	it	is	possible	for	an
antenna	to	use	both	series	and	parallel	feed	networks	[23,	pp.	5–8].	As	an	example,	the	rows
the	 array	 could	 be	 fed	 by	 a	 series	 feed,	while	 the	 elements	 in	 each	 row	would	 be	 fed	 by	 a
parallel	feed	network.	It	will	be	noted	that	the	feed	loss	assigned	to	active	arrays	is	0	dB.	This
is	because	the	radiating	element	driven	by	a	T/R	module	is	very	close	to	the	power	amplifier.
The	phase	shifter	losses	apply	to	passive	and	constrained	feed	phased	arrays.	As	a	note,	the

losses	 apply	 to	 the	 entire	 array	 and	 not	 to	 each	 phase	 shifter	 of	 the	 array.	 The	 losses	 are
shown	as	0	dB	for	active	phased	arrays	because	the	phase	shifter	is	not	in	the	path	between	the
antenna	and	the	power	amplifier	or	LNA,	where	loss	is	important	(see	Figure	5.3).

Table	5.3
Antenna	Dissipative	Losses

Location Component Typical	loss	(dB

Feed	system Feed	horn	for	reflector	or	lens 0.1

Waveguide	series	feed 0.7

Waveguide	parallel	feed 0.4

Stripline	series	feed 1.0

Stripline	parallel	feed 0.6

Active	module	at	each	element 0.0

Phase	shifter Nonreciprocal	ferrite,	or	Faraday	rotator 0.7

Reciprocal	ferrite 1.0

Diode	(3-	or	4-bit) 1.5

Diode	(5-	or	6-bit) 2.0

Diode	(per	bit) 0.4

Active	module	at	each	element 0.0

Array Mismatch	(no	electronic	scan) 0.2

Mismatch	(electronic	scan	60º) 1.7

Exterior Radome 0.5-1.0

Source:	[9,	44].



Figure	5.4	Series	and	parallel	feeds.	(After:	[22].)

Mismatch	 loss	 also	 applies	 to	 phased	 arrays	 and	 is	 a	 loss	 due	 to	 impedance	 mismatch
between	the	radiating	elements	of	the	antenna	and	free	space.	Mismatch	loss	is	given	by

where

Γ	is	the	reflection	coefficient	and	VSWR	is	the	voltage	to	standing	wave	ratio	[19,	20].	For	a
scanning	array,	the	mismatch	loss	is	given	by	[9]

where	the	element	power	gain	is	represented	by

and	1	<	β	<	2	(usually	≈	1.5)	[9].	Given	a	VSWR	of	1.5,	mismatch	loss	for	β	=	1.25,	1.5,	1.75
and	2	is	plotted	in	Figure	5.5.	The	average	mismatch	loss	is	0.41,	0.66,	0.91,	and	1.2	dB	for	β	=
1.25,	1.5,	1.75,	and	2,	respectively	(over	60º	scan).



Figure	5.5	Mismatch	loss	vs.	angle.	(After:	[9].)

As	a	 note,	 some	 antenna	 analysts	 subtract	 the	 antenna	 losses	 from	 the	 antenna	directivity
(see	Chapter	2)	and	term	the	result	the	antenna	gain.	Because	of	this,	one	must	take	care	when
using	antenna	directivity,	antenna	gain,	and	antenna	losses	in	the	radar	range	equation.

When	 the	 beam	 of	 a	 phased	 array	 antenna	 is	 scanned	 off	 of	 broadside	 (off	 of	 array
normal),	 the	antenna	directivity	decreases.	 If	 this	 is	not	explicitly	 included	when	generating
the	 antenna	 pattern	 at	 the	 scanned	 angle,	 it	 should	 be	 included	 as	 a	 loss.	Barton	 suggests	 a
factor	of

where	θ	is	the	scan	angle	[9,	p.	369].2	Figure	5.6	contains	a	plot	of	(5.1)	for	β	=	1.0,	1.5,	and
2.0.	The	average	scan	loss	is	1.3,	1.6,	1.9,	and	2.2	dB	for	β	=	1.25,	1.5,	1.75,	and	2,	respectively
(over	60-deg	scan).

The	next	loss	we	discuss	is	beamshape	loss.3	This	loss	is	associated	with	the	situation	where
the	antenna	beam	is	not	pointed	directly	at	the	target	or	where	the	beam	is	scanning	across	the
target	 during	 the	 time	 the	 radar	 is	 coherently	 or	 noncoherently	 integrating	 a	 sequence	 of
pulses	(coherent	and	noncoherent	integration	is	discussed	in	Chapter	8).	In	both	cases,	the	full
effect	 of	 the	 antenna	 directivity	 (GT	 and	GR)	 terms	 of	 the	 radar	 range	 equation	will	 not	 be
realized.	This	most	often	happens	during	search.	It	is	not	applicable	during	track	because	it	is
assumed	the	target	is	very	close	to	beam	center	during	track.



Figure	5.6	Scan	loss	vs.	angle.	(After:	[9].)

We	account	for	both	of	the	above	situations	by	including	beamshape	loss	as	one	of	the	loss
factors.	Historically,	 radar	 analysts	 have	used	 the	 values	 of	 1.6	 or	 3.2	 that	were	 derived	by
Blake	in	his	1953	paper	[25].	However,	Hall	and	Barton	[5,	9,	26]	revisited	this	problem	in	the
1960s	and	derived	revised	 loss	numbers	of	1.24	and	2.48	dB.	 It	 should	be	noted	 that	Barton
and	Hall	 indicate	 that	 there	are	many	factors	 that	affect	scan	 loss,	such	as	beam	step	size	 in
phased	array	radars,	number	of	pulses	noncoherently	integrated,	whether	or	not	the	radar	is
continuously	 scanning,	 and	 detection	 probability.	 As	 such,	 the	 values	 of	 1.24	 and	 2.48	 dB
should	 be	 considered	 rule-of-thumb	 numbers	 that	 would	 be	 suitable	 for	 preliminary	 radar
analysis	or	design.	In	a	more	detailed	analysis,	these	numbers	should	be	revised	based	on	the
factors	discussed	by	Barton	and	Hall.

The	value	of	1.24	dB	is	 related	 to	what	 is	 termed	1-D	scanning,	and	 the	value	of	2.48	dB
relates	 to	2-D	scanning.	1-D	scanning	would	be	associated	with	search	radars	 that	use	a	 fan
beam	 (a	 beam	with	 a	 large	 beamwidth	 in	 one	 dimension	 (usually	 elevation)	 and	 a	 narrow
beam	 in	 the	 other	 dimension).	 The	 radar	 would	 then	 rotate	 (or	 nod)	 in	 the	 narrow	 beam
dimension	 but	 remain	 fixed	 in	 the	 wide	 beam	 direction.	 An	 example	 of	 such	 a	 radar	 is
considered	 in	 Example	 2	 of	 Chapter	 6,	 where	 we	 analyze	 a	 search	 radar	 with	 a	 cosecant
squared	elevation	beam.	In	these	fan	beam	types	of	radars,	we	assume	the	antenna	directivity
does	not	change	much	in	the	wide	direction	and	that	there	is	no	need	to	include	another	loss.	If
this	is	not	the	case,	we	would	want	to	use	the	2-D	beamshape	loss.

In	 these	 situations,	 the	 antenna	 directivity	 (in	 the	 direction	 of	 the	 target)	 changes	 as	 the
beam	scans	by	the	target,	 thus	not	all	of	 the	pulses	will	exhibit	 the	same	SNR.	This,	 in	 turn,
could	affect	the	computation	of	detection	probability	(see	Chapters	6	and	8).	To	account	 for
this,	we	include	the	1-D	beamshape	loss	in	the	loss	term	of	the	radar	range	equation.

An	example	of	where	the	use	of	the	2-D	beamshape	loss	would	be	appropriate	is	in	phased
arrays	 radars	 (such	 as	 the	 second	 and	 third	 examples	 of	 Table	 5.2)	 that	 scan	 a	 sector	 by
stepping	 the	beam	in	orthogonal	directions	(azimuth	and	elevation	or	u	and	v—see	Chapter
12).	In	this	situation,	the	radar	would	move	to	a	beam	position	and	transmit	a	pulse,	or	burst
of	pulses,	and	then	move	to	another	beam	position.	Because	of	this	action,	it	is	likely	that	the
target	could	be	off	of	beam	center	 in	 two	dimensions,	 thus	 the	need	for	 the	2-D	beamshape



loss.	 In	 this	 situation,	 it	may	also	be	appropriate	 to	 include	 the	scanning	 loss	of	 (5.6)	 if	 the
angular	extent	of	the	search	sector	is	large.

A	 situation	where	we	might	want	 to	 use	 only	 a	 1-D	beamshape	 loss	with	 a	 phased	 array
radar	is	where	we	are	generating	a	detection	contour	(see	Example	2	of	Chapter	6).	In	such	a
case,	 we	 would	 use	 the	 antenna	 directivity	 plot	 in,	 for	 example,	 elevation,	 and	 have	 the
directivity	as	a	function	of	elevation.	However,	we	would	need	to	account	for	the	fact	that	the
target	is	not	on	beam	center	in	azimuth.	Thus,	we	would	include	a	1-D	beamshape	loss	in	the
radar	range	equation.

In	discussing	the	phased	array	examples,	we	made	the	tacit	assumption	that	the	beams	of	the
search	sector	were	spaced	close	together	as	illustrated	by	Figure	5.7.	This	is	similar	to	what
Barton	terms	dense	packing	[9]	and	is	characterized	by	the	fact	that	there	is	no	angular	region
that	 is	not	covered	by	 the	3-dB	beam	contour	of	 the	 radar	 (the	3-dB	beam	contours	are	 the
circles	 in	 Figure	 5.7).	 Barton	 discusses	 another	 type	 of	 packing	 he	 terms	 sparse	 packing,
wherein	there	may	be	parts	of	the	angle	space	that	are	not	covered	by	beams	on	any	one	scan
(but	 hopefully	will	 be	 covered	 on	 successive	 scans).	 In	 this	 situation,	 he	 points	 out	 that	 the
beamshape	 loss	 now	 becomes	 a	 function	 of	 detection	 probability.	 This	 is	 something	 that
should	 be	 considered	 in	 detailed	 studies	 of	 the	 impact	 of	 search	methodology	 on	 detection
performance	of	the	radar.

We	continue	our	previous	example	by	adding	antenna	losses	to	Table	5.2	to	generate	Table
5.4.

We	 assumed	 the	 L-band	 search	 radar	 is	 a	 scanning	 radar	with	 a	 cosecant	 squared	 beam.
Therefore,	we	 included	only	 the	 feed	and	1-D	scan	 loss.	We	assume	 that	 the	S-	and	X-band
radars	 are	 conducting	 a	wide	 sector	 search	 and	 include	mismatch	 (VSWR	=	 1.5)	 and	 scan
losses	we	computed	from	(5.4)	and	(5.6),	respectively,	using	β	=	1.5	and	θ	=	30º,	which	is	one-
half	the	assumed	±60°	extent	of	the	search	sector.	We	assumed	the	beams	in	the	S-band	radar
were	 tightly	 packed	 and	 used	Barton’s	 2-D	 scan	 loss	 of	 2.48	 dB.	For	 the	X-band	 radar,	we
assumed	the	beams	were	not	as	tightly	packed	and	thus	used	the	historical	2-D	scan	loss	of	3.2
dB.	We	 assumed	 the	 radome	 on	 the	 S-band	 radar	 was	 cloth	 and	 use	 a	 fairly	 low	 value	 of
radome	 loss.	We	 assumed	 a	 hard	 radome	 on	 the	X-band	 array	 and	 used	 a	 larger	 value	 of
radome	loss.

Figure	5.7	Examples	of	dense	and	sparse	beam	packing.



Table	5.4
Example	Transmit	RF	and	Antenna	Losses

5.4 PROPAGATION	LOSSES

The	next	 losses	we	 consider	 are	 propagation	 losses.	The	 two	main	 sources	 of	 propagation
losses	are	those	due	to	oxygen	and	water	vapor	absorption	and	rain.	Absorption	losses	depend
upon	 operating	 frequency,	 elevation	 angle	 of	 the	 target,	 and	 range	 to	 the	 target.	 They	 also
depend	 upon	 temperature,	 humidity,	 atmospheric	 pressure,	 and	 other	 such	 atmospheric
conditions.	 However,	 the	 atmospheric	 conditions	 are	 usually	 ignored	 and	 a	 standard
atmosphere	is	used	[9,	27,	28].

Atmospheric	losses	were	historically	determined	from	graphs	[3,	4,	10,	11].	However,	with
today’s	computers,	they	are	easily	calculated	using	the	equations	given	in	Appendix	5B.	For
illustration	purposes,	Figures	5.8,	5.9,	 and	5.10	 contain	 plots	 of	 two-way	 loss	 versus	 target
range	for	different	elevation	angles	and	frequencies	of	1,	3,	and	10	GHz	(L-,	S-,	and	X-band).
The	plots	were	generated	using	the	equations	in	Appendix	5B.

Figure	 5.11	 contains	 plots	 of	 two-way	 loss,	 in	 dB/km,	 versus	 frequency	 for	 different
rainfall	 rates.	This	plot	was	also	generated	 from	equations	presented	 in	Appendix	5B.	As	 a
note,	 a	 somewhat	 standard	 rainfall	 rate	 for	 modeling	 purposes	 appears	 to	 be	 4	 mm/hr.
According	to	Blake,	this	corresponds	to	moderate	rain.	For	comparison,	rainfall	rates	of	0.25
mm/hr,	 1	 mm/hr,	 and	 16	 mm/hr	 are	 considered	 a	 drizzle,	 a	 light	 rain,	 and	 a	 heavy	 rain,
respectively	[28,	p.	219;	29].



Figure	5.8	Atmospheric	attenuation—standard	atmosphere—1	GHz.

Figure	5.9	Atmospheric	attenuation—standard	atmosphere—3	GHz.



Figure	5.10	Atmospheric	attenuation—standard	atmosphere—10	GHz.

Figure	5.11	Rain	attenuation.

We	will	continue	our	example	by	adding	atmospheric	loss.	We	assume	the	L-band	radar	is	a



long-range	 search	 radar	 that	 operates	 out	 to	 about	 500	 km.	 Because	 of	 its	 long	 operating
range,	we	assume	the	elevation	angles	of	interest	are	in	the	range	of	1°.	With	this,	the	two-way
atmospheric	attenuation	at	500	km	will	be	about	2.2	dB	(see	Figure	5.6).	At	shorter	ranges	it
will	be	less.	For	example,	at	200	km,	the	two-way	attenuation	will	be	about	1.7	dB.	We	will	use
a	compromise	value	of	2.0	dB.

We	will	assume	the	two	phased	array	radars	operate	at	ranges	out	to	about	100	km	and	at
elevation	angles	of	0°	to	60°.	For	this	case,	the	atmospheric	losses	for	the	S-band	radar	can
vary	from	0	dB	to	about	1.7	dB	(see	Figure	5.7).	For	the	X-band	radar,	the	atmospheric	losses
can	vary	from	0	dB	to	about	2.8	dB.	We	will	use	a	compromise	value	of	1	dB	for	the	S-band
radar	and	2	dB	for	the	X-band	radar.

We	will	ignore	rain	attenuation	in	this	particular	analysis.	With	this,	our	loss	table	is	now	as
shown	in	Table	5.5.

5.5 RECEIVE	ANTENNA	AND	RF	LOSSES

In	 general,	 the	 receive	 antenna	 losses	will	 be	 the	 same	 as	 the	 transmit	 antenna	 losses.	 The
possible	 exception	 to	 this	 is	 the	 case	 where	 the	 radar	 uses	 separate	 transmit	 and	 receive
antennas	or	separate	transmit	and	receive	feeds.	In	that	case,	it	may	be	necessary	to	derive	a
separate	set	of	losses	for	the	receive	antenna.

Like	the	antenna,	the	RF	components	in	the	receive	path	will	generally	be	the	same	as	in	the
transmit	 path.	 Thus,	 the	 losses	 in	 Table	 5.1	 apply	 to	 receive,	 with	 the	 addition	 of	 the
preselector	 losses.	We	will	 assume	 that	 the	RF	portions	of	 the	L-	 and	S-band	 radars	 are	 as
shown	in	Figure	5.12.	The	block	diagram	of	the	X-band	T/R	module	used	in	the	active	phased
array	is	as	shown	in	Figure	5.3.

Table	5.5
Example	Transmit	RF,	Antenna,	and	Propagation	Losses



Figure	5.12	Representative	receiver	RF	block	diagrams.

Continuing	with	our	example,	the	loss	table	now	becomes	that	shown	in	Table	5.6.	We	have
assumed	that	the	antennas	and	feeds	are	the	same	in	the	three	radars	so	that	the	receive	antenna
losses	will	be	the	same	as	the	transmit	antenna,	except	for	the	scan	loss.	Scan	loss	is	calculated
for	both	transmit	and	receive	and	needs	only	be	applied	on	one	or	the	other.

Table	5.6
Example	Transmit	RF,	Antenna,	Propagation,	and	Receive	Losses

For	 the	L-	and	S-band	radars,	we	will	need	 to	add	 the	 losses	 for	 the	various	components



between	 the	 feed	 and	 the	RF	amplifier	 (the	LNA	 in	Figure	5.10).	 The	waveguide	 attenuator
loss	shown	for	the	L-band	radar	applies	to	the	case	where	the	attenuation	is	set	to	0	dB.	It	is	the
insertion	loss	of	the	attenuator	[20,	30].	The	loss	will	increase	as	the	attenuation	increases,	on
a	dB	 for	 dB	basis.	 In	both	 the	L-	 and	S-band	 radars,	we	used	 the	 typical	 loss	 value	 for	 the
preselector.	Also,	we	used	0.2	dB	for	the	rotary	joint	loss.	We	used	the	transmit	values	for	the
components	that	are	common	to	the	transmitter	and	receiver.	For	the	X-band	radar	case,	 the
only	RF	receive	losses	we	need	to	include	are	for	the	circulator.

As	discussed	 in	Chapter	2,	 the	 losses	 in	Table	5.6	should	be	 included	 in	 the	system	noise
figure,	and	not	in	the	loss	term	of	the	radar	range	equation.	It	is	part	of	the	Fn	term	of	(2.28)
of	Chapter	2.	Also,	see	the	discussions	in	Section	4.7.	Because	of	this,	the	individual	losses	are
itemized	but	not	 included	 in	 the	 total	 losses.	This	 is	 the	 reason	 the	 total	 losses	of	Table	 5.6
equal	the	prior	losses.

5.6 PROCESSOR	AND	DETECTION	LOSSES

The	 final	 set	 of	 losses	 we	 discuss	 are	 those	 associated	 with	 the	 matched	 filter,	 the	 signal
processor,	and	the	constant	false	alarm	rate	(CFAR)	circuitry	(Table	5.7).

The	mismatch	loss	associated	with	the	matched	filter	mainly	applies	to	matched	filters	for
unmodulated	pulses	or	for	the	chips	of	phase	coded	pulses.	(See	Chapter	10.)	This	loss	occurs
because	the	ideal	rectangular	pulse	generated	by	the	transmitter	becomes	distorted	because	of
the	bandwidth	limiting	that	takes	place	as	the	pulse	travels	through	the	transmitter	and	antenna,
to	and	 from	 the	 target	and	back	 through	 the	antenna	and	 receiver	 to	 the	matched	 filter.	The
estimate	 provided	 in	Table	 5.7	was	 derived	 by	 considering	 rectangular	 pulse	 that	 has	 been
passed	 through	 different	 types	 of	 bandlimiting	 devices.	 A	 summary	 of	 the	 results	 of	 the
analysis	is	shown	in	Table	5.8.4	 In	 that	 table,	 the	N-stage	tuned	filters	are	filters	of	different
orders	 that	 have	 a	 bandwidth	 equal	 to	 the	 reciprocal	 of	 the	 pulsewidth.	As	 can	be	 seen,	 the
nominal	loss	is	about	0.5	dB.

Table	5.7
Processor	and	Detection	Losses

Source Typical	Values	(dB)

Matched	filter	loss

Mismatch	loss 0.5

Sidelobe	reduction	weighting	loss 1.5

MTI	loss	with	staggered	waveforms 0–1

Doppler	filter	sidelobe	reduction	loss 1–3

Range	straddle	loss 0.3–1.0

Doppler	straddle	loss 0.3–1.0

CFAR	loss 1–2.5

Table	5.8
Matched	Filter	Mismatch	Loss



Input	Signal Filter Mismatch	Loss	(dB)

Rectangular	pulse Gaussian 0.51

Rectangular	pulse 1-stage	single-tuned 0.89

Rectangular	pulse 2-stage	single-tuned 0.56

Rectangular	pulse 3-stage	single-tuned 0.53

Rectangular	pulse 5-stage	single-tuned 0.50

Rectangular	pulse Matched 0.00

The	 sidelobe	 reduction	 weighting	 loss	 applies	 to	 waveforms	 that	 use	 linear	 frequency
modulation	 (LFM)	 for	pulse	compression	 (see	Chapter	10).	 It	 is	 an	 amplitude	 taper	used	 to
reduce	 the	 range	 sidelobes	 of	 the	 compressed	 pulse.	 Since	 it	 is	 an	 amplitude	 taper,	 it	 also
reduces	the	peak	of	the	matched	filter	output.	The	amount	of	reduction	generally	depends	on
the	 type	 of	weighting	 and	 the	 desired	 sidelobe	 levels.	 A	 list	 of	 various	 types	 of	 amplitude
tapers	and	the	associated	SNR	loss	is	shown	in	Table	5.9.5	(For	a	summary	of	some	common
weighting	functions,	see	Appendix	B.)

The	table	also	contains	the	peak	sidelobe	level	associated	with	the	weighting,	along	with	the
associated	straddle	 loss.	Straddle	 loss	will	be	discussed	 later	 in	 this	chapter.	Some	common
weightings	used	with	LFM	are	Hamming,	Hann,	and	Gaussian.	The	other	amplitude	tapers	are
often	 used	 for	 sidelobe	 reduction	 in	 antennas	 and	 in	 Doppler	 processors.	 Amplitude
weighting	is	not	used	with	phase	coded	waveforms	because	the	phase	coding	sets	the	sidelobe
levels.	In	fact,	if	amplitude	weighting	were	used	with	a	phase	coded	waveforms	(see	Chapter
10),	it	is	likely	that	the	compression	properties	of	the	waveform	would	be	destroyed.

With	the	increasing	use	of	digital	signal	processors,	renewed	attention	is	being	given	to	the
use	of	phase	weighting	with	LFM	waveforms	to	produce	nonlinear	LFM	waveforms	[31–34].
These	 waveforms	 have	 a	 desirable	 property	 of	 reduced	 sidelobes	 without	 the	 attendant
weighting	 loss.	 They	 have	 the	 disadvantages	 of	 being	 difficult	 to	 generate	 and	 process.
Nonlinear	LFM	is	discussed	further	in	Chapter	10.

As	 is	 discussed	 in	 Chapter	 13,	 for	 radars	 that	 use	 moving	 target	 indicator	 (MTI)
processors,	 it	 is	 common	practice	 to	 use	waveforms	with	 staggered	PRIs	 [35,	 36].	 That	 is,
waveforms	with	PRIs	that	change	from	pulse	to	pulse.	The	reason	is	that	radars	that	use	MTI
processors	 and	 constant	 PRIs	 have	 frequency	 responses	 that	 have	 nulls	 in	 the	 range	 of
expected	target	Doppler	frequencies.	The	range	rates	corresponding	to	these	nulls	are	termed
blind	velocities.

Table	5.9
Amplitude	Weighting	and	Associated	Properties



a	The	parameter	k	controls	pedestal	height.
b	The	parameter	α	is	inversely	proportional	to	sidelobe	level.
c	The	parameter	 	controls	the	extent	of	constant	level	sidelobes,	specified	in	dB,	nearest	the	main	lobe.

With	 a	 staggered	PRI	waveform,	 the	nulls	 are	 “filled	 in”	by	 the	 stagger	 so	 that	 the	nulls
move	out	of	the	range	of	expected	target	Doppler	frequencies.	With	staggered	PRIs,	the	MTI
frequency	response	will	vary	quite	a	bit	(5–10	dB)	over	the	range	of	velocities.	However,	for
reasonable	sets	of	PRIs,	the	average	response	will	be	close	to	0	dB	across	the	frequency	range
of	interest.	Thus,	the	average	SNR	loss	across	the	frequency	range	is	between	0	and	1	dB,	and
most	 of	 the	 time	 is	 closer	 to	 0	 dB	 than	 to	 1	 dB.	 If	 the	 output	 of	 an	MTI	 is	 noncoherently
integrated,	the	noise	correlation	effect	of	the	MTI	will	cause	an	additional	loss	[6,	7].	Barton



indicates	 that	 this	 loss	 is	 approximately	 1.5	 and	 2.5	 dB	 for	 two-	 and	 three-pulse	 MTIs,
respectively	[9,	p.	384].

As	 with	 LFM	 waveforms,	 amplitude	 weighting	 is	 also	 used	 to	 reduce	 the	 sidelobes	 of
Doppler	signal	processors.	In	this	case,	the	sidelobe	reduction	is	needed	in	order	to	increase
the	 clutter	 rejection	 capability	 of	 the	Doppler	 processor.	 This	 topic	 is	 discussed	 further	 in
Chapter	13.	As	with	LFM	weighting,	use	of	amplitude	weighting	in	Doppler	processors	causes
a	 loss	 in	 SNR	 (and	 spectral	 broadening)	 relative	 to	 the	 case	 of	 no	 weighting	 (rectangular
weighting	in	Table	5.9).

A	 common	 amplitude	weighting	 in	modern	 radars	 that	 use	 digital	 signal	 processing	 and
FFTs	is	the	Chebyshev	with	a	sidelobe	level	determined	by	the	cutter	rejection	requirements.
However,	 Blackman	 and	 Blackman-Harris	 are	 also	 used.	 These	 amplitude	 weightings	 are
attractive	because	of	the	low	sidelobe	levels	that	can	be	obtained	with	them.

For	 illustration,	 the	Doppler	 response	 of	 a	 45-dB	Chebyshev-weighted	FFT	processor	 is
presented	 in	Figure	 5.13.	As	 discussed	 previously,	we	 note	 Figure	 5.13	 indicates	 a	 1.4	 dB-
Doppler	weighting	loss.	The	Doppler	filter	responses	are	dotted,	and	the	straddle	loss,	which
we	discuss	below,	is	represented	by	the	heavy	black	line.	The	scalloped	shape	of	the	straddle
loss	is	why	the	term	scalloping	loss	is	sometimes	used.	A	single	Doppler	filter	centered	as	10
kHz	is	shown	by	a	solid	line.	For	radar	range	equations	purposes,	we	use	the	average	of	the
straddling	loss	(see	Table	5.9).

Detection	 decisions	 in	 radars	 are	 made	 by	 sampling	 the	 output	 of	 the	 matched	 filter	 or
signal	 processor	 in	 range,	 and	 sometimes,	 in	 Doppler.	 Generally,	 the	 range	 samples	 are
spaced	between	½	and	1	range	resolution	cell	width	apart	and	the	Doppler	samples	are	spaced
½	to	1	Doppler	resolution	cell	apart.	Because	of	this	finite	spacing,	it	is	likely	that	the	samples
will	not	occur	at	the	peak	of	the	range	or	Doppler	response.	The	result	is	a	loss	in	SNR.

Figure	5.13	Straddle	(scalloping)	loss—45	dB	Chebyshev	weighting—N	=	16,	Fs	=	20	kHz.



Figure	5.14	Range	straddle	loss.

Representative	 curves	 for	 this	 loss,	which	 is	 called	 straddle	 loss,	 are	 indicated	 in	Figure
5.14.	The	dashed	curve	applies	 to	Doppler	straddle	 loss	and	to	range	straddle	 loss	when	the
radar	uses	LFM	pulses.	Nominal	values	of	loss	for	these	cases	vary	from	about	0.3	to	1	dB	for
typical	 sample	 spacings	of	 0.5	 to	 1	 resolution	 cell.	 For	 unmodulated	pulses,	 or	 pulses	with
phase	modulation,	the	loss	is	somewhat	more	severe	and	ranges	from	about	1	to	2.4	dB.

The	 final	 loss	 in	 Table	 5.9	 is	 CFAR	 loss.	 In	 modern	 radars,	 the	 detection	 threshold	 is
computed	by	a	CFAR	because	this	circuit	or	algorithm	can	easily	adapt	to	different	noise	(and
jammer)	environments.	The	CFAR	attempts	to	determine	the	desired	threshold-to-noise	(TNR
—See	Chapter	6)	ratio	based	on	a	limited	number	of	samples	of	the	noise	at	the	output	of	the
signal	processor.	Because	of	 the	 limited	number	of	 samples	used,	 the	 threshold	will	 not	be
precisely	set	relative	to	theory.	This	impreciseness	is	accommodated	by	adding	a	CFAR	loss
to	L.

The	 precise	 CFAR	 loss	 value	 depends	 upon	 the	 type	 of	 CFAR	 and	 the	 number	 of	 noise
samples	(number	of	reference	cells)6	used	to	determine	the	threshold.	It	also	depends	upon	the
desired	false	alarm	probability	 (Pfa),	 the	detection	probability	 (Pd)	 (though	minimally),	 and
the	type	of	target	(Swerling	model—0	through	5—see	Chapter	3)	[37].	The	analysis	of	CFAR
loss	for	particular	parameters	can	become	quite	involved	[8,	38–43].

For	preliminary	designs,	we	choose	a	simpler	expression	that	is	applicable	in	general.	One
such	expression	is	provided	by	Hansen	and	Sawyers	for	the	CFAR	loss	of	a	greatest	of	(GO)
cell	averaging	(CA)	CFAR,	given	a	square	law	detector	and	a	Swerling	1	target	[8]	is

where	Pfa	is	the	desired	probability	of	false	alarm,	Pd	is	the	desired	probability	of	detection,
and	M	is	the	number	of	reference	cells	used	to	form	the	noise	estimate.	Equation	(5.7)	can	be
approximated	by



where	x	is	obtained	from

It	 turns	out	 that	 this	equation	 is	also	a	 reasonably	good	approximation	when	considering
linear	 and	 log	 detectors,	 SO-CFAR	 (smallest-of	 CFAR)	 and	 CA-CFAR	 (cell-averaging
CFAR),	as	well	 as	 the	other	Swerling	 targets.	An	example	of	 the	dependency	of	CFAR	 loss
upon	various	parameters	is	shown	in	Figure	5.15	for	a	CA-CFAR.

Perhaps	the	simplest	approximation	for	CFAR	loss	(valid	for	M	>	16)	commonly	used	 is
provided	by	Nitzberg	[41]

Figure	5.15	Loss	for	a	cell	averaging	CFAR,	Pd	=	0.9.

To	complete	our	example	loss	table,	we	will	add	processor	and	detection	losses.	For	the	L-
band	search	radar	we	assume	that	the	radar	is	using	LFM	pulses	with	Hamming	weighting	to
reduce	the	range	sidelobes.	Since	 it	 is	a	search	radar,	we	assume	that	 the	range	samples	are
spaced	one	range	resolution	cell	apart.	The	radar	has	 the	ability	 to	use	MTI	processing,	but
for	 the	 long-range	search	uses	only	 the	LFM	pulses	 (because	 the	 targets	are	expected	 to	be
beyond	 the	 horizon	 and	 we	 are	 not	 considering	 rain).	 The	 radar	 uses	 a	 CA-CFAR	 with	 a
reference	window	of	18	range	cells.	The	desired	Pfa	is	10-6.

The	S-band	 radar	also	uses	LFM	with	Hamming	weighting.	Since	 this	 radar	may	need	 to
operate	in	ground	clutter,	it	uses	an	MTI	processor	with	a	staggered	PRI	waveform.	Analyses



of	 the	 frequency	 response	of	 the	MTI	 indicates	 that	 the	 average	SNR	 loss	 across	 the	 range
rates	of	interest	is	about	0.2	dB.	During	search,	the	radar	spaces	the	range	samples	one	range
resolution	cell	apart.	It	uses	a	GOCFAR	designed	to	provide	a	Pfa	of	10–8.	The	CFAR	uses	are
reference	window	of	22	cells.

The	 X-band	 radar	 uses	 phase	 coded	 waveforms	 and	 a	 pulsed-Doppler	 signal	 processor.
Since	 the	 radar	 has	 a	 stringent	 clutter	 rejection	 requirement,	 the	 pulsed-Doppler	 processor
uses	100-dB	Chebyshev	weighting.	The	 radar	samples	 in	 range	at	one	 range	 resolution	cell
and	 in	Doppler	at	½	Doppler	 resolution	cell.	The	radar	uses	a	GO-CFAR	with	32	reference
cells	and	a	Pfa	of	10–4.	Even	though	the	X-band	radar	uses	Doppler	processing,	 it	performs
CFAR	and	detection	in	only	the	range	direction.	Specifically,	it	performs	CFAR	and	detection
on	each	Doppler	cell.

Table	5.10	contains	the	total	losses	with	the	processor	and	detection	losses	included.

Table	5.10
Total	Losses	for	the	Example

The	 losses	 introduced	 in	 this	 chapter	 are	 what	 we	 consider	 representative	 of	 those	 one
would	 use	 in	 a	 preliminary	 radar	 design	 or	 analysis.	 We	 did	 not	 attempt	 to	 present	 an
exhaustive	list	of	losses,	as	that	would	require	hundreds	of	pages	instead	of	the	few	devoted	to
this	 chapter.	 For	 more	 detailed	 expositions	 of	 the	 many	 loss	 terms	 that	 would	 need	 to	 be
considered	in	a	final	radar	design,	the	reader	is	directed	to	[1,	2,	4,	6–8,	26,	35,	39–48].	A	very
good	reference	is	Barton’s	2013	text	[9],	which	contains	approximately	200	pages	dedicated
to	the	discussion	of	losses.	Another	notable	reference	is	Blake	[28].

5.7 EXERCISES

1. The	figures	of	merit	 for	window	functions	(with	respect	 to	a	 rectangular	window)	are
given	by

Table	5.11



Window	Figures	of	Merit—Equations	[49]

Calculate	the	parameters	in	Table	5.11	for	Hamming,	Hann,	and	Gaussian	windows	for	N
=	32.	Relate	these	parameters	to	those	in	Table	5.9.

2. There	 are	 two	 forms	 for	 a	window	 function,	 referred	 to	 as	 symmetric	 and	 periodic.7
Appendix	 B	 lists	 some	 window	 functions	 in	 causal	 symmetric	 forms	 (identical
endpoints)	 is	 generally	 used	 for	 FIR	 filter	 design.	 Periodic	 forms,	 characterized	 by	 a
missing	(implied)	endpoint	to	accommodate	periodic	extension,	are	generally	used	for
spectral	estimation	(divide	by	N	versus	N	–	1).

Pick	one	window	function	from	Appendix	B	and	plot	the	symmetric	and	periodic	forms
on	the	same	chart	for	N	=	16.	Select	parameters	using	Table	5.9	as	necessary.	Generate	a
separate	 chart	 showing	 the	 FFT	 of	 the	 periodic	 and	 symmetric	 forms.	 Zero	 pad	 as
necessary	for	a	clear	plot.	What	differences	are	evident	in	the	frequency	domain?

3. Generate	Figure	5.13	for	a	32-point	Gaussian	weighing.

4. The	 parameters	 in	 Table	 5.9	 are	 a	 weak	 function	 of	 N.	 For	 a	 Hamming	 weighting,
generate	plots	of	SLL,	SNR	Loss,	and	peak	straddle	loss	versus	N.	Let	N	vary	from	0	to
500.

5. Several	antenna	pattern	models	often	used	for	analysis	are	listed	in	Table	5.12.	Plot	all	of
the	power	patterns	on	the	same	figure.	Let	θ3	=	2.3º.	How	do	they	compare?

6. Nitzberg	 uses	 the	 simple	 CFAR	 loss	 approximation	 given	 by	 (5.10).	 Generate	 Figure
5.15,	and	overlay	Nitzberg’s	approximation.	How	do	they	compare?

Table	5.12
Antenna	Pattern	Models



Source:	[9].
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APPENDIX	5A:	WAVEGUIDE	ATTENUATION

Waveguide,	invented	by	Bell	Telephone	Laboratories	[50]	and	studied	in	parallel	at	MIT	[51]
in	the	1930s,	is	one	RF	transmission	line	commonly	used	in	radar	because	of	its	low	loss	and
high	 power	 handling	 capability.	 This	 is	 especially	 applicable	 for	 the	 types	 of	 transmitters
depicted	in	Figure	5.1,	where	all	of	the	transmit	power	travels	through	a	single	RF	path.	The
waveguide’s	 dimensions	 (square,	 rectangular,	 circular)	 determine	 the	 operating	 frequency



range	and	the	material	(gold,	silver,	copper,	aluminum,	brass)	affects	the	loss.

Rectangular	waveguide	is	frequently	used	in	radar.8	For	illustration,	Figure	5A.1	shows	a
magic	T	(or	tee)	constructed	with	WR-90	waveguide.	The	magic	T	is	a	four-port,	180°,	3-dB
hybrid	developed	during	World	War	II	[52]	and	is	used	as	both	a	power	combiner	and	power
divider,	depending	upon	the	ports	used	and	is	very	low	loss	[53–55].	Copper	and	copper	alloy
are	standard	waveguide	materials	(solid	or	plating).9

Table	 5A.1	 contains	 the	 Electronic	 Industries	 Association	 (EIA)	 waveguide	 (WG)
designations,10	 inner	dimensions,	 frequency	range,	and	theoretical	attenuation	for	a	number
of	standard	rectangular	copper	waveguides	[15].	For	the	EIA	designation,	the	WR	number	is
the	internal	dimension	in	inches	of	the	broad	wall.Figure	5.2	contains	plots	of	the	theoretical
waveguide	 loss	versus	 frequency	for	several	of	 the	waveguides	 in	Table	5A.1.	We	note	 that
loss	is	inversely	proportional	to	frequency.	Also,	the	frequency	boundaries	are	not	coincident
with	radar	designators.	The	general	rule	of	thumb	used	to	decide	between	multiple	waveguide
possibilities	is	to	select	the	larger	waveguide,	which	has	lower	loss.

Figure	5A.1	Waveguide	magic	T	(WR-90).

Table	5A.1
Standard	Rectangular	Waveguide	Specifications	(Copper)



Figure	5A.2	Rectangular	waveguide.

As	a	side	note,	waveguide	is	often	pressurized,	typically	using	dry	air,	nitrogen,	or	argon
to	 prevent	 moisture	 buildup	 inside	 the	 waveguide,	 which	 can	 cause	 corrosion	 of	 the
conducting	 surfaces,	 thus	 increasing	 loss.11	 In	 addition	 to	 using	 dry	 gas	 as	 dielectric,	 the
slight	 overpressure	 help	 to	 keep	 out	 moisture	 in	 the	 event	 of	 small	 leaks.	 Microwave
transparent	windows	are	used	 to	prevent	pressure	 loss	where	 the	waveguide	would	be	open
(e.g.,	feed	horn).

For	 example,	 consider	 a	 copper-plated,	 pressurized,	 rectangular	 WR-90	 waveguide,
depicted	in	Figure	5A.2,	operating	at	10	GHz	(X-band)	filled	with	nitrogen.	For	the	dominant
mode,12	 we	 want	 to	 determine	 the	 cutoff	 frequency	 in	 GHz	 and	 the	 attenuation	 due	 to
conductor	loss	in	dB/m.

From	Table	5A.1,	we	see	that	WR-90	waveguide	has	interior	dimensions	of	the	broad	and
short	walls	of	a	=	2.286	cm	(0.90	in)	and	b	=	1.016	cm	(0.4	 in),	 respectively.	Since	 the	wall
length	 ratio	 is	 ~	 2:1,	 the	 dominate	 mode	 of	 propagation	 is	 the	 TE10	 mode.	 The	 cutoff



frequency	for	the	mn	mode	is	given	by	[55,	p.113]

From	Table	5A.1,	we	see	that	WR-90	waveguide	has	interior	dimensions	of	the	broad	and
short	walls	of	a	=	2.286	cm	(0.90	in)	and	b	=	1.016	cm	(0.4	 in),	 respectively.	Since	 the	wall
length	 ratio	 is	 ~	 2:1,	 the	 dominate	 mode	 of	 propagation	 is	 the	 TE10	 mode.	 The	 cutoff
frequency	for	the	mn	mode	is	given	by	[55,	p.113]

where

is	the	cutoff	wave	number.	To	clarify	cutoff	frequency	as	used	here,	for	frequencies	above
the	cutoff	frequency	for	a	given	mode,	the	electromagnetic	energy	can	be	transmitted	through
the	guide	for	that	particular	mode	with	minimal	attenuation	(which	is	backwards	compared	to
lowpass	filter	cutoff	terminology).

For	 typical	 gaseous	 dielectrics	 used	 to	 fill	 waveguides	 (air,	 nitrogen,	 argon),	 the
permittivity	and	permeability	are	essentially	identical	to	those	of	free	space	(vacuum).	Recall
the	permittivity	of	free	space	is	μ0	=	400	π	≈	1256.637061	nH/m	and	the	permeability	of	free
space	is	ε0	=	1/μ0c2	≈	8.8541878176	pF/m.	For	the	TE10	mode,	(5A.1)	and	(5A.2)	simplify	to

and

The	upper	bound	on	propagation	is	the	TE20	mode	waveguide	cutoff	frequency	calculated
using	(5A.1).	Recall	 that	 above	 the	 cutoff	 frequency	 for	 a	 given	mode,	 the	 electromagnetic
energy	will	propagate	through	the	guide	for	that	particular	mode	with	minimal	attenuation.



Therefore,	TE10	mode	will	propagate	at	frequencies	above	6.56	GHz	and	below	13.11	GHz.

Digressing	for	a	moment,	we	note	that	6.56	GHz	to	13.11	GHz	does	not	match	the	operating
frequency	 range	 given	 in	 Table	 5A.1.	 We	 illustrate	 the	 rationale	 for	 this	 discrepancy	 by
comparing	 the	waveguide	 loss	for	both	 the	 theoretical	and	recommended	frequency	ranges,
presented	in	Figure	5A.3.	While	the	TE10	mode	will	 technically	propagate	with	up	 to	~3-dB
loss,	the	amount	of	loss	considered	acceptable	for	waveguide	is	much	lower.

Figure	5A.3	Theoretical	loss	for	copper-plated	WR-90	waveguide	over	theoretical	and	recommended	operating	ranges.

Returning	to	our	loss	example,	the	attenuation	due	to	conductor	loss	(loss	due	to	the	metal
of	the	waveguide)13	is	given	by	[55,	p.	115]

where	we	recall	that	nepers14	(Np),	defined	in	the	same	Bell	Labs	paper	as	dB	[56],	 is	a	unit
based	upon	the	natural	logarithm,	and	is	given,	for	voltage,	by	[55,	p.	63]



and	for	power	by

The	propagation	constant,	β,	for	the	TE10	mode	is	given	by	[55,	p.	112]

where

is	the	free	space	wave	number.	The	intrinsic	impedance	of	the	dielectric	is

The	last	component	of	(5A.6)	is	the	surface	resistivity	of	the	metal	in	the	waveguide,	given	by
[55,	p.	28]

The	conductivity	for	copper	and	other	common	waveguide	materials	is	listed	in	Table	5A.2.
For	 this	example,	copper	 is	specified,	which	has	a	conductivity	of	5.813×107	mho/m	[54,	p.
458].	This	results	in	a	surface	resistance	of	Rs	=	0.0261Ω.	Substitution	into	(5A.6)	gives

Table	5A.2
Material	Conductivity

Material Conductivity	(mho/m)



Aluminum 3.816	·	107

Brass 2.564	·	107

Copper 5.813	·	107

Gold 4.098	·	107

Silver 6.173	·	107

Source:	[54].

Converting	this	to	dB/m	gives

where	nepers	are	related	to	dB	by	[55,	p.	63]

For	 completeness,	we	 convert	 the	 answer	 to	 dB/100	 ft,	 since	 historically,	many	waveguide
tables	are	presented	in	dB/100	ft.

5A.1 EXERCISES

1. Typical	waveguide	plating	materials	are	aluminum,	brass,	copper,	gold,	and	silver	 (or
alloys	thereof).	For	these	materials,	calculate	the	theoretical	loss	across	the	recommend
operating	 frequency	 for	WR-90.	Assume	 the	waveguide	 is	 filled	with	 pressurized	 dry
nitrogen.	Generate	 a	 comparison	 plot	 similar	 to	 Figure	 5.2.	 For	 reference,	 use	 Table
5A.2.

2. Generate	Figure	5.2	for	a	silver-plated	waveguide.	Also	plot	the	approximation	given	by
(5.1).	How	does	the	approximation	compare?

3. Consider	an	air-filled	rectangular	waveguide	operating	at	2	GHz.	Select	an	appropriate
waveguide	 size.	 What	 are	 the	 interior	 dimensions?	 Calculate	 the	 upper	 and	 lower
frequency	 bounds	 for	 propagation.	 Recall	 that	 for	 a	 wall	 length	 ratio	 of	 ~2:1,	 the
dominate	mode	of	propagation	is	the	TE10	mode.	For	reference,	recall	the	permittivity
of	free	space	is	μ0	=	400	π	≈	1256.637061	nH/m	and	the	permeability	of	free	space	is	ε0
=	1/μ0c2	≈	8.8541878176.

APPENDIX	5B:	ATMOSPHERIC	AND	RAIN	ATTENUATION

For	reference,	the	equations	and	data	outlined	below	are	used	to	generate	Figures	5.8	through



5.10	 (two-way	 atmospheric	 loss)	 and	 Figure	 5.11	 (rain	 attenuation).	 The	 equations
summarized	 in	 this	 appendix	 are	 coded	 in	 the	MATLAB	 functions	 listed	 in	Table	 5B.1	 and
included	 on	 the	 CD.	 Note:	 the	 equations	 are	 presented	 in	 the	 order	 of	 execution	 in	 their
associated	function	(e.g.,	terms	are	calculated	for	use	in	functions	defined	subsequently).	For	a
complete	explanation	of	the	origins	and	theory	for	atmospheric	absorption,	please	refer	to	[4,
9,	28,	57,	58].

Table	5B.1
Atmospheric	and	Rain	Attenuation	Function	Summary

Function	Description Resulting
Figure

[R,	L,	Lox,	Lwv]	=	troploss(f,	ang):

This	 function	 computes	 the	 accumulated	 two-way	 tropospheric	 absorption	 loss	 (in	 dB)	 for	 an	 RF	 signal	 with
frequency	f	along	a	refracted	path	that	originates	at	the	earth’s	surface	and	has	an	elevation	angle	ang.	It	returns
the	loss	for	oxygen,	water	vapor,	total	loss	and	the	associated	ranges.

Figure
5.8,	 5.9,
5.10

[Re,	h,	phi]	=	troprefract(ang):

This	function	computes	refracted	RF	path	through	the	troposphere	for	the	elevation	angle	ang.	It	returns	range,
height,	and	the	angular	position	PHI	of	the	refracted	path.

Called	by
troploss.m

[g,	gox,	gwv]	=	tropatten(f,	h):

Given	frequency	f	and	altitude	h,	this	function	computes	tropospheric	absorption	coefficient	versus	frequency	and
altitude.	 It	 returns	 the	 tropospheric	 absorption	coefficients,	 g,	 (in	dB/km)	as	well	 as	 the	 component	 absorption
coefficients	for	oxygen,	gox,	and	water	vapor,	gwv.

Called	by
troploss.m

[K]	=	rainAttn2way(f,	rr):

Given	frequency,	f,	in	GHz	and	rain	rate,	rr,	in	mm/hr,	this	function	uses	the	standard	model	for	rain	attenuation	to
compute	two-way	loss	(dB/km)	as	a	function	of	operating	frequency	and	rain	rate	[1,	p.	215;	2,	p.	246].

Figure
5.11

5B.1 FUNCTION	TROPATTEN.M

5B.1.1 Compute	International	Civil	Aviation	Organization	(ICAO)	Standard	Atmosphere
196415

In	 determining	 atmospheric	 attenuation,	 knowledge	 of	 the	 atmosphere’s	 pressure,
temperature,	and	water	vapor	density,	all	of	which	varies	with	altititude,	 is	necessary.	Given
the	varying	nature	of	the	atmosphere	due	to	such	factors	as	location,	time	of	day,	or	season,	a
standard	model	 is	used	 [27,	59].	The	 standard	 atmosphere	model	 (based	 upon	 experimental
data)	provides	a	defined	variation	of	mean	values	of	temperature,	pressure,	and	water	vapor
density	as	a	function	of	altitude.	Specifically,	temperature	and	pressure	are	modeled	using	an
empirical	equation,	while	water	vapor	density	is	determined	via	table	lookup.

As	the	first	step	in	computing	the	tropospheric	absorption	coefficient	versus	frequency	and
altitude,	 the	 function	 tropatten.m	 first	 calculates	 the	 geopotential	 altitude	 (based	 upon	 the
assumption	of	 constant	gravity	at	 all	 altitude),	hg,	which	 is	 related	 to	 the	geometric	 altitude
(referenced	to	mean	sea	level),	ha,	by	[28,	p.	206;	59]16



where	r0	=	6,371	km	is	the	radius	of	the	earth.

Using	 the	 results	 of	 (5B.1),	 the	 atmosphere	 temperature	 and	 pressure	 as	 a	 function	 of
geopotential	altitude	are	determined	by	[28,	p.	205;	59]

which	 are	 equations	 describing	 the	 absolute	 atmospheric	 temperature,	T	 (degrees	 kelvins),
and	 total	atmospheric	pressure,	p	 (millibars),	 for	 the	standard	atmospheric	model	 [59].	 The
coefficient	values	are:	α	=	5.2561222,	β	=	0.034164794,	and	γ	=	11.388265.	The	water	vapor
density	for	the	U.S.	standard	atmosphere	is	provided	in	Table	5B.2	[28,	p.	207].

The	values	in	Table	5B.2	are	the	mid-latitude	mean	water	vapor	densities	for	a	surface	value
(h	=	0)	of	5.947	g/m3	[60].	However,	 the	current	standard	 is	 to	use	a	surface	value	of	water
vapor	density	of	7.5	g/m3.	As	such,	we	translate	the	vapor	density	values	in	Table	5B.2	such
that	the	surface	water	vapor	density	is	7.5	g/m3	[28,	p.	206]	using

To	determine	water	vapor,	interpolate	as	necessary	into	Table	5B.2.

Table	5B.2
Mid-Latitude	Mean	Water	Vapor	Densities



Source:	[28].

5B.1.2 Absorption	Coefficient	for	Oxygen

According	 to	Blake	[28],	 the	original	 theory	 for	determining	 the	absorption	coefficient	 for
oxygen	was	presented	by	Van	Vleck	 [61–63],	with	 further	 refinements	 being	made	 later	 on
[64,	 65].	 To	 determine	 absorption,	 we	 take	 the	 summation	 of	 the	 contributions	 of	 several
oxygen	 resonance	 lines,	 each	 of	 which	 has	 two	 resonant	 frequencies.	 These	 resonant
frequencies	are	listed	in	Table	5B.3	[28,	p.	201;	9,	p.	233;	64].17

Table	5B.3
Oxygen	Resonance	Frequencies

Source:	[28].

Using	the	parameters	in	Table	5B.3,	we	calculate	the	following	values	[28,	p.	200]



and

where	p0	=	1013.25	mbar	(760	torr)	is	the	pressure	at	sea	level,	and	T0	=	360	K18	and	[28,	65]

The	values	calculated	above	are	components	of	[28,	p.	200;	66]

This	 is	 the	Van	Vleck-Weisskopf	formula,	which	provides	 the	shapes	of	 the	resonance	 lines
[28].	The	nonresonant	contribution	is	of	the	form	[28,	p.	200]

Next,	compute	the	terms	given	by	[28,	p.	200]

Finally,	 the	complete	expression	for	absorption	coefficient	due	 to	oxygen	is	given	by	 the
summation	[28,	p.	201]



where	f	is	frequency,	p	is	atmospheric	pressure,	T	is	absolute	temperature,	and	C	=	2.0058	for
γ	in	decibels	per	kilometer	[28].

5B.1.3 Absorption	Coefficient	for	Water	Vapor

There	are	two	primary	components	to	water	vapor	absorption	(below	100	GHz).	First,	handle
water	due	to	vapor	resonance	at	22.235	GHz.	To	do	this,	start	by	computing	the	water	vapor
partial	pressure	 (in	Torr),	which	 is	 a	 function	of	water	vapor	density	 and	 temperature.	The
partial	pressure	of	water	is	given	by	[28,	p.	203]

where	 ρ	 is	 water	 vapor	 density	 and	 T	 is	 temperature.	 Recall	 that	 1	 mbar	 ~	 0.75	 Torr.
Converting	to	Torr	we	then	use	[28,	p.	203]

Next,	we	use	the	equation	provided	by	Liebe	for	∆f	[28,	p.	203;	65]

Similarly	to	what	was	done	for	oxygen	(except	for	the	additional	factor	f	/	fr),	we	now	use
the	Van	Vleck-Weisskopf	formula	again	to	determine	F	[28,	p.	203;	66]

where	 fr	=	22.235	GHz.	Finally,	 using	 the	 terms	determined	above,	 calculate	 the	 absorption
coefficient	due	to	vapor	resonance	at	22.235	GHz	using	[28,	p.	203]

Second,	compute	the	residual	effect	of	water	vapor	absorption	lines	above	100	GHz,	using	the
simpler	expression	[28,	p.	204;	67]



Now	finish	off	the	water	vapor	result,	which	is	given	by

For	the	total	absorption,	we	sum	the	oxygen	and	the	water	vapor	absorption,	using

5B.2 FUNCTION	TROPREFRACT.M

When	RF	waves	travel	through	the	atmosphere,	their	path	is	bent,	or	refracted.	This	is	because
the	 atmosphere	 is	 a	 stratified	 medium	 whose	 refractive	 index	 varies	 with	 altitude.	 To
determine	atmospheric	absorption	properly,	which	is	a	function	of	distance,	we	must	calculate
the	actual	path	traveled	versus	the	straight	line	path.

For	our	calculations,	we	use	the	exponential	model	of	refractive	index	[28,	p.	182].	More
specifically,	 Table	 5B.4	 provides	 the	 parameters	 that	 define	 the	 Central	 Radio	 Propagation
Laboratory	(CRPL)19	exponential	reference	atmosphere	[28,	58].	The	values	associated	with
index	k	=	5	(Ns	=	313,	ce	=	0.1439)	are	representative	of	 the	average	values	over	 the	United
States	[28]	and	will	be	used	for	our	calulations.

Table	5B.4
Value	of	Parameters	of	CRPL	Exponential	Reference	Atmosphere

Ns ce	(per	km) hs	(ft)

200.0 0.118400 10,000

250.0 0.125625 —

252.9 0.126255 5,000

301.0 0.139632 1,000

313.0 0.143859 700

344.5 0.156805 0

350.0 0.159336 0

377.2 0.173233 0

400.0 0.186720 0

404.9 0.189829 0

450.0 0.223256 0

The	values	in	Table	5B.4	are	ce,	which	is	a	constant	related	to	refractive	index	gradient	(per
km),	hs,	which	corresponds	to	altitude	above	sea	level	in	ft	and	Ns,	the	surface	refractivity	in
ppm	[28,	p.	183].



First,	convert	to	hs	to	km

Next,	 convert	 surface	 refractivity	 to	 n0,	 which	 is	 the	 exponential	 refractive	 index	 at	 the
Earth’s	surface	(h	=	0).	To	do	this,	use	the	relationship	between	Ns	and	n0	of	[28,	p.	183]

or

Using	(5B.26)	 and	 the	 parameters	 from	Table	5B.4,	 the	 exponential	model	 for	 refractive
index	as	function	of	altitude	is	[28,	p.	182;	58,	68]

Finally,	to	determine	the	total	distance	over	the	refracted	path,	we	compute	the	ray	tracing
integral	given	by	[28,	p.	182;	9,	p.	232;	57]

The	integral	(5B.28)	provides	the	distance	used	to	determine	atmospheric	loss,	as	opposed
to	slant	range.

5B.3 FUNCTION	TROPLOSS.M

Using	the	above	functions,	we	are	ready	to	compute	atmospheric	loss	as	follows:

• First	do	the	ray	tracing	to	determine	the	refracted	RF	path
◦ Call	[R,	h]	=	troprefract(angle,	M)

• Now	compute	the	absorption	coefficients	versus	h	at	the	desired	frequencies
◦ Call	[γ,	γox,	γwv]	=	tropatten(f,	h)

• The	total	atmospheric	loss	is	then	determined	by	taking	the	integral	over	the	RF	path	[28,
p.	199]



As	indicated	by	(5B.29)	the	two	components	of	atmospheric	loss	are	the	atmospheric	loss
due	to	oxygen,	Lox,	and	the	atmospheric	loss	due	to	water	vapor,	Lwv.

5B.4 FUNCTION	RAINATTN2WAY.M

The	 standard	model	 for	 rain	 attenuation	 coefficient	kαr	 in	dB/km	given	 a	 rainfall	 rate	 rr	 in
mm/h	takes	the	form	[19,	p.	246;	28,	p.	215]

The	terms	a	and	b	are	a	multiplicative	factor	and	an	exponent,	respectively,	both	of	which	are
dependent	upon	frequency.

Barton	provides	the	following	empirical	expression	for	a	and	b	(an	updated	version	of	the
expression	presented	by	Blake	 [28,	p.	217])	 that	applies	 for	a	 temperature	of	~	291	K	[9,	p.
246]:

where	[9,	p.	246]

and	 C0	 =	 3.1	 ×	 10–5	 is	 a	 frequency	 parameter.	 The	 following	 are	 break	 frequencies
(determined	empirically	to	match	various	theoretical	computations	published	by	a	number	of
authors20)	in	GHz:



and

1	Barton	notes	that	(5.1)	matches	the	line	losses	plotted	in	Saad	and	Hansen,	Microwave	Engineers′	Handbook,	Artech	House,
1971	[15,	16].	Equation	(5.1)	appears	in	the	file	titled	“10-1	Loss	Factors”	included	on	the	accompanying	DVD	of	[9].
2	When	the	scan	loss	from	(5.6)	results	from	β	>	1.0,	it	includes	the	effect	of	the	mismatch	loss	expressed	by	Figure	5.5.	The
mismatch	remains	important	because	it	may	cause	an	increase	in	the	noise	temperature	of	a	phased	array	antenna	[24].
3	Synonym:	antenna-pattern	loss.
4	Example	calculations	of	several	suboptimal	match	filters	are	provided	in	Appendix	A.
5	Metrics	generated	using	N=1k,	zero	padded	to	64k	because	of	weak	dependency	on	N.
6	While	the	exact	number	of	reference	cells	depends	upon	the	application	and	dimensionality	of	the	CFAR,	from	~10	to	~40
cells	is	fairly	typical.	There	is	a	tradeoff	between	more	reference	cells	lowering	CFAR	loss	but	resulting	in	slower	threshold
transitions	at	clutter	boundaries.	One	rule	of	thumb	is	to	use	enough	reference	cells	for	~	1-dB	CFAR	loss.
7	For	some	windows	(but	not	all),	MATLAB®	can	generate	either	symmetric	(default)	or	periodic	windows,	via	a	flag	in	the
particular	window	function,	with	symmetric	being	the	default.	The	spectral	difference	is	minimal,	decreasing	as	N	increases.
8	The	rule	of	 thumb	for	standard	rectangular	waveguide	design	is	 to	use	a	2:1	wall	 length	ratio,	which	ensures	 that	only	the
TE10	mode	(dominant	mode	in	rectangular	waveguide)	will	propagate.	In	practice,	wall	ratios	vary	slightly,	~	2:1	to	2:2.
9	Copper	waveguide	provides	good	heat	dissipation.	Additional	heat	transfer	can	be	achieved	by	brazing	coolant	lines	directly
onto	the	waveguide.
10	Joint	Army	Navy	(JAN)	designators	exist	as	well.
11	 Interestingly,	 extreme	over	pressurization,	perhaps	 from	a	pressure	 regulator	 failure,	will	 turn	 rectangular	waveguide	 into
round	waveguide.
12	The	dominant	mode	 is	 the	mode	with	 the	 lowest	cutoff	 frequency,	which	for	a	 rectangular	waveguide	(a	>	b)	 is	 the	TE10
mode.
13	The	attenuation	due	to	dielectric	loss	(the	material	filling	the	waveguide)	is	negligible	for	typical	gaseous	dielectrics.
14	Derived	from	the	name	of	John	Napier,	who	invented	the	natural	logarithm	[56].
15	The	current	standard	atmosphere	is	the	1976	version,	but	below	32,000	km,	the	altitudes	of	interest	for	most	ground-based
radars,	the	models	are	equivalent	[28,	p.	227].
16	The	difference	between	geopotential	and	geometric	altitude	is	very	small	for	altitudes	less	than	30	km,	but	most	standard
atmospheric	tables	quote	geopotential	altitude.
17	N	 is	 comprised	 of	 odd	 integers	 because	 it	 is	 the	 quantum	 rotational	 number.	 Also,	 for	 values	 of	N	 greater	 than	 45,	 the
absorption	contribution	is	negligible	[28,	p.	200].
18	P0,	T0,	and	ρ0	define	the	standard	atmosphere	[9].
19	CPRL	is	now	the	National	Oceanic	and	Atmospheric	Agency	(NOAA).
20	Blake	acknowledges	Wayne	Rivers,	a	senior	scientist	at	Technology	Service	Corporation,	 for	coming	up	with	 the	original
expressions	for	(5B.31)	through	(5B.34)	[28,	p.	215].



Chapter	6

Detection	Theory

6.1 INTRODUCTION

In	the	radar	range	equation	exercises	of	Chapter	2,	we	considered	an	example	of	computing
detection	 range	 based	 on	 SNRs	 of	 13	 and	 20	 dB.	 We	 now	 want	 to	 develop	 some	 theory
explaining	 the	 use	 of	 these	 particular	 SNR	 values.	More	 specifically,	 we	 will	 examine	 the
concept	 of	 detection	 probability,	 Pd.	 Our	 need	 to	 study	 detection	 from	 a	 probabilistic
perspective	 stems	 from	 our	 dealings	 with	 signals	 that	 are	 noise-like.	 From	 our	 studies	 of
RCS,	we	found	 that,	 in	practice,	 the	signal	 return	 looks	 random.	 In	 fact,	Peter	Swerling	has
convinced	us	to	use	statistical	models	to	represent	target	signals	[1].	In	addition	to	these	target
signals,	we	found	that	the	signals	in	the	radar	contain	a	noise	component,	which	also	needs	to
be	dealt	with	using	the	concepts	of	random	variables,	random	processes,	and	probabilities.

The	early	work	in	detection	theory,	as	applies	to	radar,	was	published	by	Stephen	Oswald
Rice	 in	 the	Bell	 System	 Technical	 Journal	 [2].	 Rice	 considered	 the	 problem	 of	 detecting	 a
constant	amplitude	signal	in	the	presence	of	noise,	based	on	a	single	sample	of	the	signal	plus
noise.	 A	 SW0/SW5	 target	 (see	 Chapter	 3)	 produces	 such	 a	 signal.	 In	 his	 1947	 paper,	 J.	 I.
Marcum	extended	Rice’s	work	 to	 the	 case	of	detection	after	 the	 integration	of	 a	number	of
signal-plus-noise	 samples	 [3,	 4].	 In	 1954,	 Swerling	 introduced	 his	 concepts	 of	 noise-like
signals	caused	by	a	target	with	a	fluctuating	RCS	[1].	He	developed	equations	for	determining
detection	 probability	 for	 single	 and	 multiple	 sample	 cases.	 Since	 then,	 other	 authors	 have
extended	Swerling’s	work	 to	other	 target	 fluctuation	models	 [5–10].	However,	 the	standards
are	still	the	Rice	model	and	the	Swerling	models.

In	this	chapter,	we	will	be	concerned	with	detection	based	on	returns	from	a	single	pulse.	In
Chapter	8,	we	will	 extend	 the	 results	 to	 the	 case	where	 detection	 is	 based	 on	 returns	 from
several	pulses.	Since	we	are	considering	a	 single	pulse,	 the	detection	equations	we	develop
are	termed	single	pulse,	single	sample,	or	single	hit	detection	probabilities.	We	will	develop
detection	 equations	 for	 the	 five	 target	RCS	 types	 discussed	 in	Chapter	 3:	 SW0/SW5,	 SW1,
SW2,	SW3,	and	SW4.	We	will	also	derive	the	“detection”	equation	for	noise,	which	we	term
false	alarm	probability.

Table	6.1
Single	Pulse	Detection	Probability	Equations	for	SW0	through	SW5	Targets



The	various	signal	models	and	probability	derivations	presented	in	this	chapter	are	not	new.
As	indicated	above,	they	have	been	carried	out	by	Rice	and	Swerling,	and	many	others	[11].
We	include	them	in	this	book	because	we	feel	it	is	very	important	to	understand	the	origin	of
the	detection	 and	 false	 alarm	probability	 equations,	 along	with	 the	 limitations	on	when	 and
where	they	can	be	applied.	For	those	readers	who	are	interested	only	in	the	final	results,	Table
6.1	contains	a	summary	of	the	detection	and	false	alarm	probability	equations	derived	in	this
chapter,	 along	 with	 the	 noise	 and	 signal-plus-noise	 density	 function	 equations	 upon	 which
probability	equations	are	based.

In	the	table,

• Pd	is	the	single	pulse	detection	probability.
• SNR	is	the	single	pulse	SNR	(see	(2.1),	Chapter	2).
• Pfa	is	the	probability	of	false	alarm.
• Q1	is	the	Marcum	Q-function.
• TNR	is	the	threshold-to-noise	ratio.
• I0	is	the	modified	Bessel	function	of	the	first	kind,	order	zero.



• 	is	the	amplitude	of	the	signal	return	for	a	SW0/SW5	target.
• PS	is	the	signal	power	from	the	radar	range	equation	(see	Chapter	2).
• σ2	is	the	noise	power	at	the	output	of	the	matched	filter.
• U(x)	is	the	unit	step	function.

These	parameters	are	defined	more	fully	in	the	discussions	that	follow.

To	develop	the	requisite	detection	probability	equations,	we	need	to	develop	a	mathematical
characterization	 of	 the	 target	 signal,	 the	 noise	 signal,	 and	 the	 target-plus-noise	 signal	 at
various	points	in	the	radar.	We	start	with	a	characterization	of	noise	and	then	progress	to	the
target	and	target-plus-noise	signals.

6.2 NOISE	IN	RECEIVERS

We	characterize	noise	for	the	two	most	common	types	of	receiver	implementations.	The	first
is	illustrated	in	Figure	6.1	and	is	termed	the	IF	representation	[12].	In	this	representation,	the
matched	 filter	 is	 implemented	 at	 some	 intermediate	 frequency,	 or	 IF.	 The	 second	 receiver
configuration	 is	 illustrated	 in	Figure	6.2	 and	 is	 termed	 the	baseband	representation	 [12].	 In
this	configuration,	the	signal	is	converted	to	a	baseband	signal,	a	complex	signal	centered	at	a
frequency	of	zero,	 instead	of	ωIF.	The	IF	configuration	 is	common	in	older	 radars,	and	 the
baseband	 representation	 is	 common	 in	modern	 radars,	 especially	 those	 using	digital	 signal
processing.

Both	 the	 IF	 and	 baseband	 representations	 contain	 a	 matched	 filter,	 which	 serves	 as	 the
signal	processor	for	the	case	where	the	radar	bases	detection	decisions	on	a	single	pulse.	As
we	will	see	 in	Chapter	7,	 the	matched	filter	 is	a	necessary	component	because	 it	maximizes
SNR,	which	is	a	requirement	for	maximizing	detection	probability.

Figure	6.1	IF	receiver	representation.

Figure	6.2	Baseband	receiver	representation.



6.2.1	IF	Configuration

In	the	IF	configuration,	we	represent	the	noise	by

where	 nIF	 (t),	N(t),	 and	 φ(t)	 are	 random	 processes.	 Expanding	 (6.1)	 using	 trigonometric
identities	gives

where	nI(t)	and	nQ(t)	are	also	random	processes.	In	(6.2),	we	stipulate	nI(t)	and	nQ(t)	as	joint,
wide-sense	stationary	 (WSS),	zero-mean,	equal	variance,	Gaussian	 random	processes.	They
are	also	such	that	the	random	variables	nI	=	nI(t)|t=t1	and	nQ	=	nQ(t)|t=t1	are	 independent.	The

variance	of	nI(t)	and	nQ(t)	 is	σ	2.	Under	 these	 conditions,	 the	density	 functions	of	nI(t)	 and
nq(t)	are	given	by

We	now	show	that	N(t)	is	Rayleigh	and	φ(t)	is	uniform	on	(–π,π	].	We	will	further	show	that
the	random	variables	N	=	N(t)|t=t1	and	φ	=	φ(t)|t=t1	are	independent.

From	random	variable	theory	[13],	if	x	and	y	are	real	random	variables,

and

where	tan−1(y/x)	denotes	the	four-quadrant	arctangent,	then	the	joint	density	of	r	and	φ	can	be
written	in	terms	of	the	joint	density	of	x	and	y	as

where,	as	a	reminder,	rect[x]	is1



U[x]	is	the	unit	step	function,2	which	is	defined	as

In	our	case,	x	=	nI,	y	=	nQ,	r	=	N,	and	φ	=	φ.	Thus,	we	have

and

Since	nI	and	nQ	are	independent

Using	this	result	in	(6.11)	with	nI	=	Ncos(ϕ)	and	nQ	=	Nsin(ϕ),	we	get

From	random	variable	theory,	we	can	find	the	marginal	density	from	the	joint	density	by
integrating	with	respect	to	the	variable	we	want	to	eliminate.	Thus,



and

This	proves	the	assertion	that	N(t)	 is	Rayleigh	and	φ(t)	 is	uniform	on	(–π,π	 ].	To	prove	 the
random	variables	N	=	N(t)|t=t1	and	φ	=	φ	(t)|t=t1	are	independent,	we	note	from	(6.13),	 (6.14),
and	(6.15)	that

which	means	N	and	φ	are	independent.

Since	 we	 will	 need	 it	 later,	 we	 want	 to	 find	 an	 equation	 for	 the	 noise	 power	 out	 of	 the
matched	filter,	and	into	the	detection	logic.	Since	nIF(t)	is	WSS,	we	use	(6.2)	to	write

In	 (6.17),	 the	 term	 on	 the	 third	 line	 is	 zero	 because	 nI	 =	 nI(t)|t=t1	 and	 nQ	 =nQ(t)|t=t1	 are
independent	and	zero-mean.

6.2.2	Baseband	Configuration

In	the	baseband	configuration	of	Figure	6.2,	we	represent	the	noise	into	the	detection	logic	as
a	complex	random	process	of	the	form

where	nI(t)	and	nQ(t)	are	joint,	WSS,	zero-mean,	equal	variance,	Gaussian	random	processes.
They	are	also	such	that	the	random	variables	nI	=	nI	(t)|t=t1	and	nQ	=	nQ(t)|t=t1	are	independent.

The	variance	of	nI(t)	and	nQ(t)	is	σ2.	The	constant	of	 	is	included	to	provide	consistency
between	the	noise	powers	in	the	baseband	and	IF	receiver	configurations.	The	power	in	nB(t)
[making	use	of	the	properties	of	nI(t)	and	nQ(t)]	is	given	by



We	write	nB(t)	in	polar	form	as

where

and

We	note	 that	 the	definitions	of	nI(t),	nQ(t),	N(t),	 and	φ(t)	 are	 consistent	 between	 the	 IF	 and
baseband	 representations.	This	means	 the	 two	 representations	are	equivalent	 in	 terms	of	 the
statistical	 properties	 of	 the	 noise.	We	 will	 reach	 the	 same	 conclusion	 for	 the	 signal.	 As	 a
result,	 the	 detection	 and	 false	 alarm	performances	of	 both	 types	of	 receiver	 configurations
are	the	same.	Thus,	the	detection	and	false	alarm	probability	equations	we	derive	in	the	future
will	apply	to	either	receiver	configuration.

If	the	receiver	being	analyzed	is	not	of	one	of	the	two	forms	indicated	above,	the	detection
and	false	alarm	probability	equations	derived	herein	may	not	apply.	A	particular	example	is
the	case	where	the	receiver	uses	only	the	I	or	Q	channel	in	baseband	processing.	While	this	is
not	a	common	receiver	configuration,	 it	 is	sometimes	used.	 In	 this	case,	one	would	need	 to
derive	a	different	set	of	detection	and	false	alarm	probability	equations	specifically	applicable
to	the	configuration.

6.3 SIGNAL	IN	RECEIVERS

6.3.1 Introduction	and	Background



We	now	 turn	 our	 attention	 to	 developing	 a	 representation	 of	 the	 signals	 at	 the	 input	 to	 the
detection	 logic.	 Consistent	with	 the	 noise	 case,	we	 consider	 both	 IF	 and	 baseband	 receiver
configurations.	Thus,	we	will	use	Figures	6.1	and	6.2,	but	replace	n(t)	with	s(t),	N(t)	with	S(t),
φ(t)	with	θ(t),	nI(t)	with	sI(t),	and	nQ(t)	with	sQ(t).

We	will	develop	three	signal	representations:	one	for	SW0/SW5	targets,	one	for	SW1/SW2
targets,	and	one	for	SW3/SW4	targets.	We	have	already	acknowledged	that	the	SW1	through
SW4	target	RCS	models	are	random	process	models.	To	maintain	consistency	with	this	idea,
and	consistency	with	what	happens	in	an	actual	radar,	we	also	use	a	random	process	model	for
the	SW0/SW5	target.

In	Chapter	3,	we	learned	the	SW1	and	SW2	targets	share	one	RCS	fluctuation	model	and	the
SW3	and	SW4	targets	share	a	second	RCS	fluctuation	model.	The	difference	between	SWodd
(SW1,	SW3)	and	SWeven	(SW2,	SW4)	was	in	how	their	RCS	varies	with	time.	SWodd	targets
have	an	RCS	that	is	constant	from	pulse	to	pulse,	but	varies	from	scan	to	scan.	SWeven	targets
have	an	RCS	that	varies	from	pulse	to	pulse.	All	cases	assumed	the	RCS	did	not	vary	during	a
PRI.	Because	of	this	assumption,	the	statistics	for	SW1	and	SW2	targets	are	the	same	on	any
one	pulse.	Likewise,	 the	statistics	 for	SW3	and	SW4	 targets	are	 the	same	on	any	one	pulse.
Consequently,	 in	 terms	of	single	pulse	probabilities,	we	can	combine	SW1	and	SW2	targets
and	we	 can	 combine	 SW3	 and	 SW4	 targets.	 This	 accounts	 for	 our	 use	 of	 the	 terminology
“SW1/SW2	 targets”	 and	 “SW3/SW4	 targets”	 when	 discussing	 single	 pulse	 detection
probability.	In	Chapter	8,	we	will	develop	separate	equations	for	each	of	the	Swerling	target
types,	since	we	will	base	detection	decisions	on	the	results	from	processing	several	pulses.

Since	 the	 target	RCS	models	 are	 random	processes,	we	 also	 represent	 the	 target	 voltage
signals	 in	 the	radar	 (henceforth	 termed	 the	 target	 signal)	as	 random	processes.	To	 that	end,
the	IF	representation	of	the	target	signal	is

where

and

The	baseband	signal	model	is

We	note	 that	both	of	 the	 signal	models	 are	 consistent	with	 the	noise	model	of	 the	previous
sections.	We	assume	S	=	S	(t)|t=t1	and	θ	=	θ(t)|t=t1	are	independent.



We	 have	made	many	 assumptions	 concerning	 the	 statistical	 properties	 of	 the	 signal	 and
noise.	A	natural	 question	 is:	 are	 the	 assumptions	 reasonable?	The	 answer	 is	 that	 radars	 are
usually	 designed	 so	 that	 the	 assumptions	 are	 satisfied.	 In	 particular,	 designers	 endeavor	 to
make	the	receiver	and	matched	filter	linear.	Because	of	this	and	the	central	limit	theorem,	we
can	 reasonably	 assume	 nI(t)	 and	 nQ(t)	 are	 Gaussian.	 Further,	 if	 we	 enforce	 reasonable
constraints	on	the	bandwidth	of	receiver	components,	we	can	reasonably	assume	the	validity
of	 the	 independence	 requirements.	 The	 stationarity	 requirements	 are	 easily	 satisfied	 if	 we
assume	 the	 receiver	gains	and	noise	 figures	do	not	change	with	 time.	We	enforce	 the	zero-
mean	 assumption	 by	 using	 AC	 coupling	 and	 bandpass	 filters	 (BPFs)	 to	 eliminate	 DC
components.	For	signals,	we	will	not	need	the	Gaussian	requirement.	However,	we	will	need
the	stationarity,	zero-mean,	and	other	requirements.	These	constraints	are	usually	satisfied	for
signals	by	using	the	same	assumptions	as	for	noise,	by	requiring	a	WSS	random	process	for
the	 target	RCS,	and	by	 requiring	θ(t)	be	wide	sense	stationary	and	uniform	on	 (–π,	π].	 The
latter	two	assumptions	are	valid	for	practical	radars	and	targets.

At	this	point,	we	need	to	develop	separate	signal	models	for	 the	different	 types	of	 targets
because	each	signal	amplitude	fluctuation,	S(t),	is	governed	by	a	different	model.

6.3.2 Signal	Model	for	SW0/SW5	Targets

For	the	SW0/SW5	target	case,	we	assume	a	constant	target	RCS.	This	means	the	target	power,
and	thus	the	target	signal	amplitude,	is	constant.	With	this	assumption,	we	let

The	IF	signal	model	becomes

We	introduce	the	random	variable	θ	 to	 force	sIF(t)	 to	be	a	 random	process.	We	specifically
choose	θ	to	be	uniform	on	(–π,π].	This	makes	sI	and	sQ	random	variables,	rather	than	random
processes.	sIF(t)	is	a	random	process	because	of	the	presence	of	the	ωIFt	term.	This	model	is
actually	consistent	with	what	happens	in	an	actual	radar.	Specifically,	the	phase	of	the	signal	is
random	for	any	particular	target	return.

The	density	functions	of	sI	and	sQ	are	the	same	and	are	given	by	[13]:

We	cannot	assert	the	independence	of	random	variables	sI	and	sQ	because	we	have	no	means
of	showing	fsIsQ	(SI,SQ)	=	fsI	(SI)	fsQ	(SQ).



The	signal	power	is	given	by

In	the	above,	we	can	write

Similarly,	we	get

and

Substituting	(6.31),	(6.32),	and	(6.33)	into	(6.30)	results	in

From	(6.26),	the	baseband	signal	model	is

and	the	signal	power	is



6.3.3 Signal	Model	for	SW1/SW2	Targets

For	the	SW1/SW2	target	case,	we	have	already	stated	that	the	target	RCS	is	governed	by	the
density	function	(see	Chapter	3)

Since	 the	power	 is	a	direct	 function	of	 the	RCS	(from	 the	 radar	 range	equation),	 the	signal
power	at	the	detection	logic	input	has	a	density	function	identical	in	form	to	(6.37).	That	is,

where

Random	variable	theory	shows	the	signal	amplitude,	S(t),	governed	by	the	density	function,

which	is	recognized	as	a	Rayleigh	density	function	[13].	This,	combined	with	the	fact	that	θ(t)
in	(6.21)	is	uniform,	and	the	assumption	of	the	independence	of	random	variables	S	=	S	(t)|t=t1
and	θ	 =	θ(t)|t=t1,	 leads	 to	 the	 interesting	 observation	 that	 the	 signal	model	 for	 a	 SW1/SW2
target	takes	the	same	form	as	the	noise	model.	That	 is,	 the	IF	signal	model	for	a	SW1/SW2
target	takes	the	form

where	S(t)	 is	Rayleigh	and	θ(t)	 is	uniform	on	(–π,π].	 If	we	adapt	 the	results	from	our	noise
study,	we	conclude	that	sI(t)	and	sQ(t)	are	Gaussian	with	the	density	functions



Furthermore,	sI	=	sI	(t)|t=t1	and	sQ	=	sQ(t)|t=t1	are	independent.

The	signal	power	is	given	by

Invoking	the	independence	of	sI	=	sI	(t)|t=t1	and	sQ	=	sQ	(t)|t=t1,	and	the	fact	that	sI(t)	and	sQ(t)
are	zero	mean	and	have	equal	variances	of	PS,	lead	to	the	conclusion	that

The	baseband	representation	of	the	signal	is

where	 the	 various	 terms	 are	 as	 defined	 above.	 The	 power	 in	 the	 baseband	 signal
representation	can	be	written	as

as	expected.

6.3.4 Signal	Model	for	SW3/SW4	Targets

For	the	SW3/SW4	target	case,	we	have	already	stated	that	the	target	RCS	is	governed	by	the
density	function	(see	Chapter	3)

Since	 the	power	 is	a	direct	 function	of	 the	RCS	(from	 the	 radar	 range	equation),	 the	signal



power	at	the	signal	processor	output	has	a	density	function	that	takes	the	same	form	as	(6.47).
That	is,

where	PS	 is	defined	earlier	 in	(6.37).	From	random	variable	 theory	 it	can	be	shown	that	 the
signal	amplitude,	S(t),	is	governed	by	the	density	function

Unfortunately,	 this	 is	 about	 as	 far	 as	 we	 can	 carry	 the	 signal	 model	 development	 for	 the
SW3/SW4	case.	We	can	invoke	the	previous	statements	and	write

and

However,	we	do	not	know	the	form	of	the	densities	of	sI(t)	and	sQ(t).	Furthermore,	deriving
their	form	has	proven	very	laborious	and	elusive.

We	can	find	the	power	in	the	signal	from

We	will	 need	 to	 deal	with	 the	 inability	 to	 characterize	 sI(t)	 and	 sQ(t)	when	we	 consider	 the
characterization	of	signal-plus-noise.

6.4 SIGNAL-PLUS-NOISE	IN	RECEIVERS

6.4.1 General	Formulation

Now	 that	 we	 have	 characterizations	 for	 the	 signal	 and	 noise,	 we	 want	 to	 develop
characterizations	for	the	sum	of	signal	and	noise.	That	is,	we	want	to	develop	the	appropriate
density	functions	for



If	we	are	using	the	IF	representation,	we	write

and	if	we	are	using	the	baseband	representation,	we	write

In	either	representation,	the	primary	variable	of	interest	is	the	magnitude	of	the	signal-plus-
noise	 voltage,	V(t),	 since	 this	 quantity	 is	 used	 in	 computing	 detection	 probability.	We	will
compute	the	other	quantities	as	needed,	and	as	we	are	able.

We	 begin	 the	 development	 with	 the	 easiest	 case—the	 SW1/SW2	 case—and	 progress
through	the	SW0/SW5	case	to	the	most	difficult—the	SW3/SW4	case.

6.4.2 Signal-Plus-Noise	Model	for	SW1/SW2	Targets

For	the	SW1/SW2	case,	we	found	the	real	and	imaginary	parts	of	both	signal	and	noise	were
zero-mean,	Gaussian	random	processes.	We	will	use	the	baseband	representation	to	derive	the
density	function	of	V(t).	Since	sI(t)	and	nI(t)	are	Gaussian,	vI(t)	will	also	be	Gaussian.	Since
sI(t)	 and	nI(t)	 are	 zero-mean,	vI(t)	will	 also	 be	 zero-mean.	Finally,	 since	 sI(t)	 and	nI(t)	 are
independent,	the	variance	of	vI(t)	will	equal	to	the	sum	of	the	variances	of	sI(t)	and	nI(t).	That
is,

With	this,	we	get

By	similar	reasoning,	we	get



Since	sI	=	sI(t),	nI	=	nI(t)|t=t1,	sQ	=	sQ	(t)|t=t1,	and	nQ	=	nQ(t)|t=t1	are	mutually	independent,	vI(t)	=
vI(t)|t=t1	and	vQ	(t)	=	vQ(t)|t=t1	are	independent.	This,	coupled	with	our	reasoning	above	and	our
previous	discussions	of	noise	and	 the	SW1/SW2	signal	model,	 leads	 to	 the	observation	 that
V(t)	is	Rayleigh	with	density

6.4.3 Signal-Plus-Noise	Model	for	SW0/SW5	Targets

Since	sI(t)	and	sQ(t)	are	not	Gaussian	for	the	SW0/SW5	case,	when	we	add	them	to	nI(t)	and
nQ(t),	 the	 resulting	vI(t)	 and	vQ(t)	 are	 not	Gaussian.	 This	means	 that	 directly	manipulating
vI(t)	and	vQ(t)	to	obtain	the	density	function	of	V(t)	will	be	difficult.	Therefore,	we	will	take	a
different	 tack	 and	 invoke	 some	properties	 of	 joint	 and	marginal	 density	 functions	 [13,	 14].
Specifically,	we	use

We	then	use

to	get	the	density	function	of	V(t).	This	procedure	involves	some	tedious	math,	but	it	is	math
that	can	be	found	in	many	books	on	random	variable	theory	[13–17].

To	execute	the	derivation,	we	start	with	the	IF	representation	and	write

where	we	made	use	of	(6.28).	When	we	expand	(6.62)	and	group	terms,	we	get

According	to	the	conditional	density	of	(6.60),	we	want	to	consider	(6.63)	for	the	specific
value	of	θ	=	θ.	Doing	this,	we	get



With	 this,	we	 note	 [Scosθ	 +	nI(t)]	 and	 [Ssinθ	 +	nQ(t)]	 are	Gaussian	 random	 variables	with
means	of	Scosθ	and	Ssinθ.	These	variables	also	have	the	same	variance	of	σ	2.	Furthermore,
since	nI	 =	nI	 (t)	 and	nQ	 =	nQ(t)|t=t1	 are	 independent,	 (Scosθ	 +	nI)	 and	 (Ssinθ	 +	 nQ)|t=t1	 are
independent.	With	this,	we	can	write

Invoking	the	discussions	related	to	(6.4),	(6.5),	and	(6.6),	we	get

If	we	substitute	from	(6.65),	we	get

and	manipulate	the	exponent	to	yield

Finally,	we	use

along	with	(6.60),	to	write

For	 the	next	step,	we	 integrate	 fVψθ(V,	ψ,	θ)	with	respect	 to	ψ	and	θ	 to	derive	 the	desired
marginal	density,	fv(V).	That	is	(after	a	little	manipulation),



We	first	consider	the	integral	with	respect	to	ψ,	or

We	recognize	the	integrand	is	periodic	with	a	period	of	2π	and	that	the	integral	is	performed
over	one	period.	This	means	we	can	evaluate	 the	 integral	over	any	period.	Specifically,	we
choose	the	period	from	θ	to	2π	+	θ	and	get

With	the	change	of	variables	α	=	ψ	–	θ,	the	integral	becomes	[18]:

where	I0(x)	is	a	modified	Bessel	function	of	the	first	kind	and	order	zero	[19].

Substituting	(6.74)	into	(6.71)	yields

where	 the	 last	 step	 derives	 from	 the	 fact	 that	 the	 integral	 with	 respect	 to	 θ	 is	 equal	 to	 1.
Equation	(6.75)	is	the	desired	result,	which	is	the	density	function	of	V(t).

6.4.4 Signal-Plus-Noise	Model	for	SW3/SW4	Targets

As	with	 the	SW0/SW5	case,	 sI(t)	 and	 sQ(t)	 are	 not	Gaussian	 for	 the	 SW3/SW4	 case.	 Thus,



when	we	add	them	to	nI(t)	and	nQ(t),	the	resulting	vI(t)	and	vQ(t)	are	not	Gaussian	and	directly
manipulating	them	to	obtain	the	density	function	of	V(t)	is	difficult.	Based	on	our	experience
with	the	SW0/SW5	case,	we	again	use	the	joint/conditional	density	approach.	We	note	that	the
IF	signal-plus-noise	voltage	is	given	by

In	this	case,	we	find	the	joint	density	of	V(t),	S(t),	ψ(t),	and	θ(t),	and	perform	the	appropriate
integration	to	obtain	the	marginal	density	of	V(t).	More	specifically,	we	will	find

and

Drawing	on	our	work	from	the	SW0/SW5	case,	we	write

Further,	since	S(t)	and	θ(t)	are,	by	definition,	independent,	we	write

Substituting	(6.79)	and	(6.80)	into	(6.77)	results	in

From	(6.78),	with	some	manipulation,	we	write



where

and

We	recognize	(6.84)	as	the	same	double	integral	of	(6.71).	Thus,	using	discussions	related	to
(6.74),	we	get

and

To	complete	the	calculation	of	fv(V),	we	compute	the	integral

where

Using	a	symbolic	mathematics	software	package	to	compute	the	integral,	we	get

With	this	result,	fv(V)	becomes



which,	after	manipulation,	can	be	written	as

Now	that	we	have	completed	the	characterization	of	noise,	signal,	and	signal-plus-noise,	we
are	ready	to	attack	the	detection	problem.

6.5 DETECTION	PROBABILITY

6.5.1 Introduction

A	functional	block	diagram	of	the	detection	process	is	illustrated	in	Figure	6.3.	This	process
consists	of	an	amplitude	detector	and	a	 threshold	device.	The	amplitude	detector	determines
the	 magnitude	 of	 the	 signal	 coming	 from	 the	 matched	 filter,	 and	 the	 threshold	 device—a
binary	decision	device—outputs	a	detection	declaration	if	the	signal	magnitude	is	above	some
threshold,	or	a	no-detection	declaration	if	the	signal	magnitude	is	below	the	threshold.

Figure	6.3	Block	diagram	of	the	detector	and	threshold	device.

Figure	6.4	IF	and	baseband	detectors—linear	and	square	law.



6.5.2 Amplitude	Detector	Types

The	amplitude	detector	can	be	a	square-law	detector	or	a	linear	detector.	Figure	6.4	provides	a
functional	 illustration	 of	 both	 variants	 for	 the	 IF	 implementation	 and	 the	 baseband
implementation.	 In	 the	 IF	 implementation,	 the	 detector	 consists,	 functionally,	 of	 a	 diode
followed	by	a	lowpass	filter	(LPF).	If	 the	circuit	design	uses	small	voltage	levels,	 the	diode
will	 be	 operating	 in	 its	 small	 signal	 region	 and	will	 result	 in	 a	 square-law	 detector.	 If	 the
circuit	design	uses	large	voltage	levels,	the	diode	will	be	operating	in	its	large	signal	region
and	will	result	in	a	linear	detector.

For	 the	 baseband	 case,	 the	 digital	 hardware	 (which	 we	 assume	 in	 the	 baseband	 case)
actually	forms	the	square	of	the	magnitude	of	the	complex	signal	out	of	the	receiver/matched
filter	by	squaring	the	real	and	imaginary	components	of	the	receiver/matched	filter	output	and
then	 adding	 them.	 This	 operation	 results	 in	 a	 square-law	 detector.	 In	 some	 instances,	 the
detector	also	performs	a	square	root	to	form	the	magnitude.

In	either	the	IF	or	baseband	representation,	the	square-law	detector	outputs	N2(t)	when	only
noise	 is	 present	 at	 the	 receiver/matched	 filter	 output	 and	 V2(t)	 when	 signal-plus-noise	 is
present	at	the	receiver/matched	filter	output.	The	linear	detector	outputs	N(t)	when	only	noise
is	present	at	 the	receiver/matched	filter	output	and	V(t)	when	signal-plus-noise	 is	present	at
the	receiver/matched	filter	output.

6.5.3 Detection	Logic

Since	both	N(t)	and	V(t)	are	random	processes,	we	must	use	concepts	from	random	processes
theory	to	characterize	the	detection	logic	performance.	In	particular,	we	use	probabilities.

Since	we	have	two	signal	conditions	(noise	only	and	signal-plus-noise)	and	two	outcomes
from	the	threshold	check,	we	have	four	possible	events	to	consider:

1. signal-plus-noise	≥	threshold	⇒	detection
2. signal-plus-noise	<	threshold	⇒	missed	detection
3. noise	≥	threshold	⇒	false	alarm
4. noise	<	threshold	⇒	no	false	alarm

Of	the	above	examples,	the	two	desired	events	are	1	and	4.	That	is,	we	want	to	detect	targets
when	they	are	present,	and	we	do	not	want	to	detect	noise	when	targets	are	not	present.	Since
events	 1	 and	 2	 are	 related	 and	 events	 3	 and	 4	 are	 related,	 we	 need	 only	 find	 probabilities
associated	 with	 events	 1	 and	 3.	 We	 term	 the	 probability	 of	 the	 first	 event	 occurring	 the
detection	 probability,	 and	 the	 probability	 of	 the	 third	 event	 occurring	 the	 false	 alarm
probability.	In	equation	form

and



where	V	=	V	 (t)|t=t1	 indicates	signal-plus-noise	voltage	evaluated	at	a	specific	 time,	and	N	=
N(t)|t=t1	indicates	noise	voltage	evaluated	at	a	specific	time.

The	 definition	 above	 carries	 some	 subtle	 implications.	 First,	 when	 one	 finds	 detection
probability,	 it	 is	 tacitly	assumed	that	 the	 target	 return	 is	present	at	 the	 time	the	output	of	 the
threshold	 device	 is	 checked.	 Likewise,	 when	 one	 finds	 false	 alarm	 probability,	 it	 is	 tacitly
assumed	that	 the	 target	 return	 is	not	present	at	 the	 time	the	output	of	 the	 threshold	device	 is
checked.

In	practical	applications,	it	is	more	appropriate	to	say:	at	the	time	the	output	of	the	threshold
device	 is	checked,	 the	probability	of	a	 threshold	crossing	equals	Pd	 if	 the	 signal	contains	a
target	signal	and	Pfa	if	the	signal	does	not	contain	a	target	signal.

It	will	be	noted	that	the	above	probabilities	are	conditional	probabilities.	In	normal	practice,
we	do	not	explicitly	use	the	conditional	notation,	and	write

and

Further,	 we	 recognize	 that	 we	 should	 use	 signal-plus-noise	 when	 we	 assume	 the	 target	 is
present	and	noise	only	when	we	assume	the	target	is	not	present,	and	that	the	probabilities	are
conditional.

The	 discussion	 above	 relates	 to	 a	 linear	 detector.	 If	 the	 detector	 is	 square	 law,	 the
appropriate	equations	would	be

and

6.5.4 Calculation	of	Pd	and	Pfa

From	probability	theory,	we	can	write	[13]

and



In	 the	expression	above,	T	 denotes	 the	 threshold	voltage	 level	 and	T2	 denotes	 the	 threshold
expressed	as	normalized	power.

To	avoid	having	to	use	two	sets	of	Pd	and	Pfa	equations,	we	will	digress	to	show	how	we
can	compute	Pd	and	Pfa	using	either	of	the	integrals	of	(6.98)	and	(6.99).

It	can	be	shown	[13]	that	if	 	and	y	≥	0,	then

If	we	write

we	can	use	(6.100)	to	write

With	the	change	of	variables	x	=	v2,	we	have

Similar	results	apply	to	Pfa	and	indicate	we	can	use	either	form	to	compute	detection	and	false
alarm	probability.

We	note	that	the	integrals	for	Pd	and	Pfa	are	over	 the	same	 limits.	Figure	6.5	provides	an
illustration	of	this.	Notice	Pd	and	Pfa	are	areas	under	their	respective	density	functions,	to	the
right	 of	 the	 threshold	 value.	 Increasing	 the	 threshold	 decreases	 the	 probabilities,	 and
decreasing	the	threshold	increases	the	probabilities.

This	is	not	exactly	what	we	want.	Ideally,	we	want	to	select	the	threshold	so	that	we	have	Pfa
=	0	and	Pd	=	1.	Because	this	is	not	possible,	we	usually	choose	the	threshold	as	some	sort	of
tradeoff	between	Pd	and	Pfa.	In	fact,	we	choose	the	threshold	to	achieve	a	certain	Pfa	and	find
other	means	of	increasing	Pd	(see	Chapter	8).

Referring	to	(6.12),	 the	only	parameter	 that	affects	 fN(n)	 is	 the	noise	power,	σ2.	While	we
have	some	control	over	this	via	noise	figure,	executing	that	control	can	be	very	expensive.	On



the	other	hand,	fv(v)	depends	upon	both	Ps	and	σ2.	This	gives	us	some	degree	of	control.	In
fact,	we	usually	try	to	affect	both	fN(n)	and	fv(v)	by	increasing	PS	and	decreasing	σ2.	The	net
result	of	this	is	that	we	try	to	maximize	SNR.

Figure	6.5	Probability	density	functions	for	noise	and	signal-plus-noise.

6.5.4.1 False	Alarm	Probability

Using	(6.14)	in	(6.99),	we	can	derive	an	equation	for	false	alarm	probability	as

In	this	equation,	we	define

as	 the	 threshold-to-noise	ratio	 (TNR).	We	usually	select	a	desired	Pfa	and,	 from	this,	derive
the	required	TNR	as

6.5.4.2 Detection	Probability

We	compute	the	detection	probability	for	the	three	target	classes	by	substituting	(6.59),	(6.75),
and	(6.91)	into	(6.103).

SW0/SW5	Target

For	the	SW0/SW5	case,	we	have



where	we	took	advantage	of	T	>	0	to	eliminate	U(V)	from	the	integrand.

Equation	(6.107)	 is	 in	 the	 form	 of	 the	Marcum	Q	 function	 [3,	 4],	which	 has	 the	 general
form

In	(6.107),	we	make	the	change	of	variables	x	=	v/σ	and	get

This	is	of	the	form	of	(6.108),	with	a	=	S/σ,	b	=	T/σ,	and	M	=	1.	Thus,	we	have

Since	we	are	interested	in	finding	Pd	as	a	function	of	SNR	and	Pfa,	we	want	to	manipulate
(6.110)	so	it	is	a	function	of	these	variables.	From	(6.105)	and	(6.106),	we	have

From	(6.17)	or	(6.19),	we	have

and	from	(6.34)	or	(6.36),	we	have

We	note	that



which	leads	to

Substituting	(6.111)	and	(6.115)	into	(6.110)	results	in

Unfortunately,	Q1(a,b)	has	no	simple	form.	However,	Steen	Parl	has	developed	an	algorithm
that	appears	to	work	quite	well	[20].	Parl’s	algorithm	is	described	in	Appendix	8B.

Skolnik	presents	the	approximation	[2;	21,	p.	27]

where

and

is	 one	 form	 of	 the	 error	 function.	 It	 has	 been	 the	 authors’	 experience	 that	 Skolnik’s
approximation	degrades	as	SNR	approaches	and	falls	below	TNR.

A	recent	paper	by	Barton	[9]	presents	an	equation	attributed	to	David	A.	Shnidman	[22].	 In
this	equation,

where	erfc	denotes	the	complementary	error	function.

SW1/SW2	Target

For	the	SW1/SW2	case,	we	substitute	(6.59)	into	(6.103)	and	write



With	the	change	of	variables,	x	=	V	2/2(Ps	+	σ	2)	we	get

Using	lnPfa	=	–T2/2σ	2	and	SNR	=	PS/σ2,	we	can	write	(6.122)	as

SW3/SW4	Target

For	the	SW3/SW4	case,	we	substitute	(6.91)	into	(6.103),	and	write

With	the	change	of	variables,	x	=	V2/2(Ps	+	2σ2)	we	get

Substituting	TNR	=	T2/2σ	2	and	SNR	=	PS/σ	2	and	manipulating	yields



Finally,	with	TNR	=	–lnPfa

As	a	reminder,	for	all	the	Pd	equations,	SNR	denotes	the	signal-to-noise	ratio	computed	from
the	radar	range	equation	(see	Chapter	2).

6.5.5 Behavior	Versus	Target	Type

Figure	6.6	contains	plots	of	Pd	versus	SNR	for	the	three	target	types	and	Pfa	=	10−6,	a	typical
value	[23,	p.	45].	It	is	interesting	to	note	the	Pd	behavior	for	the	three	target	types.	In	general,
the	SW0/SW5	target	provides	the	largest	Pd	for	a	given	SNR;	the	SW1/SW2	target	provides
the	lowest	Pd;	and	the	SW3/SW4	falls	somewhere	between	the	other	two.	With	some	thought,
this	makes	sense.	For	the	SW0/SW5	target	model,	only	the	noise	affects	a	threshold	crossing
(since	 the	 target	 RCS	 is	 constant).	 For	 the	 SW1/SW2,	 the	 target	 RCS	 can	 fluctuate
considerably;	thus	both	noise	and	RCS	fluctuation	affect	the	threshold	crossing.	The	standard
assumption	for	the	SW3/SW4	model	is	that	it	consists	of	a	predominant	(presumably	constant
RCS)	 scatterer	 and	 several	 smaller	 scatterers.	 Thus,	 RCS	 fluctuation	 affects	 the	 threshold
crossing	for	the	SW3/SW4	target	somewhat,	but	not	to	the	extent	of	the	SW1/SW2	target.



Figure	6.6	Pd	vs.	SNR	for	three	target	types	and	Pfa	=	10
−6.

Figure	6.7	Illustration	of	when	to	compute	Pd	and	Pfa.



It	is	interesting	to	note	that	a	SW1/SW2	target	requires	an	SNR	of	about	13	dB	for	Pd	=	0.5,
with	Pfa	 =	 10−6.	 This	 same	 SNR	 gives	 a	Pd	 =	 0.9	 on	 a	 SW0/SW5	 target.	 A	Pd	 =	 0.9	 on	 a
SW1/SW2	target	requires	an	SNR	of	about	21	dB.	These	are	the	origins	of	the	13-dB	and	20-
dB	SNR	numbers	used	in	the	radar	range	equation	examples	of	Chapter	2.

To	reiterate	an	earlier	statement,	we	term	the	Pfa	and	Pd	variables	given	above	 the	single
pulse,	 single	 sample,	 or	 single	 hit	 Pfa	 and	 Pd.	 This	 term	 derives	 from	 the	 fact	 that	 the
threshold	 check	 (i.e.,	 check	 for	 a	 target	 detection)	 is	 based	 on	 target	 returns	 from	 a	 single
pulse.	 If	 the	 signal	 contains	 both	 a	 target	 and	 noise	 component	 [i.e.,	 s(t)	 and	n(t)],	 we	 are
computing	Pd.	If	the	sample	contains	only	noise,	we	are	computing	Pfa.	Figure	6.7	 illustrates
this	concept.

6.6 DETERMINATION	OF	FALSE	ALARM	PROBABILITY

One	parameter	included	in	the	detection	probability	equations	is	the	threshold-to-noise	ratio,
TNR.	As	indicated	in	(6.105),	TNR	=	–lnPfa,	where	Pfa	 is	 the	false	alarm	probability.	System
requirements	set	false	alarm	probability.

In	a	radar,	false	alarms	result	in	wasted	radar	resources	(energy,	timeline,	and	hardware),
because	 every	 time	 a	 false	 alarm	 occurs,	 the	 radar	 must	 expend	 resources	 determining
whether	 the	 alarm	was	 the	 result	 of	 a	 random	noise	peak	or	 of	 an	 actual	 target	 that	 can	be
redetected	at	or	near	 that	 location.	Said	another	way,	every	 time	 the	output	of	 the	amplitude
detector	exceeds	the	threshold,	T,	a	detection	is	recorded.	The	radar	data	processor	does	not
know,	a	priori,	whether	 the	detection	 is	a	 target	detection	or	 the	result	of	noise	 (i.e.,	a	 false
alarm).	 Therefore,	 the	 radar	 must	 verify	 each	 detection,	 a	 process	 that	 usually	 requires
transmission	 of	 another	 pulse	 and	 another	 threshold	 check	 (an	 expenditure	 of	 time	 and
energy).	Further,	until	 the	detection	is	verified,	it	must	be	carried	in	the	computer	as	a	valid
target	detection	(an	expenditure	of	hardware	or	software).

To	minimize	wasted	radar	resources,	we	want	to	minimize	the	probability	of	false	alarm.
Said	another	way,	we	want	to	minimize	Pfa.	However,	we	cannot	set	Pfa	to	an	arbitrarily	small
value	because	this	increases	TNR	and	reduces	detection	probability,	Pd.	As	a	result,	we	set	Pfa
to	 provide	 an	 acceptable	 number	 of	 false	 alarms	 within	 a	 given	 time	 period.	 This	 last
statement	provides	the	criterion	normally	used	to	compute	Pfa.	Specifically,	Pfa	 is	chosen	 to
provide	an	average	of	one	false	alarm	within	a	time	period	termed	the	false	alarm	time,	Tfa.
Tfa	is	usually	set	by	some	criterion	driven	by	radar	resource	limitations.

The	classical	method	of	determining	Pfa	is	based	strictly	on	timing	[24].	Figure	6.8,	which
contains	a	plot	of	noise	at	 the	output	of	 the	amplitude	detector,	helps	 illustrate	 this	concept.
The	horizontal	line	labeled	“Threshold,	T”	represents	the	detection	threshold	voltage	level.	It
will	be	noted	that	the	noise	voltage	is	above	the	threshold	for	four	time	intervals	of	length	t1,
through	 t4.	 Further,	 the	 spacings	 between	 threshold	 crossings	 are	 T1,	 T2,	 and	 T3.	 Since	 a
threshold	crossing	constitutes	a	false	alarm,	one	can	say	that	over	the	interval	T1,	false	alarms



occur	for	a	period	of	t1.	Likewise,	over	the	interval	T2,	false	alarms	occur	for	a	period	of	t2,
and	 so	 forth.	 Averaging	 all	 tk	 produces	 an	 average	 time,	 ,	 when	 the	 noise	 is	 above	 the
threshold.	Likewise,	averaging	all	of	Tk	produces	the	average	time	between	false	alarms	(i.e.,
the	false	alarm	time,	Tfa).	To	determine	the	false	alarm	probability,	we	find	the	ratio	of	 	 to
Tfa,	that	is,

While	Tfa	is	reasonably	easy	to	specify,	the	specification	of	 	is	not	obvious.	The	standard
assumption	sets	 	to	the	range	resolution	expressed	as	time,	τ∆R.	For	an	unmodulated	pulse,
τ∆R	 is	 the	 pulsewidth.	 For	 a	 modulated	 pulse,	 τ∆R	 is	 the	 reciprocal	 of	 the	 modulation
bandwidth.

It	 has	 been	 the	 authors’	 experience	 that	 the	 above	method	of	 determining	Pfa	 is	 not	 very
accurate.	While	 it	would	be	possible	 to	place	 the	 requisite	 number	of	 caveats	on	 (6.128)	 to
make	it	more	accurate,	with	modern	radars,	this	is	not	necessary.

Figure	6.8	Illustration	of	false	alarm	time.

The	previously	described	method	of	determining	Pfa	relies	on	the	assumption	that	hardware
operating	on	a	continuous-time	signal	 records	 the	detections.	Modern	 radars	base	detection
on	 the	 examination	 of	 signals	 that	 have	 been	 converted	 to	 the	 discrete-time	 domain	 by
sampling	or	 by	 an	 analog-to-digital	 converter.	This	makes	determination	of	Pfa	 easier,	 and
more	intuitively	appealing,	in	that	we	can	deal	with	discrete	events.	With	modern	radars,	we
compute	the	number	of	false	alarm	chances,	Nfa,	within	the	desired	false	alarm	time,	Tfa,	and
compute	the	probability	of	false	alarm	from

Computing	Nfa	requires	us	to	know	certain	things	about	the	radar ’s	operation.	We	will	outline



some	such	thoughts.

A	typical	radar	samples	the	return	signal	from	each	pulse	with	a	period	equal	to	the	range
resolution,	 τ∆R,	 of	 the	 pulse.	 As	 indicated	 above,	 this	 would	 equal	 the	 pulsewidth	 for	 an
unmodulated	 pulse	 and	 the	 reciprocal	 of	 the	modulation	 bandwidth	 for	 a	modulated	 pulse.
These	range	samples	are	usually	taken	over	the	instrumented	range,	∆T.	In	a	search	radar,	∆T
might	 be	 only	 slightly	 less	 than	 the	 PRI,	 T.	 However,	 for	 a	 track	 radar,	 ∆T	 may	 be
significantly	less	than	T.	With	the	above,	we	compute	the	number	of	range	samples	per	PRI	as

Each	range	sample	provides	the	opportunity	for	a	false	alarm.

In	a	time	period	of	Tfa,	the	radar	transmits

pulses.	Thus,	the	number	of	range	samples	(and,	thus,	chances	for	false	alarm)	over	the	time
period	of	Tfa	is

In	some	radars,	the	receiver	contains	several	(NDop)	parallel	Doppler	channels.	Such	radars
also	contain	NDop	 amplitude	detectors.	Each	amplitude	detector	generates	NR	 range	 samples
per	PRI.	Thus,	in	this	case,	the	total	number	of	range	samples	in	the	time	period	Tfa	would	be

In	either	case,	(6.129)	gives	the	false	alarm	probability.

6.6.1 Example	1—Computing	Pfa

To	illustrate	 the	discussion	above,	we	consider	 the	simple	example	of	a	search	radar	with	a
PRI	of	T	=	400	μs.	This	radar	uses	a	50-μs	pulse	with	LFM	and	a	bandwidth	of	1	MHz.	With
this	we	get	tΔR	=	1	μs.	We	assume	the	radar	starts	its	range	samples	one	pulsewidth	after	the
transmit	pulse	and	stops	taking	range	samples	one	pulsewidth	before	the	succeeding	transmit
pulse.	From	these	parameters,	we	get	ΔT	=	300	µs.	The	signal	processor	is	not	a	multichannel
Doppler	processor.	The	radar	has	a	search	scan	time	of	Tscan	=	1	s,	and	we	want	no	more	than
one	false	alarm	every	two	scans.	With	this,	we	get	Tfa	=	2Tscan	=	2	s,	and	if	we	combine	this
with	the	PRI,	we	get



From	∆T	and	τ∆R,	we	get

This	results	in

and

6.6.2 Example	2—Detection	Contour

For	this	example,	we	combine	the	radar	range	equation	discussions	of	Chapter	2	with	the	Pd
and	Pfa	discussions	of	this	chapter	to	plot	a	detection	contour	for	a	search	radar.	As	used	here,
a	 detection	 contour	 is	 a	 boundary,	 in	 altitude	 versus	 downrange	 space,	 on	 which	 a	 radar
achieves	a	given	Pd.	For	all	points	outside	the	area	bounded	by	the	contour,	Pd	is	less	than	the
desired	value.	For	all	points	inside	the	boundary,	Pd	is	greater	than	the	desired	value.

Table	6.2	lists	the	radar	parameters.	The	table	also	includes	other	parameters	we	will	need.
As	implied	by	Table	6.2,	the	antenna	constantly	rotates	in	azimuth	and	the	antenna’s	directivity
varies	with	elevation	angle.	This	directivity	variation	can	be	represented	by	the	equation

where	Table	6.3	provides	the	values	of	ak,	Nk,	and	εk.	Figure	6.9	contains	a	plot	of	G(ε).

Table	6.2
Radar	and	Other	Parameters	Used	for	Example	2

Parameter Value

Peak	transmit	power	at	the	power	amp	output 50	kW

Operating	frequency 2	GHz

PRF 1,000	Hz

Pulsewidth,	τp 100	µs

Pulse	modulation	bandwidth 1	MHz



Antenna	directivity	(transmit	and	receive) See	function

Total	losses 13	dB

System	noise	figure 5	dB

Target	type	and	RCS SW1,	6	dBsm

Antenna	rotation	rate 6	rpm

Instrumented	range PRI	–	2τp	–	50	µs

False	alarm	criterion No	more	than	one	false	alarm	per	360°	rotation

Detection	probability 0.5

Table	6.3
Parameter	Values	for	(6.137)

ak Nk εk	(deg)

1 45 1

1 25 3

1 13 7

0.5 7 15

Figure	6.9	Antenna	elevation	directivity	pattern.

We	 acknowledge	 that	 the	 directivity	 also	 varies	 with	 azimuth	 and,	 as	 a	 result,	 the	 SNR
varies	as	the	antenna	sweeps	by	the	target.	We	account	for	this	variation	by	including	a	scan
loss	in	the	total	losses	of	Table	6.2.

The	elevation	angle	is	computed	from

where	h	denotes	 the	 target	height,	or	altitude,	and	Rd	denotes	 the	downrange	position	of	 the
target.	We	relate	h	and	Rd	to	slant	range,	R,	and	ε	by



To	generate	the	detection	contour,	we	solve	the	radar	range	equation	for	R	in	terms	of	the
other	parameters.	That	is,3

and	use	(6.140)	to	plot	h(ε)	and	Rd(ε)	as	we	vary	ε	from	0°	to	90°.

Most	 of	 the	 required	 parameters	 are	 in	 Table	 6.2,	 or	 can	 be	 easily	 computed	 from	 the
parameters	in	the	table.	The	exception	is	SNR.	We	will	use	the	specified	Pd	and	the	false	alarm
specification,	along	with	the	target	type,	to	compute	SNR.

Since	the	table	specifies	a	SW1	target,	we	can	solve	(6.123)	for	SNR	and	get

We	already	have	Pd,	but	need	to	compute	Pfa.	To	do	this,	we	must	first	compute	Nfa.

Since	the	antenna	rotates	at	a	rate	of	frot	revolutions	per	minute	(rpm),	the	time	to	complete
a	rotation	is

Since	 the	 false	 alarm	 criterion	 is	 one	 false	 alarm	 per	 revolution	 (see	 Table	 6.2),	 the	 false
alarm	time	is

Had	we	specified	no	more	than	one	false	alarm	every	three	rotations,	we	would	have	had	Tfa	=
3Trot	=	30	s.

Given	the	PRF	of	1,000	Hz,	we	can	compute	the	PRI	as	(see	Chapter	1):

From	(6.134),	we	 compute	 the	 number	 of	 pulses	 in	Tfa	 (as	 a	 reminder,	we	 are	 considering
single	pulse	detection)	as



If	we	sample	the	return	at	the	modulation	bandwidth,	we	get

From	the	instrumented	range	specified	in	Table	6.2,	we	get

and	from	(6.135)

We	assume	the	radar	does	not	implement	any	type	of	Doppler	processing.	Therefore,	we	can
use	(6.132)	to	compute

and	find

Finally,	we	use	(6.142)	to	compute

Substituting	the	appropriate	values	into	(6.141)	gives

Figure	6.10	 contains	 a	 plot	 of	h(ε)	 versus	Rd(ε).	The	 curved	 grid	 lines	 on	 the	 figure	 result
from	 the	 round	 earth	 model	 used	 to	 plot	 the	 detection	 contour.	 The	 solid	 curved	 line
represents	the	Earth’s	surface,	and	the	slanted,	numbered	lines	represent	elevation	lines.



Figure	6.10	Detection	contour.

6.7 SUMMARY

The	major	 results	 of	 this	 chapter	 are	 the	 three	detection	probability	 equations	 for	 the	 three
different	target	types	and	the	methodology	for	computing	Pfa.	The	three	Pd	equations	are

• SW0/SW5	targets—	

• SW1/SW2	targets—Pd=eln	Pfa/(
SNR+1)

• SW3/SW4	targets—	

As	yet	another	reminder,	the	Pd	and	Pfa	discussed	in	this	chapter	are	single	sample,	or	single
pulse,	 values.	 In	 Chapter	 8,	 we	 consider	 the	 problem	 of	 computing	 Pd	 and	 Pfa	 based	 on
processing	several	samples	of	signal-plus-noise	and	noise.

6.8 EXERCISES

1. A	phased	 array	 radar	 searches	 a	 volume	of	 space	with	 a	 search	 raster	 containing	 400
beams.	 The	 dwell	 time	 per	 beam	 is	 10	 ms.	 and	 the	 radar	 uses	 a	 pulsed	 Doppler
waveform.	 The	 signal	 processor	 has	 10	 range	 gates	 with	 a	 64-point	 fast	 Fourier
transformer	(FFT)	on	each	range	gate.	This	produces	a	10-by-64	range-Doppler	map	on
each	dwell.	The	detection	 logic	 checks	 each	 range-Doppler	 cell	 once	per	 beam	dwell.
We	 want	 the	 radar	 to	 support	 a	 20-s	 time	 between	 false	 alarms.	 For	 purposes	 of
computing	Pd	and	Pfa,	we	consider	a	dwell	a	single	sample,	or	single	pulse.	Thus,	the	Pd
and	Pfa	equations	of	this	chapter	apply	to	this	problem.



a) What	false	alarm	probability,	Pfa,	 is	necessary	 to	support	 the	specified	false	alarm
rate?

b) What	SNR,	in	dB,	is	required	at	the	signal	processor	output	for	the	radar	to	provide
a	single-sample	detection	probability	of	0.95	on	a	SW0/SW5	target?

c) What	SNR,	in	dB,	is	required	at	the	signal	processor	output	for	the	radar	to	provide
a	single-sample	detection	probability	of	0.95	on	a	SW1	target?

d) What	SNR,	in	dB,	is	required	at	the	signal	processor	output	for	the	radar	to	provide
a	single-sample	detection	probability	of	0.95	on	a	SW3	target?

2. A	monostatic	radar	has	the	following	parameters:

• Peak	transmit	power	at	power	amplifier	output—100	kW
• Transmit	losses—2	dB
• Operating	frequency—10	GHz
• PRF—2,000	Hz
• Antenna	diameter—1.5	m	(circular	aperture)
• Antenna	efficiency—60%
• Other	losses—10	dB
• System	noise	figure—6	dB
• Antenna	temperature	(Ta)—100	K
• The	radar	transmits	a	10-µs	rectangular	pulse.
• The	radar	maintains	a	Pfa	of	10−9

Plot	Pd	versus	target	range,	in	km,	for	a	6-dBsm,	SW1	target.	Let	the	range	vary	from	5
km	to	the	unambiguous	range	of	the	radar.

3. Derive	(6.14)	and	(6.15).

4. Derive	(6.17)	and	(6.19).

5. Show	that	(6.71)	can	be	obtained	by	manipulating	(6.70).

6. Show	that	(6.91)	follows	from	(6.90).

7. Show	that	(6.100)	is	correct.

8. Show	that	(6.126)	follows	from	(6.125).
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Chapter	7

Matched	Filter

7.1 INTRODUCTION

In	the	detection	probability	equations	[(6.109),	(6.122),	and	(6.126)],	we	noted	that	Pd	depends
directly	on	SNR.	That	 is,	Pd	 increases	 as	SNR	 increases.	Because	of	 this,	we	want	 to	 try	 to
ensure	the	receiver	is	designed	to	maximize	SNR	by	including	a	matched	filter	in	the	receiver.
In	most	radars,	the	matched	filter	is	included	immediately	before	the	signal	processor,	and	in
some	the	matched	filter	is	the	signal	processor.

J.	H.	Van	Vleck	and	David	Middleton	coined	the	term	“matched	filter”	in	a	1946	Journal	of
Applied	Physics	article	[1].	They	credited	D.	O.	North	with	arriving	at	 the	same	formulation
for	the	matched	filter	but	by	a	different	approach	based	on	calculus	of	variations,	instead	of
the	Cauchy-Schwarz	 inequality	 they	used.	North’s	development	first	appeared	 in	a	classified
report,	 which	 was	 later	 published	 in	 a	 1963	 journal	 article	 [2].	 Van	 Vleck	 and	 Middleton
indicated	 the	matched	 filter	 equations	were	also	developed	by	Henry	Wallman	as	 a	 specific
case	of	a	more	general	theory	developed	by	Norbert	Wiener.

7.2 PROBLEM	DEFINITION

The	statements	 in	 the	 first	paragraph	of	 this	chapter	provide	 the	design	requirement	 for	 the
matched	filter.	Specifically,	given	some	signal,	s(t),	and	noise,	n(t),	we	find	a	 filter	 impulse
response,	h(t),	 that	maximizes	SNR	at	 the	 filter	 output.	For	purposes	of	 this	 discussion,	we
assume	the	signal	is	not	a	random	process.	Actually,	we	assume	the	form	(e.g.,	an	LFM	pulse)
of	the	signal	is	deterministic;	its	amplitude	and	phase	can	be	a	random	variable.	As	a	note,	we
are	using	complex	signal	notation	(see	Chapter	1)	in	this	chapter.	This	is	consistent	with	the
notation	used	in	Chapter	6	and	applies	 to	both	the	IF	and	baseband	representation.	Thus,	for
example,	n(t)	could	be	a	representation	of	nIF(t)	or	nB(t)	as	appropriate.

As	indicated	in	Figure	7.1,	if	the	input	to	the	matched	filter	is	s(t),	the	output	will	be	so(t),
and	if	the	input	is	n(t),	the	output	will	be	no(t).	The	output,	instantaneous,	normalized,	signal
power	is

For	purposes	of	the	matched	filter	design,	we	define	the	normalized,	peak	signal	power	at	the
matched	filter	output	as1



Since	no(t)	is	a	random	process	[that	we	assume	is	wide-sense	stationary	(WSS)],	we	must
work	with	 its	average	power.	Thus,	 the	normalized	average	noise	power	at	 the	output	of	 the
matched	filter	is

where	we	use	expected	values	(E{x})	because	we	are	dealing	with	random	processes	[3].

With	the	above,	we	can	define	 the	design	criterion	for	 the	matched	filter.	Specifically,	we
choose	the	matched	filter	to	maximize	the	ratio	of	peak	signal	power	to	average	noise	power
at	the	output	of	the	matched	filter.	In	equation	form

Figure	7.1	Matched	filter	block	diagram.

7.3 PROBLEM	SOLUTION

Equation	 (7.4)	 states	 we	 must	 first	 write	 the	 ratio	 of	PS	 and	PN	 in	 terms	 of	 h(t)	 and	 then
maximize	it	with	respect	to	h(t).

We	assume	h(t)	is	linear	and	write

and

where	∗	denotes	convolution.	We	choose	to	solve	the	optimization	problem	in	the	frequency
domain	through	the	use	of	Fourier	transforms.	To	this	end,	we	write



and

and	recall	that

As	a	note,	S(f)	 is	 the	signal	spectrum	(the	signal	voltage	spectral	density)	at	 the	 input	 to	 the
matched	filter,	as	such	it	will	experience	the	receiver	gain	of	 	discussed	in	Chapter	2.	(We
will	again	encounter	the	factor	of	G	when	we	consider	noise.)

Since	n(t)	and	no(t)	are	random	processes,	we	must	deal	with	 them	as	such,	which	means
we	write	[3]

and

In	the	above,	Rn(t)	and	Rno(t)	are	the	autocorrelation	functions	of	n(t)	and	no(t),	respectively,
As	a	 reminder,	we	note	 that	n(t)	 and	no(t)	 are	WSS,	which	 implies	 the	 autocorrelation	 is	 a
function	of	time	difference	only,	not	absolute	time.

We	recognize	No(f)	is	a	power	spectral	density	(noise	energy).	Thus,	the	noise	power	at	the
output	of	the	matched	filter	is

From	(7.2),	the	normalized	peak	signal	power	at	the	matched	filter	output	is	given	by

However,	we	can	write

If	we	combine	(7.16),	(7.15),	(7.14),	and	(7.4),	we	get	[4]



At	this	point,	we	make	the	assumption	that	n(t)	noise	power	spectral	density	at	the	input	to
the	matched	filter	is	(see	Chapters	2	and	4)

where	G	is	the	receiver	gain.	With	this,	we	have

We	perform	the	maximization	process	by	applying	one	of	the	Cauchy-Schwarz	inequalities
to	the	numerator	[5],	specifically

with	 the	equality	valid	only	when	A(f)	 is	proportional	 to	 the	complex	conjugate	of	B(f)	 [5].
That	is,	when

where	K	 is	an	arbitrary	(complex)	constant.	If	we	apply	(7.20)	to	the	ratio	of	(7.19)	with	 the
associations

and

we	get



where	we	made	use	of

We	note	that	(7.24)	reduces	to

Equation	(7.26)	tells	us	that	for	all	H(f),	the	upper	bound	on	the	left	side	is	equal	to	the	right
side.	That	is,	we	have	found	the	maximum	value	of	PS/PN	(the	ratio	of	peak	signal	power	to
average	 noise	 power	 at	 the	matched	 filter	 output)	 over	 all	h(t)	 and	 have	 solved	 part	 of	 the
maximization	problem.	To	find	the	h(t)	that	yields	the	maximum	PS/PN,	we	invoke	the	second
part	of	the	Cauchy-Schwarz	inequality	given	in	(7.21).	Specifically,	we	say

when	we	choose	H(f)	as

Thus,	we	have	found	the	Fourier	transform	of	the	filter	impulse	response	that	maximizes	peak
signal	to	average	noise	power	at	 the	filter	output.	Furthermore,	we	have	an	equation	for	the
maximum	in	the	form	of	(7.27)	and	have	determined	that	the	maximum	occurs	at	t	=	to.

We	note	from	the	form	of	(7.28)	that

In	 other	words,	 the	matched	 filter	 frequency	 response	 has	 the	 same	 shape	 as	 the	 frequency
spectrum	of	the	signal.	They	simply	differ	by	a	scaling	factor	|K|.	This	is	the	reason	Van	Vleck



and	Middleton	termed	H(f)	a	matched	filter.

We	now	want	to	look	at	the	specific	form	of	h(t)	relative	to	s(t).	We	can	write

Thus,	h(t)	 is	 the	conjugate	of	a	scaled	(by	K),	 time	reversed	(because	of	 the	–t),	and	shifted
(by	to)	version	of	the	signal,	s(t)	at	the	input	to	the	matched	filter.	This	operation	is	illustrated
in	Figure	7.2.	The	left	sketch	of	this	figure	is	s(t),	while	the	center	figure	is	a	sketch	of	s*(–t).
Finally,	the	right	figure	is	Ks*(to	–	t),	or	h(t).	We	normally	assume	that	s(t)	has	the	same	shape
as	 the	 signal	 generated	 in	 the	 transmitter	 (i.e.,	 a	 pulse	with	 a	 rect[x]	 envelope).	 That	 is,	we
ignore	any	distortion	that	may	have	been	that	occurs	in	the	transmit,	propagation	and	receive
paths.	We	 account	 for	 the	 distortion	 by	 incorporating	 a	 mismatch	 loss	 in	 the	 radar	 range
equation	(see	Chapter	5).

Now	that	we	have	established	the	equation	for	the	maximum	value	of	the	SNR	at	the	output
of	 the	 matched	 filter	 and	 have	 a	 filter	 that	 can	 provide	 the	 maximum	 SNR,	 we	 want	 to
determine	its	value.	Specifically,	we	want	to	relate	the	maximum	SNR	to	the	value	of	SNR	we
compute	from	the	radar	range	equation.

From	(7.27),	we	have

Recalling	Parseval’s	 theorem	(also	known	as	Rayleigh’s	energy	 theorem)	[6],	which	can	be
expressed	as

and	noting	s(t)	has	finite	energy	and	power,	we	write



Figure	7.2	Evolution	of	h(t).

We	recognize	the	numerator	of	(7.33)	as	the	energy	 in	 the	signal	at	 the	 input	 to	 the	matched
filter.	From	Chapter	2,	we	found	this	to	be

With	this	we	get

We	recognize	(7.35)	as	the	SNR	given	by	the	radar	range	equation	(see	Chapter	2).	This	tells
us	the	peak	value	of	SNR	(the	peak	power	ratio)	at	the	output	of	the	matched	filter	is	the	SNR
(the	energy	ratio)	we	obtain	from	the	radar	range	equation.	In	essence,	the	matched	filter	ekes
out	 the	maximum	possible	SNR	from	the	signal	and	noise	 the	radar	must	deal	with.	For	 the
case	where	the	interference	is	due	to	white	noise	at	the	input	to	the	matched	filter,	there	is	no
other	 linear	 filter	 that	 will	 give	 a	 larger	 value	 of	 SNR	 for	 the	 transmitted	 signal.	 If	 the
interference	 is	 other	 than	white	 noise	 (e.g.,	 clutter),	 there	 are	 other	 filters	 that	will	 provide
larger	values	of	signal-to-interference	power	ratio	(SIR)	than	the	filter	defined	by	(7.30).	This
is	discussed	further	in	Chapter	13.

In	Chapter	6,	we	found	that	Pd	depended	on	the	SNR	power	ratio.	The	results	above	say	that
the	maximum	SNR	power	ratio	is	equal	to	the	SNR	energy	 ratio	derived	in	Chapter	2.	Thus,
the	SNR	provided	by	the	radar	range	equation	will	provide	the	maximum	Pd	for	a	given	Pfa.
Further,	 this	maximum	Pd	 can	 be	 achieved	 if	 the	 radar	 includes	 a	matched	 filter.	 As	 a	 re-
reminder:	we	are	dealing	with	single-pulse,	or	single-sample,	Pd	and	Pfa,	and	with	 the	SNR
for	a	single	transmitted	(and	received)	pulse.	We	will	consider	how	to	handle	multiple	pulses
in	Chapter	8.

7.4 MATCHED	FILTER	EXAMPLES

7.4.1 General	Formulation

We	want	 to	derive	a	general	equation	for	 the	matched	filter	response	for	a	signal,	s(t),	 then
use	it	 to	derive	the	matched	filter	response	for	the	cases	where	s(t)	 is	an	unmodulated	pulse



and	a	pulse	with	LFM.

From	(7.30),	we	have

where	K	is	an	arbitrary	(complex)	constant	and	to	is	the	value	of	t	at	which	the	matched	filter
response	to	s(t)	will	reach	its	peak.

Since	K	and	to	can	be	anything	we	want,	without	loss	of	generality	we	let	K	=	1	and	to	=	0.
The	latter	statement	says	that	the	output	of	the	matched	filter	will	reach	its	peak	at	a	relative
time	of	zero.	With	this,	we	get

The	response	of	h(t)	to	s(t)	is	given	by

But	h(t)	=	s*(–t)	so	h(t	–	γ)	=	s*[–(t	–	γ)]	=	s*(γ	–	t)	and

We	note	that	this	integral	is	the	complex,	time	autocorrelation	of	s(t)	[5].

7.4.2 Response	for	an	Unmodulated	Pulse

For	an	unmodulated	(rectangular)	pulse

where	A	is	the	amplitude	of	the	pulse	and	θ	is	the	phase.	With	this,	we	have

A	plot	of	s(t)	is	shown	in	Figure	7.3.	The	plot	of	s*(t)	would	look	the	same	except	the	“height”
would	be	Ae–jθ	rather	than	Aejθ.



Figure	7.3	Unmodulated	pulse.

In	the	so(t)	integral	of	(7.39),	we	note	that	t	 is	 the	separation	between	s(γ)	and	s*(γ	–	 t)	as
shown	in	Figure	7.4.	Figure	7.4	corresponds	to	the	case	where	t	≥	0.

When	t	≥	τp,	s(γ)	and	s*(γ	–	 t)	do	not	overlap	and	we	have	s(γ)s*(γ	–	 t)	=	0	and	so(t)	=	0.
Thus

For	0	≤	t	<	τp,	 the	overlap	region	of	s(γ)	and	s*(γ	–	t)	is	t	≤	γ	<	τp.	 In	 the	overlap	region,
s(γ)s*(γ	–	t)	=	AejθAe–jθ	=	A2	and	thus

Since	 t	≥	0,	we	can	use	 the	substitution	 |t|	=	 t	 (we	are	doing	 this	because	we	will	need	 it	 to
compare	the	form	of	(7.43)	to	the	case	where	t	<	0)	and	write	(7.42)	as

With	(7.42),	we	get

The	arrangement	of	s(γ)	and	s*(γ	–	t)	for	t	<	0	is	shown	in	Figure	7.5.

Figure	7.4	Plot	of	s(γ)	and	s*(γ	–	t)	for	t	≥	0.



Figure	7.5	Plot	of	s(γ)	and	s*(γ	–	t)	for	t	<	0.

It	should	be	clear	that	if	t	≤	–	τp,	so(t)	=	0.	If	we	multiply	both	sides	of	the	inequality	by	–
1,we	get	–t	≥	τp.	Since	t	<	0,	we	can	write	–	t	=	|t|	and

The	overlap	region	is	0	≤	γ	<	t	+	τp,	which	yields

Since	t	<	0,	t	=	–|t|	and	we	replace	t	with	–|t|	to	get

Since	this	is	the	same	form	as	for	0	≤	t	<	τp,	we	can	combine	these	to	get

Finally,	if	we	combine	this	with	the	result	for	|t|	≥	τp,	we	get

We	note	 that	 this	 is	 the	same	form	as	 (7.45).	Thus,	 (7.50)	and	(7.45)	apply	 for	all	 t.	We	 can
combine	the	two	parts	of	(7.50)	and	use	the	rect[x]	function	to	write	so(t)	in	a	more	compact
form	as



Figure	7.6	Plot	of	matched	filter	output	for	an	unmodulated	pulse.

A	plot	of	so(t)	is	shown	in	Figure	7.6.	It	will	be	noted	that	so(t)	is	a	triangle	with	a	height	of
A2τp	and	a	base	width	of	2τp.	This	is	a	property	of	all	matched	filter	responses:	They	are	twice
as	wide	as	the	pulse.

7.4.3 Response	for	an	LFM	Pulse

There	 are	 very	 few	 practical	 pulses	 that	 lead	 to	 simple	 expressions	 for	 so(t).	 One	 is	 the
unmodulated	pulse	of	the	previous	example,	and	another	is	a	pulse	with	LFM	across	the	pulse.
For	an	LFM	pulse,	the	form	of	s(t)	is

We	note	the	difference	between	(7.52)	and	(7.40)	is	that	we	replaced	the	constant	phase,	θ,	with
a	time	varying	phase

If	we	take	the	derivative	of	θ(t),	we	get	the	frequency	modulation

and	note	the	frequency	changes	linearly	across	the	pulse.	This	is	the	origin	of	the	term	“linear
frequency	modulation.”

The	parameter	α	is	termed	the	LFM	slope.	If	α	>	0,	we	say	we	have	increasing	LFM	because
the	 frequency	 increases	 across	 the	 pulse.	 If	 α	 <	 0,	 we	 have	 decreasing	 LFM.	 An	 LFM
waveform	 is	 also	 termed	 a	 chirp	 waveform	 because	 of	 the	 sound	 it	 makes	 at	 audio
frequencies.	Increasing	LFM	is	termed	up	chirp,	and	decreasing	LFM	is	termed	down	chirp.

The	frequency,	f(t),	starts	at	zero	at	the	beginning	of	the	pulse	and	increases	(decreases)	to
ατp	(–ατp)	at	the	end	of	the	pulse.	Thus,	the	total	frequency	extent	is	 |ατp|.	This	is	 termed	the
LFM	bandwidth.	As	we	will	see,	the	width	of	the	central	lobe	of	so(t)	is	approximately	1/|ατp|,
or	the	reciprocal	of	the	LFM	bandwidth.



To	compute	the	matched	filter	output	for	an	LFM	pulse,	we	start	with	(7.39)	and	consider
the	t	≥	0	and	t	<	0	intervals	as	before.	Like	the	unmodulated	pulse,	we	note	so(t)	=	0	for	|t|	≥	τ
p.

Similar	to	(7.43)	for	0	≤	t	≤	τp,	we	have

If	we	factor	exp[jπαt(τp	+	t)]	from	the	bracketed	term,	we	get

We	note	that	so(t)	is	complex.	Since	we	are	concerned	only	with	the	shape	of	so(t),	we	can	use
|so(t)|	and	write

Multiplying	by	|τp	–	t|/|τp	–	t|	gives

where	we	were	able	to	remove	the	absolute	value	from	τp	–	t	because	we	are	only	considering



0	≤	t	≤	tp.

If	we	perform	similar	math	for	–τp	<	t	<	0,	we	get

As	with	the	unmodulated	pulse,	we	can	use	t	=	|t|	in	(7.58)	and	t	=	–|t|	in	(7.59)	to	get

for	both	(7.58)	and	(7.59).	To	get	the	last	term	in	(7.60),	we	made	use	of	the	even	property	of
the	sinc	function	to	eliminate	the	first	absolute	value	of	t	in	the	argument	of	the	sinc	function.

If	we	combine	(7.60)	with	so(t)	=	0	for	|t|	≥	τp	and	make	use	of	the	rect[x]	function,	we	get

Figure	7.7	contains	a	plot	of	|so(t)|	for	an	example	case	of	a	τp	=	15	μs	pulsewidth,	an	LFM
bandwidth	of	B	=	|ατp|	=	1	MHz,	and	α	>	0.	The	spacing	between	the	points	where	the	response
is	A2/2	is	approximately	1	µs	or	1/B.	Also,	the	height	is	15	×	10–6,	or	τp,	since	A	=	1.	The	total
extent	 of	 the	 response	 is	 30	µs	 or	 twice	 the	 pulsewidth	 of	 15	µs.	As	 a	 note,	 for	modulated
waveforms,	 τp	 is	 termed	 the	 uncompressed	 pulsewidth,	 and	 the	 aforementioned	 spacing
between	A2/2	points	is	termed	the	compressed	pulsewidth.	The	details	of	the	sidelobe	structure
of	|so(t)|	depends	on	 |Bτp|,	which	 is	 termed	 the	 time-bandwidth	product	or	BT	product	of	 the
waveform.	Plots	for	other	BT	products	are	considered	in	the	exercises.



Figure	7.7	Plot	of	matched	filter	output	for	an	LFM	pulse.

7.5 SUMMARY

We	 summarize	 this	 chapter	 by	 repeating	 that	 the	 impulse	 response	 of	 a	 matched	 filter	 for
some	signal,	s(t)	is	given	by

where	K	and	to	are	arbitrary.	The	sole	function	of	a	matched	filter	is	to	maximize	SNR.	The
matched	filter	is	under	no	constraint	to	preserve	the	shape	of	the	signal.	We	also	note	that:

1. The	SNR	at	the	output	to	the	matched	filter	is	peak	signal	to	average	noise	power	and	is
equal	to	ratio	of	the	signal	energy	to	the	noise	energy	at	the	input	to	the	matched	filter,	as
given	by	the	radar	range	equation.

2. The	 matched	 filter	 impulse	 response	 is	 the	 time	 reversed	 impulse	 response	 of	 the
waveform	to	which	it	is	matched.

3. The	frequency	response	of	the	matched	filter	is	the	spectrum	(Fourier	transform)	of	the
complex	conjugate	of	the	waveform	to	which	it	is	matched.

4. The	matched	filter	output	is	the	autocorrelation	of	the	waveform	to	which	it	is	matched.

In	 this	 chapter,	 we	 developed	 matched	 filter	 responses	 for	 an	 unmodulated	 rectangular
pulse	and	a	rectangular	pulse	with	LFM.	The	equations	for	these	responses	are

Unmodulated:

and

LFM:

In	Chapter	10,	we	will	 consider	 other	 types	 of	waveform	modulation	 and	 how	 to	 compute
their	matched	filter	responses.

In	the	developments	of	this	chapter,	we	noted	that	we	were	using	an	idealized	form	of	s(t)
by	 inclusion	 of	 the	 rect[x]	 function.	We	 also	 noted	 that	 actual	 radars	 cannot	 generate	 these
ideal	 pulses.	 Furthermore,	 if	 the	 radar	 could	 generate	 an	 idealized	 pulse,	 it	would	 become
distorted	 by	 the	 time	 it	 propagates	 to	 and	 from	 the	 target	 and	 passes	 through	 the	 receiver
components	 prior	 to	 the	 matched	 filter.	 However,	 in	 most	 situations,	 the	 deviation	 from	 a



rectangular	 pulse	will	 be	 small	 enough	 to	 not	 significantly	 affect	 the	 shape	 of	 the	matched
filter	response.	As	an	example,	Figure	7.8	contains	the	envelope	of	a	1.5-V,	1-µs	unmodulated
pulse	at	the	input	to	the	matched	filter.	In	generating	the	plot,	it	was	assumed	that	the	receiver
components	 prior	 to	 the	matched	 filter	 could	 be	 represented	by	 a	 filter	with	 a	 bandwidth	 4
MHz	to	pass	almost	all	of	the	frequency	components	of	the	pulse.	We	assumed	the	transmitter
generated	a	pulse	with	a	 rectangular	envelope,	a	point	 target	and	no	propagation	distortion.
As	can	be	seen,	the	envelope	is	not	perfectly	rectangular,	but	is	reasonably	close.

We	also	assumed	the	noise	at	the	input	to	the	matched	filter	was	white.	Again,	this	is	not	the
case	since	the	noise	spectrum	will	be	shaped	by	the	frequency	response	of	the	receiver.

Finally,	we	also	assumed	the	target	is	a	point	scatterer	(see	Chapter	3).	For	targets	that	are
small,	relative	to	the	range	resolution	of	the	pulse,	this	is	a	reasonable	assumption.	For	cases
where	the	target	is	large,	relative	to	the	range	resolution,	the	return	pulse	will	be	longer	than
the	 transmit	 pulse	 (the	 pulse	 to	 which	 the	 filter	 is	 matched),	 and	 thus	 the	 point	 scatterer
assumption	is	not	valid.

To	be	accurate,	we	should	have	accounted	for	the	transmitter,	environment,	antenna,	target,
and	 receiver	when	 deriving	 the	matched	 filter	 equation.	However,	 the	math	 associated	with
that	 derivation	 would	 very	 quickly	 become	 untenable.	 We	 reconcile	 this	 problem	 by
recognizing	 that	 the	 output	 of	 a	 practical	 matched	 filter	 will	 not	 look	 exactly	 like	 the
theoretical	 |so(t)|.	 For	 the	 unmodulated	 pulse	 and	 phase	 coded	 pulses	 to	 be	 considered	 in
Chapter	10,	|so(t)|	will	not	have	a	sharp	peak	like	that	shown	in	Figure	7.6.	 Instead,	 the	peak
will	 be	 rounded.	Also,	 the	 shape	will	 not	 be	perfectly	 triangular.	For	 example,	 the	matched
filter	output	for	the	1	µs	unmodulated	pulse	of	Figure	7.8	is	plotted	in	Figure	7.9.	In	addition
to	the	distortion	of	the	shape	|so(t)|,	 its	peak	is	slightly	smaller	than	the	ideal	value	of	A2τp2.
This	is	normally	accommodated	by	including	a	matched	filter	mismatch	loss	term	in	the	radar
range	equation	(see	Chapter	5).	There	is	also	a	time	delay	resulting	from	filtering.	Time	delay
through	receiver	and	signal	processer	circuitry	is	accounted	for	via	radar	calibration.

Figure	7.8	Envelope	of	an	ideal	and	actual	pulse	at	the	matched	filter	input.



Figure	7.9	Plot	of	matched	filter	output	for	an	unmodulated	pulse.

For	LFM	pulses,	the	response	of	Figure	7.7	is	representative	of	an	actual	response,	except
that	it	is	likely	it	will	not	be	perfectly	symmetric	as	shown	in	that	figure.

For	cases	where	the	target	is	large	relative	to	the	range	resolution,	the	peak	of	the	matched
filter	output	may	not	simply	broaden	but	could	exhibit	several	peaks.	This	will	also	translate
to	an	SNR	loss	relative	to	the	case	of	a	point	target	with	the	same	RCS,	since	the	target	RCS
will	be	essentially	distributed	in	range.	It	 is	something	that	must	be	taken	into	account	when
analyzing	 the	 output	 of	 the	 detection	 logic,	 τ.	This	 problem	 arises	 in	 radars	 that	 have	 very
narrow	compressed	pulsewidths	(less	than	about	0.05	to	0.1	µs	depending	upon	target	size)	or
very	large	targets	such	as	ships	or	very	large	aircraft	(e.g.,	blimps).

In	some	radars,	 the	designers	 intentionally	use	filters	 that	are	not	matched	 to	 the	 transmit
pulse.	The	most	common	case	is	an	LFM	pulse	where	the	filter	is	intentionally	mismatched	to
reduce	 the	 range	 (time)	 sidelobes	 (the	 lobes	 around	 the	main	 lobe—see	 Figure	 7.7)	 [7].	 In
such	cases,	the	designer	is	concerned	with	interference	(from	other	targets	or	clutter)	and	is
willing	to	accept	the	loss	in	SNR	caused	by	using	a	mismatched	filter.

Radars	 that	 use	 unmodulated	 pulses	 and	 analog	 processing	 may	 not	 include	 a	 matched
filter,	per	se.	Instead,	they	use	a	narrowband	filter	that	will	pass	most	of	the	pulse	power	and
minimize	 the	noise	power	 to	 some	extent.	This	 approach	 is	 usually	 taken	 as	 a	 cost	 savings
where	 the	designer	 is	willing	 to	accept	 the	potential	1	or	2	dB	 loss	 in	SNR	associated	with
such	an	implementation.

In	analog	radars	that	use	LFM	pulses,	the	matched	filter	can	be	implemented	with	surface	or
bulk	wave	acoustic	devices	with	piezo-electric	transducers	at	the	input	and	output	[8,	9]	and,	in
some	instances,	lumped	parameter	filters.	In	modern	radars	that	use	digital	signal	processing,
the	 matched	 filter	 could	 be	 implemented	 using	 a	 fast	 convolver	 based	 on	 fast	 Fourier
transformers	(FFTs)	or	some	other	digital	processing	methodology.

7.6 EXERCISES

1. Derive	(7.59)	and	show	that	 it	can	be	combined	with	(7.58)	and	so(t)	=	0	for	 |t|	>	τp	 to



arrive	at	(7.60).

2. Derive	so(t)	for	the	unmodulated	pulse	of	Section	7.4.2	when	the	phase	is	θ(t)	=	2πfIFt	+	ϕ
instead	of	a	constant.	You	will	note	that	so(t)	is	not	real	as	was	the	case	of	the	example.
Because	of	this,	one	would	plot	|so(t)|	versus	t	instead	of	so(t)	versus	t.

3. Plot	Re[s(t)]	versus	t	for	–5	µs	≤	t	≤	20	µs,	a	pulsewidth	τp	=	15	µs,	a	chirp	bandwidth	B
=	ατp	=	1	MHz,	and	an	amplitude	A	=	1.	Use	θ(t)	=	2πfIFt	+	παt2	instead	of	θ(t)	=	παt	2.
Let	 fIF	 =	 1.5	MHz.	 This	 plot	 illustrates	 the	 increasing	 frequency	 behavior	 of	 an	 LFM
pulse.

4. Plot	Re[s(t)]	versus	t	for	–5	µs	≤	t	≤	20	µs,	a	pulsewidth	τp	=	15	µs,	a	chirp	bandwidth	B
=	ατp	=	–1	MHz,	and	an	amplitude	A	=	1.	Use	θ(t)	=	2πfIFt	+	παt	2	instead	of	θ(t)	=	παt2.
Let	 fIF	 =	 1.5	MHz.	 This	 plot	 illustrates	 the	 decreasing	 frequency	 behavior	 of	 an	LFM
pulse	for	a	negative	chirp	slope.

5. Plot	 |so(t)|	 for	 an	 LFM	 pulse	 with	 amplitude	A	 =	 1,	 pulsewidth	 τp	 =	 15	 µs,	 and	 LFM
bandwidths	of	0.2,	0.5,	2.0,	and	5.0	MHz.	Note	the	difference	in	the	sidelobe	structure.

6. Find	an	equation	for	the	impulse	response,	h(t),	of	a	matched	filter	for	a	pulse	defined
by

where	β	<	0.	Sketch	s(t)	and	h(t).	Find	and	sketch	the	matched	filter	output,	so(t).
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2	In	practice,	the	matched	filter	output	is	scaled	to	some	convenient	level,	for	example,	unity	signal	gain	through	the	matched
filter,	some	peak	voltage	via	AGC,	since	only	proportionality	is	required	by	(7.21).



Chapter	8

Detection	Probability	Improvement	Techniques

8.1 INTRODUCTION

In	Chapters	6	and	7,	we	derived	equations	for	single-pulse	detection	probability	and	showed
that	the	use	of	a	matched	filter	provides	the	maximum	SNR	and	Pd	that	can	be	obtained	for	a
given	set	of	 radar	parameters	and	a	given,	single	 transmitted	pulse.	We	termed	the	resultant
SNR	and	Pd	single-pulse	SNR	and	Pd.	We	now	want	to	address	the	improvement	in	Pd	that	we
can	obtain	by	using	multiple	transmit	pulses.	We	will	examine	four	techniques:

1.	Coherent	integration;
2.	Noncoherent	integration;
3.	m-of-n	detection;	and
4.	Cumulative	probability.

According	to	a	correspondence	from	David	K.	Barton,1	 the	earliest	published	mention	of
coherent	 integration	 was	 in	 a	 paper	 by	 D.	 O.	 North	 [1]	 where	 he	 discussed	 coherent
integration	and	some	of	the	problems	(that	he	saw	at	the	time)	of	implementation.	In	a	1950
book	 by	 Lawson	 and	 Uhlenbeck	 [2],	 the	 authors	 referenced	 a	 1944	 MIT	 Radiation
Laboratories	 report	by	Emslie	 titled	“Coherent	 Integration”	 [3].	 In	 the	 early	1950s,	Lincoln
Laboratories	 developed	 a	 pulsed-Doppler	 radar	 called	 Porcupine	 [4],	 and	 in	 1956,
Westinghouse	 built	 an	 airborne	 intercept	 radar	 using	 coherent	 integration	 in	 the	 form	 of	 a
Doppler	 processor.	 By	 1957,	 coherent	 integration	was	 being	widely	 discussed	 in	 literature
[5–8].

Noncoherent	integration	has	apparently	been	used	since	the	early	days	of	radar	since	this	is
the	type	of	integration	performed	by	radar	displays	such	as	A-scopes,	plan	position	indicators
(PPIs),	and	the	like	[2,	9].	However,	it	appears	that	the	first	rigorous	treatment	of	noncoherent
integration	 was	 presented	 by	 Marcum	 in	 his	 seminal	 paper	 [10].	 Shortly	 after	 Marcum
published	his	paper,	Swerling	expanded	upon	Marcum’s	analyses	and	considered	noncoherent
integration	of	signal	returns	for	his	four	target	fluctuation	models	[11].

The	 first	 publication	 of	 a	 paper	 on	 m-of-n	 detection,	 which	 is	 also	 known	 as	 binary
integration,	coincidence	detection,	and	dual	threshold	detection,	appears	to	have	been	the	1955
paper	 by	 Harrington	 [12].	 Papers	 by	 Dinneen	 and	 Reed	 in	 1956	 [13]	 and	 Schwartz	 [14]
followed.

Marcum	 discussed	 cumulative	 detection	 in	 his	 1947	 paper	 [10].	 Hall	 also	 discusses
cumulative	detection	probability	in	a	1956	paper	[15].



8.2 COHERENT	INTEGRATION

With	 coherent	 integration,	 we	 insert	 a	 coherent	 integrator	 (a	 type	 of	 signal	 processor)
between	 the	 matched	 filter	 and	 amplitude	 detector,	 as	 shown	 in	 Figure	 8.1.	 This	 coherent
integrator	 adds	 returns	 (thus	 the	word	 integrator)	 from	n	 pulses.	After	 accumulating	 the	n-
pulse	sum,	amplitude	detection	and	the	threshold	check	are	performed.

In	 practice,	 the	 process	 of	 forming	 the	 n-pulse	 sum	 is	 somewhat	 complicated.	 In	 one
implementation,	 the	 coherent	 integrator	 samples	 the	 return	 from	 each	 transmit	 pulse	 at	 a
spacing	equal	to	the	range	resolution	of	the	radar.	Thus,	for	example,	if	we	are	interested	in	a
range	window	from	5	to	80	km	and	have	a	range	resolution	of	150	m,	the	signal	processor
forms	75,000/150	or	 500	 samples	 for	 each	pulse	 return.	The	 coherent	 integrator	 stores	 the
500	samples	for	each	pulse.	After	it	has	stored	n	sets	of	500	samples,	it	sums	across	n	to	form
500	 sums.	 In	modern,	 phased	 array	 radars	with	digital	 signal	 processors,	 the	 summation	 is
accomplished	by	 summers	or	FFTs.	 In	older,	 analog	 radars,	 the	 summation	 (integration)	 is
performed	 by	 filters	 [16]	 or	 integrate-and-quench	 circuits	 similar	 to	 those	 used	 in
communications	receivers.

We	will	first	consider	the	effects	of	coherent	integration	on	SNR	and	then	discuss	its	effect
on	Pd.	As	we	did	in	previous	chapters,	we	will	separately	consider	the	signal	and	noise	for	the
SNR	analysis	and	noise	and	signal-plus-noise	for	the	detection	analyses.

Figure	8.1	Location	of	the	coherent	integrator.

8.2.1 SNR	Analysis

For	the	signal,	we	assume	the	complex	amplitude	of	the	signal	on	pulse	k	at	the	matched	filter
output	is	given	by

where	 S	 >	 0	 is	 the	 signal	 amplitude	 and	 θ	 is	 the	 phase.	We	 assume	we	 are	 looking	 at	 the
specific	range	cell—out	of	 the	500	discussed	in	 the	above	example—that	contains	 the	 target
return.	Further,	the	sample	timing	corresponds	to	matched	range	(see	Chapter	9).

The	formulation	of	s(k)	in	(8.1)	carries	several	assumptions	about	the	target.	It	implies	that
the	amplitude	and	phase	of	the	signal	returned	from	the	target	is	constant,	at	least	over	the	n
pulses	that	are	to	be	integrated.	This	means	we	are	assuming	the	target	is	SW0/SW5,	SW1,	or
SW3.	 It	 does	 not	 admit	 SW2	 or	 SW4	 targets.	 As	 we	 will	 show	 later,	 coherent	 integration
offers	no	SNR	benefit	for	SW2	and	SW4	targets.

The	formulation	also	implies	there	is	nothing	in	the	radar	or	environment	that	would	cause



the	 signal	 amplitude	 or	 phase	 to	 vary	 across	 the	 n	 pulses.	 In	 particular,	 the	 radar	 and
environment	 must	 be	 such	 that	 all	 of	 the	 parameters	 of	 the	 radar	 range	 equation	 remain
constant	 across	 the	 n	 pulses.	 Thus,	 for	 example,	 the	 antenna	 beam	 must	 be	 stationary,	 the
transmit	power	must	be	constant,	 the	 target	must	be	 stationary,	 the	 radar	 frequency	must	be
constant,	the	parameters	of	the	radar	receiver	must	not	change,	and	the	environment	between
the	radar	and	the	target	must	not	change.

Another	implication	of	(8.1)	is	that	there	is	no	Doppler	on	the	target	return.	If	the	target	is
moving,	it	will	have	a	Doppler	frequency	and	thus	a	changing	phase.	This	Doppler	frequency
must	 be	 removed	 by	 the	 coherent	 integrator	 before	 the	 summation	 takes	 place.	 In	 digital
signal	processors	that	use	FFTs,	Doppler	removal	is	effectively	accomplished	by	the	FFT.	In
analog	processors,	Doppler	is	removed	through	the	use	of	bandpass	filters	tuned	to	various
Doppler	 frequencies	 that	 cover	 the	 range	 of	 expected	 Doppler	 frequencies,	 or	 by	 mixers
before	the	integrate-and-quench	circuits.

It	should	be	noted	that	not	all	of	the	aforementioned	constraints	can	be	perfectly	satisfied.
We	account	for	the	fact	that	some	will	be	violated	by	including	loss	terms	in	the	radar	range
equation.	These	were	discussed	in	Chapter	5	and	will	be	reviewed	later	in	this	chapter.

If	we	sum	over	n	 pulses,	 the	output	of	 the	 summer	will	 be	 (for	 the	 range	cell	 or	 sample
being	investigated)

If	the	signal	power	at	the	input	to	the	summer	is

the	signal	power	at	the	output	of	the	summer	will	be

In	these	equations,	PS	is	the	single-pulse	signal	power	from	the	radar	range	equation.	We	can
write	the	noise	at	the	input	to	the	coherent	integrator	on	the	kth	pulse	as

Consistent	with	our	previous	noise	discussions	(see	Chapters	6	and	7),	we	assume	nI(k)	and
nQ(k)	 are	 wide	 sense	 stationary	 (WSS),	 zero	 mean,	 and	 independent.	 They	 each	 have	 a
variance	of	σ2.	Although	we	do	not	need	it	here,	we	will	also	assume	they	are	Gaussian.

If	we	sum	the	n	pulses,	the	noise	at	the	output	of	the	summer	will	be



The	noise	power	at	the	output	of	the	summer	will	be

In	(8.7),	we	made	use	of	the	fact	that	nI(k)	and	nQ(k)	being	independent	and	zero	mean	implies
that	noutI	and	noutQ	are	independent	and	zero	mean.

We	can	write

Since	nI(k)	is	WSS	and	zero	mean,

We	also	assume	the	noise	samples	are	uncorrelated	from	pulse	to	pulse.2	This	means	nI(k)	and
nI(l)	are	uncorrelated	∀k	≠	l.	Since	nI(k)	and	nI(l)	are	also	zero	mean,	we	get

If	we	use	(8.9)	and	(8.10)	in	(8.8),	we	get

where	Pnin	is	the	noise	power	at	the	output	of	the	matched	filter	(the	“single-pulse”	noise	term
from	the	radar	range	equation	with	B=1/τp;	see	Chapters	2	and	4).

By	similar	reasoning,	we	have

and,	from	(8.7),



If	we	combine	(8.4)	and	(8.13),	we	find	that	the	SNR	at	the	output	of	the	coherent	integrator
is	or	n	 times	 the	SNR	at	 the	output	of	 the	matched	filter	 (the	SNR	given	by	 the	radar	 range
equation).	 With	 this,	 we	 conclude	 the	 coherent	 integrator	 provides	 an	 SNR	 gain,	 or	 SNR
improvement,	of	n.

If	the	target	is	SW2	or	SW4,	coherent	integration	does	not	increase	SNR.	This	stems	from
the	 fact	 that,	 for	 SW2	 and	 SW4	 targets,	 the	 signal	 is	 not	 constant	 from	 pulse	 to	 pulse	 but,
instead,	 behaves	 like	 noise.	 This	means	we	must	 treat	 the	 target	 signal	 the	 same	 as	 we	 do
noise.	Thus,	in	place	of	(8.2),	we	would	write

Following	the	procedure	we	used	for	the	noise	case,	we	have

and

This	leads	to	the	result

In	other	words,	the	SNR	at	the	coherent	integrator	output	would	be	the	same	as	the	SNR	at	the
matched	filter	output,	and	the	coherent	integrator	would	offer	no	integration	gain.

8.2.2 Detection	Analysis

We	 have	 addressed	 the	 signal	 power,	 the	 noise	 power,	 and	 the	 SNR	 at	 the	 output	 of	 the
coherent	 integrator.	 In	 order	 to	 compute	Pd,	 we	 need	 to	 consider	 the	 forms	 of	 the	 density
functions	of	the	noise	and	signal	plus	noise	at	the	output	of	the	signal	processor.	We	address
the	noise	first.

From	(8.6),	we	have



We	 already	 made	 the	 assumption	 that	 the	 nI(k)	 and	 nQ(k)	 are	 independent,	 zero-mean,
Gaussian	random	variables	with	equal	variances	of	σ2.	This	means	noutI	and	noutQ	are	zero-
mean,	Gaussian	 random	variables	 and	 have	 variances	 of	nσ2/2.	 They	 are	 also	 independent.
This	is	exactly	the	same	as	the	conditions	we	had	on	the	I	and	Q	components	of	noise	in	the
single-pulse	case.	This	means	the	density	of	the	noise	magnitude,	Nout,	at	the	detector	output
will	be	of	the	form	of	(6.14)	(Chapter	6),	and	the	Pfa	equation	is	given	by	(6.104).	They	will
differ	in	that	the	σ2	in	these	two	equations	will	be	replaced	by	nσ2.	The	specific	equations	are

and

where	TNR	is	the	threshold	to	noise	ratio	used	in	the	detection	logic	(see	Chapter	6).

We	now	turn	our	attention	to	signal	plus	noise.	For	the	SW0/SW5	target,	we	can	write	the
signal-plus-noise	voltage	at	the	coherent	integrator	output	as

where	 each	 of	 the	 vI(k)	 and	 vQ(k)	 are	 independent,	 Gaussian	 random	 variables	 with	 equal
variances	of	σ2.	The	mean	of	vI	(k)	is	Scosθ,	and	the	mean	of	vQ(k)	is	Ssinθ	(see	Section	6.4	of
Chapter	6).	With	this,	voutI	and	voutQ	are	also	Gaussian.	Their	variances	are	equal	to	nσ2	and
their	means	are	nScosθ	and	nSsinθ.	They	are	also	independent.	In	this	case,	the	density	of	the
signal-plus-noise	magnitude,	vout,	at	the	detector	output	is	of	the	form	given	in	(6.75)	with	S
replaced	by	nS	and	σ2	replaced	by	nσ2.	With	this,	we	conclude	Pd	is	given	by	(6.116)	with	SNR
replaced	by

where	SNR	is	the	single-pulse	SNR	given	by	the	radar	range	equation.	Specifically,	we	have



where,	from	Chapter	6,	Q1(a,b)	is	the	Marcum	Q	function.

For	the	SW1	and	SW3	target,	we	need	to	take	an	approach	similar	to	that	used	in	Chapter	6
for	SW3	targets.	For	SW1	and	SW3	targets,	the	signal	amplitude,	S,	and	phase,	θ,	are	constant
across	 the	 n	 pulses	 that	 are	 coherently	 integrated.	However,	 the	 amplitude	 of	 the	 group	 of
pulses,	 termed	 the	 coherent	 dwell,	 is	 governed	 by	 the	 SW1	 or	 SW3	 amplitude	 fluctuation
density	[see	(6.40)	and	(6.49)].	The	phase	of	the	group	of	pulses	is	governed	by	the	uniform
probability	density	 function	as	discussed	 in	Chapter	6.	This	means	 that,	during	 the	n	pulses,
the	signal	plus	noise	for	SW1	and	SW3	targets	is	the	same	form	as	for	the	SW0/SW5	target.
That	is,	vI(k)	and	vQ(k)	are	independent,	Gaussian	random	variables	with	variances	of	σ2	and
means	of	Scosθ	and	Ssinθ.	This	implies	that	the	densities	of	voutI	and	voutQ,	given	that	S	and	θ
are	 fixed,	are	also	Gaussian	with	variances	of	nσ2/2	and	means	of	nScosθ	and	nSsinθ.	 This
was	 the	 same	 form	 of	 the	 conditional	 density	 presented	 in	 Chapter	 6.	 If	 we	 follow	 this
argument	through	and	follow	the	procedure	of	Chapter	6,	we	can	derive	the	density	function
of	the	magnitude	of	vout	as

for	the	SW1	target	and

for	the	SW3	target.

By	performing	 the	appropriate	 integrations,	we	can	show	 the	equations	 for	Pd	 are	of	 the
same	form	as	(6.123)	and	(6.127)	with	SNR	replaced	by	nSNR.	In	particular,

for	SW1	targets	and

for	SW3	targets.

For	 a	 SW2	 target,	 the	 signal-plus-noise,	 ,	 is	 independent	 from	 pulse	 to
pulse	 (across	 the	 n	 pulses).	 Further,	 vI(k)	 and	 vQ(k)	 are	 zero	 mean	 and	 Gaussian	 with



variances	 of	Ps	 +	 σ2	 [see	 (6.57)].	 Their	 sums	 are	 also	 zero	 mean	 and	 Gaussian,	 but	 have
variances	of	n(Ps	+	σ2)/2.	This	means	the	magnitude	of	vout	has	the	density

By	 performing	 the	 appropriate	 integration,	we	 find	Pd	 is	 as	 given	 by	 (6.123),	 with	 SNR
equal	 to	 the	 single-pulse	 SNR.	 In	 other	 words,	 the	 coherent	 integrator	 does	 not	 improve
detection	probability.

Derivation	of	a	similar	result	for	SW4	targets	is	not	as	easy	as	for	SW2	targets	because	we
cannot	claim	that	vI(k)	and	vQ(k)	are	Gaussian	for	SW4	targets.	This	means	we	cannot	easily
find	the	density	functions	of	the	coherent	integrator	output,	voutI	and	voutQ,	for	the	SW4	target.
Without	 these	 density	 functions,	 we	 cannot	 compute	 Pd.	 As	 a	 consequence,	 we	 have	 no
rigorous	mathematical	basis	for	claiming	that	coherent	integration	will	or	will	not	improve
Pd	for	a	SW4	target.	The	standard	assumption	appears	to	be	that,	like	SW2	targets,	coherent
integration	offers	no	Pd	improvement	for	SW4	targets.

In	 the	above	development,	we	made	some	 ideal	assumptions	concerning	 the	 target,	 radar,
and	 environment	 based	 on	 the	 fact	 that	 we	 were	 collecting	 and	 summing	 returns	 from	 a
sequence	of	n	pulses.	In	particular,	we	assumed	the	target	amplitude	was	constant	from	pulse
to	pulse.	Further,	we	assumed	that	we	sampled	the	output	of	the	matched	filter	at	 its	peak.	In
practice,	neither	of	these	is	strictly	true.	First,	we	really	cannot	expect	to	sample	the	matched
filter	output	at	its	peak.	Because	of	this,	the	SNR	in	the	Pd	equations	will	not	be	the	peak	SNR
at	 the	 matched	 filter	 output	 (the	 SNR	 given	 by	 the	 radar	 range	 equation).	 It	 will	 be	 some
smaller	 value.	 We	 usually	 account	 for	 this	 by	 degrading	 SNR	 by	 a	 factor	 we	 call	 range
straddling	 loss	 [17,	 p.	 236]	 (see	 Chapter	 5).	 If	 the	 samples	 (the	 500	 samples	 of	 the
aforementioned	example)	are	spaced	one	range	resolution	cell	apart,	the	range	straddling	loss
is	usually	taken	to	be	3	dB.

There	are	other	reasons	that	the	signal	into	the	coherent	integrator	will	vary.	One	is	target
motion.	This	will	create	a	Doppler	frequency,	which	will	cause	phase	variations	from	pulse	to
pulse	 (which	 translate	 to	 amplitude	 variations	 in	 the	 I	 and	Q	 components).	 If	 the	 Doppler
frequency	is	large	enough	to	cause	large	phase	variations,	the	gain	of	the	coherent	integrator
will	 be	 nullified.	 In	 general,	 if	 the	 Doppler	 frequency	 is	 greater	 than	 about	 PRF/n,	 the
coherent	integration	gain	will	be	nullified.	In	fact,	the	coherent	integration	could	result	in	an
SNR	reduction.	Doppler	 frequency	offsets	 can	be	 circumvented	by	using	banks	of	 coherent
integrators	 that	are	 tuned	 to	different	Doppler	 frequencies.	This	 is	usually	accomplished	by
FFTs	in	digital	signal	processors	and	bandpass	filters	in	analog	processors.

Another	degradation	related	to	Doppler	is	termed	range	gate	walk.	Because	of	the	nonzero
range	rate,	the	target	signal	will	move	relative	to	the	time	location	of	the	various	samples	fed
to	the	coherent	integrator.	This	means	that,	over	the	n	pulses,	the	signal	amplitude	will	change.
As	 indicated	 above,	 this	 could	 result	 in	 a	 degradation	of	SNR	at	 the	output	 of	 the	 coherent



integrator.	In	practical	radars,	designers	take	steps	to	avoid	range	walk	by	not	integrating	too
many	pulses.	Unavoidable	range	walk	is	usually	accounted	for	by	including	a	small	(less	than
1	dB)	SNR	degradation	(SNR	loss).	Also,	if	the	radar	computer	has	some	knowledge	of	target
range	rate,	it	can	adjust	the	range	samples	to	account	for	range	walk.	This	is	reasonably	easy
to	accomplish	when	the	radar	is	tracking.	It	may	be	more	difficult	during	search.

Still	 another	 factor	 that	 causes	 the	 signal	 amplitude	 to	 vary	 is	 the	 fact	 that	 the	 coherent
integration	 may	 take	 place	 while	 the	 radar	 scans	 its	 beam	 across	 the	 target.	 The	 scanning
beam	will	cause	the	GT	and	GR	terms	in	the	radar	range	equation	to	vary	across	the	n	pulses
that	 are	 coherently	 integrated.	 As	 before,	 this	 will	 degrade	 the	 SNR,	 and	 its	 effects	 are
included	 in	 what	 is	 termed	 a	 beamshape	 loss	 [17,	 p.	 493]	 (Chapter	 5).	 This	 loss,	 or
degradation,	is	usually	1	to	3	dB	in	a	well-designed	radar.

Phased	array	 radars	have	a	 similar	problem.	For	phased	array	 radars,	 the	beam	does	not
move	continuously	(in	most	cases),	but	 in	discrete	steps.	This	means	the	phased	array	radar
may	 not	 point	 the	 beam	 directly	 at	 the	 target.	 In	 turn,	 the	GT	 and	GR	 of	 the	 radar	 range
equation	 will	 not	 be	 their	 maximum	 values.	 As	 with	 the	 other	 cases,	 this	 phenomena	 is
accommodated	through	the	inclusion	of	a	beamshape	loss	term	(see	Chapter	5).

8.3 NONCOHERENT	INTEGRATION

We	 now	want	 to	 discuss	 noncoherent,	 video,	 or	 post-detection	 integration.	 The	 term	 post-
detection	integration	derives	from	the	fact	that	the	integrator,	or	summer,	is	placed	after	the
amplitude	or	square	law	detector,	as	shown	in	Figure	8.2.	The	 term	noncoherent	 integration
derives	from	the	fact	that,	since	the	signal	has	undergone	amplitude	or	square	law	detection,
the	phase	information	is	lost.	The	synonym	video	appears	to	be	a	carryover	from	older	radars
and	refers	to	the	video	displayed	on	PPIs,	A-scopes,	and	the	like.	The	noncoherent	integrator
operates	 in	 the	 same	 fashion	 as	 the	 coherent	 integrator	 in	 that	 it	 sums	 the	 returns	 from	 n
pulses	 before	 performing	 the	 threshold	 check.	 However,	 where	 the	 coherent	 integrator
operates	on	the	output	of	the	matched	filter,	the	noncoherent	integrator	operates	on	the	output
of	the	amplitude	detector.

Figure	8.2	Location	of	the	noncoherent	integrator.

A	 noncoherent	 integrator	 can	 be	 implemented	 in	 several	 ways.	 In	 older	 radars,	 it	 was
implemented	 via	 the	 persistence	 on	 displays	 plus	 the	 integrating	 capability	 of	 a	 human
operator.	These	types	of	noncoherent	integrators	are	very	difficult	to	analyze	and	will	not	be
considered	here.	The	reader	is	referred	to	[2,	9,	16].

A	 second	 implementation	 is	 termed	 an	m-of-n	 detector	 and	 uses	more	 of	 a	 logic	 circuit
rather	 than	 a	 device	 that	 integrates.	 Simply	 stated,	 the	 radar	 examines	 the	 output	 of	 the
threshold	device	for	n	pulses.	If	a	DETECT	is	declared	on	any	m	or	more	of	those	n	pulses,
the	 radar	 declares	 a	 target	 detection.	 This	 type	 of	 implementation	 is	 also	 termed	 a	 dual



threshold	detector	or	a	binary	integrator	[18–20].	We	will	consider	 this	 type	of	noncoherent
integrator	later	in	this	chapter.
The	 third	 type	 of	 noncoherent	 integrator	 is	 implemented	 as	 a	 summer	 or	 integrator.	 In

older	 radars,	 lowpass	 filters	 were	 used	 to	 implement	 them.	 In	 newer	 radars,	 they	 are
implemented	in	special	purpose	hardware	or	the	radar	computer	as	digital	summers.

In	 a	 fashion	 similar	 to	 coherent	 integration,	 the	 noncoherent	 integrator	 samples	 the
(amplitude	detected)	return	from	each	transmit	pulse	at	a	spacing	equal	to	the	range	resolution
of	the	radar.	Repeating	the	previous	example,	if	we	are	interested	in	a	range	window	from	5	to
80	km	and	have	a	range	resolution	of	150	m,	the	noncoherent	integrator	forms	75,000/150	or
500	 samples	 for	 each	 pulse	 return.	 The	 noncoherent	 integrator	 stores	 the	 500	 samples	 for
each	pulse.	After	it	has	stored	n	sets	of	500	samples,	it	sums	across	n	to	form	500	sums.

For	 SW0/SW5,	 SW1,	 and	 SW3	 targets,	 the	main	 advantage	 of	 a	 noncoherent	 integrator
over	 a	 coherent	 integrator	 is	 hardware	 simplicity.	 As	 indicated	 in	 earlier	 discussions,
coherent	 integrators	must	 contend	with	 the	 effects	 of	 target	Doppler.	 In	 terms	 of	 hardware
implementation,	 this	 usually	 translates	 to	 increased	 complexity	 of	 the	 coherent	 integrator.
Specifically,	it	is	usually	necessary	to	implement	a	bank	of	coherent	integrators	that	are	tuned
to	various	Doppler	frequencies.	Because	of	this,	one	will	need	a	number	of	integrators	equal
to	the	number	of	range	cells	in	the	search	window	multiplied	by	the	number	of	Doppler	bands
needed	to	cover	the	Doppler	frequency	range	of	interest.	Although	not	directly	stated	earlier,
this	will	also	 require	a	 larger	number	of	amplitude	 (or	square	 law)	detectors	and	 threshold
devices.

Since	the	noncoherent	integrator	is	placed	after	the	amplitude	detector,	it	does	not	need	to
accommodate	multiple	Doppler	frequencies.	This	lies	in	the	fact	that	the	amplitude	detection
process	 recovers	 the	 signal	 (plus	 noise)	 amplitude	without	 regard	 to	 phase	 (i.e.,	 Doppler).
Because	of	this,	the	number	of	integrators	is	reduced;	it	is	equal	to	the	number	of	range	cells
in	the	search	window.

Recall	that	coherent	integration	offers	no	improvement	in	detection	probability	for	SW2	or
SW4	targets.	In	fact,	it	can	degrade	detection	probability	relative	to	that	which	can	be	obtained
from	a	single	pulse.	In	contrast,	noncoherent	integration	can	offer	significant	improvement	in
detection	 probability	 relative	 to	 a	 single	 pulse.	 It	 is	 interesting	 to	 note	 that	 some	 radar
designers	are	using	various	schemes,	such	as	frequency	hopping,	 to	force	 targets	 to	exhibit
SW2	 or	 SW4	 characteristics	 and	 exploit	 the	 significant	 detection	 probability	 improvement
offered	by	noncoherent	integration	[21,	22].

Analysis	of	noncoherent	 integrators	 is	much	more	complicated	 than	analysis	of	coherent
integrators	 because	 the	 integration	 takes	 place	 after	 the	 nonlinear	 process	 of	 amplitude	 or
square	law	detection.	From	our	previous	work	in	Chapter	6,	we	note	that	the	density	functions
of	 the	 magnitude	 of	 noise	 and	 signal-plus-noise	 are	 somewhat	 complicated.	 More
importantly,	 they	 are	 not	 Gaussian.	 Therefore,	 when	 we	 sum	 the	 outputs	 from	 successive
pulses,	we	cannot	conclude	that	the	density	function	of	the	sum	of	signals	will	be	Gaussian	(as
we	 can	 if	 the	 density	 function	 of	 each	 term	 in	 the	 sum	was	 Gaussian).	 In	 fact,	 the	 density
functions	become	very	complicated.	This	has	the	further	ramification	that	the	computation	of



Pfa	 and	 Pd	 becomes	 very	 complicated.	 Analysts	 such	 as	 DiFranco	 and	 Rubin,	 Marcum,
Swerling,	and	Meyer	and	Mayer	have	devoted	considerable	energy	to	analyzing	noncoherent
integrators	and	documenting	the	results	of	these	analyses	[10,	11,	23,	24].	We	will	not	attempt
to	duplicate	the	analyses	here;	instead,	we	present	the	results	of	their	labor.

An	equation	for	Pfa	at	the	output	of	an	n-pulse,	noncoherent	integrator	is

where	Γ(n,TNR)	is	the	incomplete	gamma	function	[25,	p.	112]	defined	by3

For	a	=	n,	where	n	is	a	positive	integer,	Γ(n)	becomes	the	factorial	operation	[26,	p.	98].	That
is

Many	modern	 software	 packages,	 such	 as	MATLAB	 and	Mathcad®,	 include	 the	 incomplete
gamma	 function	 in	 their	 standard	 library.	 These	 software	 packages	 also	 have	 the	 inverse
incomplete	 gamma	 function,	 which	 is	 necessary	 for	 determining	 TNR	 for	 a	 given	 Pfa.
Specifically,

where	Γ−1(n,1	−	Pfa)	is	the	inverse	of	the	incomplete	gamma	function.

The	Pd	equations	for	the	five	target	types	we	have	studied	are

SW0/SW5:

SW1:



SW2:

SW3:

SW4:

In	the	above,	Q1(a,b)	 is	 the	Marcum	Q	function,	Ir(x)	 is	 the	modified	Bessel	 function	of	 the
first	 kind	 and	 order	 r	 [26,	 p.	 104],	 and	 Γ(a,x)	 is	 the	 aforementioned	 incomplete	 gamma
function.	TNR	is	the	threshold-to-noise	ratio	and	is	computed	from	(8.33).

SNR	in	the	above	equations	is	the	single-pulse	SNR	defined	by	the	radar	range	equation	(see
Chapter	2).

With	 the	exception	of	 (8.37),	 (8.34)	 through	(8.38)	are	exact	equations.	Equation	 (8.37)	 is
usually	taken	to	be	an	exact	equation,	but	is	actually	an	approximation,	as	indicated	by	the	use
of	≈	instead	of	=.	An	exact	equation	for	the	SW3	case	can	be	found	in	the	appendix	of	[24].

In	a	paper	[27]	and	his	recent	books	[17,	25],	Barton	provides	a	set	of	“universal”	equations
for	the	SW1	through	SW4	cases.	He	attributes	the	original	formulation	of	these	equations	to
the	Russian	author,	P.	A.	Bakut	[28].	The	universal	equation	for	Pd	is

where

and	TNR	is	computed	from	(8.33).	SNR	is	the	single-pulse	SNR.

The	integer,	ne	is	the	number	of	degrees	of	freedom	associated	with	the	different	Swerling



target	types	(see	Chapter	3).	This	stems	from	Swerling’s	definition	of	his	four	target	types	or,
more	 accurately,	 signal	 fluctuation	 models	 [11,	 27].	 Specifically,	 he	 defined	 four	 signal
fluctuation	models	whose	amplitude	statistics	are	governed	by	a	chi-square	density	 function
having	 2ne	 degrees	 of	 freedom	 (DOF).	 The	 four	 values	 of	 ne	 associated	 with	 the	 four
Swerling	target	types	are:

•	SW1,	ne	=	1
•	SW2,	ne	=	n
•	SW3,	ne	=	2
•	SW4,	ne	=	2n

where	n	is	the	number	of	pulses	noncoherently	integrated.

Barton	 also	gives	 a	universal	 equation	 for	determining	 the	 single-pulse	SNR	 required	 to
provide	a	desired	Pd.	This	 equation	 is	quite	useful.	Before	 its	 introduction,	 the	 single-pulse
SNR	was	 found	by	using	 a	 root	 solver	 in	 conjunction	with	 the	 exact	 equations	of	 (8.35)	 to
(8.38).	The	“inverse”	universal	equation	is

where

and	Γ−1(k,z)	is	the	inverse	of	the	incomplete	gamma	function.

Barton	 compared	 the	universal	 equations	 to	 the	 exact	 equations	 for	 several	 values	of	Pfa
and	 a	 range	 of	 SNRs	 and	n	 [27].	His	 results	 indicate	 that	 the	 universal	 equations	 are	 quite
accurate	for	Pd	greater	than	about	0.2	and	Pfa	less	than	about	10−4.	As	an	interesting	note,	the
universal	equation	are	exact	for	SW2	targets.

The	universal	equations	are	not	recommended	for	SW0/SW5	targets.	However,	in	his	2005
book	[17,	pp.	42–53],	Barton	provides	an	approximation	to	the	exact	equation	of	(8.34),	along
with	its	inverse.	Those	equations	are,	using	Barton’s	notation

and



where

and

erfc(x)	 is	 the	complementary	error	 function	 [29,	p.	214]	and	Q−1(x)	 is	 its	 inverse,	 erfc−1(x).
Both	 of	 these	 functions	 are	 included	 as	 standard	 functions	 in	 software	 packages	 such	 as
MATLAB,	and	Mathcad.

In	an	internal	memo,4	Hardaker	recasts	(8.43)	through	(8.45)	in	a	form	directly	in	terms	of
erfc(x)	and	erfc−1(x).	These	are

and

with

The	 noncoherent	 Pd	 equations	 discussed	 herein	 are	 based	 on	 the	 assumption	 that	 the
amplitude	detector	of	Figure	8.2	 is	 a	 square	 law	detector.5	According	 to	Meyer	 and	Mayer
[24],	Marcum	[30]	considered	the	effect	on	Pd	of	using	an	amplitude	(linear)	detector	instead
of	a	square	law	detector.	Marcum	showed	that	the	Pd	performance	using	either	detector	was
very	similar	(~0.2-dB	difference)	for	a	constant	RCS	target	(SW0/SW5	target).	It	is	not	clear
whether	Swerling	 or	 other	 analysts	 have	 performed	 such	 a	 comparison	 for	 other	Swerling
target	types.	However,	it	is	commonly	accepted	that	the	Pd	equations	developed	for	the	square



law	detector	also	apply	to	the	case	where	the	radar	use	a	linear	detector.

8.3.1 Example	1

Figures	 8.3	 through	 8.7	 contain	 plots	 that	 provide	 a	 comparison	 of	 coherent	 integration,
noncoherent	integrations	and	single-pulse	operation	for	the	five	Swerling	target	models.	The
figures	contain	plots	of	Pd	versus	required	single-pulse	SNR.	Figures	8.3,	8.4,	and	8.6	contain
plots	 for	 the	 single-pulse	 case	 and	 two	 sets	 of	 two	 plots	 for	 the	 cases	 of	 coherent	 and
noncoherent	integration	of	10	and	100	pulses.	Figures	8.5	and	8.7	contain	plots	for	the	single-
pulse	 case	 and	 noncoherent	 integration	 of	 10	 and	 100	 pulses.	Coherent	 integration	was	 not
considered	for	the	SW2	and	SW4	targets	since	we	already	concluded	that	coherent	integration
offers	no	improvement	in	Pd	for	these	two	target	types.

All	 of	 the	 plots	 were	 generated	 for	 a	Pfa	 of	 10−6.	 As	 a	 reminder,	 for	 the	 coherent	 and
noncoherent	integrators,	this	is	the	Pfa	at	the	output	of	the	detector	that	follows	the	integrators.
For	the	single-pulse	case,	it	is	the	Pfa	for	a	single	detection	attempt	(i.e.,	no	integration).	The
“required	single-pulse	SNR”	label	on	the	horizontal	axis	means	that	this	is	the	SNR	required
at	the	matched	filter	output	to	achieve	the	indicated	Pd	at	the	output	of	the	threshold	device	that
follows	the	coherent	or	noncoherent	integrator,	or	the	matched	filter	for	the	single-pulse	case.

As	expected,	Figures	8.3,	8.4,	and	8.6	show	that,	with	coherent	integration	of	10	pulses,	the
required	single-pulse	SNR	is	10	dB	lower	than	when	only	a	single	pulse	is	used.	For	coherent
integration	 of	 100	 pulses,	 the	 required	 single-pulse	 SNR	 is	 20	 dB	 lower.	 For	 noncoherent
integration,	 the	 reduction	 in	 required	 single-pulse	SNR	depends	upon	 the	number	of	pulses
noncoherently	integrated	and	the	desired	Pd	after	 integration.	Examples	of	 the	reduction	for
the	three	target	types	(SW0/SW5,	SW1,	and	SW3)	are	contained	in	Table	8.1.	As	indicated,	the
values	 range	 from	7	 to	8	dB	 for	noncoherent	 integration	of	10	pulses	and	14	 to	15	dB	 for
noncoherent	 integration	of	100	pulses.	This	 relation	 leads	 to	a	useful	 rule	of	 thumb	for	 the
reduction	 in	 required	 single-pulse	 SNR	 for	 noncoherent	 integration.	 Specifically,	 the
reduction	is

Some	authors	term	I(n)	noncoherent	integration	gain	[31,	32].	For	preliminary	calculation
of	Pd,	they	suggest	adding	I(n)	to	the	single-pulse	SNR	(from	the	radar	range	equation)	and
using	 it	 in	 the	 single-pulse	 Pd	 equation	 to	 compute	 Pd	 at	 the	 output	 of	 the	 noncoherent
integrator	(for	SW0/SW5,	SW1,	and	SW3	targets).

The	 curves	 for	 the	 SW2	 (Figure	 8.5)	 and	 SW4	 (Figure	 8.7)	 indicate	 that	 noncoherent
integration	can	offer	significant	reductions	in	single-pulse	SNR	requirements	when	compared
to	 basing	 detection	 on	 only	 a	 single	 pulse.	 For	 example,	 for	 a	 SW2	 target	 and	 10	 pulses
integrated,	the	reduction	is	about	15	dB	for	a	desired	Pd	of	0.9.	This	increases	to	23	dB	for	a
desired	Pd	of	0.99.	For	100	pulses	integrated,	the	reductions	are	22	and	31	dB	for	the	two	Pd
cases.	This	 is	 a	 significant	 reduction	 in	 single-pulse	SNR	 requirements	 and	 is	 a	 reason	 for



radar	designers	to	try	to	arrange	for	aircraft	targets	to	appear	as	SW2	targets	to	the	radar.

The	reduction	in	single-pulse	SNR	requirements	 is	not	as	dramatic	for	 the	SW4	case,	but
they	are	still	significant,	as	indicated	by	Figure	8.7.

Table	8.1
Reduction	in	Required	Single-Pulse	SNR	for	Noncoherent	Integration



Figure	8.3	Plots	of	desired	Pd	vs	required	single-pulse	SNR	for	a	SW0/SW5	target	and	coherent	and	noncoherent	integration

of	10	and	100	pulses—Pfa	=	10
−6.



Figure	8.4	Plots	of	desired	Pd	vs	required	single-pulse	SNR	for	a	SW1	target	and	coherent	and	noncoherent	integration	of	10

and	100	pulses—Pfa	=	10
−6.



Figure	8.5	Plots	of	desired	Pd	vs.	 required	single-pulse	SNR	for	a	SW2	target	and	noncoherent	 integration	of	10	and	100

pulses—Pfa	=	10
−6.



Figure	8.6	Plots	of	desired	Pd	vs.	required	single-pulse	SNR	for	a	SW3	target	and	coherent	and	noncoherent	integration	of

10	and	100	pulses—Pfa	=	10
−6.



Figure	8.7	Plots	of	desired	Pd	vs.	 required	single-pulse	SNR	for	a	SW4	target	and	noncoherent	 integration	of	10	and	100

pulses—Pfa	=	10
−6.

8.3.2 Example	2

For	 this	example,	we	consider	 the	radar	of	Example	2	 in	Section	6.7.	The	radar	parameters
are	listed	in	Table	2.2	of	Chapter	2	and	are	repeated	in	Table	8.2.	We	have	added	some	specific
antenna	parameters	since	we	will	need	to	use	them	in	this	example.	We	assume	the	radar	has	a
fan	beam	(see	Figure	6.9)	with	a	peak	directivity	of	32	dB.	The	azimuth	beamwidth	is	1.3°.

We	want	to	generate	a	plot	of	detection	probability	versus	target	range	for	a	0.1	m2,	SW1
target.	We	 will	 assume	 cases	 where	 the	 radar	 coherently	 and	 noncoherently	 integrates	 the
number	of	pulses	received	as	the	beam	scans	by	the	target.	We	will	assume	the	elevation	to	the
target	is	at	the	peak	of	the	antenna	beam	in	elevation.

Table	8.2



Radar	Parameters	for	Example	2
Parameter Value
Peak	transmit	power	at	the	power	amp	output 50	kW
Operating	frequency 2	GHz
PRF 1,000	Hz
Pulsewidth—τp 100	µs
Pulse	modulation	bandwidth 1	MHz
Antenna	directivity 32	dB
Elevation	beamwidth Fan	beam
Azimuth	beamwidth 1.3°
Total	losses—excluding	beamshape	loss 13	dB
Noise	figure—referenced	to	the	antenna	feed 5	dB
Antenna	rotation	rate 6	rpm
Instrumented	range PRI	−	2τp	−	50	μs
False	alarm	criterion No	more	than	one	false	alarm	per	360°	rotation

To	start,	we	need	to	find	the	single-pulse	SNR	for	the	case	where	the	radar	beam	is	pointed
directly	at	the	target.	We	use	the	radar	range	equation	of	Chapter	2	to	obtain	this.	That	is,

We	 next	 need	 to	 compute	 the	 number	 of	 pulses	 that	 can	 be	 coherently	 or	 noncoherently
integrated.	 We	 said	 this	 would	 be	 the	 number	 of	 pulses	 received	 as	 the	 beam	 scans	 (in
azimuth)	across	the	target.	The	standard	way	to	compute	this	is	to	see	how	many	pulses	are	in
the	3-dB	azimuth	beamwidth,	which	is	1.3°	in	this	example.

The	antenna	rotation	rate	is	6	rpm	or	6	×	360°	per	minute.	This	gives	a	scan	rate	of

The	time	for	the	antenna	to	travel	one	beamwidth	is

The	 waveform	 PRF	 is	 1,000	 Hz,	 which	 means	 the	 radar	 transmits	 (and	 receives)	 1,000
pulses	per	second.	We	can	use	this	to	compute	the	number	of	pulses	per	beam	as

This	 tells	us	 that	we	can	coherently	or	noncoherently	 integrate	up	 to	36	pulses	as	 the	beam



scans	by	the	target.	Thus,	this	is	the	n	we	need	to	include	in	the	appropriate	Pd	equation.

We	note	that,	as	the	beam	scans	by	the	target,	the	SNR	associated	with	the	36	pulses	will	not
be	constant.	As	we	discussed	earlier,	we	will	account	for	this	by	incorporating	a	beamshape
loss	in	the	computation	of	single-pulse	SNR.	Since	we	assumed	the	target	was	on	the	peak	of
the	antenna	pattern	in	elevation,	we	need	only	account	for	the	variation	of	SNR	due	to	azimuth
scanning.	This	means	that	we	need	to	include	an	additional	1.6	dB	loss	to	the	single-pulse	SNR
calculation	[33].6	This	reduces	the	single-pulse	SNR	we	use	in	the	detection	calculations	to

As	a	note,	we	will	assume	the	coherent	integrator	has	been	tuned	to	the	Doppler	frequency
of	 the	 target.	 This	 is	 an	 idealization,	 since	we	 do	 not	 know	 the	 target	Doppler	 in	 a	 search
radar.	In	practice,	the	coherent	integrator	would	actually	consist	of	many	coherent	integrators
tuned	to	different	Doppler	frequencies.	As	indicated	earlier,	this	complicates	the	design	of	the
coherent	 integrator.	 Also,	 because	 of	 the	 multiple	 Doppler	 channels,	 with	 their	 associated
detection	circuits,	we	should	adjust	the	Pfa	to	account	for	the	multiple	Doppler	channels.

The	other	 term	we	need	 is	 the	Pfa	 at	 the	output	of	 the	 integrator.	We	will	assume	 that	 the
integrator	performs	a	running	sum,	or	integration,	and	makes	a	detection	decision	on	every
pulse.	Thus,	we	can	use	the	Pfa	we	computed	in	Example	2	of	Chapter	2.	That	Pfa	was	1.33	×
10−7.

To	create	plots	of	Pd	versus	range,	we	use	the	SNR	from	(8.55)	along	with	n	=	36	and	Pfa	=
1.33	×	10−7	in	(8.27)	and	(8.35).	The	specific	equations	are

for	coherent	integration	and

for	noncoherent	integration.

Figure	 8.8	 contains	 plots	 of	Pd	 versus	R	 for	 the	 two	 integration	 cases.	 As	 expected,	 the
coherent	integrator	allows	a	given	Pd	at	longer	ranges.	Also,	coherent	integration	gives	Pd	=
50%	at	90	km,	which	is	not	achievable	with	noncoherent	integration	until	70	km.



Figure	8.8	Plots	of	Pd	vs.	slant	range	for	Example	2.

8.4	CUMULATIVE	DETECTION	PROBABILITY

The	 third	 technique	we	 examine	 for	 increasing	 detection	 probability	 is	 the	 use	 of	multiple
detection	attempts.	The	premise	behind	using	multiple	detection	attempts	is	that	if	we	attempt
to	detect	 the	 target	 several	 times,	we	will	 increase	 the	overall	detection	probability.	We	can
formally	state	the	multiple	detection	problem	as	follows.

If	we	check	for	a	threshold	crossing	on	several	occasions,	what	is	the	probability	that	the
signal-plus-noise	 voltage	 will	 cross	 the	 threshold	 at	 least	 once?	 Thus,	 suppose	 for
example	we	 check	 for	 a	 threshold	 crossing	 on	 3	 occasions.	We	want	 to	 determine	 the
probability	of	a	threshold	crossing	on	any	1,	2,	or	3	of	the	occasions.

To	 compute	 the	 appropriate	 probabilities,	 we	 must	 use	 probability	 theory.	 The	 details	 are
somewhat	involved	and	are	presented	in	Appendix	8C.	The	main	results	are	as	follows.

We	assume	we	have	N	detection	events	(i.e.,	the	chance	to	detect	the	target	on	N	 tries)	and
that	 they	 are	 independent.	 This	 limits	 when	 we	 can	 use	 cumulative	 detection	 concepts.
Specifically,	we	should	use	cumulative	detection	concepts	only	on	a	scan-to-scan	basis.	If	we
do,	we	will	satisfy	 the	constraints	on	all	of	 the	Swerling	 target	 types.	Specifically,	 for	SW1
and	SW3	targets,	 the	signal-plus-noise	samples	are,	by	definition,	 independent	from	scan	 to
scan.	For	SW0/SW5,	SW2,	 and	SW4	 targets,	 the	 signal-plus-noise	 samples	 are	 independent
from	pulse	to	pulse	and	will	thus	also	be	independent	from	scan	to	scan.	Having	said	this,	we
must	also	assure	that	the	coherent	or	noncoherent	integrator	does	not	cause	the	independence
restriction	 to	 be	 violated.	 The	 restriction	 will	 not	 be	 violated	 if	 the	 time	 between	 target
illuminations	is	significantly	larger	than	the	coherent	or	noncoherent	processing	time.



If	 the	 detection	 probability	 on	 each	 detection	 try	 is	Pdk,	 the	 probability	 of	 detecting	 the
target	on	at	least	one	of	the	tries	is

where	Pdcum	is	the	cumulative	detection	probability	over	N	tries.

In	addition	 to	 increasing	detection	probability,	 the	use	of	cumulative	detection	 techniques
also	 increases	 false	 alarm	 probability.	 In	 fact,	 if	 we	 consider	 the	 false	 alarm	 case,	 we	 can
express	(8.58)	as

In	the	case	of	false	alarm	probability,	we	usually	have	that	Pfak=Pfa	∀k	∈[1,N]	and	write

If	we	further	recall	that	Pfa≪1	we	can	write

Equation	(8.61)	 tells	us	 that	when	we	use	cumulative	detection	concepts,	we	should	compute
the	 individual	Pdk	 detection	 probabilities	 using	Pfak	 =	Pfacum/N	 where	Pfacum	 is	 the	 desired
false	alarm	probability.

As	a	rule	of	thumb,	one	should	be	careful	about	invoking	cumulative	detection	concepts	in
a	fashion	that	allows	any	Pdk	to	be	such	that	the	SNR	per	scan	falls	below	10	to	13	dB.	If	the
SNR	 is	 below	 10	 to	 13	 dB,	 the	 radar	may	 not	 be	 able	 to	 establish	 track	 on	 a	 target	 it	 has
detected.	If	this	is	stated	in	terms	of	Pdk,	Pdk	should	not	be	allowed	to	fall	below	about	0.5.	A
reviewer	 of	 this	 book	 pointed	 out	 that	 this	 rule	 of	 thumb	 may	 not	 be	 “applicable	 to	 a
multifunction	radar	or	a	system	in	which	a	multiple-target	phased	array	tracker	is	assigned	to
validate	a	 single	detection	 from	an	associated	search	 radar.”	 It	 is	assumed	 that	 the	 rationale
behind	 this	 statement	 is	 that	 even	 if	 the	 detection	 probability	 is	 low	 (because	 of	 losses
associated	with	 computing	 SNR	 during	 detection),	 the	 SNR	 on	 verify	may	 be	 sufficient	 to
establish	 track	 since	 it	may	 be	 possible	 to	 devote	more	 radar	 resources	 to	 verify,	 and	 thus
increase	SNR.

8.4.1 Example	3

Suppose	we	have	a	phased	array	radar	that	is	performing	search.	It	illuminates	the	target	with
a	search	beam	every	20	seconds	and	transmits	a	single	pulse.	We	will	assume	an	aircraft-type
target,	which	means	we	 can	 assume	 it	 is	 a	 SW1	 target.	Because	 of	 this	 and	 the	 20	 seconds



between	 search	 illuminations,	 we	 can	 safely	 assume	 the	 signal-plus-noise	 samples	 will	 be
independent	from	look	to	look.

We	will	assume	the	radar	achieves	detection	probabilities	of	0.5,	0.51,	0.52,	0.53,	and	0.54
on	five	consecutive	search	beams	(looks).	With	this	we	get	a	cumulative	detection	probability
of

Suppose	we	want	to	compute	the	required	SNRs	on	each	look	to	achieve	the	various	Pdk	and
obtain	a	Pfa	of	10−6	over	the	five	looks.	From	(8.61)	we	get

This	says	we	must	set	the	detection	threshold	for	each	threshold	check	such	that	we	obtain

We	can	then	use	(6.123)	to	determine	the	required	SNR	values.	Specifically,	we	would	have

This	would	give	SNR	values	of	13.3,	13.4,	13.5,	13.7,	and	13.8	dB.

8.5 M-OF-N	DETECTION

We	can	 think	of	m-of-n	detection	as	an	extension	of	cumulative	detection	where,	 instead	of
requiring	one	or	more	detections	on	n	tries,	we	require	m	or	more	detections	on	the	n	 tries.
This	is	the	origin	of	the	term	m-of-n	detection	[34–36].

Since	m-of-n	detection	usually	operates	on	target	returns	that	are	closely	spaced	in	time,	we
cannot	 necessarily	 assume	 independent	 detection	 events.	However,	 for	 the	 same	 reason,	we
can	 reasonably	assume	 the	detection	probability	will	be	 the	same	on	each	detection	attempt.
That	is,	Pdk	=	Pd.

For	the	case	of	SW0/SW5,	SW2,	and	SW4	targets,	we	can	assume	the	detection	events	are
independent.	 For	 SW0/SW5	 targets,	 the	 randomness	 in	 the	 signal-plus-noise	 is	 due	 only	 to
noise	 since	 the	 signal	 amplitude	 is	 a	 known	 constant	 across	 the	n	 detection	 tries.	 Since	we
assume	the	noise	is	independent	from	pulse	to	pulse,	the	detection	events	will	be	independent
from	try	to	try.



For	SW2	and	SW4	targets,	we	assume	both	the	signal	amplitude	and	noise	are	random,	and
independent,	from	pulse	 to	pulse.	Thus,	 the	detection	events	will	be	 independent	from	try	 to
try.

Based	 on	 the	 discussions	 of	 the	 previous	 two	 paragraphs,	 we	 can	 directly	 extend	 the
cumulative	detection	discussions	to	m-of-n	detection	for	SW0/SW5,	SW2,	and	SW4	targets.

For	 SW1	 and	 SW3	 targets,	 the	 signal	 amplitude	 is	 constant	 across	 the	 n	 detection	 tries.
However,	 it	 is	 not	 a	 known	 constant,	 as	was	 the	 case	 for	 SW0/SW5	 targets.	 Instead,	 it	 is	 a
random	variable	that	is	governed	by	(6.40)	and	(6.49).

To	accommodate	 the	 fact	 that	 the	signal	amplitude	 is	 random,	we	will	approach	 the	SW1
and	SW3	m-of-n	detection	problem	by	using	the	approach	we	used	in	Chapter	6	to	find	Pd	for
SW1	 and	 SW3	 targets.	 Specifically,	 we	will	 determine	 the	m-of-n	 detection	 probability	 by
assuming	 a	 constant,	 known,	 signal	 amplitude	 across	 the	n	 detection	 attempts.	We	will	 then
form	a	weighted	average	across	all	possible	signal	amplitudes	using	the	appropriate	density
function	for	the	Swerling	target	type	being	considered.	In	equation	form,	we	have

where	Pmofn	(S)	 is	 the	m-of-n	detection	probability	for	a	given	signal	amplitude	and	 fS(S)	 is
the	amplitude	density	function	associated	with	the	particular	Swerling	target	type	of	interest.
The	analyses	leading	to	(8.66)	is	included	in	Appendix	8B.

Once	we	fix	 the	signal	amplitude,	 the	density	function	of	signal-plus-noise	 is	 the	same	as
the	density	function	of	signal-plus-noise	for	a	SW0/SW5	target.

We	will	 first	develop	 the	m-of-n	detection	probability	equations	applicable	 to	SW0/SW5,
SW2,	and	SW4	targets	and	then	extend	the	results	to	SW1	and	SW3	targets.

If	Dk	is	the	detection	event	on	any	one	try,	the	detection	event	on	exactly	m	of	n	tries	will	be
(in	the	following,	∩	denotes	intersection	and	∪	denotes	union—see	Appendix	8C)

where	the	first	term	is	the	intersection	across	the	m	detection	events,	and	the	second	term	is	the
intersection	over	the	n-m	events	of	a	missed	detection.	As	an	example,	we	consider	the	case	of
exactly	 two	 of	 three	 detections.	 Let	 the	 three	 detection	 events	 be	D1,	 D2,	 and	 D3	 and	 their
corresponding	missed	detection	events	be	 1,	 2,	and	 3.	The	event	of	exactly	two	of	three
detections	can	be	either



In	this	case,	we	see	that	there	are	three	ways	we	can	have	exactly	two	of	three	detection	events.

The	event	consisting	of	any	two	of	three	detection	events	is

We	want

We	note	that	the	events	Da,	Db,	and	Dc	are	mutually	exclusive	since,	for	example,	 if	 there
are	detections	on	tries	1	and	2	and	not	3,	we	cannot	have	the	possibility	of	detections	on	tries	1
and	3	 and	not	2.	 In	other	words,	 the	occurrence	of	 any	one	of	Da,	Db,	 or	Dc	 precludes	 the
occurrence	of	any	of	the	others.	Since	Da,	Db,	and	Dc	are	mutually	exclusive,	the	probability
of	their	union	is	equal	to	the	sum	of	their	individual	probabilities.	Thus,

We	now	want	to	examine	the	individual	probabilities	on	the	right	side	of	(8.71).	Recall	that
we	assumed	 the	probability	of	 each	of	 the	n	 detection	 events	was	 the	 same.	For	 our	 2	 of	 3
example,	this	means

We	also	note	that

Given	the	assumption	that	D1,	D2,	and	D3	are	independent,	we	have,	as	an	example,

Extending	this	further,	we	have	that



If	we	use	this	in	(8.71),	we	have

If	 we	 extend	 our	 2	 of	 3	 example	 to	 the	 general	 case,	 we	 can	 write	 the	 probability	 of	 a
particular	combination	of	m	of	n	detections	occurring	as

To	get	all	possible	combinations	of	m	detections	and	n	−	m	missed	detections	we	need	 to
ask	 how	many	ways	we	 can	 combine	 the	mDk	 detection	 events	 and	 the	 (n	 −	m)	 k	missed
detection	 events.	 For	 the	 2	 of	 3	 case,	 this	 was	 three.	 For	 the	 general	 case,	 we	 turn	 to
combinatorial	theory	[29]	and	ask	how	many	ways	can	m	objects	be	arranged	in	a	string	of	n
objects.	The	answer	is

For	our	2	of	3	example,	we	have

Given	(8.78),	we	 find	 that	 the	probability	of	 having	 exactly	m	 detections	 and	n	 −	m	missed
detections	in	n	tries	is

In	 our	 original	 problem	 statement,	 we	 said	 we	 wanted	 the	 probability	 of	 obtaining
detections	 on	 at	 least	m	 of	 n	 tries.	 Said	 another	 way,	 we	 want	 to	 find	 the	 probability	 of
obtaining	detections	on	m,	m	+	1,	m	+	2,	…	on	n	tries.	Thus,	we	want	to	find	the	probability	of

Since	 the	 event	 of	 having	 exactly	m	 detections	 and	 n	 –	m	 missed	 detections	 precludes	 the
possibility	of	having,	say,	exactly	r	detections	and	n	–	r	missed	detections,	all	of	the	events	of
(8.81)	are	mutually	exclusive.	Thus,



or

Substituting	(8.80)	into	(8.83)	gives	our	final	answer	of

As	 indicated	 earlier,	 (8.84)	 does	 not	 directly	 apply	 to	 SW1	 and	 SW3	 targets.	 For	 these
targets,	the	appropriate	equation	is

In	 this	 equation,	Pmofn0	 (S)	 is	 the	m-of-n	 detection	 probability	 for	 a	 SW0/SW5	 target	 as	 a
function	of	signal	amplitude,	S,	and	fS(S)	is	the	density	function	of	the	signal	amplitude	for	a
SW1	or	SW3	target.	Specifically,	for	a	SW1	target

and	for	the	SW3	target

Substituting	(8.84)	into	(8.85)	gives

or	with



For	the	specific	cases	of	SW1	and	SW3	targets	we	get,	with	some	manipulation	(see	Appendix
8B),

for	SW1	targets	and

for	SW3	targets.	The	integrals	of	(8.91)	and	(8.92)	must	be	computed	numerically.

The	next	subject	we	want	 to	address	 is	how	to	handle	 false	alarm	probability.	Since	 false
alarms	are	detection	due	to	noise,	and	since	we	assume	noise	samples	are	independent,	we	can
directly	use	(8.84)	to	write

where	Pfa	is	the	single	sample	(single	pulse)	false	alarm	probability.

Since	the	false	alarm	probability	at	the	m-of-n	detector	output,	Pfamofn,	is	usually	specified
as	 a	 requirement,	we	 need	 to	 use	 (8.93)	 to	 solve	 for	Pfa.	 This	 can	 be	 done	 through	 a	 root
solving	approach.	To	obtain	 the	 initial	guess	of	Pfa	we	 take	advantage	of	 the	fact	 that	Pfa	 is
small	to	simplify	(8.93).	Specifically,	we	note	that	(Pfa)m	will	be	larger	than	(Pfa)	m	+	1,	usually
by	 several	 orders	 of	magnitude.	Also	 (1	−	Pfa)n−m	will	 be	 approximately	 one	 since	Pfa≪1.
With	this	we	claim	that	the	first	term	of	the	sum	will	be	much	larger	than	the	subsequent	terms.
We	can	thus	drop	all	but	the	first	term	of	the	sum.	Further,	we	can	replace	the	(1	−	Pfa)n−m	term
by	one.	With	this,	we	get	a	first-order	approximation	of	(8.93)	as



which	we	can	use	to	start	the	root	finding	algorithm	to	find	a	more	accurate	value	of	Pfa.

To	illustrate	this,	we	consider	the	case	where	m	=	3	and	n	=	5	(3-of-5	detection)	and	Pfamofn
=	10−8.	From	(8.94)	we	have

which	yields	 .	If	we	use	this	to	seed	the	solution	to	(8.93),	we	get	a	final

value	of	Pfa	=	1.0005	×	10−3,	which	is	very	close	to	the	initial	guess.	It	must	be	noted	that,	this
is	not	always	the	case.	As	Pfamof	becomes	larger,	the	initial	guess	of	Pfa	will	become	poorer.
However,	it	still	provides	a	good	starting	point	for	the	root-solving	routine.

Figure	8.9	contains	a	plot	of	Pmofn	versus	Pd	for	m	=	3	and	n	=	5,	using	(8.84).	This	curve
demonstrates	an	interesting	feature	of	the	m-of-n	detector.	Specifically,	for	Pd	above	a	certain
value,	 0.5	 for	 the	3-of-5	detector,	Pmofn	will	 be	 larger	 than	Pd.	However,	 for	Pd	 below	 this
value,	 Pmofn	 will	 be	 less	 than	 Pd.	 This	 feature	 tells	 us	 mof-n	 detectors	 tend	 to	 increase
detection	probability	while	simultaneously	decreasing	false	alarm	probability	relative	to	their
single	sample	values.

Figure	8.9	Pmofn	vs.	Pd	for	a	3-of-5	detector.

In	 these	 discussions,	 we	 assumed	 that	 the	 m-of-n	 detector	 operated	 on	 single-pulse
detections.	 An	 m-of-n	 detector	 can	 follow	 a	 coherent	 or	 noncoherent	 integrator	 if	 proper
restrictions	are	placed	on	its	use.	Specifically,	 the	signal-plus-noise	samples	into	the	m-of-n



detector	must	be	independent.	This	must	also	be	true	of	the	noise	samples.	These	conditions
can	be	satisfied	during	search	if	the	time	between	target	illuminations	is	long	relative	to	the
coherent	or	noncoherent	processing	time.	This	would	be	an	example	of	m-of-n	detection	on	a
scan-to-scan	basis.	The	problem	with	the	use	of	an	m-of-n	detector	in	this	fashion	is	that	the
Pdk	 on	 each	 scan	 will	 most	 likely	 not	 be	 the	 same.	 Because	 of	 this,	 one	 of	 the	 basic
assumptions	of	the	m-of-n	development	of	this	section	will	be	violated.	Extension	to	the	case
of	 unequal	 Pdk	 is	 very	 tedious.	 Several	 authors	 have	 attempted	 to	 approach	 the	 problem
through	the	use	of	Markov	chains	[35–36].7	However,	they	have	been	able	to	do	so	for	only	a
limited	number	of	small	values	of	m	and	n.
Figures	8.10	and	8.11	contain	plots	of	detection	probability	for	SW1	(Figure	8.10)	and	SW2

(Figure	8.11)	 targets	 for	 the	 case	of	 single-pulse	detection,	5-pulse	noncoherent	 integration
and	a	3-of-5	detector.	The	detection	thresholds	(i.e.,	the	TNR)	was	adjusted	to	provide	a	Pfa	of
10−6	at	the	output	of	the	detection	process	for	all	cases.	It	will	be	noted	that,	in	both	cases,	the
3-of-5	detector	is	not	as	good	as	noncoherent	integration	of	the	5	pulses.

For	the	SW1	target,	Pfa	and	the	m	and	n	considered	in	this	example,	the	performances	of	the
noncoherent	integrator	and	m-of-n	detector	are	very	similar,	with	the	plots	of	Pd	vs.	required
single-pulse	SNR	in	Figure	8.10	having	the	same	shape	and	differing	by	only	~	1	dB.



Figure	8.10	Pd	vs.	required	single-pulse	SNR	for	noncoherent	integration	and	m-of-n	detection—	SW1	target.

For	the	SW2	case,	we	see	the	same	dramatic	improvement	over	using	the	single	pulse	that
we	 saw	 for	 the	 case	of	 the	noncoherent	 integrator.	However,	 consistent	with	 the	SW1	case,
noncoherent	 integration	 appears	 to	 offer	 a	 performance	 advantage	 over	 m-of-n	 detection.
Specifically,	for	the	example	considered,	the	3-of-5	detector	offers	3-	to	5-dB	less	reduction
in	required	single-pulse	SNR	than	does	the	noncoherent	integrator.

The	slight	loss	in	detection	performance	(1	dB	for	SW1	and	3	to	5	dB	for	SW2)	may	be	an
acceptable	 exchange	 for	 simplicity	 of	 implementation	 of	 an	 m-of-n	 detector	 versus	 a
noncoherent	integrator.	Also,	the	m-of-n	detector	may	be	less	susceptible	to	false	alarms	due
to	random	pulse	interference.



Figure	8.11	Pd	vs.	required	single-pulse	SNR	for	noncoherent	integration	and	m-of-n	detection—	SW2	target.

As	 a	 closing	 thought,	 we	 note	 that	 coherent	 integration	 and	 noncoherent	 integration	 is
performed	 before	 the	 threshold	 check;	 that	 is,	 before	 the	 radar	 checks	 for	 detections.	 The
cumulative	probability	calculation	and	the	m-of-n	detection	is	performed	after	 the	threshold
check.	The	 fact	 that	 the	m-of-n	detector	 is	placed	after	 the	 threshold	check	 is	why	 it	 is	also
termed	a	dual	threshold	detector.

8.6 EXERCISES

1. A	certain	radar	achieves	an	SNR	of	13	dB,	with	a	Pfa	of	10−6	on	a	SW1	target.	What	is	the
SNR	after	the	coherent	integration	of	10	pulses?	What	is	the	Pd?

2. Repeat	Exercise	1	for	a	SW2	target.

3. Repeat	Exercise	1	for	a	SW3	target.



4. Repeat	Exercise	1	for	a	SW4	target.

5. Repeat	Exercise	1	for	a	SW0/SW5	target.

6. What	 is	 the	Pd	 for	 the	 conditions	 of	 Exercise	 1	 for	 the	 case	 where	 the	 10	 pulses	 are
noncoherently	integrated?

7. Repeat	Exercise	6	for	a	SW2	target.

8. Repeat	Exercise	6	for	a	SW3	target.

9. Repeat	Exercise	6	for	a	SW4	target.

10. Repeat	Exercise	6	for	a	SW0/SW5	target.

11. A	certain	radar	noncoherently	integrates	10	pulses	from	a	SW1	target.	What	single-pulse
SNR	is	required	to	achieve	a	Pd	of	0.99	and	Pfa	of	10−6	at	the	output	of	the	noncoherent
integrator.

12. Repeat	Exercise	11	for	a	SW2	target.

13. Repeat	Exercise	11	for	a	SW3	target.

14. Repeat	Exercise	11	for	a	SW4	target.

15. Repeat	Exercise	11	for	a	SW0/SW5	target.

16. A	 search	 radar	 achieves	 an	SNR	of	 13	dB	on	 a	SW1	 target	 at	 a	 range	of	 100	km.	The
radar	scan	period	is	10	s.	That	is,	it	illuminates	the	target	every	10	seconds.	The	target	is
approaching	 the	 radar	 with	 a	 range	 rate	 of	 500	m/s.	What	 is	 the	 cumulative	 detection
probability	 after	 three	 scans?	 How	 many	 scans	 are	 required	 to	 achieve	 a	 cumulative
detection	probability	of	0.999?	In	both	cases,	the	radar	must	maintain	a	cumulative	false
alarm	probability	of	10−6.

17. Repeat	Exercise	16	for	a	SW2	target.

18. Repeat	Exercise	16	for	a	SW3	target.

19. Repeat	Exercise	16	for	a	SW4	target.

20. Repeat	Exercise	16	for	a	SW0/SW5	target.

21. For	 this	 exercise	 we	 want	 to	 compare	 the	 exact	 and	 approximate	 equations	 for
noncoherent	 integration	 of	 10	 pulses	 on	 a	 SW2	 target.	 To	 do	 so,	 generate	 a	 plot	 like
Figure	8.5	where	the	three	curves	correspond	to	1)	single-pulse	Pd;	2)	Pd	using	the	exact
equation;	and	3)	Pd	using	the	approximate	equation.

22. Repeat	Exercise	21	for	a	SW1	target.

23. Repeat	Exercise	21	for	a	SW3	target.

24. Repeat	Exercise	21	for	a	SW4	target.

25. Repeat	Exercise	21	for	a	SW0/SW5	target.

26. Create	a	figure	like	Figure	8.9	for	5	of	10,	6	of	10,	and	7	of	10	detection.



27. Create	a	figure	like	Figure	8.10	for	a	SW3	target.

28. Create	a	figure	like	Figure	8.10	for	a	SW4	target.
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APPENDIX	8A:	NOISE	AUTOCORRELATION	AT	THE	OUTPUT	OF	A
MATCHED	FILTER

In	this	appendix,	we	consider	the	correlation	of	the	noise	at	the	output	of	a	matched	filter.	In
particular,	we	show	that	noise	samples	are	uncorrelated	if	they	are	separated	by	more	than	the
duration	of	the	matched	filter	impulse	response.

Let	the	normalized	impulse	response	of	the	matched	filter	be

where	ϕ(t)	is	an	arbitrary	phase	modulation.

Let	the	noise	into	the	matched	filter	be



where	nI(t)	and	nQ(t)	are	wide	sense	stationary	(WSS),	zero-mean,	white,	Gaussian	random
processes	with	equal	power	spectral	densities	of	N/2.	Further,	assume	that	nI(t)	and	nQ(t)	are
uncorrelated.

The	noise	out	of	the	matched	filter	is

The	autocorrelation	of	the	noise	at	the	output	of	the	matched	filter	is

where	δ(x)	is	the	Dirac	delta	function.

Evaluating	the	β	integral	yields

From	matched	filter	theory	(see	Chapter	7),	we	can	write	this	as

where	m(τ)	 captures	 the	 fine	detail	of	 the	autocorrelation.	As	an	example,	 for	ϕ(t)	=	0;	h(t)
would	 be	 the	 impulse	 response	 of	 a	 filter	matched	 to	 an	 unmodulated	 pulse	 and	we	would
have



The	key	thing	to	note	about	(8A.6)	is	that

Since	 no(t)	 is	 zero-mean	 (because	 n(t)	 is	 zero-mean),	 Ro(τ)	 =	 Co(τ)	 where	 Co(τ)	 is	 the
autocovariance	of	no(t).	 Since	 the	 autocovariance	 is	 zero	 for	 |τ|	 >	 τp,	 output	 noise	 samples
separated,	in	time,	by	more	than	τp	will	be	uncorrelated.	Since	the	noise	samples	are	Gaussian,
they	will	also	be	independent.

APPENDIX	8B:	PROBABILITY	OF	DETECTING	SW1	AND	SW3
TARGETS	ON	m	CLOSELY	SPACED	PULSES

In	this	appendix,	we	address	the	problem	of	computing	the	probability	of	detecting	a	SW1	or
SW3	target	on	m	closely	spaced	pulses.	The	instinctive	method	of	computing	this	probability
is	to	say	that	if	Pd1	is	the	probability	of	detecting	the	target	on	a	single	pulse,	the	probability
of	detecting	the	target	on	m	pulses	is	Pd1m.	This	method	makes	 the	assumption	the	detection
events	on	each	pulse	are	independent.	This	is	true	for	SW0/SW5,	SW2,	and	SW4	targets.	It	is
not	true	for	SW1	and	SW3	targets.

Let	Di	be	the	event	of	detecting	the	target	on	the	ith	pulse.	We	can	write

where	Vi	 is	 the	magnitude	of	 the	signal	plus	noise	on	 the	 ith	 received	pulse	 (in	 a	particular
range	cell)	and	T	is	the	detection	threshold.	We	are	interested	in	determining

where	fV1V2
…Vm

	(V1,	V2…,Vm)	is	the	joint	density	of	V1,	V2,	…,	Vm.	The	issue	becomes	one
of	finding	this	joint	density,	and	then	performing	the	integrations.

For	 SW0/SW5,	 SW2,	 and	 SW4	 targets,	 the	 random	 variables	 V1,	 V2,	 …,	 Vm	 are
independent	and

This	leads	to	the	aforementioned	statement	that



For	 SW1	 and	 SW3	 targets,	we	 cannot	 assume	 that	V1,	V2,	…,	Vm	 are	 independent.	 This
stems	 from	 the	 fact	 that	 they	 all	 depend	 upon	 the	 target	 RCS,	 which	 is	 a	 random	 variable
governed	 by	 the	 SW1	 and	 SW3	 target	 models.	 To	 compute	 the	 joint	 density,	 we	 resort	 to
conditional	density	functions	and	write

We	note	that	once	we	fix	S	to	S	and	Θ	to	θ,	the	random	variables	Vi|S	=	S,	Θ	=	θ	are	no	longer
dependent	on	the	random	variables	S	and	Θ.	They	are	dependent	on	the	noise	component	of
the	signal-plus-noise.	However,	 the	noise	 is	 independent	from	pulse	 to	pulse.	Therefore,	 the
random	variables	Vi|S	=	S,	Θ	=	θ	are	independent	from	pulse	to	pulse.	With	this	we	conclude
that

Further,	 from	 our	 experience	 with	 determining	 the	 density	 functions	 of	 the	 magnitude	 of
signal-plus-noise,	 the	 density	 functions	 of	 the	 in-phase	 and	 quadrature	 components	 of	 the
conditioned	 signal-plus-noise	 are	 Gaussian	 with	 variances	 of	 σ2	 and	 means	 of	 Scosθ	 and
Ssinθ	(see	Chapter	6).	Further,	we	know	that

For	a	SW1	target

and

For	a	SW3	target



and	fΘ(θ)	is	as	in	(8B.9).	In	the	above,	σ2	is	the	noise	power	and	PS	is	the	signal	power.

We	can	use	(8B.9)	to	eliminate	the	random	variable	Θ	through	the	appropriate	integration
to	yield

If	we	use	(8B.11)	in	(8B.2),	we	get

We	can	now	use	(8B.6)	and	write

If	we	use	(8B.7),	we	recognize	the	inner	integral	of	(8B.13)	as	the	detection	probability	for
a	SW0/SW5	target.	Further,	since	we	have	assumed	that	the	thresholds,	T,	are	the	same,	we	can
rewrite	(8B.13)	as

In	the	inner	integral,	we	let	u=V/σ	and	write

We	can	use	the	Marcum	Q	function	[10]	to	evaluate	the	inner	integral	and	write



Substituting	for	fS(S)	from	(8B.9)	results	in

for	the	SW1	case.	Substitution	for	fS(S)	from	(8B.10)	results	in

for	 the	 SW3	 case.	 In	 (8B.17)	 and	 (8B.18),	 we	 make	 the	 change	 of	 variables	 x	 =	 S2	 /	 2σ2.
Manipulation	of	some	of	the	arguments,	with	the	change	of	variables,	yields

Finally,	we	recognize	SNR	as	the	signal-to-noise	ratio	given	by	the	radar	range	equation	and
TNR	=	−lnPfa,	where	Pfa	is	the	false	alarm	probability.

With	the	above	substitutions,	the	equation	that	must	be	implemented	for	SW1	targets	is

The	equation	that	must	be	implemented	for	SW3	targets	is



These	 are	 the	 integrals	 that	 we	 need	 to	 evaluate.	 We	 will	 need	 to	 do	 so	 via	 numerical
integration.

The	Marcum	Q-function	is	defined	as

An	efficient	and	accurate	algorithm	for	computing	Q1(a,b)	was	developed	by	Steen	Parl	[37].

The	Parl	algorithm	for	computing	Q1(a,b)	is:

•	Initialization

•	Iteration,	n	=	1,	2,	…

•	Final	Step

Typical	values	of	p	in	the	termination	criterion	are	p	=	3	to	9.	A	reasonable	value	seems	to	be
p	=	6.

APPENDIX	8C:	CUMULATIVE	DETECTION	PROBABILITY



This	 appendix	 contains	 a	 derivation	 of	 the	 cumulative	 detection	 probability	 equations
enumerated	in	Section	8.4.

To	develop	the	technique,	we	start	by	considering	the	events	[26,	29,	34]	of	the	occurrence
of	a	threshold	crossing	on	two	occasions.	We	denote	these	two	events	as

•	D1:	Threshold	crossing	on	occasion	1;	and
•	D2:	Threshold	crossing	on	occasion	2.

If	we	form	the	event

where	 ⋃	 denotes	 the	 union	 operation	 [26],	 then	 D	 is	 the	 event	 consisting	 of	 a	 threshold
crossing	on	occasion	1,	or	occasion	2,	or	occasions	1	and	2.	Since	D	is	the	event	of	interest	to
us,	we	want	to	find	the	probability	that	it	will	occur.	That	is,	we	want

From	probability	theory,	we	can	write

where	 D1∩D2	 represents	 the	 intersection	 of	 D1	 and	 D2	 and	 is	 the	 event	 consisting	 of	 a
threshold	crossing	on	occasion	1	and	occasion	2.	The	first	two	probability	terms	on	the	right
side,	 P(D1)	 and	 P(D2),	 are	 computed	 using	 the	 appropriate	 single	 or	 n	 pulse	 probability
equation	discussed	in	Chapter	6	and	Sections	8.2	and	8.3,	depending	upon	the	target	type	and
whether	or	not	coherent	or	noncoherent	integration	is	used.

To	compute	the	third	term,	P(D1∩D2),	we	need	to	make	an	assumption	about	the	events	D1
and	D2.	Specifically,	we	assume	 they	are	 independent.	This,	 in	 turn,	 limits	when	we	can	use
cumulative	detection	concepts.	Specifically,	we	should	use	cumulative	detection	concepts	only
on	a	scan-to-scan	basis.	If	we	do,	we	will	satisfy	the	constraints	on	all	of	the	Swerling	target
types.	Specifically,	for	SW1	and	SW3	targets,	the	signal-plus-noise	samples	are,	by	definition,
independent	from	scan	to	scan.	For	SW0/SW5,	SW2,	and	SW4	targets,	the	signal-plus-noise
samples	from	pulse	to	pulse	and	will	thus	also	be	independent	from	scan	to	scan.	Having	said
this,	 we	 must	 also	 assure	 that	 the	 coherent	 or	 noncoherent	 integrator	 does	 not	 cause	 the
independence	restriction	to	be	violated.	The	restriction	will	not	be	violated	if	the	time	between
target	illuminations	is	significantly	larger	than	the	coherent	or	noncoherent	processing	time.

If	D1	and	D2	are	independent,	we	can	write

and



As	an	example,	suppose	P(D1)	=	P(D2)	=	0.9.	Using	(8C.5),	we	would	obtain

While	(8C.5)	is	reasonably	easy	to	implement	for	two	events,	its	direct	extension	to	many
events	 is	 tedious.	 In	 order	 to	 set	 the	 stage	 for	 a	 simpler	 extension,	we	 consider	 a	 different
means	of	determining	P(D).	We	begin	by	observing	that

where	S	is	the	universe	and	 	i	is	the	complement	of	Di.	 	i	contains	all	elements	that	are	in	S
but	not	in	Di.	By	the	definition	of	 	i	we	note	that	Di	and	 	i	are	mutually	exclusive.	We	also
note	that	P(S)	=	1.	With	this	we	get

and

To	proceed	with	the	derivation,	we	let

and

From	(8C.8)	we	get

By	DeMorgan’s	Law	[29]	we	can	write

and



Now,	since	D1	and	D2	are	independent,	so	are	 1	and	 2.	If	we	use	this	along	with	(8C.10),
we	can	write

Finally,	making	use	of	(8C.9),	we	obtain

We	can	now	generalize	(8C.16)	to	any	number	of	events.	Specifically,	if

where	D1,	D2,	D3…	DN	are	independent,	then

As	an	example	of	 the	use	of	(8C.16)	or	 (8C.18),	we	consider	 the	previous	example	wherein
P(D1)	=	P(D2)	=	0.9.	With	this	we	get

We	 now	 want	 to	 restate	 (8C.19)	 in	 terminology	 more	 directly	 related	 to	 detection
probability.	To	that	end,	we	write

where	Pdcum	 is	 the	 cumulative	 detection	 probability	 over	N	 scans,	 and	Pdk	 is	 the	 detection
probability	on	the	kth	scan.

1	David	K.	Barton,	private	communication	to	author	containing	historical	notes	on	coherent	integration,	cumulative	integration,
and	binary	integration,	September	15,	2014.	Portions	are	paraphrased	in	this	introduction.
2	This	assumption	carries	implications	about	the	spacing	between	pulses	relative	to	the	impulse	response	of	the	matched	filter.
Specifically,	the	spacing	between	noise	samples	must	be	greater	than	the	length	of	the	impulse	response	of	the	matched	filter.	If
the	matched	filter	is	matched	to	a	rectangular	pulse	with	a	width	of	τp,	the	spacing	between	noise	samples	must	greater	than	τp.
Since	the	noise	(in	a	particular	range	cell—of	the	500	of	the	previous	example)	is	sampled	once	per	pulse,	the	pulses	must	be
spaced	more	 than	one	pulsewidth	apart.	This	 is	easily	satisfied	 in	pulsed	radars	since	 the	pulses	can	never	be	spaced	by	 less
than	one	pulsewidth.	This	is	discussed	in	more	detail	in	Appendix	8A.
3	Some	forms/implementations	of	the	incomplete	gamma	function	omit	the	1/Γ(a)	=	1/(a-1)!	term.



4	David	A.	Hardaker,	Application	of	Barton’s	Universal	Equations	for	Radar	Target	Detection,	September	15,	2014.
5	 For	 analysis,	 a	 square	 law	 detector	 is	 typically	 assumed	 because	 the	 resulting	 mathematical	 analysis	 tends	 to	 be	 more
tractable.
6	Blake	suggests	1.6	dB	for	1-D	scanning	and	3.2	dB	for	2-D	scanning.	Barton	suggests	1.24	dB	and	2.48	dB,	respectively,
for	a	typical	radar	beam	(see	Chapter	5	for	a	discussion	of	this).
7	B.	K.	Bhagavan,	internal	memo,	Markov	Chain	for	M	out	of	N	Detection	Schemes,	2014.



Chapter	9

Ambiguity	Function

9.1 INTRODUCTION

The	 ambiguity	 function,	 which	 is	 denoted	 as	 |χ(τ,	 f)|2,	 is	 primarily	 used	 to	 gain	 an
understanding	of	how	a	signal	processor	responds,	or	reacts,	 to	a	given	returned	signal.	As
indicated	in	the	notation,	the	independent	variables	of	the	ambiguity	function	are	time	(τ)	and
frequency	(f).	The	time	variable	 is	normally	associated	with	target	range,	and	the	frequency
variable	is	normally	associated	with	target	Doppler	frequency.	The	magnitude	square	(i.e.,	|	|2)
is	used	to	indicate	we	are	characterizing	the	amplitude	squared	of	the	signal	processor	output.

In	 a	 strict	 sense,	 when	 one	 uses	 the	 phrase	 “ambiguity	 function,”	 there	 is	 an	 underlying
assumption	 that	 the	 signal	 processor	 is	matched	 to	 the	 transmitted	waveform.	 If	 the	 signal
processor	 is	 not	 matched	 to	 the	 transmitted	 waveform,	 the	 proper	 terminology,	 in	 the
ambiguity	function	context,	would	be	to	refer	to	the	“cross	ambiguity	function.”	In	practice,
however,	 we	 do	 not	 always	 make	 the	 distinction	 and	 simply	 use	 the	 phrase	 “ambiguity
function.”

We	 will	 derive	 a	 general	 equation	 for	 the	 (cross)	 ambiguity	 function	 and	 then	 derive
specific	ambiguity	function	expressions	for	two	simple	waveforms	and	signal	processors.	We
will	 then	 discuss	 a	 representation	 that	 is	 suitable	 for	 numerically	 computing	 the	 ambiguity
function	 using	 the	 FFT.	 This	 will	 allow	 generation	 of	 ambiguity	 functions	 of	 advanced
waveforms	and	signal	processors.

The	 ambiguity	 function	was	 first	 developed	 by	 a	British	mathematician	 named	Philip	M.
Woodward	[1].	As	 such,	 the	 ambiguity	 function	 is	 sometimes	 referred	 to	 as	 the	Woodward
ambiguity	function.	In	2009,	Woodward	received	the	IEEE	Dennis	J.	Picard	Medal	for	radar
technologies	 and	 applications	 “[f]or	 pioneering	 work	 of	 fundamental	 importance	 in	 radar
waveform	 design,	 including	 the	 Woodward	 Ambiguity	 Function,	 the	 standard	 tool	 for
waveform	and	matched	filter	analysis”	[2].

9.2	AMBIGUITY	FUNCTION	DEVELOPMENT

Since	 the	 ambiguity	 function	 can	 be	 thought	 of	 as	 the	 response	 of	 a	 signal	 processor	 to	 a
received	radar	waveform,	this	is	the	approach	we	take	in	deriving	the	ambiguity	function.

Let	the	normalized,	transmitted	waveform	be	represented	by	the	baseband	signal,	u(t).1	The
normalized	 (baseband)	signal	 received	 from	a	 (constant	 range	 rate)	 target	at	a	 range	R	 and
range	rate	Ṙ	is	given	by



where	τR	=	2R/c	 is	 the	 range	delay	 and	 fd	 =	 –2Ṙ/λ	 is	 the	 target	Doppler	 frequency.	λ	 is	 the
wavelength	of	the	transmitted	signal,	and	c	is	the	speed	of	light.

The	signal	processor	configuration	we	use	in	deriving	the	ambiguity	function	is	shown	in
Figure	9.1.	 In	 this	 figure,	h(t)	 is	a	 lowpass	 function	and	 fs	 is	 thought	of	as	 the	 frequency	 to
which	 the	 signal	 processor	 is	 tuned.	Thus,	 the	 overall	 signal	 processor	 is	 a	 bandpass	 filter
centered	at	fs.	This	is	indicated	in	Figure	9.2,	where	the	left	plot	is	the	frequency	response	of
h(t)	and	the	right	plot	is	the	frequency	response	of	the	signal	processor.

Figure	9.1	Signal	processor.

Figure	9.2	Signal	processor	frequency	response.

In	 keeping	 with	 the	 concept	 of	 matched	 filters,	 we	 normally	 define	 h(t)	 in	 terms	 of	 the
waveform	to	which	it	is	matched.	Specifically,	we	use

and	set	K	=	1	and	t0	=	0	to	get

In	(9.3),	v(t)	 is	 the	waveform	to	which	the	signal	processor	is	matched	and	the	superscript	*
denotes	the	complex	conjugate.

With	the	above,	the	impulse	response	of	the	signal	processor	is

The	output	of	the	signal	processor	is	the	convolution	of	vR(t)	and	hSP(t)	or



Using	(9.1)	and	(9.4)	in	(9.5)	yields

If	we	make	the	change	of	variable	t	=	α	–	τR,	(9.6)	can	be	rewritten	as

where	we	made	the	substitutions	τ	=	τR	−	γ	and	f	=	fd	−	fs.

The	variables	τ	and	f	are	often	termed	the	mismatched	range	and	Doppler	of	the	ambiguity
function.	More	specifically,	τ	is	the	difference	between	the	target	range	delay	and	the	time	we
look	at	the	signal	processor	output.	If	τ	=	0,	we	say	that	we	are	at	matched	range.	That	is,	we
are	looking	at	the	signal	processor	output	at	a	time	equal	to	the	time	delay	of	the	target.	f	is	the
difference	 between	 the	 target	 Doppler	 frequency	 and	 the	 frequency	 to	 which	 the	 signal
processor	is	matched.	If	 f	=	0,	we	say	the	signal	processor	 is	matched	to	 the	 target	Doppler
frequency,	or	vice	versa.	In	this	case,	we	say	we	are	at	matched	Doppler.

Since	τ	and	f	are	the	variables	of	interest,	we	rewrite	(9.7)	in	terms	of	them	and	change	the
dependent	variable	from	vo	(γ)	to	χ(τ,	f).	Thus,	we	get

Finally,	if	we	take	the	magnitude	squared	of	(9.8),	we	get	the	ambiguity	function	or

We	often	attribute	special	names	to	plots	of	|χ(τ,	f)|2	for	specific	values	of	τ	and	f.	In	particular:

•	If	we	let	f	=	0	to	yield	|χ(τ,	0)|2,	we	have	the	matched-Doppler,	range	cut	of	the	ambiguity
function.	This	is	what	we	normally	think	of	as	the	output	of	the	classical	matched	filter.

•	If	we	let	τ	=	0	to	yield	|χ(0,	f)|2,	we	have	the	matched-range,	Doppler	cut	of	the	ambiguity



function.
•	If	we	let	f	=	fk	to	yield	|χ(τ,	fk)|2,	we	have	a	range	cut	at	some	mismatched	Doppler	of	fk.

•	If	we	let	τ	=	τk	to	yield	|χ(τk,	f)|2,	we	have	a	Doppler	cut	at	some	mismatched	range	of	τk.

As	we	will	discuss	in	Chapter	10,	the	ambiguity	function	provides	a	wealth	of	information
about	 radar	 waveforms	 and	 how	 they	 interact	 with	 the	 environment	 and	 the	 radar	 signal
processor.	For	now,	as	examples,	we	want	to	derive	equations	for	the	ambiguity	function	of
an	unmodulated	pulse	and	a	pulse	with	LFM.

9.3	EXAMPLE	1—UNMODULATED	PULSE

We	want	to	derive	the	equation	for	the	ambiguity	function	of	an	unmodulated	pulse	of	width
τp.	We	will	assume	the	signal	processor	is	matched	to	the	transmitted	pulse.	With	this,	we	can
write2

If	we	substitute	this	into	(9.9),	we	get

As	 we	 did	 for	 the	 matched	 filter	 derivation	 (see	 Chapter	 7),	 we	 need	 to	 consider	 several
regions	of	τ.	To	see	this,	refer	to	Figures	9.3	and	9.4.

In	these	figures,	u(t)	=	rect[(t	−	τp/2)/τp]	and	v*(t	+	τ)	=	rect[(t	−	τp/2	+	τ)	/	τp].	Note	that	for	|
τ	|	≥	τp	the	rect	functions	will	not	overlap	and	the	integral	of	(9.11)	will	be	zero.	This	leads	to
the	observation	that	|χ(τ,	f)|2	=	0	for	|τ	|	≥	τp.	We	will	account	for	this	by	multiplying	|	χ	(τ,	f)|2

by	rect[τ/2τp].

Figure	9.3	Plot	of	u(t)	and	v*	(t	+	τ)	for	τ	<	0.



Figure	9.4	Plot	of	u(t)	and	v*(t	+	τ)	for	τ	≥	0.

For	 −τp	 <	 τ	 <	 0,	 the	 rect	 functions	 overlap	 from	 −τ	 to	 τp	 (see	 Figure	 9.3).	 Thus,	 (9.11)
becomes

If	we	factor	ejπf	(τp	−τ)	from	both	terms	on	the	far	right	side	if	(9.12)	and	then	multiply	by	|τp	+
τ|/|τp	+	τ|,	we	get

Finally,	if	we	recognize	τ	<	0,	we	can	use	|τ	=	−τ,	and	rewrite	(9.13)	as

For	τp	>	τ	≥	0	the	rect	functions	overlap	from	0	to	τp	−τ	(see	Figure	9.4).	Thus,	(9.11)	becomes

If	we	factor	ejπf(τp	−	τ)	from	both	terms	on	the	far	right	side	(9.15)	and	then	multiply	by	|	τp	−	τ
|/|	τp	−	τ	|,	we	get



If	we	observe	that	τ	≥	0,	we	can	use	|τ|	=	τ,	and	rewrite	(9.16)	as

which	is	the	same	result	we	obtained	for	–τp	<	τ	<	0.

If	we	combine	all	of	the	above,	we	arrive	at	our	final	answer	of

We	note	that	the	square	root	of	the	matched-Doppler,	range	cut,	which	we	obtain	by	setting	f	=
0,	is	the	same	form	as	the	matched	filter	output	we	found	in	Chapter	7.	Specifically,

A	sketch	of	|χ(τ,	0)|	is	shown	in	Figure	9.5.3

The	square	root	of	the	matched-range,	Doppler	cut,	which	we	obtain	by	setting	τ	=	0,	is

A	plot	of	this	function	is	shown	in	Figure	9.6.

Finally,	a	plot	of	the	center	portion	of	|χ(τ,	f)|	is	shown	in	Figure	9.7	 for	 the	specific	case
where	τp	=	1	µs.	The	plot	has	been	normalized	to	a	height	of	unity.	Its	actual	height	is	τp,	or	1
µs.

Figure	9.5	Matched-Doppler	range	cut	for	an	unmodulated	pulse.



Figure	9.6	Matched-range	Doppler	cut	of	an	unmodulated	pulse.

Figure	9.7	Ambiguity	function	plot	of	an	unmodulated	pulse.

9.4 EXAMPLE	2—LFM	PULSE

For	the	LFM	pulse,	we	let

where	α	is	the	LFM	slope.	Recall	that	the	LFM	slope	is	related	to	the	LFM	bandwidth	by	(see
Chapter	7)



α	 >	 0	 means	 the	 modulation	 frequency	 increases	 across	 the	 pulse,	 and	 α	 <	 0	 means	 the
modulation	frequency	decreases	across	the	pulse.

If	we	substitute	(9.21)	into	(9.9),	we	get

which,	after	manipulation,	becomes

where	we	made	use	of	|e	−jπατ
2
|=	1	to	eliminate	it	from	the	absolute	value.

If	we	follow	the	integration	steps	of	Example	1,	we	get	|χ(τ,	f)|2	=	0	for	|τ|	≥	τp.	For	−τp	<	τ	<
0	we	get	[see	(9.12)]

If	we	factor	ejπ(f−ατ)(τp	−τ)	from	the	third	term	of	(9.25),	we	get

As	with	Example	1,	we	multiply	(9.26)	by	|τp	+	τ|/|τp	+	τ|,	and	manipulate	it	to	get

For	τp	>	τ	≥	0	we	get	[see	(9.15)]



If	we	factor	e	jπ(f	−	ατ)(τp	−	τ)	(from	both	terms	on	the	far	right	side	(9.28)	and	then	multiply	by	|
τp	−	τ	|/|	τp	−	τ	|,	we	get

Since	τ	<	0	in	(9.27),	we	can	replace	τp	+	τ	by	τp	−	|τ|	in	that	equation.	In	(9.29)	τ	>	0	and	we
can	 replace	 τp	 −	 τ	 with	 τp	 −	 |	 τ	 |.	When	we	 do	 this,	 (9.27)	 and	 (9.29)	 have	 the	 same	 form.
Finally,	if	we	combine	this	with	the	|	τ	|	≥	τp	condition,	we	have

We	note	that	(9.30)	is	the	same	form	as	(9.18)	except	f	is	replaced	by	f	–	ατ.	 In	 fact,	 if	we
compare	(9.24)	to	(9.11),	the	only	difference	is	the	 f	in	(9.11)	is	replaced	by	 f	–	ατ	 in	 (9.24).
Thus,	we	could	have	replaced	the	f	in	(9.18)	to	get	(9.30)	and	avoided	the	various	integration
steps	of	this	example.

As	 a	 specific	 example,	we	 consider	 the	LFM	pulse	 of	Chapter	7.	 For	 that	 case	we	 had	 a
pulsewidth	of	τp	=	15	μs	and	an	LFM	bandwidth	of	B	=	1	MHz.	Further,	we	stipulated	that	α	>
0.

The	square	root	of	the	matched-Doppler	range	cut	of	the	ambiguity	function	is	obtained	by
setting	f	=	0.	The	result	is,



Figure	9.8	Matched-Doppler	range	cut	for	the	LFM	pulse	example	of	Chapter	7.

This	is	plotted	in	Figure	9.8	and	is	the	same	as	the	matched	filter	output	from	Chapter	7.

The	square	root	of	the	matched-range,	Doppler	cut,	which	we	obtain	by	setting	τ	=	0,	is

This	 has	 exactly	 the	 same	 form	 as	 for	 the	 unmodulated	 pulse.	 As	 an	 interesting	 note,	 the
matched-range,	Doppler	cut	is	given	by	the	same	equation	[i.e..	(9.20)	and	(9.32)]	for	any	u(t)
and	v(t)	that	satisfies

In	this	equation	φ(t)	is	an	arbitrary	phase	function.	The	proof	of	this	is	left	as	an	exercise.

Figure	9.9	contains	a	plot	of	|χ(τ,	f)|	for	the	case	where	−τp	≤	τ	≤	τp	and	−B	≤	f	≤	B.	As	with
Figure	9.7,	 the	 height	 has	 been	 normalized	 to	 unity.	The	 actual	 height	 is	 τp,	 or	 15	µs.	 This
exhibits	the	same	triangle	ridge	as	does	the	plot	of	|χ(τ,	f)|	 for	an	unmodulated	pulse,	except
that	 the	 ridge	 slants	 across	 range-Doppler	 space	 for	 the	LFM	pulse	while	 it	 is	 concentrated
along	 f	 =	 0	 for	 the	 unmodulated	 pulse.	 This	 slanting	 of	 the	 LFM	 ridge	 makes	 the	 LFM
waveform	 useful	 in	 search	 radars,	 when	 compared	 to	 an	 unmodulated	 pulse	 of	 the	 same
duration.



Figure	9.9	Ambiguity	function	plot	of	an	LFM	pulse.

9.5 NUMERICAL	TECHNIQUES

While	the	analytical	approach	discussed	above	is	suitable	for	deriving	the	ambiguity	function
of	simple	waveforms	and	signal	processors,	it	becomes	very	tedious	for	complex	waveforms
and	signal	processors.	Because	of	 this,	we	present	a	numerical	 technique	for	generating	 the
ambiguity	function.	This	technique	relies	on	the	fact	that	modern	computers	are	very	fast	and
that	efficient	software	algorithms	are	available—specifically,	FFT	algorithms.

With	this	technique,	we	develop	the	ambiguity	function	as	a	sequence	of	range	cuts.	If	we
recall	 the	 general	 representation	 of	 the	 ambiguity	 function,	 we	 note	 that	 χ(τ,	 f)	 can	 be
interpreted	as	the	correlation	of	u(τ)ej2πfτ	with	v(τ).	That	is,

where	⊗	denotes	correlation.
From	Fourier	transform	theory,	we	recognize	that



or

where	 the	 superscript	*	denotes	 complex	conjugation.	Also,	 the	 symbolology	ℑ{x}	denotes
the	Fourier	transform	operator	and

In	 the	 algorithm	 discussed	 in	 the	 next	 section,	 we	 use	 the	 FFT	 to	 approximate	 the	 two
Fourier	transforms	on	the	right	of	(9.36).	We	then	perform	the	indicated	multiplication	in	the
θ	domain	and	use	the	inverse	FFT	(IFFT)	to	determine	χ	(τ,	f).	We	do	this	for	the	values	f	=	fk
of	interest.	Thus,	every	FFT-multiply-IFFT	will	result	in	a	range	cut	of	the	ambiguity	function
at	 f	=	 ft.	This	 is	why	we	say	 that	we	develop	 the	ambiguity	 function	as	a	 sequence	of	 range
cuts.

9.6 AMBIGUITY	FUNCTION	GENERATION	USING	THE	FFT

We	 have	 already	 discussed	 how	 we	 can	 use	 Fourier	 transforms	 to	 compute	 the	 ambiguity
function	by	computing	individual	range	cuts.	Specifically,	let	u(t)	be	the	baseband	transmitted
signal	and	v(t)	be	the	signal	to	which	the	matched	filter	(or	signal	processor)	is	matched.	Let	f
be	 the	Doppler	mismatch	 at	which	we	want	 to	 generate	 a	 range	 cut.	The	 algorithm	used	 to
generate	the	range	cut,	χ(τ,	f),	is

•	Find	ℑ[u(t)ej2πft]	=	Fu(θ)
•	Find	ℑ	[v(t)]	=	Fv(θ)
•	Find	Fχ	(θ)	=	Fu(θ)Fv*(θ)	=	ℑ[	χ	(τ,	f)]

•	Find	χ(τ,	f)	=	ℑ–1	[fχ(θ)]

In	the	above,	we	use	the	FFT	and	inverse	FFT	to	approximate	ℑ[•]	and	ℑ−1[•].	When	using
the	FFT,	we	need	to	be	sure	we	satisfy	the	Shannon	sampling	theorem4	and	account	for	some
time	properties	of	the	FFT	and	ambiguity	function	[3,	4].	The	algorithm	is	as	follows:

1.	Create	a	time	array,	t,	whose	length,	N,	is	an	integer	power	of	2	(i.e.,	N	=	2M	where	M	is	a
positive	integer)5	and	extends	from	0	to	T,	where	T	is	equal	to,	or	greater	than,	the	sum
of	the	durations	of	u(t)	and	v(t).	This	assures	the	resulting	range	cut	will	cover	all	time
values	over	which	the	range	cut	is	not	zero.	Some	restrictions	on	N	are:
•	Choose	N	so	that	N/T	satisfies	Shannon’s	sampling	theorem.	That	is,	choose	N	such	that
N/T	 >	 2F	 where	F	 is	 the	 highest	 frequency	 of	 u(t)	 and/or	 v(t)	 that	 is	 of	 interest.	F
should	be	chosen	so	that	it	is	more	than	twice	the	waveform	bandwidth.	Five	times	the
waveform	bandwidth	works	fairly	well.



•	The	larger	N	is,	the	better	each	range	cut	will	look.
2.	Compute	v	=	v(t).	Note:	v(t)	will	contain	several	zero	values	at	the	end.
3.	Compute	FFT(v)	=	Fv.
4.	Select	a	Doppler	mismatch	frequency,	f.
5.	Compute	u	=	u(t)ej2πft.	u(t)ej2πft	will	also	contain	several	zero	values	at	the	end.
6.	Compute	FFT(u)	=	Fu.

7.	Compute	|χ(τ',	f)|	=	X	=	|IFFT(FuFv*)|.
•	Because	of	 the	way	the	FFT	and	IFFT	is	 implemented,	τ'	=	0	corresponds	 to	 the	first
tap,	τ'	=	T/N	corresponds	to	the	second	tap,	τ'	=	T	–	T/N	corresponds	to	the	Nth	FFT	tap,
and	so	forth.

•	To	get	the	τ'	=	0	point	in	the	center	of	a	plot	of	|χ(τ',	f)|	versus	τ',	which	is	desired,	we
need	to	rearrange	the	IFFT	outputs	and	redefine	a	time	array.

8.	Swap	the	upper	and	lower	N/2	samples	of	X.	In	MATLAB,	this	is	accomplished	by	using
the	fftshift	function.

9.	Create	a	τ	array	that	contains	N	samples	and	extends	from	–T/2	to	T/2-T/N	in	steps	of	T/N.
•	When	we	 plot	X	 versus	 τ,	we	 have	 a	 range	 cut	 of	 the	 square	 root	 of	 the	 ambiguity
function	at	a	mismatch	Doppler	of	f.

10.	To	 create	 another	 range	 cut	 at	 a	 different	Doppler	mismatch,	 repeat	 steps	4	 through	9
with	a	different	f.

11.	To	create	a	 three-dimensional-looking	depiction	of	 |χ(τ,	 f)|	 (as	 in	Figures	9.7	 and	9.9),
assemble	the	series	of	range	cuts	and	plot	them	using	a	3-D	plotting	routine	such	as	the
mesh	or	surf	plotting	function	 in	MATLAB.	Figures	9.7	and	9.9	were	plotted	using	 the
mesh	plotting	function.

9.7	EXERCISES

1. Show	that	the	matched	range	Doppler	cut	of	the	ambiguity	function	of	a	rectangular	pulse
with	a	width	of	τp	an	arbitrary	phase	modulation	[see	(9.33)]	is	given	by	(9.32).	That	 is,
that	the	matched-range,	Doppler	cut	is	a	(sinc[x])2	function

2. Implement	the	algorithm	of	Section	9.6	and	use	it	to	recreate	a	plot	like	Figure	9.7.	Figure
9.7	was	created	for	a	1–µs	unmodulated	pulse.	The	range	delay	axis	extends	from	–1	μs	to
1	μs	and	the	Doppler	axis	extends	from	–5	MHz	to	5	MHz.

3. Use	 the	 algorithm	 from	 Exercise	 2	 to	 recreate	 a	 plot	 like	 Figure	 9.9.	 The	 waveform
corresponding	to	the	plot	of	Figure	9.9	is	a	15-µs	LFM	pulse	with	a	bandwidth	of	1	MHz
and	an	increasing	frequency	(positive	α).	The	range	delay	axis	of	the	plot	extends	from	–
15	μs	to	15	μs	and	the	Doppler	axis	extends	from	–1	MHz	to	1	MHz.	Also	reproduce	the
range	cut	of	Figure	9.8.

4. Show	that	if	u(t)	=	v(t),	|χ(τ,	f)|2	=	|χ(−τ,	–f)2|.	This	will	prove	useful	when	we	consider	the
ambiguity	function	of	more	complicated	waveforms	in	Chapter	10.
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Chapter	10

Waveform	Coding

10.1 INTRODUCTION

Waveform	coding	means	a	phase	modulation	is	applied	to	the	transmit	pulse.	Specifically,	we
assume	the	transmit	pulse	is	of	the	form

where	φ(t)	 is	 the	 phase	modulation	 function	 and	 τp	 is	 the	 pulsewidth.	 The	 inclusion	 of	 the
rect[x]	 function	 means	 we	 assume	 the	 transmit	 pulse	 has	 a	 rectangular	 envelope	 or,	 more
specifically,	a	constant	amplitude.	1	The	assumption	of	a	constant	amplitude	is	consistent	with
current	 transmitter	 technology	 in	 that	 the	 final	 amplifier	 of	 most	 transmitters	 operate	 in
saturation	and	thus	cannot	support	pulses	with	amplitude	modulation	[1,	2].

Our	 first	 encounter	with	 a	phase	 coded	pulse	was	 the	LFM	pulse	 (see	Chapter	9,	 Section
9.4),	which	had	a	φ(t)	of	the	form	φ(t)	=	παt2,	a	quadratic	function	of	time.	Because	of	this,	we
say	the	pulse	has	quadratic	phase	coding.	As	may	be	recalled,	the	term	linear	FM	derives	from
the	fact	that	the	frequency	variation	across	the	pulse	is	a	linear	function	of	time.	That	is,	f(t)	=
αt.

A	 variant	 of	LFM	 that	we	will	 examine	 in	 this	 chapter	 is	 nonlinear	 FM,	 or	NLFM.	With
NLFM,	the	frequency	variation	across	the	pulse	is	a	nonlinear	function	of	time.	The	attraction
of	 NLFM	 is	 that	 the	 matched-Doppler	 range	 cut	 of	 the	 ambiguity	 function	 of	 an	 NLFM
waveform	can	have	lower	sidelobes	than	an	equivalent	bandwidth	LFM	waveform.

With	LFM	and	NLFM	waveforms,	φ(t)	 is	 a	 continuous	 function	of	 time.	Another	 type	of
phase	coded	waveform	is	one	where	φ(t)	is	a	discrete	function	of	time.	That	is,	φ(t)	is	of	the
form

In	other	words,	 the	 phase	 is	 constant	 over	 some	 time	period,	 τc,	 but	 can	 change	 from	 time
period	 to	 time	period.	Examples	of	 this	 type	of	phase	coded	pulse	 include	Frank	polyphase
pulses,	Barker	coded	pulses,	and	pseudo	random	noise	(PRN)	coded	pulses,	all	of	which	we
will	consider	in	this	chapter.

FM	and	the	discrete	phase	coding	just	mentioned	are	applied	to	a	single	pulse.	Another	type



of	waveform	coding	we	will	discuss	is	frequency	coding,	or	frequency	hop	waveforms.	The
frequency	coded	waveforms	we	will	consider	consist	of	a	group,	or	burst,	of	pulses,	where
each	 pulse	 has	 a	 different	 carrier	 frequency	 and	 the	 pulses	 are	 spaced	 such	 that	 the	 return
from	pulse	k	is	received	before	pulse	k	+	1	is	transmitted	(unambiguous	range	operation—see
Chapter	1).

The	main	tool	we	will	use	to	analyze	phase	coded	waveforms	is	the	ambiguity	function	or,
more	 accurately,	 the	 square	 root	 of	 the	 ambiguity	 function,	 |χ(τ,	 f)|.	 This	 implies	 the	 coded
pulses	are	processed	by	a	matched	filter,	which	we	will	assume.	The	exception	to	this	will	be
the	LFM	pulse.	 In	 that	 case,	we	will	 consider	 a	mismatched	 filter	 designed	 to	 reduce	 range
sidelobes	(the	sidelobes	of	the	matched	Doppler	range	cut	of	|χ(τ,	f)|).

The	 ambiguity	 function	 is	 the	 analysis	 tool	 of	 choice	 because	we	 can	 use	 it	 to	 examine
range	resolution	and	range	sidelobes,	as	well	as	the	sidelobes	in	the	regions	off	of	the	range
cut	(matched-Doppler	range	cut)	and	Doppler	cut	(matched-range	Doppler	cut).

It	appears	Robert	H.	Dickey	developed	the	concept	of	waveform	coding	in	the	early	1940s
[3].	 In	 1945,	 he	 applied	 for	 a	 patent	 for	 a	 system	 that	 used	 an	 LFM	waveform	 [4].	 Sidney
Darlington	also	worked	on	coded	waveforms	during	that	time,	but	Dickey	beat	Darlington	to
print	 [5–7].	 According	 to	 Skolnik,	 the	 first	 use	 of	 a	 coded	 waveform	 in	 a	 fielded	 radar
occurred	in	the	mid-1950s.	That	radar	used	a	pulse	with	200	discrete	phase	changes	[K	=	200
in	(10.2)]	[8].	The	phases	changed	randomly	between	0	and	π	(binary	phase	coding).	Skolnik
indicated	the	first	use	of	LFM	in	a	radar	occurred	sometime	after	that.

In	his	patent	description,	Dickey	 termed	his	matched	 filter	 a	compression	 filter.	 That	was
most	likely	the	origin	of	the	term	pulse	compression	that	is	commonly	used	in	connection	with
phase	coded	waveforms	and	their	processing.

Since	their	introduction	in	the	1940s	and	1950s,	many	different	types	of	waveform	coding
have	been	developed	or	 adapted	 from	other	 disciplines,	 such	 as	 cryptography,	 cell	 phones,
spread	spectrum,	GPS,	communications,	and	information	theory	[9–16].

We	will	begin	our	discussions	by	revisiting	LFM	pulses.	We	will	specifically	investigate	the
use	of	a	mismatched	filter	that	incorporates	amplitude	weighting	for	the	purpose	of	reducing
range	sidelobes.	After	that,	we	will	discuss	pulses	with	NLFM.	We	will	present	a	method	for
synthesizing	Φ(t)	for	NLFM	pulses.

We	next	consider	discrete	phased	coded	pulses.	We	start	by	discussing	two	classic	codings:
Frank	polyphase	and	Barker.	With	the	latter,	we	also	briefly	discuss	polyphase	Barker	codes
and	minimum	peak	 sidelobe	 codes.	We	 next	 discuss	 coding	 based	 on	PRN	 sequences.	 PRN
sequences	are	widely	used	in	communications	and	have	interesting	properties	that	make	them
attractive	as	radar	waveforms.

We	 close	 the	 chapter	 with	 a	 discussion	 of	 step	 frequency	 waveforms.	 Step	 frequency
waveforms	provide	a	means	of	achieving	fine	range	resolution	without	requiring	the	radar	to
have	a	large	instantaneous	bandwidth.

10.2 FM	WAVEFORMS



10.2.1 LFM	with	Amplitude	Weighting

One	of	 the	 characteristics	of	LFM	waveforms	 is	 that	 the	 first	 few	sidelobes	of	 the	matched
filter	output	are	somewhat	large.	This	is	illustrated	in	the	left	half	of	Figure	10.1,	which	is	a
plot	of	the	matched	filter	output	for	a	15-µs	pulse	with	an	LFM	bandwidth	of	2	MHz.	As	the
figure	 shows,	 the	 first	 and	 second	 sidelobes	 are	 about	 14	 and	19	dB	below	 the	peak.2	 This
ratio	is	fairly	consistent	for	different	BT	products,	where	we	recall	that	the	BT	product	is	the
product	of	the	pulsewidth,	τp,	and	the	LFM	bandwidth,	B.	For	example,	the	waveform	we	are
considering	has	a	BT	product	of	2	MHz	×	15	µs	=	30.	With	LFM	waveforms,	it	is	possible	to
apply	 an	 amplitude	weighting	 in	 the	matched	 filter	 to	 reduce	 range	 sidelobes,	which	 is	 not
possible	for	other	phase	coded	waveforms.

The	result	of	applying	an	amplitude	weighting	is	illustrated	in	the	right	half	of	Figure	10.1.
In	 this	case,	 the	weighting	 function	was	a	n	=	6,	30-dB	Taylor	window.	As	can	be	 seen,	 the
range	sidelobes	have	been	significantly	reduced.

The	amplitude	weighting	has	had	two	other	effects:	the	peak	response	is	about	0.6	dB	below
the	peak	of	the	unweighted	response	and	the	main	lobe	is	wider.	The	reduction	in	peak	value
translates	 to	 a	 loss	 in	 SNR,	 and	 the	 width	 increase	 translates	 to	 a	 degradation	 in	 range
resolution.

Figure	10.1	Matched	filter	response	for	an	unweighted	and	weighted	LFM	pulse.

An	example	of	a	weighted,	mismatched	filter	implementation	is	illustrated	in	Figure	10.2,
which	 contains	 a	 functional	 block	 diagram	 of	 an	 FFT-based	 (mis)matched	 filter	 processor.
The	processor	implements	(actually,	approximates)	the	equation

That	is,	it	correlates	the	received	signal,	u(t),	with	a	weighted	version	of	the	conjugate	of	the
transmit	signal,	w(t)v*(t)	(see	Chapter	9).	In	(10.3)



is	the	Fourier	transform	of	u(t)	and

is	 the	Fourier	 transform	of	w(t)v(t).	As	a	note,	 the	weight	 (Taylor	 in	 the	above	example)	 is
real,	so	w*(t)	=	w(t).	V*(f)	is	precomputed	and	stored.

As	 an	 implementation	 note,	 in	 search,	 the	 received	 pulse	 could	 be	 anywhere	 in	 the
instrumented	range	interval	(see	Chapter	1).	Thus	the	FFT,	IFFT	(inverse	FFT),	and	the	stored
matched	 filter	 frequency	 response	 must	 be	 long	 enough	 to	 accommodate	 the	 number	 of
samples	of	u(t)	that	are	in	the	instrumented	range	interval.

Figure	10.2	FFT-based	matched	filter.

The	 minimum	 sample	 rate	 necessary	 to	 satisfy	 the	 Nyquist	 criterion	 [17–19]	 is	 the
waveform	bandwidth,	 assuming	 complex	 samples.	However,	we	 have	 found	 that	we	 should
sample	u(t)	at	about	twice	the	waveform	bandwidth	to	avoid	distortion	of	the	range	sidelobes
of	 the	 processor	 output.	 This	means	 the	 FFT,	memory,	multiplier,	 and	 IFFT	 lengths	would
need	to	be	2BτI,	where	τI	 is	the	instrumented	range	interval.	Suppose	the	PRI	associated	with
the	 15-µs,	 2-MHz	 pulse	 of	 the	 previous	 example	 was	 500	 µs	 and	 the	 instrumented	 range
window	was	400	µs.	This	would	give	2BτI	=	2	×	2	×	400	=	1,600	samples	and	indicate	that	the
FFT,	memory,	multiplier,	and	IFFT	sizes	should	be	2,048	or	211.

Since	 the	 target	 range	 is	 known	 reasonably	 well	 in	 track,	 a	 smaller	 FFT,	 memory,
multiplier,	and	IFFT	can	be	used	during	 track.	However,	 the	sizes	of	 the	devices	must	be	as
long	as	the	number	of	samples	in	a	time	interval	of	twice	the	pulsewidth.	If	this	is	not	satisfied,
there	 will	 be	 aliasing	 of	 U(f)	 and	 V(f),	 which	 will	 cause	 m(τ)	 to	 be	 incorrect.	 Thus,	 the
minimum	sizes	of	 the	components	of	 the	matched	 filter	must	be	greater	 than	2Bτp.	 For	 our
example,	2Bτp	 =	 2	×	 2	×	 15	=	60	 samples,	 so	 the	minimum	 size	 of	 each	 component	 of	 the
matched	filter	should	be	64,	or	26.

The	implementation	of	Figure	10.2	was	used	to	generate	 the	matched	filter	responses	and



the	ambiguity	function	plots	in	this	book.	For	these	cases,	the	signals	were	sampled	at	5	to	10
times	 the	 pulse	 bandwidth	 to	 produce	 smooth	matched	 filter	 plots	 and	 plots	 of	 |χ(τ,	 f)|.	 To
compute	the	various	range	cuts	of	|χ(τ,	f)|,	u(t)	was	offset	in	frequency	by	an	amount	equal	to
the	Doppler	mismatch,	f,	of	the	range	cut.

10.2.2 Nonlinear	FM	(NLFM)

An	alternate	method	of	 reducing	 range	sidelobes	of	FM	waveforms	 is	 through	 the	use	of	a
nonlinear	frequency	variation	across	the	pulse.	This	idea	was	originally	conceived	by	Kay	et
al.	 [20,	21]	and	Watters	 [22],	according	 to	statements	by	Fowle	[23].	The	 technique	has	also
been	discussed	by	other	authors	[24–28].	In	this	chapter,	we	outline	the	technique	presented	by
Fowle	in	his	1964	paper.

Fowle	developed	his	technique	through	the	use	of	stationary	phase	integration	[29,	30].	We
will	not	attempt	to	repeat	Fowle’s	development	here.	Instead,	we	present	the	results	needed	to
use	the	technique	to	design	NLFM	waveforms.

In	his	paper,	Fowle	addressed	the	following	problem.

Given	a	function	of	the	form

and	its	Fourier	transform

how	 does	 one	 determine	 the	 phase	 function	 φ(t)	 so	 that	 um2(t)	 and	 Um2(f)	 closely
approximate	desired	functions?	As	a	note,	um(t)	and	Um(f)	are	real	and	usually	positive.

The	 idea	 that	 this	 approach	will	 provide	 low	 range	 sidelobes	 stems	 from	 the	 results	 of	 the
previous	section	where	we	found	that	applying	an	amplitude	weighting	 in	 the	LFM-matched
filter	can	reduce	range	sidelobes.	Amplitude	weighting	changes	the	magnitude	of	the	matched
filter	frequency	response.	The	question	addressed	in	Fowle’s	paper	is	whether	changing	φ(t)
from	a	quadratic	function	of	time	(which	it	is	for	LFM)	to	some	other	function	of	time	will
similarly	change	the	waveform	and	matched	filter	spectrums	to	produce	low	range	sidelobes.
Stated	another	way,	will	changing	the	frequency	deviation	from	a	linear	function	of	time	to	a
nonlinear	function	of	time	result	in	lower	range	sidelobes?

Fowle’s	 technique	 is	 as	 follows:	 given	 a	 desired	 time	 function,	 um(t),	 and	 a	 desired
frequency	function,	Um(f),	evaluate	the	integrals



to	obtain

Solve	(10.9)	to	obtain

Next,	use

to	determine	 the	desired	phase	 function	 for	u(t).	Um(ζ)	 and	um(γ)	must	 be	 chosen	 to	 satisfy
Parseval’s	theorem	[13].	That	is,	they	must	be	chosen	so	that

This	can	be	accomplished	through	the	use	of	scaling	factors,	assuming	the	integrals	of	(10.12)
exist.

The	algorithm	is	applicable	to	any	Um(ζ)	and	um(γ).	However,	 the	case	of	 interest	 to	us	 is
where	um(γ)	is	a	rectangular	pulse.	That	is,	where

where,	for	convenience,	we	scaled	um(γ)	so	that	the	left	integral	of	(10.12)	will	be	unity.	With
this	we	have

which	 is	 a	 phase	 modulated,	 rectangular	 pulse.	 With	 the	 assumption	 of	 (10.13),	 (10.12)
becomes



10.2.2.1	Example	1

As	a	first	example	of	Fowle’s	method,	we	derive	a	pulse	with	LFM.	It	can	be	shown	that	the
magnitude	 of	 the	 spectrum	of	 an	LFM	pulse	with	 a	 bandwidth	 of	B	 is	 close	 to	 a	 rectangle
function	(see	Figure	11.1,	Chapter	11).	Thus	we	choose	Um2(ζ)	as

where	we	chose	the	scale	factor,	1/B,	so	that	the	right	side	of	(10.12)	was	unity	[since	the	left
side	is	unity	for	the	um(γ)	of	(10.13)].

Using	this	we	get,	over	the	interval	|t|	≤	tp/2,

Using	the	region	|f(t)|	≤	B/2,	we	get

or



and

In	other	words,	the	method	results	in	an	LFM	pulse

10.2.2.2	Example	2

As	another	example,	we	consider	the	case	where	um(γ)	is	as	in	(10.13)	and	Um2(ζ)	is	a	“cosine
on	a	pedestal”	function	(e.g.,	Hamming,	Hanning,	and	so	forth.).	With	this	we	get

where	b	≤	1,	a	=	1	−	b,	and	K	=	π/[B(πa	+	2b)]	 is	chosen	so	 that	 the	right	side	of	 (10.12)	 is
equal	to	unity.	The	derivation	of	K	is	left	as	an	exercise.	With	this	we	get

The	above	leads	to

which	 we	 must	 solve	 for	 f(t).	 Herein	 lies	 one	 of	 the	 difficulties	 with	 Fowle’s	 method:
numerical	techniques	are	often	needed	to	find	f(t)	for	Um2(ζ)	functions	of	interest.

For	this	particular	example,	we	can	get	a	closed	form	solution	of



and

for	the	case	where	b	=	1	(and,	thus,	a	=	0).	The	details	are	left	as	an	exercise.

Figure	10.3	NLFM	frequency	and	phase	plots.

Figure	10.4	Matched	filter	response	for	an	NLFM	pulse	and	LFM	pulse.

Figure	10.3	 contains	 plots	 of	 f(t)	 and	φ(t)	 and	Figure	 10.4	 contains	 plots	 of	 the	matched
Doppler	 range	 cut	 of	 the	 ambiguity	 function	 for	 an	 LFM	waveform	 and	 the	 nonlinear	 FM
waveform	we	obtained	in	this	example.	As	the	figures	show,	the	frequency	modulation	is	quite
nonlinear.	Also,	the	first	range	sidelobe	has	been	reduced	from	-14	dB	to	-20	dB.



10.2.2.3	NLFM	Design	Procedures

In	 the	examples	above,	we	made	some	assumptions	 that	allowed	us	 to	develop	closed	 form
expressions	for	f(t)	and	φ(t).	In	general,	this	is	not	possible,	and	we	must	resort	to	numerical
techniques.	 To	 that	 end,	 we	 outline	 a	 procedure	 for	 deriving	 f(t)	 and	 φ(t).	 The	 technique
assumes	the	steps	are	performed	using	numerical	methods.	However,	some	of	them	could	be
completed	 using	 analytical	 techniques,	 if	 the	 various	 functions	 are	 conducive	 to	 analytical
methods.

1.	Select	a	desired	Um(ζ)	or	Um2(ζ)	and	compute	it	for	several	values	of	ζ	over	the	interval
of	 −B/2	 to	B/2,	 where	B	 is	 the	 desired	 NLFM	 bandwidth.	 The	 values	 of	 ζ	 should	 be
chosen	close	enough	 to	capture	 the	shape	Um(ζ).	A	rule	of	 thumb	 is	 to	space	 them	 less
than	1/τp	apart.

2.	Square	Um(ζ)	to	get	Um2(ζ).	This	step	can	be	omitted	if	one	starts	with	Um2(ζ).	We	did	this
in	the	two	examples.

3.	Numerically	compute	the	integral

for	f	between	−B/2	and	B/2.	Scale	P(f)	so	that	P(B/2)	=	1.	This	is	needed	to	satisfy	(10.12).
These	three	steps	result	in

or

4.	Use	the	results	of	Step	3	to	generate	a	tabulation	of	t	versus	f	and	use	interpolation	to	find
f	as	a	function	of	t	for	values	of	t	between	–	τp/2	and	τp/2	with	a	spacing	of	Δt	<	1/B.	A
rule	of	thumb	is	to	start	with	Δt	=	1/(10B).	The	result	of	this	will	be	f(t).

5.	To	find	Φ(t),	numerically	compute	the	integral

10.3 PHASE	CODED	PULSES



In	 this	 section,	we	 consider	 phase	 coding	where	 the	 phase	 changes	 in	 discrete	 steps,	 rather
than	continuously.	We	consider	a	single	pulse	that	is	subdivided	into	a	series	of	subpulses,	or
chips,	where	the	durations	of	the	chips	are	equal.	This	is	not	a	requirement,	but	a	convenience
for	 our	 purposes.	 We	 then	 assign	 a	 different	 phase	 to	 each	 chip	 according	 to	 some	 rule
defined	by	a	phase	coding	algorithm.	We	assume	the	amplitudes	of	all	chips	are	equal.	This	is
a	“semi	 requirement”	of	most	phase	coding	 schemes	 in	 that	 they	were	developed	under	 the
assumption	that	 the	amplitudes	of	 the	chips	are	 the	same.	In	most	applications,	 the	chips	are
adjacent.	That	is,	the	waveform	has	a	100%	duty	cycle.	Again,	this	is	not	a	hard	requirement
but	is	a	standard	to	which	waveform	designers	generally	adhere.

We	 can	 use	 this	 definition	 to	write	 the	 normalized,	 baseband	 equation	 of	 a	 phase	 coded
pulse	as

where	 τc	 is	 the	 chip	 width	 and	 the	 pulse	 consists	 of	 ϕk	 chips.	 The	 phases,	 ϕk	 are	 assigned
according	to	some	phase	coding	algorithm.

As	 indicated	 earlier,	 the	 first	 phase	 coding	 algorithm	 used	 in	 a	 radar	 was	 based	 on	 a
random	 selection	 of	 0	 or	 π	 phase	 shifts	 across	 200	 chips.	 Since	 that	 time,	 analysts	 have
developed	a	wide	variety,	and	a	large	number,	of	phase	coding	algorithms	[9,	31–41].

In	 this	 book,	 we	 consider	 only	 a	 few	 phase	 coding	 algorithms.	 Two	 of	 these	 are	 Frank
polyphase	and	Barker	codes,	which	are	classical	phase	codes	discussed	in	many	radar	books
[9,	42–48].	As	an	extension	of	Barker	codes,	we	briefly	discuss	minimum	peak	sidelobe	codes
[31,	32,	34,	49]	and	polyphase	Barker	codes	[50–53].

The	other	phase	coding	algorithm	we	consider	is	derived	from	PRN	codes.	These	are	also
called	maximal	length	codes,	shifter	register	codes,	shift	register	sequences,	LSR	(for	linear
shift	 register)	 codes	 and	 a	 host	 of	 other	 names	 [44,	 54].	 PRN	 codes	 are	 used	 in	 many
applications	including	digital	television,	GPS	(global	positioning	system),	cell	phones,	spread
spectrum	 communications,	 and	 deep-space	 communications.	 They	 are	 attractive	 for	 radars
because	 they	 exhibit	 “good”	 range	 sidelobes	 and	 “good”	 off-axis	 sidelobes.	 They	 are	 also
useful	in	multiple	radar	applications,	such	as	MIMO	(multiple	input,	multiple	output)	radars,
[55,	56]	because	there	are	PRN	codes	of	the	same	length	that	are	almost	orthogonal.

10.3.1 Frank	Polyphase	Coding

Frank	polyphase	coding	is	a	digital	representation	of	a	quadratic	phase	shift,	 the	phase	shift
exhibited	by	LFM.	Frank	polyphase	codes	have	lengths	that	are	perfect	squares,	that	is,	K	=	L2
where	L	is	an	integer.	The	code	can	be	formed	by	first	creating	an	L	×	L	matrix	of	the	form



Next,	 the	 rows	or	columns	are	concatenated	 to	 form	a	vector	of	 length	K	=	L2.	 Finally,	 the
phase	is	determined	by	multiplying	each	element	of	the	vector	by

We	illustrate	this	by	an	example.	We	consider	L	=	4,	which	produces	a	K	=	L2	=	16	element
Frank	polyphase	code.	The	Frank	polyphase	matrix	is

and

The	vector	of	phase	shifts	is



Figure	10.5	Plot	of	|χ(τ,	f)|	for	a	16-chip	Frank	polyphase	pulse.

The	resulting	Frank	polyphase	coded	pulse	is

A	plot	of	|χ(τ,	f)|	for	this	example	is	shown	in	Figure	10.5.	In	the	plot,	Doppler	ranges	from
0	to	1/τc	and	range	delay	goes	from	–16τc	to	16τc,	where	16τc	is	the	total	duration	of	the	pulse.

The	plot	of	Figure	10.5	allows	us	to	visualize	the	structure	of	the	overall	 |χ(τ,	 f)|	 function
while	still	being	able	to	visualize	the	matched-Doppler	range	cut.	3

It	will	 be	 noted	 that	 the	 plot	 of	 Figure	10.5	 exhibits	 some	 semblance	 of	 the	 ridge	 that	 is
characteristic	 of	 LFM	waveforms.	We	might	 have	 expected	 this	 since	 the	 Frank	 polyphase
waveform	is	a	discrete	version	of	an	LFM	waveform.	For	reference,	a	plot	of	|χ(τ,	f)|	 for	an
LFM	waveform	with	a	BT	product	of	16	is	contained	in	Figure	10.6.	4



Figure	10.6	Plot	of	|χ(τ,	f)|	for	an	LFM	pulse	with	a	BT	product	of	16.

Figure	10.7	Phases	for	16-chip	Frank	polyphase	and	equivalent	LFM	pulse.

Figure	10.7	 contains	 a	 plot	 of	φ(k)	 (with	 appropriate	 phase	 unwrapping)	 for	 the	 16-chip
example	above.	It	also	contains	a	plot	of	the	phase	shift	of	an	LFM	pulse	that	has	a	BT	product
of	 16,	 the	 same	 as	 the	 BT	 product	 of	 the	 16-chip	 Frank	 polyphase	 pulse.	 As	 the	 figure
illustrates,	 the	 Frank	 polyphase	 pulse	 has	 approximately	 the	 same	 quadratic	 phase
characteristic	as	an	equivalent	LFM	pulse.

Several	 other	 digital	 approximations	 of	 LFM	waveforms	 have	 been	 developed	 over	 the



years.	Two	of	these	are	the	Zadoff	and	Chu	codes	discussed	in	[9,	57–59].

10.3.2 Barker	Coded	Waveforms

A	simplification	of	polyphase	coded	pulses	are	 those	 that	use	only	 two	phase	shifts,	usually
separated	 by	 π	 (e.g.,	 0	 and	 π,	 or	 −π/2	 and	 π/2).	 These	 are	 termed	 binary	 phase	 codes.	 A
common	set	of	binary	phase	codes	found	in	radar	texts	are	the	Barker	codes	[60,	61].	Barker
codes	have	the	interesting	property	that	the	peak	level	of	the	range	sidelobes	is	1/K,	assuming
the	peak	of	|χ(τ,	f)|	is	normalized	to	unity.	Although	Barker	codes	have	low	range	sidelobes,
the	sidelobe	levels	of	|χ(τ,	f)|	off	of	matched	Doppler	can	be	high,	as	shown	in	Figures	10.8
and	10.9.

Figure	10.8	is	a	plot	of	 |χ(τ,	f)|,	similar	to	Figures	10.5	and	10.6.	Figure	10.9	 is	a	contour
plot	of	|χ(τ,	f)|,	showing	f	versus	τ	with	10log(|χ(τ,	f)|)	shown	in	grayscale.	The	bar	to	the	right
of	the	plot	provides	the	relation	between	the	values	of	10log(|χ(τ,	f)|)	and	gray	level.

As	 the	plots	 of	Figures	10.8	 and	10.9	 illustrate,	 the	 region	 near	 f	 =	 0	 has	 low	 amplitude
sidelobes.	However,	the	off-axis	regions	exhibit	several	ancillary	lobes.	This	is	a	property	of
all	of	the	Barker	coded	pulses.

Figure	10.8	Plot	of	|χ(τ,	f)|	for	an	11-chip	Barker	coded	pulse.



Figure	10.9	Contour	plot	of	log(|χ(τ,	f)|)	for	an	11-chip	Barker	coded	pulse.

The	 off-axis	 behavior	 of	 Barker	 coded	 pulses	 is	 an	 illustration	 of	 a	 property	 of	 the
ambiguity	 function	 proved	 by	 Woodward,	 the	 inventor	 of	 the	 ambiguity	 function	 [62].
Specifically,	the	volume	under	the	ambiguity	function	is	constant	and	equal	to	its	peak	value.
That	is

This	 says	 that	 if	 a	 coding	 reduces	 the	ambiguity	 function	 in	one	 region,	 the	volume	 in	 that
region	 is	 distributed,	 in	 some	 fashion,	 to	 other	 regions.	 Sometimes	 it	 results	 in	 ancillary
lobes,	as	in	Figures	10.8	and	10.9,	and	in	other	cases,	it	spreads	out	somewhat	uniformly	over
the	τ-f	 region,	 as	 is	 the	 case	with	PRN	coded	pulses.	As	a	note,	 this	property	 applies	 to	 the
matched	filter	case,	not	to	the	mismatched	filter.

There	are	only	7	known	Barker	codes.	They	have	lengths	of	2,	3,	4,	5,	7,	11,	and	13.	The
phase	shifts	for	the	7	codes	are	shown	in	Table	10.1.

The	 low-range	sidelobe	characteristics	of	Barker	coded	pulses	has	motivated	researchers
to	find	other,	longer	binary	phase	coded	pulses	that	exhibit	low	range	sidelobes.	One	of	these
is	a	class	of	pulses	termed	minimum	peak	sidelobe	coded	pulses.	According	 to	Levanon	and
Mozeson	 [9],	 sets	 of	 these	 have	 been	 developed	 by	 Linder	 [32],	 Cohen	 et	 al.	 [31,	 39],	 and
Coxson	 et	 al.	 [33,	49].	 The	 peak	 range	 sidelobes	 are	 not	 1/K	 as	with	Barker	 coded	 pulses;
however,	they	are	quite	small.	Table	10.2	contains	a	list	of	minimum	peak	sidelobe	codes	of



lengths	15	to	25.	Other	lists	can	be	found	in	[31,	33,	34,	36].

Table	10.1
Phase	Shifts	for	Barker	Codes

Code	Length Phase	Shifts
2 0		0		or		0		π
3 0		0		π
4 0		0		0		π		or		0		0		π		0
5 0		0		0		π		0
7 0		0		0		π		π		0		π
11 0		0		0		π		π		π		0		π		π		0		π
13 0		0		0		0		0		π		π		0		0		π		0		π		0

Table	10.2
Partial	List	of	Minimum	Peak	Sidelobe	Codes

Length Code
15 001100000101011
16 0110100001110111
17 00111011101001011
18 011001000011110101
19 1011011101110001111
20 01010001100000011011
21 101101011101110000011
22 0011100110110101011111
23 01110001111110101001001
24 011001001010111111100011
25 1001001010100000011100111

Figure	10.10	contains	range	cuts	of	a	25-chip,	minimum	peak	sidelobe	pulse	and	a	25-chip,
Frank	 polyphase	 pulse.	 Note	 the	 peak	 sidelobes	 of	 the	 minimum	 peak	 sidelobe	 pulse	 are
considerably	lower	than	those	of	the	Frank	polyphase	pulse.

Another	 extension	 of	 Barker	 codes	 are	 generalized	 Barker	 codes	 or	 polyphase	 Barker
codes	[50].	As	the	second	name	implies,	these	are	not	binary	phase	codes	but	polyphase	codes.
The	range	sidelobes	of	pulses	with	these	codes	are	below	1/K.	Listings	of	polyphase	Barker
codes	can	be	found	in	[9,	35,	37,	38,	50–53],	covering	lengths	of	4	to	45.



Figure	10.10	Matched	filter	response	for	25-chip	Frank	polyphase	and	minimum	peak	sidelobe	pulses.

10.3.3 PRN	Coded	Pulses

PRN	coded	pulses	are	another	class	of	pulses	 that	use	binary	phase	coding.	 In	 this	case,	 the
coding	is	based	on	PRN	codes,	which	consist	of	sequences	of	0s	and	1s	and	most	often	have
lengths	of	K	=	2M	–	1,	where	M	 is	an	 integer.	The	sequences	of	0s	and	1s	are	generated	by
feedback	shift	register	devices	[54].	A	functional	block	diagram	of	a	feedback	shift	register	is
contained	 in	 Figure	 10.11.	 The	 boxes	 with	 Stage	 1,	 Stage	 2,	 and	 so	 forth,	 represent	 shift
register	elements	(flip-flops)	and	the	adder	is	a	modulo-2	adder.	The	block	with	z−1	is	a	delay,
or	buffer,	 that	holds	 the	 result	of	 the	modulo-2	addition	before	 it	 is	 loaded	 in	 the	 first	 shift
register.	The	feedback	configuration	is	usually	chosen	such	that	the	sequence	of	0s	and	1s	at
the	output	 repeats	only	after	K	=	2M	–	1	samples.	Such	a	sequence	of	0s	and	1s	 is	 termed	a
maximal	length	sequence	or	m-sequence	[16,	42,	63–66].	The	phase	codes	used	on	the	chips	of
the	 PRN	 coded	 pulse	 is	 the	 PRN	 sequence	 multiplied	 by	 π.	 Solomon	 Wolf	 Golomb	 is
generally	 credited	 with	 developing	 and	 characterizing	 maximal	 length	 sequences	 [15,	 54].
However,	 in	 his	 book	 [16],	Golomb	 gives	 credit	 to	 James	 Singer	 as	 the	 actual	 inventor	 of
maximal	length	sequences.	5

Table	10.3	 contains	 a	 partial	 list	 of	 feedback	 configurations	 that	 can	 be	 used	 to	 generate
maximal	length	sequences	for	M	between	3	and	10.	The	numbers	in	the	table	denote	the	shift
register	outputs	that	are	added	and	fed	back	to	the	input.	The	tap	numbering	corresponds	to	the
stage	number	 in	Figure	10.11.	For	example,	 the	M	=	4	case	shown	 in	 the	 table	 is	 (4,	3)	and
indicates	that	the	output	of	shift	registers	3	and	4	would	be	added	and	fed	back	to	the	first	shift
register	 input.	This	specific	example	is	 illustrated	in	Figure	10.12.	The	entries	 in	Table	10.3
were	obtained	from	a	website	hosted	by	New	Wave	Instruments	[70],	which	has	a	much	more
complete	list.	Other	sources	include	[63,	64,	71].

As	pointed	out	in	[70],	the	entries	in	Table	10.3	represent	only	half	of	the	possible	feedback
configurations.	 If	one	of	 the	entries	 in	 the	 table	 is	 (M,	 a,	 b,	 c),	 the	 companion	 to	 that	 entry
would	be	(M,	M	−	a,	M	−	b,	M	−	c).	For	example,	one	of	the	entries	for	M	=	6	is	(6,	5,	4,	1)	so
its	companion	would	be	(6,	6	−	5,	6	−	4,	6	−	1)	=	(6,	1,	2,	5).



Figure	10.11	M-stage	feedback	shift	register.

Table	10.3
Feedback	Tap	Configurations	for	M	=	3	to	10

M Feedback	Taps
3 3,	2
4 4,	3
5 (5,	3),	(5,	4,	3,	2),	(5,	4,	3,	1)
6 (6,	5),	(6,	5,	4,	1),	(6,	5,	3,	2)

7 (7,	6),	(7,	4),	(7,	6,	5,	4),	(7,	6,	5,	2),	(7,	6,	4,	2),	(7,	6,	4,	1),	(7,	5,	4,	3),	(7,	6,	5,	4,	3,	2),	(7,	6,	5,
4,	2,	1)

8 (8,	7,	6,	1),	(8,	7,	5,	3),	(8,	7,	3,	2),	(8,	6,	5,	4),	(8,	6,	5,	3),	(8,	6,	5,	2),	(8,	7,	6,	5,	4,	2),	(8,	7,	6,
5,	2,	1)

9

(9,	5),	(9,	8,	7,	2),	(9,	8,	6,	5),	(9,	8,	5,	4),	(9,	8,	5,	1),	(9,	8,	4,	2),	(9,	7,	6,	4),	(9,7,	5,	2),	(9,	6,	5,
3),	(9,	8,	7,	6,	5,	3),	(9,	8,	7,	6,	5,	1),	(9,	8,	7,	6,	4,	3),	(9,	8,	7,	6,4,	2),	(9,	8,	7,	6,	3,	2),	(9,	8,	7,
6,	3,	1),	(9,	8,	7,	6,	2,	1),	(9,	8,	7,	5,	4,	3),	(9,	8,	7,5,	4,	2),	(9,	8,	6,	5,	4,	1),	(9,	8,	6,	5,	3,	2),	(9,
8,	6,	5,	3,	1),	(9,	7,	6,	5,	4,	3),	(9,	7,6,	5,	4,	2),	(9,	8,	7,	6,	5,	4,	3,	1)

10

(10,	7),	(10,	9,	8,	5),	(10,	9,	7,	6),	(10,	9,	7,	3),	(10,	9,	6,	1),	(10,	9,	5,	2),	(10,	9,	4,	2),	(10,	8,	7,
5),	(10,	8,	7,	2),	(10,	8,	5,	4),	(10,	8,	4,	3),	(10,	9,	8,	7,	5,	4),	(10,	9,	8,	7,	4,	1),	(10,	9,	8,	7,	3,	2),
(10,	9,	8,	6,	5,	1),	(10,	9,	8,	6,	4,	3),	(10,	9,	8,	6,	4,	2),	(10,	9,	8,	6,	3,	2),	(10,	9,	8,	6,	2,	1),	(10,
9,	8,	5,	4,	3),	(10,	9,	8,	4,	3,	2),	(10,	9,	7,	6,	4,	1),	(10,	9,	7,	5,	4,	2),	(10,	9,	6,	5,	4,	3),	(10,	8,	7,
6,	5,	2),	(10,	9,8,	7,	6,	5,	4,	3),	(10,	9,	8,	7,	6,	5,	4,	1),	(10,	9,	8,	7,	6,	4,	3,	1),	(10,	9,	8,	6,	5,	4,	3,
2),	(10,	9,	7,	6,	5,	4,	3,	2)

Figure	10.12	Shift	register	configuration	of	the	(4,	3)	entry	of	Table	10.3.

A	particular	maximal	length	sequence	is	generated	by	initializing	the	shift	register	with	any
M	digit	binary	number	except	zero.	As	an	 interesting	note,	 the	sequence	generated	with	any
one	shift	register	initialization	(initial	load)	is	not	a	unique	sequence,	but	a	circular	shift	of	a
sequence	 that	 results	 from	 some	 other	 initial	 load	 (see	Exercise	12).	Unique	 sequences	 are
generated	by	choosing	a	different	feedback	configuration.	Although	changing	the	initial	load
does	not	produce	a	unique	sequence,	it	can	have	a	significant	effect	of	the	range	sidelobes	of
the	PRN	coded	pulse.



The	operation	of	the	shift	register	generator	is	as	follows.

1.	The	modulo	2	addition	is	performed	and	the	result	is	loaded	into	the	z–1	buffer.
2.	The	shift	register	contents	is	shifted	one	bit	to	the	right,	and	the	output	of	shift	register
element	M	is	shifted	into	an	output	buffer.

3.	The	result	stored	in	the	z–1	buffer	is	loaded	into	shift	register	stage	1.
4.	Steps	1	through	3	are	repeated	until	the	output	buffer	contains	2M	–	1	elements.

An	 interesting	 feature	 of	 PRN	 coded	 pulses	 is	 that	 codes	 based	 on	 different	 feedback
configurations	will	be	almost	orthogonal.	By	“almost	orthogonal”	we	mean	that	 if	 the	PRN
pulse	based	on	one	feedback	configuration	is	processed	through	a	matched	filter	matched	to	a
PRN	pulse	based	on	a	different	 feedback	configuration,	 the	output	will	not	have	a	peak,	but
will	look	like	noise	(see	Exercise	13).

Figure	10.13	contains	a	plot	of	|χ(τ,	f)|	for	a	15-chip	PRN	coded	pulse	where	the	PRN	code
was	generated	with	the	feedback	configuration	of	Figure	10.12	and	an	initial	load	of	1111.	The
range	cut	does	not	have	sidelobes	 that	are	as	 low	as	comparable	 length	Frank	polyphase	or
Barker	pulses.	However,	 |χ(τ,	 f)|	 does	 not	 have	 the	 ridge	 or	 peaks	 that	 the	 other	 two	pulses
exhibit.	This	is	a	characteristic	of	PRN	coded	waveforms:	their	sidelobe	levels	are	generally
“okay”	but	not	extremely	low	or	high.	Long	PRN	coded	waveforms	have	|χ(τ,	f)|	that	approach
the	ideal	“thumbtack”	function	[17].



Figure	10.13	Plot	of	|χ(τ,	f)|	for	a	15-chip	PRN	coded	pulse.

The	 particular	 initial	 load	 used	 to	 generate	 Figure	 10.13	 resulted	 in	 low	 sidelobe	 levels
near	the	central	peak.	It	turns	out	that	the	initial	load	can	have	a	fairly	significant	impact	on	the
matched-Doppler	 range	 sidelobes	of	 the	 ambiguity	 function	 (see	Exercise	15).	 It	 also	has	 a
lesser	impact	on	the	other	range-Doppler	sidelobes.	The	only	known	way	to	choose	an	initial
load	that	provides	the	desired	sidelobe	characteristics	is	to	experiment.

10.3.3.1	Mismatched	PRN	Processing

We	 now	 want	 to	 investigate	 a	 special	 type	 of	 processing	 of	 PRN	 coded	 pulses	 that	 takes
advantage	 of	 an	 interesting	 property	 of	 PRN	 codes.	 The	 property	 we	 refer	 to	 is	 that	 the
circular	 autocorrelation	 of	 a	 PRN	 sequence	 has	 a	 value	 of	 either	K	 or	 –1.	With	 a	 circular
correlation,	when	we	shift	the	sequence	to	the	right	by	K	chips,	we	take	the	K	chips	that	“fall
off”	the	end	of	the	shifted	sequence	and	place	them	at	the	beginning	of	the	shifted	sequence.
This	is	 illustrated	in	Figure	10.14.	 In	 this	 figure,	we	used	 the	7-bit	PRN	code	of	1001110	 to
generate	the	PRN	coded	sequence	of	–111–1–1–11.

To	perform	the	circular	autocorrelation,	we	make	a	copy	of	the	sequence	to	produce	two
sequences.	We	 then	 circularly	 shift	 one	 sequence	 by	K	 chips,	multiply	 the	 result	 in	K-chip
pairs,	 and	 form	 a	 sum	 across	 the	 K-chip	 result.	 This	 is	 illustrated	 in	 Figure	 10.15.
Mathematically,	we	can	write	the	circular	correlation	as

where	(m)K	denotes	evaluation	of	m	modulo	K.	The	interesting	property	of	PRN	sequences	is
that

Figure	10.14	Illustration	of	a	2-bit	circular	shift.



Figure	10.15	Illustration	of	circular	correlation	for	k	=	2.

We	now	apply	this	property	to	examine	a	special	 type	of	PRN	coded	waveforms.	We	will
assume	that	we	encode	a	0	of	the	PRN	code	to	a	phase	of	0	and	a	1	to	a	phase	shift	of	β	instead
of	π.	 Thus,	 a	 PRN	 coded	 pulse	 corresponding	 to	 the	 7-bit	 PRN	 code	 of	 Figures	 10.14	 and
10.15	(i.e.,	1001110)	would	be	as	shown	in	Figure	10.16.

We	assume	the	transmit	waveform,	u(t),	is	as	shown	in	Figure	10.16.	We	define	a	matched
filter	 that	 is	matched	 to	a	signal	v(t),	where	v(t)	 is	a	concatenation	of	 three	u(t)s.	Thus,	v(t)
would	be	as	shown	in	Figure	10.17.	The	t	=	0	reference	points	in	Figures	10.16	and	10.17	are
used	to	denote	the	time	alignment	for	matched	range.	Thus,	when	the	received	signal	(a	scaled
version	of	Figure	10.16)	 is	aligned	with	 the	center	of	 the	 three	PRN	coded	pulses	of	Figure
10.17,	the	matched	filter	is	matched	in	range	to	the	received	pulse.

The	matched	filter	output	is

Figure	10.16	Seven-chip,	PRN	coded	waveform.

Figure	10.17	Waveform	to	which	the	matched	filter	is	matched.



Figure	10.18	Formation	of	u(t)v*(t	+	nτc)

We	want	to	examine	vMF(t)	for	τ	=	nτc	where	n	is	an	integer	between	–(N	–	1)	and	N	–	1.	We
particularly	want	to	examine	the	form	of	u(t)v*(t	+	nτc).	This	is	illustrated	in	Figure	10.18	for
the	7-chip	PRN	coded	waveform	and	n	=	3.

When	we	form	u(t)v*(t	+	nτc),	we	get

and

We	note	from	Figure	10.18	that	ϕk	−	ϕ(k+3)N	is	equal	to	either	0,	β,	or	−β.	We	note	further	that
there	 are	 three	 cases	where	ϕk	−	ϕ(k+3)K	 =	 0,	 2	 cases	where	ϕk	 −	ϕ(k+	 3)N	 =	β	 and	 two	 cases
where	ϕk	−	ϕ(k+3)K	=	−β.	With	this,	we	get

It	turns	out	that	for	all	τc	<	|τ|	<	(N	–	1)	τc

In	 fact,	 for	any	K-chip	(K	=	2M	−	1)	PRN-coded	waveform	with	u(t)	and	v(t)	 chosen	by	 the
above	rule,



Stated	in	words,	the	range	sidelobes	within	K	−	1	chips	of	the	mainlobe	have	a	constant	value
as	given	by	(10.46).

As	an	interesting	extension	of	the	above,	if	we	choose	β	such	that

or

we	get

That	is,	range	sidelobes	within	K	−	1	chips	of	the	mainlobe	are	zero.	This	has	the	potential	of
being	useful	when	a	radar	must	be	able	to	detect	or	track	a	very	small	target	in	the	presence	of
a	very	large	target,	provided	both	targets	are	at	the	same	Doppler	frequency.

Figure	 10.19	 contains	 a	 plot	 of	 |χ(τ,	 f)|	 for	 the	 7-chip	 PRN	 example	 above	 for	 the	 case
where	β	was	chosen	to	be



Figure	10.19	Plot	of	|χ(τ,	f)|	for	7-chip	PRN	pulse	with	mismatched	filter.

As	predicted,	the	range	sidelobes	around	the	central	peak	are	zero.	However,	the	sidelobes
off	of	matched	Doppler	rise	significantly.	Also,	the	range	cut	contains	two	extra	peaks.	These
peaks	are	range	ambiguities	and	are	due	to	the	fact	that	u(t)	correlates	with	each	of	the	other
two	end	PRN	coded	pulses	of	v(t).	The	range	sidelobes	adjacent	to	these	range	ambiguities	are
the	normal	range	sidelobes	associated	with	PRN	coded	waveforms.

10.4 STEP	FREQUENCY	WAVEFORMS

In	 a	 step	 frequency	 waveforms	 the	 carrier	 frequency	 is	 changed	 from	 pulse	 to	 pulse.	 The
specific	case	we	consider	 is	shown	in	Figure	10.20.	For	 this	 analysis,	 and	 in	most	practical
applications,	we	assume	the	radar	operates	unambiguously	in	range.	That	is,	the	signal	from
pulse	k	 is	 received	before	pulse	k	+	1	 is	 transmitted.	Thus,	we	can	 think	of	processing	one
pulse	at	a	time	and	saving	the	results	for	later,	further,	processing.

We	assume	the	frequency,	fk,	of	the	kth	pulse	is	given	by

where	f0	 is	the	carrier	frequency	and	Δf	 is	 the	frequency	step.	To	simplify	 the	development,
we	assume	the	individual	pulses	are	unmodulated,	though	this	is	not	necessary,	or	desired,	in



practical	applications.	We	can	write	the	normalized	transmit	signal	for	the	kth	pulse	as

The	normalized	signal	returned	from	a	target	at	a	range	delay	of	τR	is

Figure	10.20	Step	frequency	waveform.

We	assume	we	know	 τR	well	 enough	 to	be	able	 to	 sample	 the	matched	 filter	output	near	 its
peak.	 A	 more	 accurate	 measurement	 of	 τR	 will	 be	 obtained	 from	 the	 output	 of	 the	 step
waveform	signal	processor.	For	now,	we	assume	the	radar	and	 target	are	fixed	so	 that	τR	 is
constant.

The	heterodyne	signal	is	given	by

where	τ′R	is	close	to	τR	and	τh	is	large	enough	for	the	rect[x]	of	(10.54)	to	overlap	the	rect[x]
of	 (10.53).	The	 frequency	 of	 the	 heterodyne	 signal	 is	 different	 for	 every	 pulse	 and	hk(t)	 is
perfectly	coherent	with	vTk(t).	The	output	of	the	heterodyne	operation	is

The	first	term	is	a	constant	phase	shift	that	is	common	to	all	pulses.	We	will	lump	it	into	some
constant	that	we	normalize	to	unity.

For	the	next	step,	we	process	vHk(t)	by	a	matched	filter	matched	to	rect[t/τp]	 to	produce	a
normalized	output	of



where	tri[x]	is	a	triangle	centered	at	x	=	0	with	a	base	width	of	2	and	a	height	of	unity.

Finally,	we	sample	vMk(t)	at	some	τ,	close	to	τR,	to	obtain

After	we	obtain	vMk(τ)	from	N	pulses,	we	form	the	sum

where	the	ak	are	complex	weight	coefficients	that	we	want	to	choose	to	maximize	|V(τ	−	τR)|.
We	 recognize	 (10.58)	 as	 the	 form	 of	 the	 sum	 we	 encountered	 in	 our	 antenna	 and	 will
encounter	in	our	stretch	processing	analyses.	We	can	use	this	knowledge	to	postulate	that	the
ak	that	will	maximize	|V(τ	−	τR)|	are

With	this	we	write	V(τ	−	τR)	as

which	we	evaluate	and	normalize	to	yield

A	plot	of	|V(τ	−	τR)|	versus	(τ	−	τR)∆f	is	shown	in	Figure	10.21	for	N	=	10	and	without	the	tri[x]
function.	The	central	peak	occurs	at	(τ	−	τR)∆f	=	0	and	the	first	null	occurs	at	|(τ	−	τR)∆f|	=	1/N
=	0.1.	The	other	peaks,	which	are	range	ambiguities,	are	located	at	integer	values	of	(τ	−	τR)∆f.
This	tells	us	the	range	resolution	of	the	waveform	is



and	the	range	ambiguities	are	located	at

Figure	10.21	Plot	of	|V(τ	–	τR)|	without	tri[x].

In	the	above	development,	we	ignored	the	tri[x]	function	to	emphasize	the	location	of	range
ambiguities.	If	we	now	include	it,	we	can	quantify	the	effect	of	the	single-pulse	matched	filter
on	|V(τ	−	τR)|.	We	will	add	the	extra	step	of	recognizing	that	V(τ	−	τR)	is	the	matched-Doppler
range	cut	|χ(τ,	f)|	 for	vTk	 (t)	and,	 in	 future	 references,	use	V(τ	−	τR)	=	χ(τ	−	τR,	0).	With	 this,
Figure	10.22	contains	plots	of	|χ(τ	−	τR,	0)|	for	∆fτp	=	0.5,	1	and	2.	The	top	plot	corresponds	to
the	case	of	∆fτp	 =	 0.5	 and	 the	bottom	plot	 corresponds	 to	 the	 case	of	∆fτp	 =	 2.	 The	 dashed
triangles	are	the	single-pulsed	matched	filter	responses.

For∆fτp	=	0.5	and	1,	the	single-pulse	matched	filter	response	nullifies	the	range	ambiguities.
However,	 when	 ∆fτp	 =	 2,	 the	 range	 ambiguities	 are	 present.	 This	 interaction	 between	 the
single-pulse	matched	filter	response	and	the	presence	of	range	ambiguities	is	a	limitation	that
must	be	considered	when	designing	step	frequency	waveforms.

Equation	 (10.62)	 tells	 us	we	 can	 improve	 resolution	 by	 either	 increasing	 ∆f	 or	N.	 If	 we
increase	∆f	we	must	consider	the	properties	indicated	in	Figure	10.22	and	ensure	that



Figure	10.22	Plots	of	|χ(τ	–	τR,	0)|	for	∆fτp	=	0.5,	1,	and	2.

We	note	that	(10.64)	can	also	be	satisfied	by	decreasing	τp.	Thus,	we	could	 increase	∆f	 to
improve	resolution	if	we	can	effectively	reduce	τp	to	satisfy	(10.64).

A	means	of	effectively	 reducing	 τp	 is	 to	phase	 code	 the	 individual	pulses.	 In	 that	 case,	 τp
would	be	the	compressed	pulsewidth,	τc.

Increasing	 the	number	of	pulses	 to	 improve	resolution	must	be	done	with	care	because	 it
can	 have	 negative	 consequences	 in	 terms	 of	 timelines	 and	 the	 potential	 impact	 of	 target
motion.

10.4.1 Doppler	Effects

We	now	consider	the	effects	of	target	motion.	For	now,	we	will	be	concerned	only	with	target
Doppler	frequency.	To	include	target	Doppler	frequency,	we	write	the	target	range	as

and	the	target	range	delay	as

We	can	write	the	target	range	delay	at	the	time	of	the	kth	transmit	pulse	as



where	T	is	the	PRI.

If	the	transmit	signal	as	defined	in	(10.52),	the	received	signal	is

Manipulating	the	above	using	(f0	+	kΔf)(fd/f0)	≈	fd	and	τRk	≈	τR0	(in	the	rect[x]	function),	we	get

We	note	that	the	approximation	of	(f0	+	k∆f)(fd/f0)	≈	fd	may	not	be	very	good	because	the	k∆f
term	could	cause	a	degradation	in	resolution.	However,	the	approximation	allows	us	to	focus
on	the	effects	of	target	Doppler,	and	not	the	potential	resolution	degradation.	This	would	need
to	be	considered	in	a	more	complete	analysis.

If	we	compare	 (10.69)	with	 (10.53),	we	 note	 the	 only	 difference	 is	 the	 appearance	 of	 the
term	related	to	Doppler.	Thus,	if	we	repeat	the	heterodyning	and	matched	filtering	math	from
above,	we	get

Forming	the	weighted	sum	of	the	vMk(τ	−	τR0)	yields

As	we	did	earlier,	we	could	choose	the	bk	to	maximize	|V(τ	−	τR)|.	However,	a	more	general
form	would	be	to	use

which	would	yield



or,	evaluating	and	normalizing	the	sum,

Figure	10.23	contains	a	matched-range,	Doppler-cut	(a	plot	of	|χ(0,	f	–	fd)|	versus	f	−	fd,)	of
the	 10-pulse	 waveform	 discussed	 earlier.	 In	 this	 case,	 we	 needed	 specific	 values	 for	 the
parameters	and	thus	chose	a	PRI	of	500	µs,	τp	=	1	µs,	and	Δf	=	1	MHz.	It	will	be	noted	that	the
Doppler	resolution	of	this	waveform	is	200	Hz	or	1/NT	=	1/(10	×	500	µs),	as	expected.

Figure	10.23	Matched-range,	Doppler	cut	for	a	step	frequency	waveform.

Figure	10.24	Range	cuts	of	a	step	frequency	waveform.

Figure	 10.24	 contains	 range	 cuts	 at	 matched	 Doppler	 and	 at	 a	 Doppler	 offset	 of	 one



Doppler	resolution	cell	 (200	Hz).	Note	 that	a	Doppler	offset	of	one	Doppler	resolution	cell
causes	a	range	error	of	one	range	resolution	cell.	This	indicates	the	step	frequency	waveform
is	 very	 sensitive	 to	Doppler	 and	 that,	 if	we	want	 accurate	 absolute	 range	measurement,	 the
range	shift	due	to	target	Doppler	must	be	removed.

This	 can	 be	 done	 if	 the	 target	 is	 in	 track	 and	 the	 relative	 velocity	 between	 the	 radar	 and
target	is	known	with	reasonable	accuracy.

If	 the	 step	 frequency	waveform	 is	 used	 in	 its	more	 common	 role	 of	 target	 imaging,	 the
various	scatterers	of	the	target	should	be	moving	at	about	the	same	range	rate	so	that	range
errors	due	to	Doppler	differences	of	 the	scatterers	should	be	small.	One	would	still	want	 to
remove	the	gross	Doppler	to	minimize	losses	due	to	Doppler	mismatch.	Note	that	the	range
cut	at	f	=	1/NT	shown	in	Figure	10.24	is	down	about	–20log(0.9)	≈	1	dB.

10.5 CLOSING	COMMENTS

With	the	exception	of	LFM	pulses,	Barker	coded	pulses,	and	some	short	PRN	coded	pulses,
waveforms	 of	 the	 type	mentioned	 in	 this	 chapter	were	 very	 difficult	 to	 implement	 in	 older
radars	 because	 they	 were	 difficult	 to	 generate	 and	 process	 with	 older,	 analog	 hardware.
However,	 the	advent	of	direct	digital	 synthesizers	 [72–74]	 and	FFT-based	 signal	 processors
[75–77]	 has	 essentially	 removed	 the	 hardware	 constraint.	 This	means	we	 can	 expect	 to	 see
waveforms	 such	as	 those	discussed	 in	 this	 chapter,	 and	even	more	complicated	waveforms,
come	into	fairly	common	use.

10.6 EXERCISES

1. We	did	not	discuss	matched	 range	Doppler	cuts	of	 |χ(τ,	 f)|.	This	 is	because	 the	matched
range	Doppler	cut	does	not	depend	on	the	phase	modulation	on	the	pulse,	φ(t).	Prove	that
this	 is	 a	 correct	 statement	 by	 showing	 that	 the	 matched	 range	 Doppler	 cut	 of	 the
waveform	of	(10.1)	is	given	by	|χ(0,	f)|	=	K|sinc(fτp)|.

2. Reproduce	the	plots	of	Figure	10.1.

3. Show	that	the	scaling	constant,	I,	of	(10.22)	is	K	=	π/[	B(πa	+	2b)].

4. Derive	(10.25)	and	(10.26).

5. Reproduce	the	plots	of	Figures	10.3	and	10.4.

6. Use	 the	 numerical	 technique	 of	 Section	 10.2.2.3	 to	 design	 an	NLFM	waveform	 for	 the
case	where	Um2(ζ)	is	a	Hamming	weighting	function	(see	Example	2	of	Section	10.2.2.2).

7. Reproduce	the	plot	of	Figure	10.3.	Produce	a	similar	plot	for	a	25-chip	pulse	with	Frank
polyphase	coding.

8. Generate	a	plot	like	Figure	10.8	for	a	25-chip	pulse	with	minimum	peak	sidelobe	coding.

9. Generate	a	plot	like	Figure	10.8	for	a	13-chip	Barker	coded	pulse.



10. Generate	a	plot	like	Figure	10.13	for	a	63-chip	PRN	coded	pulse.

11. Generate	a	plot	like	Figure	10.19	where	the	base	pulse	is	a	15	-chip	PRN	coded	pulse.

12. Show,	by	example,	that	two	PRN	codes	generated	by	two	different	loads	of	a	shift	register
generator	are	circular	shifts	of	each	other.	Use	a	7-	or	15-element	code	 to	simplify	 the
problem.

13. It	 was	 stated	 that	 PRN	 coded	 pulses	 based	 on	 different	 shift	 register	 feedback
configurations	were	“almost	orthogonal.”	That	is,	if	a	PRN	coded	pulse	is	based	on	one
feedback	configuration	and	the	matched	filter	is	based	on	a	pulse	derived	with	a	different
feedback	configuration,	the	output	of	the	matched	filter	would	not	exhibit	a	predominant
peak	 as	 it	 would	 if	 the	 matched	 filter	 was	 matched	 to	 the	 input	 pulse.	 To	 verify	 this
assertion,	generate	a	PRN	coded	pulse,	u(t),	using	one	of	the	feedback	configurations	for
M	=	6	in	Table	10.3.	Match	the	matched	filter	to	another	pulse,	v(t),	based	on	a	different
feedback	tap	configuration	for	M	=	6.	Process	u(t)	through	the	matched	filter	matched	to
v(t)	and	plot	the	output.	Does	it	behave	as	claimed?

14. Reproduce	the	plots	of	Figures	10.21	and	10.22.

15. Generate	plots	like	Figure	10.13	for	different	 initial	 loads	of	 the	feedback	shift	register.
Make	 a	 note	 of	 the	 range	 sidelobe	 levels	 close	 to	 the	main	 peak	 as	 you	 change	 initial
loads.
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APPENDIX	10A:	LFM	AND	THE	sinc2(x)	FUNCTION

In	footnote	2	of	Section	10.2.1,	we	noted	that	the	matched	filter	output	for	an	unweighted	LFM
pulse	had	a	shape	similar	to	a	sinc2(x)	function,	but	the	match	was	not	exact.	In	particular,	we
noted	the	first	two	sidelobe	levels	were	about	–14	and	–19	dB	instead	of	–13.2	and	–17.8	dB.
This	can	be	explained	by	examining	 the	equation	 for	 the	matched-Doppler	 range	cut	of	 the
ambiguity	function	we	derived	in	Chapter	9	[see	(9.30)].	That	equation	is

We	note	 the	matched-Doppler	range	cut	does	contain	a	sinc2(x)	 function,	but	with	 the	added
term	(τp	–|	τ	 |)	 in	the	argument.	It	 is	 the	presence	of	this	 term	that	causes	the	sidelobes	to	be
lower	than	those	of	the	sinc2(x)	function.	As	the	BT	product	of	the	waveform	is	increased,	the
(τp	 –|	 τ	 |)	 term	 has	 less	 of	 an	 effect	 on	 the	 first	 few	 sidelobes,	 which	 means	 they	 would
approach	those	of	a	sinc2(x)	function.

We	can	also	explain	this	from	a	frequency	domain	perspective.	To	that	end,	Figure	10A.1
contains	 a	 plot	 of	 the	 frequency	 spectrum	 of	 the	 15-μs,	 2-MHz	 LFM	 pulse	 considered	 in
Section	 10.2	 [Figure	 10A.1	 was	 generated	 using	 (11.6)].	 The	 figure	 also	 contains	 an	 ideal
spectrum	with	the	same	bandwidth.	If	the	ideal	spectrum	was	that	of	some	hypothetical	pulse,
the	matched-Doppler	 range	cut	of	 the	pulse	would	be	a	 sinc2(x)	 function.	The	nature	of	 the
matched-Doppler	 range	cut	of	 the	LFM	ambiguity	 function	 is	due	 to	 the	 ripples	 (which	are
termed	Fresnel	 ripples)	and	skirts	of	 the	LFM	pulse	spectrum.	The	 ripples	and	skirts	of	 the
LFM	spectrum	are	also	what	caused	the	sidelobes	of	the	matched	filter	output	of	the	weighted
LFM	pulse	(Figure	10.1)	to	be	other	than	the	expected	–30	dB	normally	associated	with	30-dB
Taylor	weighting.

http://www.analog.com
http://www.analog.com


Figure	10A.1	Spectrum	of	a	15-μs,	2-MHz	LFM	pulse	and	an	ideal	2-MHz	spectrum.

As	a	comparison,	Figure	10A.2	contains	the	matched-Doppler	range	cut	and	spectrum	for	a
LFM	pulse	with	a	duration	of	150	µs	and	a	bandwidth	of	2	MHz	(a	BT	product	of	300	instead
of	30).	The	full	extent	of	the	matched-Doppler	range	cut	is	not	shown	so	we	could	more	easily
see	 the	 first	 few	 sidelobes.	 Note	 that	 the	 spectrum	 more	 closely	 approximates	 the	 ideal
spectrum	and	the	first	two	sidelobe	of	the	matched-Doppler	range	cut	are	closer	to	–13.2	and
–17.8	dB.

Figure	10A.2	Matched-Doppler	range	cut	(left)	and	spectrum	(right)	of	a	150-µs,	2-MHz	LFM	pulse.

1	Strictly	speaking,	vT(t)	 is	an	idealized	form	of	the	transmit	pulse.	The	actual	pulse	cannot	have	a	true	rectangular	envelope
because	such	an	envelope	implies	the	transmitter	has	infinite	bandwidth.	Practically,	the	envelope	of	the	transmit	pulse	is	close
to	rectangular.



2	As	 a	 note,	 as	 the	BT	 product	 becomes	 larger,	 the	 first	 and	 second	 sidelobes	will	 approach	 those	 of	 the	 first	 and	 second
sidelobes	of	a	sinc(x)	function,	13.3	and	17.8	dB,	respectively.	See	Appendix	10A	for	a	more	detailed	explanation.
3	This	plotting	methodology	was	adapted	from	that	used	in	Levanon	and	Mozeson	[9].
4	 The	BT	 product	 of	 a	K-chip	 phase	 coded	 pulse	 is	 normally	 equal	 to	K.	 This	 derives	 from	 the	 observation	 that	 the	 pulse
bandwidth	is	B	=	1/τc	and	the	duration	of	the	pulse	is	τp	=	Kτc.	Thus	BT	=	Bτp	=	(1/τc)(Kτc)	=	K.
5	Among	 other	 awards	 for	 his	 contributions	 to	 information	 theory	 and	 shift	 register	 sequence	 theory	 and	 their	 application	 in
digital	communications,	Golomb	was	awarded	the	IEEE	Shannon	Award	in	1985	[67],	 IEEE	Richard	W.	Hamming	Medal	 in
2000	[68],	and	National	Medal	of	Science	in	2011	[69].



Chapter	11

Stretch	Processing

11.1 INTRODUCTION

Stretch	 processing	 is	 a	 way	 of	 processing	 large	 bandwidth	waveforms	 using	 narrow	 band
techniques.	 For	 our	 present	 purposes,	 we	 want	 to	 look	 at	 stretch	 processing	 as	 applied	 to
waveforms	with	linear	frequency	modulation	(LFM).	The	concepts	of	stretch	processing	also
appear	in	other	applications	such	as	frequency	modulated	continuous	wave	(FMCW)	radar	[1]
and,	as	we	will	see	in	Chapter	15,	synthetic	aperture	radar	(SAR).

Stretch	processing	was	developed	by	Dr.	William	J.	Caputi,	 Jr.	 [2].	 In	 recognition	of	 this
and	 other	 efforts	 in	 SAR,	 Dr.	 Caputi	 was	 awarded	 the	 IEEE	 Dennis	 Picard	 Medal	 “for
conception	and	development	of	innovative	range	and	Doppler	bandwidth	reduction	techniques
used	in	wideband	radars	and	high	resolution	synthetic	aperture	radars”	[3].

We	consider	a	normalized,	LFM,	transmit	waveform	of	the	form

where

α	is	the	LFM	slope	and	τp	is	the	uncompressed	pulsewidth.	The	instantaneous	phase	of	v(t)	is

and	the	instantaneous	frequency	is

Over	 the	duration	of	 the	pulse,	 f	 (t)	varies	 from	–ατp/2	 to	ατp/2.	Thus,	 the	bandwidth	of	 the
LFM	signal,	v(t),	is



We	can	also	determine	the	bandwidth	of	v(t)	by	finding	and	plotting	its	Fourier	transform.
Specifically,

where

is	the	Fresnel	integral	and	C(x)	and	S(x)	are	the	cosine	and	sine	Fresnel	integrals,	respectively,
defined	by	[4],	[p.	296]

and

A	normalized	plot	of	|	V(f)	|	for	an	LFM	bandwidth	of	B	=	500	MHz	and	a	pulsewidth	of	τp	=
100	μs	is	shown	in	Figure	11.1.	Note	that	the	bandwidth	is	500	MHz.

Figure	11.1	Spectrum	of	an	LFM	pulse	with	B	=	500	MHz	and	τp	=	100	µs.

If	 we	 were	 to	 process	 the	 LFM	 pulse	 using	 a	 matched	 filter,	 the	 normalized	 impulse
response	of	the	matched	filter	would	be



where	we	have	made	use	of	the	fact	that	rect	[x]	is	an	even	function.

The	 form	of	h(t)	means	 the	matched	 filter	would	 need	 to	 have	 a	 bandwidth	 of	B	 =	 |ατp|.
Herein	lies	the	problem:	large	bandwidth	matched	filters	are	still	difficult	and	costly	to	build.
Two	 methods	 of	 building	 LFM	 matched	 filters	 (LFM	 pulse	 compressors,	 LFM	 signal
processors)	are	surface	acoustic	wave	(SAW)	devices	and	digital	signal	processors	[5–7].	A
cursory	survey	of	manufacturer	literature	and	other	sources	indicates	that	the	current	state	of
SAW	technology	limits	 these	types	of	processors	 to	1,000	MHz	bandwidth	and	BT	products
on	the	order	of	10,000.

The	 bandwidth	 of	 digital	 signal	 processors	 is	 usually	 limited	 by	 the	 sample	 rate	 of	 the
analog-to-digital	converters	 (ADCs)	needed	 to	convert	 the	analog	signal	 to	a	digital	 signal.
Although	the	technology	is	progressing	rapidly,	the	current	limit	on	ADC	rates	is	1,000	MHz
or	so	[5].	If	an	upper	limit	on	ADC	sample	rate	is	1,000	MHz,	then	the	maximum	bandwidth	of
an	 LFM	 signal	 processor	 would	 also	 be	 1,000	 MHz	 (assuming	 complex	 signals	 and
processors).

Stretch	processing	relieves	the	signal	processor	bandwidth	problem	by	giving	up	all-range
processing	 to	obtain	a	narrowband	signal	processor.	 If	we	were	 to	use	a	matched	 filter,	we
could	look	for	targets	over	the	entire	waveform	pulse	repetition	interval	(PRI).	With	stretch
processing,	 we	 are	 limited	 to	 a	 range	 extent	 that	 is	 usually	 smaller	 than	 an	 uncompressed
pulsewidth.	 Thus,	 we	 could	 not	 use	 stretch	 processing	 for	 search	 because	 search	 requires
looking	for	targets	over	a	large	range	extent,	usually	many	pulsewidths	 long.	We	could	use
stretch	 processing	 for	 track	 because	 we	 already	 know	 range	 fairly	 well	 but	 want	 a	 more
accurate	 measurement	 of	 it.	 However,	 we	 point	 out	 that,	 in	 general,	 wide	 bandwidth
waveforms,	 and	 thus	 the	 need	 for	 stretch	 processing,	 is	 “overkill”	 for	 tracking.	 Generally
speaking,	bandwidths	of	1s	to	10s	of	MHz	are	sufficient	for	tracking.

One	of	the	most	common	uses	of	wide	bandwidth	waveforms	and	stretch	processing	is	in
discrimination,	where	we	need	to	distinguish	individual	scatterers	on	a	target.	Another	use	is
in	SAR.	 In	 that	application	we	only	 try	 to	map	a	 small	 range	extent	of	 the	ground	but	want
very	good	range	resolution	to	distinguish	the	individual	scatterers	that	constitute	the	scene.

In	the	above	discussion,	we	focused	on	the	signal	processor	and	have	argued,	without	proof
at	this	point,	that	we	can	use	stretch	processing	to	ease	the	bandwidth	requirements	on	a	signal
processor	used	to	compress	wide	bandwidth	waveforms.	Stretch	processing	does	not	relieve
the	 bandwidth	 requirements	 on	 the	 rest	 of	 the	 radar.	 Specifically,	 the	 transmitter	 must	 be
capable	of	generating	and	amplifying	the	wide	bandwidth	signal,	the	antenna	must	be	capable
of	 radiating	 the	 transmit	 signal	 and	 capturing	 the	 return	 signal,	 and	 the	 receiver	 must	 be
capable	 of	 heterodyning	 and	 amplifying	 the	 wide	 bandwidth	 signal.	 This	 places	 stringent
requirements	on	the	transmitter,	antenna,	and	receiver,	but	current	technology	has	advanced	to
cope	with	the	requirements	[8–11].



11.2 STRETCH	PROCESSOR	CONFIGURATION

Figure	11.2	contains	a	functional	block	diagram	of	a	stretch	processor.	It	consists	of	a	mixer,
an	LFM	generator,	timing	circuitry,	and	a	spectrum	analyzer.	If	the	transmit	signal	is	as	given
in	(11.1),	the	normalized	(idealized)	signal	returned	from	a	point	scatterer	at	a	range	delay	of
τR	is

where	(PS)1/2	is	a	scaling	factor	that	we	will	use	when	we	address	signal-to-noise	ratio	(SNR).
PS	 is	 the	 peak	 signal	 power	 at	 the	 matched	 filter	 output	 and	 comes	 from	 the	 radar	 range
equation	(see	Chapters	2	and	7).

Figure	11.2	Stretch	processor.

The	normalized	heterodyne	signal	generated	by	the	LFM	generator	is

In	the	above,	τM	is	the	range	delay	to	which	the	stretch	processor	is	“matched”	and	is	usually
close	to	τR.	Actually,	usually	is	not	the	correct	word.	A	more	precise	statement	is	that	τM	must
be	 close	 to	 the	 τR	 of	 the	 scatterers	we	wish	 to	 resolve.	 τh	 is	 the	 duration	 of	 the	 heterodyne
signal	and,	as	we	will	show,	must	satisfy	τh	>	τp.

Notional	sketches	of	the	frequency	behavior	of	r(t)	and	hs(t)	are	shown	in	Figure	11.3.	The
horizontal	 axis	 is	 time	 and	 the	 vertical	 axis	 is	 frequency.	 The	 frequency	 of	 each	 signal	 is
shown	only	over	the	time	that	the	signal	itself	is	not	zero.	Since	r(t)	and	hs(t)	are	LFM	signals,
we	note	that	their	frequencies	increase	linearly	over	their	respective	durations.	Furthermore,
by	 design,	 both	 frequency	 versus	 time	 plots	 have	 the	 same	 slope	 of	 α.	 The	 top	 plot
corresponds	to	the	case	where	the	target	range	delay,	τR,	is	greater	than	τM	and	the	lower	plot
corresponds	to	the	case	where	the	range	delay	is	less	than	τM.	It	will	be	noted	that	when	τR	>
τM,	the	frequency	of	hs(t)	is	greater	than	the	frequency	of	r(t).	When	τR	<	τM,	the	frequency	of



hs(t)	 is	 less	 than	 the	frequency	of	r(t).	Further,	 the	size	of	 the	 frequency	difference	between
r(t)and	hs(t)	depends	upon	the	difference	between	τR	and	τM.

Figure	11.3	also	tells	us	how	to	select	the	value	of	τh,	the	duration	of	the	heterodyne	signal.
Specifically,	 we	 want	 to	 choose	 τh	 so	 that	 r(t)	 is	 completely	 contained	 within	 hs(t)	 for	 all
expected	values	of	τR	relative	to	τM.	From	the	bottom	plot	of	Figure	11.3	we	conclude	we	want
to	choose	τh	such	that

From	the	top	plot	we	want	to	choose	it	such	that

Figure	11.3	Sketches	of	r(t)	and	hs(t).

In	(11.13)	and	(11.14)	τRMIN	and	τRMAX	are	the	minimum	and	maximum	expected	values	of
τR.	Equations	(11.13)	and	(11.14)	lead	to	the	requirement	on	τh	that	it	satisfy



where

is	the	range	delay	extent	over	which	we	want	to	use	stretch	processing.	If	τh	satisfies	the	above
constraint	and

then	hs(t)	will	 completely	overlap	r(t)	 and	 the	 stretch	 processor	will	 offer	 almost	 the	 same
SNR	performance	as	a	matched	filter.	If	the	various	timing	parameters	are	such	that	hs(t)	does
not	completely	overlap	r(t),	the	stretch	processor	will	experience	an	SNR	loss	proportional	to
the	 extent	 of	 r(t)	 that	 does	 not	 lie	 within	 the	 extent	 of	 hs(t).	 It	 could	 also	 suffer	 a	 loss	 in
resolution	ability.

11.3 STRETCH	PROCESSOR	OPERATION

Given	that	r(t)	and	hs(t)	satisfy	the	above	requirements,	we	can	write	the	output	of	the	mixer	as

or

The	first	exponential	term	of	(11.19)	is	simply	a	phase	term.	However,	the	second	exponential
term	 tells	 us	 the	 output	 of	 the	 mixer	 is	 a	 constant	 frequency	 signal	 with	 a	 frequency	 that
depends	upon	the	difference	between	the	target	range	delay,	τR,	and	the	range	delay	to	which
the	stretch	processor	is	tuned,	τM.	Thus,	if	we	can	determine	the	frequency	of	the	signal	out	of
the	mixer,	we	can	determine	the	target	range.	Specifically,	 if	we	define	the	frequency	out	of
the	mixer	as

we	get



The	spectrum	analyzer	of	Figure	11.2	is	used	to	measure	fm.	Ideally,	the	spectrum	analyzer
computes	the	Fourier	transform	of	vo(t).	Thus,	we	can	write

or

where

Figure	11.4	Plot	of	|Vo(f	–	fm)|	for	B	=	500	MHz	and	τp	=	100	µs.

The	information	of	interest	is	contained	in	│Vo(f)│,	a	normalized	plot	of	which	is	contained
in	Figure	11.4.	As	we	would	expect,	 the	sinc[x]	 function	 is	centered	at	 fm	and	has	a	nominal
width	of	1/τp.	Thus,	we	can	measure	fm,	but	not	with	perfect	accuracy.	This	is	consistent	with
the	 result	 we	 would	 get	 with	 a	matched	 filter.	 That	 is,	 the	 range	measurement	 accuracy	 is
related	to	the	width	of	the	main	lobe	of	the	output	of	a	matched	filter.	For	an	LFM	signal	with
a	bandwidth	of	B,	the	nominal	width	of	the	main	lobe	is	1/B	(see	Chapter	7).

We	now	want	to	examine	the	range	resolution	of	 the	stretch	processor.	Since	the	nominal
width	 of	 the	 sinc[x]	 function	 is	 1/τp,	 we	 normally	 say	 that	 the	 frequency	 resolution	 at	 the
output	of	the	spectrum	analyzer	is	also	1/τp.	Suppose	we	have	a	target	at	a	range	of	τR1	and	a
second	 target	at	a	 range	of	 τR2	>	τR1.	The	mixer	 output	 frequencies	 associated	with	 the	 two
targets	will	be



and

Suppose	further	τR1	and	τR2	are	such	that

That	is,	the	frequencies	are	separated	by	a	(frequency)	resolution	cell	of	the	stretch	processor.
With	this	we	can	write

or

or	that	the	stretch	processor	has	the	same	range	resolution	as	a	matched	filter.

With	LFM	we	can	use	an	amplitude	taper,	implemented	by	a	filter	at	the	input	or	output	of
the	matched	filter,	to	reduce	the	range	sidelobes	at	the	matched	filter	output	[12–15].	We	can
apply	 a	 similar	 taper	 to	 a	 stretch	 processor	 by	 applying	 an	 amplitude	 taper	 to	 vo(t)	 before
sending	it	to	the	spectrum	analyzer.

11.4 STRETCH	PROCESSOR	SNR

At	this	point	we	want	to	compare	the	SNR	at	the	output	of	a	matched	filter	to	the	SNR	at	the
output	of	a	stretch	processor.	Since	neither	processor	includes	nonlinearities,	we	can	invoke
superposition	and	treat	the	signal	and	noise	separately.

11.4.1	Matched	Filter

For	the	matched	filter	case,	we	can	write	the	signal	voltage	at	the	output	of	the	matched	filter
as	(see	Chapter	9)

where	 τmm	 and	 fmm	 are	 the	 range	 delay	 and	 Doppler	 frequency	 mismatch,	 respectively,
between	 the	 target	 return	and	matched	filter.	v(t)	 is	given	by	(11.1).	We	are	 interested	 in	 the
power	out	of	the	matched	filter	at	matched	range	and	Doppler.	That	is,	we	want



Substituting	(11.30)	into	(11.31)	yields

The	noise	voltage	at	the	output	of	the	matched	filter	is	given	by

where	n(t)	is	zero-mean,	wide-sense	stationary,	white	noise	with

No	 =	 kTs	 is	 the	 noise	 power	 spectral	 density	 (see	 Chapter	 2)	 and	 δ(x)	 is	 the	 Dirac	 delta
function1	 [16],	 [p.	41].	Since	n(t)	 is	a	 random	process,	so	 is	vnm(t).	Thus,	 the	average	noise
power	out	of	the	matched	filter	is	given	by

where	 we	 have	 made	 use	 of	 (11.33)	 and	 (11.10)	 [The	 relation	 of	 (11.35)	 was	 derived	 in
Appendix	8A.]	With	this,	we	get	the	SNR	at	the	matched	filter	output	as

which	we	recognize	from	radar	range	equation	theory	(see	Chapter	2).

11.4.2	Stretch	Processor

For	the	stretch	processor,	we	are	interested	in	the	signal	power	at	 the	target	range	delay,	τR.
Thus,	we	are	interested	in	the	output	of	the	spectrum	analyzer	at	f	=	fm.	(This	assumes	that	the
stretch	processor	is	matched	to	τR,	that	is,	τM	=	τR).	With	this	we	get,	using	(11.23),

If	the	noise	into	the	mixer	part	of	the	stretch	processor	is	n(t),	the	noise	out	of	the	mixer	is



Recall	that	the	signal	power	was	computed	at	the	spectrum	analyzer	output	where	f	=	fm.	The
noise	signal	at	the	same	frequency	tap	of	the	spectrum	analyzer	output	is

and	the	average	power	at	the	output	is

where	we	have	made	use	of	(11.34)	and	(11.12).

From	(11.37)	and	(11.40),	the	SNR	at	the	output	of	the	stretch	processor	is

Combining	(11.36)	and	(11.41),	we	get

Thus,	the	stretch	processor	encounters	an	SNR	loss	of	τh/τp	relative	to	the	matched	filter.	This
means	 we	 should	 be	 careful	 about	 using	 stretch	 processing	 for	 range	 extents	 that	 are
significantly	longer	of	the	transmit	pulsewidth.

At	first	inspection,	it	appears	as	if	stretch	processing	could	offer	better	SNR	than	a	matched
filter,	which	would	contradict	the	fact	that	the	matched	filter	maximizes	SNR	(see	Chapter	7).
This	 apparent	 contradiction	 is	 resolved	 by	 the	 stretch	 processor	 constraint	 imposed	 by
(11.15).	Specifically,	 τh	 ≥	ΔτR	 +	 τp.	 Equation	 (11.42)	 also	 demonstrates	 another	 reason	why
stretch	processing	should	not	be	used	in	a	search	function:	it	would	be	too	lossy,	as	τh	would
need	to	be	significantly	larger	than	τp.

11.5 STRETCH	PROCESSOR	IMPLEMENTATION

Next,	 we	 turn	 our	 attention	 to	 practical	 implementation	 issues.	 The	 mixer,	 timing,	 and
heterodyne	generation	are	reasonably	straightforward.	However,	we	want	 to	address	how	to
implement	 the	 spectrum	analyzer.	The	most	 obvious	method	of	 implementing	 the	 spectrum
analyzer	 is	 to	 use	 a	 fast	 Fourier	 transformer	 (FFT).	 To	 do	 so,	 we	 need	 to	 determine	 the
required	ADC	(analog-to-digital	converter)	sample	rate	and	the	number	of	points	to	use	in	the
FFT.	To	determine	the	ADC	rate	we	need	to	know	the	expected	frequency	limits	of	the	signal



out	of	the	mixer.2

If	τRMIN	–	τM	and	τRMAX	–	τM	are	the	minimum	and	maximum	range	delays,	relative	to	τM,
over	 which	 stretch	 processing	 is	 performed,	 the	 corresponding	 minimum	 and	 maximum
frequencies	out	of	the	mixer	are

and

Thus,	the	expected	range	of	frequencies	out	of	the	mixer	is

Thus,	the	ADC	sample	rate	should	be	at	least	∆fm.

The	FFT	will	need	to	operate	on	data	samples	taken	between	τRMIN	–	τp/2	and	τRMAX	+	τp/2
or	over	a	time	window	of	at	least

The	total	number	of	data	samples	processed	by	the	FFT	will	be

This	means	the	FFT	length	will	need	to	be	some	power	of	2	that	is	greater	than	Nsamp.

As	an	example	of	the	above	calculations	we	consider	the	following	parameters.

• τp	=	100	μs
• B	=	500	MHz
• Stretch	processing	performed	over	1,500	m

With	this	we	get

and

To	compute	Δfm,	we	first	need	to	compute	α	as



With	this	we	get

Thus,	 the	 minimum	 required	 ADC	 sample	 rate	 is	 50	MHz.	 The	 number	 of	 samples	 to	 be
processed	by	the	FFT	is

This	means	 that	we	would	want	 to	use	an	8,192-point	FFT.	One	method	of	getting	 to	8,192
samples	would	be	to	increase	the	size	of	the	range	window.	This	would	cause	both	Δfm	and	τh
to	increase.	An	alternative	would	be	to	zero-pad	the	FFT	by	filling	the	last	8,192–5,500	taps
with	zero.

If	we	continue	the	calculations,	we	find	that	the	time	extent	of	the	heterodyne	window	is

The	SNR	loss	associated	with	the	use	of	stretch	processing,	relative	to	a	matched	filter,	is	τh/τp
=	110/100	or	about	0.4	dB.

11.6 DOPPLER	EFFECTS

We	 now	 want	 to	 examine	 the	 effects	 of	 Doppler	 frequency	 on	 the	 output	 of	 the	 stretch
processor.	Since	we	have	established	the	equivalency	between	the	stretch	processor	output	and
the	 output	 of	 a	 matched	 filter,	 we	 will	 approach	 the	 discussion	 from	 the	 perspective	 of
matched	 filter	 theory.	We	 start	 by	 extending	 the	 definition	 of	 v(t)	 from	 (11.1)	 to	 include	 a
carrier	 term.	We	 then	 specifically	 examine	 how	 range	 rate	 affects	 the	 returned	 signal,	 r(t).
After	 this	we	 examine	 the	matched	 filter	 response	 to	 r(t)	 from	 the	 specific	 perspectives	 of
range	resolution	degradation	and	range	error	due	to	Doppler	frequency.

11.6.1	Expanded	Transmit	and	Receive	Signal	Models

We	extend	 the	previous	definition	of	 the	 transmitted	LFM	pulse	 to	 include	 the	carrier	 term.
Thus,	we	write

where	the	first	exponential	is	the	carrier	term	and	fc	is	the	carrier	frequency.

The	signal	returned	from	the	target	is



It	will	be	noted	that	the	range	delay,	τR(t),	is	now	shown	as	a	function	of	time	to	account	for
the	fact	 that	range	changes	with	time	because	the	range	rate	 is	not	zero.	We	will	assume	the
target	range	rate	is	a	constant.	With	this,	we	can	write

where	R0	is	the	range	at	t	=	0	(the	center	of	the	transmit	pulse	in	this	case)	and	Ṙ	is	the	range
rate.

Substituting	(11.56)	into	(11.55)	results	in

where	ϕ1(t)	 is	 a	 phase	 term	we	 associate	with	Doppler	 effects	 due	 to	 the	 interaction	 of	 the
target	range	rate	with	the	carrier	and	ϕ2(t)	is	a	phase	term	we	associate	with	the	interaction	of
range	rate	with	the	LFM	modulation.	Expanding	ϕ1(t)	gives

where	 the	 first	 term	on	 the	 right	 is	 the	 carrier	 component,	 the	 second	 term	 is	 a	phase	 shift
associated	with	 the	 initial	 target	position,	 and	 the	 third	 term	 is	 the	Doppler	 frequency	 term.
This	 term	 [ϕ1(t)]	 is	 the	 same	 as	 we	 developed	 in	 Chapter	 1	 when	 we	 discussed	 Doppler
frequency.

The	second	phase	term	can	be	written	as

In	this	case	we	want	to	examine	the	frequency	or



Note	that	the	LFM	slope	of	the	received	signal,	αr,	is	slightly	different	from	the	LFM	slope,	α,
of	the	transmit	signal.	As	we	will	see,	this	slight	difference	can	degrade	the	range	resolution
of	the	LFM	waveform	in	some	cases.

The	 increase	 in	 slope	of	 the	 received	LFM	signal	 is	 caused	by	a	 slight	 shortening	of	 the
pulse	as	it	is	“reflected”	by	the	(point)	target	(assuming	Ṙ	<	0,	i.e.,	an	approaching	target).	To
see	this,	we	consider	a	specific	example.	Suppose	we	have	a	1-ms	pulse	and	a	target	moving	at
7,500	m/s.	Let	t0	be	the	time	the	leading	edge	of	the	pulse	reaches	the	target.	During	the	time
the	pulse	is	interacting	with	the	target,	the	target	moves	about	(7,500	m/s)	×	(0.001	s)	or	7.5	m.
This	 translates	 to	 an	 effective	 round-trip	 time	 delay	 of	 2	 ×	 7.5/c	 or	 50	 ns.	 This	means	 the
length	of	the	pulse	returned	to	the	radar	is	shorter	than	the	transmit	pulse	by	50	ns.	Since	the
frequency	 still	 varies	 the	 same	 amount	 over	 the	 duration	 of	 the	 pulse,	 the	LFM	slope	must
increase.

11.6.2	Effect	of	Doppler	Frequency	on	Range	Resolution

To	quantify	the	effect	of	the	change	in	received	waveform	LFM	slope	on	range	resolution,	we
consider	 specific	 examples.	 We	 assume	 the	 radar	 uses	 a	 matched	 filter	 to	 perform	 pulse
compression.	We	further	assume	the	matched	filter	is	matched	to	the	transmit	waveform	plus
some	frequency	offset,	fM,	to	account	for	the	target	Doppler	frequency.	As	we	did	earlier,	we
will	shift	our	time	reference	so	that	the	center	of	the	received	pulse	is	at	t	=	0.	Thus,	we	can
write	the	normalized	received	signal	as

The	first	exponential	term	is	the	Doppler	term	discussed	above	[see	the	discussion	related	to
(11.58)—we	 have	 omitted	 the	 carrier	 frequency	 term	 since	 we	 assume	 that	 it	 has	 been
removed	by	a	heterodyning	process	in	the	receiver].	We	have	temporarily	ignored	the	term	f0
in	(11.60).	We	will	address	this	later.	The	term	τPWr	is	the	reduced	pulsewidth	discussed	above.

We	can	write	the	matched	filter	impulse	response	as



The	response	of	 the	matched	filter	 to	 the	received	signal	 is	 the	convolution	of	r(t)	and	h(t).
That	is,

Substituting	for	r(t)	and	h(t)	results	in

After	considerable	manipulation	(see	Exercise	6),	it	can	be	shown	that

In	(11.65):

• F	is	the	Fresnel	integral
• Δα	=	αr	–	α
• Δf	=	fd	–	fM
• U	=	min	(t	+	τp/2,	τPWr/2)
• L	=	max	(t	–	τp/2,	–τPWr/2)
• K	is	a	complex	constant	we	normalize	away.

Equation	(11.65)	applies	only	to	the	case	where	the	received	LFM	slope	and	rect[x]	 function
widths	are	different	(the	mismatched	case).	 If	 the	LFM	slope	and	rect[x]	 function	widths	are
the	same,	|	vo(t)	|	can	be	derived	from	the	ambiguity	function	of	v(t)	and	is

In	(11.66),	K1	is	a	complex	constant	that	we	normalize	away.

To	see	the	effect	of	range	rate	on	the	matched	filter	response,	we	consider	two	examples.	In
both	cases,	we	consider	the	LFM	waveform	of	previous	examples.	Specifically,	we	consider	a
waveform	with	a	bandwidth	of	500	MHz	and	a	pulsewidth	of	100	µs.	We	assume	further	that
the	matched	 filter	 is	matched	 to	 the	 target	Doppler.	 That	 is,	 fd	 =	 fM.	 For	 the	 first	 case,	we
consider	 an	 aircraft	with	 a	 range-rate	 of	 –150	m/s,	 and	 for	 the	 second	 case	we	 consider	 a



ballistic	missile	with	a	(extreme)	range	rate	of	–7,500	m/s.	Plots	of	the	matched	filter	outputs
for	the	two	cases	are	shown	in	Figure	11.5	and	Figure	11.6.	Each	plot	contains	a	curve	where
we	ignore	the	effects	of	range	rate	on	the	LFM	slope	(dashed	curve)	and	another	curve	where
the	range-rate	effects	are	included	(solid	curve).

Figure	11.5	Matched	filter	response—target	range	rate	=	–150	m/s.

Figure	11.6	Matched	filter	response—target	range	rate	=	–7,500	m/s.

For	 the	 aircraft	 example,	 the	 difference	 in	LFM	 slope	 caused	 by	 the	 range	 rate	 does	 not
have	a	significant	effect	on	 the	output	of	 the	matched	filter	 (by	very	careful	examination	of
Figure	11.5	you	can	see	 the	dashed	line	 in	 the	first	null	of	 the	solid	curve).	For	 the	ballistic
missile	 example,	 the	 difference	 in	 LFM	 slopes	 causes	 a	 significant	 degradation	 of	 range



resolution.	 This,	 in	 turn,	 could	 cause	 problems	 in	 isolating	 closely	 spaced	 scatterers.	 To
eliminate	 this	 effect,	 the	 LFM	 slope	 of	 the	 matched	 filter	 should	 be	 changed	 to	 match	 the
expected	LFM	slope	of	 the	 received	waveform.	An	alternative	would	be	 to	change	 the	LFM
slope	of	the	transmit	signal	so	that	the	LFM	slope	of	the	received	signal	matches	that	of	the
matched	filter.

Since	 we	 expect	 the	 stretch	 processor	 behavior	 will	 be	 similar	 to	 the	 matched	 filter
behavior,	 LFM	 slope	 mismatch	 should	 have	 the	 same	 effect	 on	 the	 output	 of	 the	 stretch
processor.	That	 is,	 for	 large	range	rates,	and	 long,	 large	bandwidth	waveforms,	LFM	slope
mismatch	will	cause	a	degradation	of	 range	 resolution	 if	not	corrected.	We	will	 investigate
this	in	one	of	the	exercises.	As	a	note,	for	stretch	processing	to	be	useful,	the	radar	must	be
tracking	 the	 target	 (recall	 that	 τM	 must	 be	 close	 to	 τR).	 Thus,	 the	 radar	 will	 have	 a	 good
estimate	of	range	rate	and	can	correct	for	it.

11.6.3	Effect	of	Doppler	Frequency	Mismatch	on	Range	Error

We	next	want	 to	 examine	 the	 effect	 of	Doppler	mismatch	 on	 range	 error.	We	 consider	 the
aircraft	target	example	from	above.	Figure	11.7	contains	a	plot	of	the	matched	filter	output	for
the	case	where	the	matched	filter	is	matched	to	the	target	Doppler	(the	dashed	curve)	and	the
case	where	the	matched	filter	is	matched	to	zero	Doppler	(the	solid	curve).	It	will	be	noted	that
the	mismatched	Doppler	case	has	a	range	error	of	0.3	m,	which	is	the	range	resolution	of	the
waveform.	 To	 understand	 the	 cause	 of	 this	 range	 error,	 it	 will	 be	 helpful	 to	 look	 at	 the
matched	filter	response	in	terms	of	the	square	root	of	the	ambiguity	function	of	the	transmit
signal.	This	relation	is	(see	Chapter	9)

where	Δf	=	fd	–	fM	is	the	Doppler	mismatch.

In	(11.67)	we	note	 that	 if	 the	Doppler	mismatch	 is	Δf	=	 fd,	 (i.e.,	 the	matched	 filter	 is	 not
tuned	to	the	target	Doppler	frequency)	the	peak	of	│	χLFM(t,Δf)	│	occurs	at

From	(11.68),	we	note	that	a	Doppler	mismatch	of	Δf	=	fd	=	1/τp	will	cause	a	range	error	equal
to	the	range	resolution	of	the	LFM	waveform.	Said	another	way,	a	Doppler	mismatch	equal	to
the	 reciprocal	 of	 the	 uncompressed	 pulsewidth	 will	 cause	 a	 range	 error	 of	 one	 range
resolution	cell.	In	the	specific	example	above,	if	we	assume	the	radar	is	operating	at	X-band
with	λ	=	0.03,	a	range	rate	of	–150	m/s	causes	a	Doppler	frequency	of	10	kHz.	Coincidently,
the	uncompressed	pulsewidth	of	our	example	was	100	µs	so	that	1/τp	=	10	kHz.	Thus,	by	the
above,	we	expect	the	peak	of	the	ambiguity	function	(matched	filter	response)	will	be	at	one
range-resolution	cell	instead	of	zero.	Given	that	our	waveform	bandwidth	was	500	MHz,	the
range	resolution	of	the	waveform	is	2	ns,	or	0.3	m,	which	is	where	the	peak	in	Figure	11.7	is



located.

Figure	11.7	Effects	of	Doppler	mismatch	on	matched	filter	response.

As	with	 the	 LFM	 slope,	we	 expect	 that	 the	 response	 of	 the	 stretch	 processor	 to	Doppler
mismatch	will	be	the	same	as	the	matched	filter.	Suppose	the	return	signal,	r(t),	into	the	stretch
processor	has	a	Doppler	frequency	of	fd.	This	will	mean	that	the	return	signal	into	the	mixer
(see	Figure	11.1)	will	be

If	we	repeat	the	math	of	Section	11.3	using	rd(t)	 in	place	of	r(t),	 the	signal	out	of	 the	mixer
will	be

In	 other	words,	 the	 frequency	 out	 of	 the	mixer	will	 be	 shifted	 by	 the	Doppler	 frequency
(albeit	with	a	negative	sign).	This,	in	turn,	will	cause	the	peak	of	the	spectrum	analyzer	output
shift	by	–fd.	That	is,	the	output	of	the	spectrum	analyzer	will	be	Vod(f)	=	Vo(f	+	fd).	If	fd	=	1/τp
then	the	peak	will	shift	by	–1/τp.	From	the	discussions	of	Section	11.3,	a	frequency	deviation
in	 the	 spectrum	 analyzer	 output	 of	 1/τp	 corresponds	 to	 a	 range	 shift	 of	 1/B,	 or	 one	 range
resolution	cell.	From	this	we	observe	that	the	response	of	the	stretch	processor	to	Doppler	is
the	same	as	for	a	matched	filter.	In	other	words,	a	Doppler	shift	of	1/τp	causes	the	range	to	be
in	error	by	one	range	resolution	cell.

11.7 EXERCISES

1. Derive	(11.6)	and	generate	a	plot	like	Figure	11.1.



2. Implement	a	stretch	processor	as	discussed	in	Section	11.5.	 In	your	 implementation,	use
an	(unrealistic)	216	=	65,536-point	FFT	to	provide	a	smooth	output	plot	for	visualization
purposes.	Zero	pad	the	input	to	the	FFT	by	loading	the	last	65,536–5,500	input	taps	with
zero.	Generate	a	plot	 like	Figure	11.4	by	plotting	 the	magnitude	of	 the	FFT	output.	You
will	need	to	appropriately	assign	ranges	to	the	FFT	output	taps.	In	this	exercise,	you	will
need	to	actually	generate	the	received	LFM	pulse	using	(11.1).

3. Apply	a	window	to	your	stretch	processor	to	reduce	the	range	sidelobes.	Use	a	Hamming
window	 function.	 Apply	 the	 Hamming	 window	 across	 the	 5,500	 samples	 out	 of	 your
simulated	ADC,	not	across	the	65,536	FFT	input	taps.

4. Use	Ṙ	=	–7,500	m/s	and	use	your	stretch	processor	from	Exercise	2	to	produce	plots	like
Figure	11.6.	For	this	exercise,	you	will	need	to	recreate	the	input	LFM	pulse	with	α	=	αr
[see	(11.60)]	and	a	slightly	smaller	τp	as	discussed	in	the	paragraphs	below	(11.60).

5. Repeat	Exercise	4	for	Ṙ	=	–150	m/s.
6. Derive	(11.65).

7. Derive	(11.32),	(11.35),	(11.36),	(11.37),	(11.40),	(11.41),	and	(11.42).

8. Derive	(11.70).

References

[1] Cook,	C.	E.,	and	M.	Bernfeld,	Radar	Signals:	An	Introduction	to	Theory	and	Application,	New	York:	Academic	Press,
1967.	Reprinted:	Norwood,	MA:	Artech	House,	1993.

[2] Caputi,	W.	J.,	“Stretch:	A	Time-Transformation	Technique,”	IEEE	Trans.	Aerosp.	Electron.	Syst.,	vol.	7,	no.	2,	Mar.	1971,
pp.	269–278.	Reprinted:	Barton,	D.	K.,	ed.,	Radars,	Vol.	3:	Pulse	Compression	 (Artech	Radar	Library),	Dedham,	MA:
Artech	House,	1975.

[3] IEEE	 document,	 “IEEE	 Dennis	 J.	 Picard	 Medal	 for	 Radar	 Technologies	 and	 Applications,”
www.ieee.org/documents/picard_rl.pdf.

[4] Abramowitz,	 M.,	 and	 I.	 A.	 Stegun,	 eds.,	 Handbook	 of	 Mathematical	 Functions	 with	 Formulas,	 Graphs,	 and
Mathematical	Tables,	National	Bureau	of	Standards	Applied	Mathematics	Series	55,	Washington,	DC:	U.S.	Government
Printing	Office,	1964;	New	York:	Dover,	1965.

[5] Analog	 Devices,	 “AD9680	 Data	 Sheet:	 14-Bit,	 1	 GSPS	 JESD204B,	 Dual	 Analog-to-Digital	 Converter,”	 2014.
www.analog.com.

[6] Dufilie,	P.,	C.	Valerio,	and	T.	Martin,	“Improved	SAW	Slanted	Array	Compressor	Structure	for	Achieving	>20,000	Time-
Bandwidth	Product,”	2014	IEEE	Int.	Ultrasonics	Symp.	(IUS),	Chicago,	IL,	Sept.	3–6,	2014,	pp.	2019–2022.

[7] Skolnik,	M.	I.,	ed.,	Radar	Handbook,	3rd	ed.,	New	York:	McGraw-Hill,	2008.

[8] Yu,	J.,	et	al.,	“An	X-band	Radar	Transceiver	MMIC	with	Bandwidth	Reduction	in	0.13	µm	SiGe	Technology,”	IEEE	 J.
Solid-State	Circuits,	vol.	49,	no.	9,	Sept.	2014,	pp.	1905–1915.

[9] Baturov,	B.	B.,	et	al.,	“An	S-band	High-Power	Broadband	Transmitter,”	2000	IEEE	MTT-S	Int.	Microwave	Symp.	Dig.,
vol.	1,	Boston,	MA,	Jun.	11–16,	2000,	pp.	557–559.

[10] Abe,	D.	K.,	et	al.,	“Multiple-Beam	Klystron	Development	at	the	Naval	Research	Laboratory,”	2009	IEEE	Radar	Conf.,
Pasadena,	CA,	May	4–8,	2009,	pp.	1–5.

[11] Ender,	J.	H.	G.,	and	A.	R.	Brenner,	“PAMIR—A	Wideband-Phased	Array	SAR/MTI	System,”	IEEE	Proc.	Radar,	Sonar
and	Navigation,	vol.	150,	no.	3,	Jun.	2003,	pp.	165–172.

[12] Klauder,	J.	R.	et	al.,	“The	Theory	and	Design	of	Chirp	Radars,”	Bell	Syst.	Tech.	J.,	vol.	39,	no.	4,	Jul.	1960,	pp.	745–

http://www.ieee.org/documents/picard_rl.pdf
http://www.analog.com


808.

[13] Powell,	T.	H.	J.,	and	A.	Sinsky,	“A	Time	Sidelobe	Reduction	Technique	for	Small	Time-Bandwidth	Chirp,”	IEEE	Trans.
Aerosp.	Electron.	Syst.,	vol.	10,	no.	3,	May	1974,	pp.	390–392.

[14] Barton,	D.	K.,	ed.,	Radars,	Vol.	3:	Pulse	Compression	(Artech	Radar	Library),	Dedham,	MA:	Artech	House,	1975.

[15] Wehner,	D.	R.,	High	Resolution	Radar,	Norwood,	MA:	Artech	House,	1987.
[16] Picinbono,	B.,	Principles	of	Signals	and	Systems:	Deterministic	Signals,	Norwood,	MA:	Artech	House,	1988.

1	Introduced	in	quantum	mechanics	by	Paul	Dirac.
2	We	will	assume	baseband	processing	in	these	discussions.	In	practice,	the	mixer	output	will	be	at	some	intermediate	frequency
(IF).	 The	 signal	 could	 be	 brought	 to	 baseband	 using	 a	 synchronous	 detector	 or,	 as	 in	 some	 modern	 radars,	 by	 using	 IF
sampling	 (i.e.,	 a	 digital	 receiver).	 In	 either	 case,	 the	 effective	ADC	 rate	 (the	 sample	 rate	 of	 the	 complex,	 digital,	 baseband
signal)	will	be	as	derived	here.



Chapter	12

Phased	Array	Antenna	Basics

12.1 INTRODUCTION

In	 this	 chapter,	 we	 discuss	 the	 basics	 of	 phased	 array	 antennas.	 We	 specifically	 develop
equations	 and	 techniques	 to	 find	 antenna	 radiation	 and	 directive	 gain	 patterns.	 That	 is,	 we
develop	 equations	 for	G(α,	 ε),	 where	 α	 and	 ε	 are	 orthogonal	 angles	 such	 as	 azimuth	 and
elevation	 or	 angles	 relative	 to	 a	 normal	 to	 the	 antenna	 face.	 We	 develop	 equations	 and
algorithms	 to	 produce	 plots	 similar	 to	 the	 plot	 shown	 in	 Figure	 12.1.	 We	 also	 discuss
beamwidth,	 directive	 gain,	 sidelobes,	 and	 grating	 lobes	 and	 how	 these	 relate	 to	 antenna
dimensions	and	other	factors.

Figure	12.1	Sample	antenna	pattern.

We	begin	with	a	simple	two-element	array	antenna	to	illustrate	some	of	the	basic	aspects	of
computing	 antenna	 radiation	 patterns	 and	 some	 of	 the	 properties	 of	 antennas.	 We	 then
progress	 to	 linear	 arrays	 and	 planar	 phased	 arrays.	After	 that,	we	 discuss	 polarization	 and
how	 phased	 array	 analysis	 methods	 can	 be	 used	 to	 generate	 antenna	 patterns	 for	 simple
reflector	antennas

It	 appears	 that	 the	 first	 use	 of	 array	 antennas	 was	 by	 Guglielmo	 Marconi	 in	 a



communication	 experiment	 in	 1901	 [1,	 2].	 According	 to	 Mailloux	 [3],	 Friis	 and	 Feldman
reported	the	use	of	a	“fully	electromechanically	scanned	array”	in	a	1937	paper	[4].	In	a	1947
paper	[5],	Friis	and	Lewis	described	a	phased	array	antenna	for	 the	Navy	Mark	8	shipboard
radar.	 Since	 the	 1950s,	 the	 development	 of	 phased	 array	 antennas	 has	 progressed	 steadily,
both	from	a	theory	and	hardware	perspective,	to	the	point	where	such	antennas	are	becoming
the	norm	rather	than	the	exception	[6].

12.2 TWO-ELEMENT	ARRAY	ANTENNA

Assume	we	have	two	isotropic	radiators,	or	isotropes,	[7]	separated	by	a	distance,	d,	as	shown
in	Figure	12.2.	 In	Figure	12.2,	 the	 arc	 represents	 part	 of	 a	 sphere	 located	 at	 a	 distance	of	 r
relative	 to	 the	center	of	 the	 radiators.	For	 these	studies,	we	assume	 that	r	≫	d,	 the	 far-field
condition.	The	sinusoids	represent	the	electric	fields	(E-fields)	generated	by	each	radiator.

Since	the	radiators	are	isotropic,	the	power,	P	each	radiates	is	uniformly	distributed	over	a
sphere	at	some	radius	r.	Thus,	the	power	over	some	small	area,	ΔA,	due	to	either	radiator	is
given	by

where	Prad	is	the	is	the	power	delivered	to	the	radiator.	Since	the	E-field	intensity,	|E|,	at	r	 is
proportional	to	the	square	root	of	P,	we	can	write

where	KR	 is	 a	 resistance	parameter	 that	gives	Vs	 in	volts.	KR	 is	 termed	 radiation	 resistance,
which	is	377	Ω	for	free	space	[7,	p.	12].	Since	the	signal	is	a	sinusoid	at	a	carrier	frequency	of
ωo,	we	can	write	the	E-field	at	ΔA	as

where	τr	is	the	time	required	for	the	E-field	to	propagate	from	the	source	to	the	area	ΔA.



Figure	12.2	Two-element	array	antenna.

For	the	next	step,	we	invoke	the	relations	τr	=	r/c,	ωo	=	2πƒo,	and	ƒo	=	c/λ,	where	c	 is	 the
speed	of	light	and	λ	denotes	wavelength.	With	this,	we	can	write	the	E-field	at	ΔA	as

We	now	derive	an	equation	for	the	E-field	at	ΔA	when	we	have	the	two	radiators	of	Figure
12.2.	We	use	the	geometry	of	Figure	12.3	to	aid	the	derivation.	We	denote	the	upper	radiator
(point	source)	of	Figure	12.3	as	radiator	1	and	the	lower	radiator	as	radiator	2.	The	distances
from	the	individual	radiators	to	ΔA	are	r1	and	r2,	and	the	E-field	intensity	of	each	radiator	is
Es	=	(Prad/2)1/2.	Prad	is	the	total	power	delivered	to	the	radiators.	The	factor	of	2	is	included	to
denote	 the	fact	 that	 the	power	 is	split	evenly	between	 the	radiators	 (uniform	weighting).	We
further	assume	the	radiation	resistance	is	1	Ω.	Figure	12.3	shows	the	other	needed	terms.

The	E-fields	of	the	two	radiators	at	the	far-field	point	are

and

Figure	12.3	Geometry	for	two-element	radiator	problem.

From	Figure	12.3,

and



As	indicated	earlier,	we	assume	r	≫	d.	With	this,	we	get

and

where	we	have	used	the	relation

Since	r1	and	r2	are	functions	of	ε,	the	E-fields	are	also	functions	of	ε.	With	this,	we	get

and

In	(12.12)	and	(12.13),	we	can	set	the	denominator	terms	to	r	since	d/2r	≪	1.	We	cannot	do	this
in	the	exponential	terms	because	phase	is	measured	modulo	2π.

The	total	E-field	at	ΔA	is

or



We	define	an	antenna	radiation	pattern	as

The	radiation	pattern	for	the	dual,	isotropic	radiator	antenna	is	thus

We	are	interested	in	R(ε)	for	|	ε	|	<	π/2.	We	call	the	region	|	ε	|	<	π/2	visible	space.

Figure	12.4	contains	plots	of	R(ε)	for	d	=	λ,	λ/2,	and	λ/4.	For	d	=λ,	the	radiation	pattern	has
peaks	 at	 0,	 π/2,	 and	 –π/2.	 The	 peaks	 at	 ±π/2	 are	 termed	 grating	 lobes	 and	 are	 usually
undesirable.	For	d	=	λ/4,	 the	 radiation	pattern	does	not	 return	 to	zero,	 and	 the	width	of	 the
central	region	is	broad.	This	is	also	a	generally	undesirable	characteristic.	The	case	of	d	=	λ/2
is	a	good	compromise	that	leads	to	a	reasonably	narrow	center	peak	and	levels	that	go	to	zero
at	±π/2.	 In	 the	 design	 of	 phased	 array	 antennas,	we	 find	 that	d	 ≈	 λ/2	 is	 usually	 a	 desirable
design	criterion.

The	 central	 region	 of	 the	 plots	 in	 Figure	 12.4	 is	 termed	 the	main	 beam,	 and	 the	 angle
spacing	between	the	3-dB	points	(the	points	where	the	radiation	pattern	is	down	3	dB	from	its
peak	 value)	 is	 termed	 the	 beamwidth.	 From	 Figure	 12.4,	 we	 conclude	 that,	 for	 our	 two
radiator	 example,	 the	 beamwidth	 is	 inversely	 proportional	 to	 the	 spacing	 between	 the
radiators.	A	more	 accurate	 statement	 is	 that	 the	 beamwidth	 is	 inversely	 proportional	 to	 the
length	of	the	array,	or	the	dimensions	of	the	array	for	a	planar	array.	We	will	investigate	this
relation	in	Section	12.13.



Figure	12.4	Radiation	pattern	for	a	two-element	array	with	various	element	spacings.

We	 just	 solved	 the	 transmit	 problem.	 That	 is,	 we	 supplied	 power	 to	 the	 radiators	 and
determined	how	it	was	distributed	on	a	sphere.	We	now	want	to	consider	the	reverse	problem
and	 examine	 the	 receive	 antenna.	 The	 results	 of	 that	 analysis	 will	 illustrate	 an	 important
property	known	as	reciprocity.	Reciprocity	says	we	can	analyze	an	antenna	from	a	transmit	or
receive	perspective	and	obtain	the	same	radiation	pattern.

For	 this	case,	we	consider	 the	 two	“radiators”	of	Figure	12.2	as	 receive	antennas	 that	are
isotropic.	Here,	we	call	 them	 receive	elements.	We	 assume	 an	E-field	 radiates	 from	a	point
located	 at	 a	 range	 r	 from	 the	 center	 of	 the	 two	 receive	 elements.	The	 receive	 elements	 are
separated	by	a	distance	of	d.	Figure	12.5	shows	the	required	geometry.

Outputs	of	the	receive	elements	are	multiplied	by	1	over	the	square	root	of	2	and	summed.
The	 voltage	 out	 of	 each	 element	 is	 proportional	 to	 the	 E-field	 at	 each	 element	 and	 is
represented	 as	 a	 complex	 number	 to	 account	 for	 the	 fact	 that	 the	 actual	 signal,	 which	 is	 a
sinusoid,	is	characterized	by	amplitude	and	phase.

Figure	12.5	Two-element	array,	receive	geometry.



The	 E-field	 at	 all	 points	 on	 a	 circle	 (or	 a	 sphere	 in	 three	 dimensions)	 has	 the	 same
amplitude	and	phase.	Also,	since	d	≪	r,	the	circle	becomes	a	line	at	the	location	of	the	receive
elements.	 The	 line	 is	 oriented	 at	 an	 angle	 of	 ε	 relative	 to	 the	 vertical,	 and	 is	 termed	 the
constant	E-field	line.	ε	is	also	the	angle	between	the	horizontal	line	and	the	point	from	which
the	E-field	radiates.	We	term	the	horizontal	line	the	antenna	broadside.	In	more	general	terms,
the	antenna	broadside	is	normal	to	the	plane	containing	the	elements.

The	distance	from	the	constant	E-field	line	to	the	elements	is	(d/2)sin	ε.	If	we	define	the	E-
field	at	the	center	point	between	the	elements	as

then	the	E-field	at	the	elements	is

and

where	we	made	use	of	the	approximation	in	(12.11)

Since	 the	 voltage	 out	 of	 each	 element	 is	 proportional	 to	 the	E-field	 at	 each	 element,	 the
voltages	out	of	the	elements	are

and

With	this,	the	voltage	at	the	summer	output	is

We	define	the	radiation	pattern	as



which	yields

This	 is	 the	 same	 result	 we	 obtained	 for	 the	 transmit	 case	 described	 by	 (12.17)	 and
demonstrates	that	reciprocity	applies	to	this	antenna.	This	allows	us	to	use	either	the	receive
or	transmit	approach	when	analyzing	more	complex	antennas.

12.3 N-ELEMENT	LINEAR	ARRAY

We	 now	 extend	 the	 results	 of	 the	 previous	 section	 to	 a	 linear	 array	 of	 elements	 shown	 in
Figure	 12.6.	 As	 Figure	 12.6	 implies,	 we	 use	 the	 receive	 approach	 to	 derive	 the	 radiation
pattern.	The	array	consists	of	N	elements	(the	sideways	“v”	symbol	on	the	right	of	each	block)
with	a	spacing	of	d	between	the	elements.	The	output	of	each	element	is	weighted	by	a	factor
of	an,	and	the	results	summed	to	form	the	signal	out	of	the	antenna.	In	general,	the	weights,	an,
are	 complex.	 In	 fact,	 we	 find	 that	 we	 move,	 or	 steer,	 the	 antenna	 beam	 by	 assigning
appropriate	phases	to	an.	We	assume	each	element	is	an	isotropic	radiator.

Figure	12.6	Geometry	for	N-element	linear	array.

We	placed	the	origin	of	a	coordinate	system	at	the	lower	element.	The	axes	labels,	z	and	y,



were	chosen	to	be	consistent	with	the	planar	array	geometry	discussed	in	Section	12.10.

The	distance	from	the	nth	element	to	the	field	point	is

Since	r	 is	much	greater	 than	 the	 array	 length,	we	 can	drop	 the	 last	 term	of	 the	 radical	 and
factor	r2	from	the	square	root	to	get

Since	 the	magnitude	 of	 the	 second	 term	 of	 the	 radical	 is	much	 less	 than	 1,	we	 can	 invoke
(12.11)	and	write

This	means	the	E-field	at	the	nth	element	is

and	the	voltage	out	of	the	nth	element	is

where	Vr	is	the	magnitude	of	the	voltage	out	of	each	element.

The	voltage	out	of	the	summer	is1

We	let	x	=	2πd	sin	ε/λ,	and	write



As	before,	we	define	the	radiation	pattern	as

which	yields

We	now	consider	the	special	case	of	a	linear	array	with	constant,	or	uniform,	weighting	of
an	=	(N)–1/2.	For	the	sum	term,	we	write

We	invoke	the	relation	[8]

to	write

Finally,	we	get

Figure	12.7	contains	plots	of	R(ε)	versus	ε	for	N	=	20	and	d	=	λ,	λ/2,	and	λ/4.	As	with	 the
two-element	example,	grating	lobes	appear	for	the	case	of	d	=	λ.	Also,	the	width	of	the	main
lobe	 varies	 inversely	 with	 element	 spacing.	 Since	 N	 is	 fixed,	 the	 larger	 element	 spacing
implies	a	larger	antenna,	which	leads	to	the	observation	that,	as	with	the	two	element	array,	the



beamwidth	varies	inversely	with	array	length.	The	peak	value	of	R(ε)	is	20,	or	N,	and	occurs
at	ε	=	0.	This	value	can	also	be	derived	by	taking	the	limit	of	R(ε)	as	ε→0,	or	by	evaluating
A(ε)	at	x	=	ε	=	0	and	squaring	it.

For	the	general	case	where	an	is	not	constant,	we	directly	compute	R(ε)	using

Computation	of	R(ε)	is	addressed	in	Section	12.9.

Figure	12.7	Radiation	pattern	for	an	N-element	linear	array	with	different	element	spacings.

12.4 DIRECTIVE	GAIN	PATTERN	(ANTENNA	PATTERN)

The	 radiation	 pattern	 is	 useful	 when	 determining	 antenna	 properties	 such	 as	 beamwidth,
grating	 lobes,	 and	 sidelobe	 levels.	 However,	 it	 does	 not	 provide	 an	 indication	 of	 antenna
directivity.	 To	 obtain	 this,	 we	 define	 a	 directive	 gain	 pattern.	 The	 directive	 gain	 pattern
indicates	antenna	directivity,	or	directive	gain,	as	a	function	of	angle.2	This	is	the	gain	we	use
in	the	radar	range	equation.

The	directive	gain	pattern	is	defined	as	[7,	p.	125;	9]

or



where	dΩ	is	a	differential	area	on	the	sphere.

To	compute	the	denominator	integral,	we	consider	the	geometry	of	Figure	12.8,	where	the
vertical	row	of	dots	represents	the	linear	array.	The	differential	area	can	be	written	as

and	the	integral	becomes

For	the	linear	array,	we	have	R(α,ε)	=	R(ε)	and

Figure	12.8	Geometry	used	to	compute	 .



For	the	special	case	of	a	linear	array	with	uniform	weighting,	we	get

where	the	last	equality	is	a	result	of	the	fact	that	the	integrand	is	an	even	function.

After	considerable	computation,	it	can	be	shown	that	(see	Exercise	4)

As	a	“sanity	check,”	we	consider	a	point-source	(isotropic)	radiator.	This	can	be	considered
a	special	case	of	an	N-element	linear	array	with	uniform	illumination,	and	an	element	spacing
of	d	=	0.	For	this	case,	we	get	sinc(2kd/λ)	=	1

and

It	can	also	be	shown	that	(see	Exercise	6),	for	a	general	N-element,	uniformly	illuminated
linear	array	with	an	element	spacing	of	d	=	λ/2,	and	weights	of	an	=	(N)–1/2,	that	 	=	1	and

For	 the	 case	 of	 a	 general	 nonuniformly	 illuminated	 linear	 array,	 R	 must	 be	 computed
numerically	from	(12.44).

Directive	gain,	G,	 is	 defined	 as	 the	maximum	 value	 of	G(ε)	 [9,	 10].	 For	 the	 example	 of
(12.49),	G	=	G(0).	Figure	12.9	contains	a	plot	of	G,	normalized	by	N,	(i.e.,	G/N)	versus	d/λ	for
several	values	of	N.

The	shapes	of	the	curves	in	Figure	12.9	are	interesting,	especially	around	integer	multiples
of	d/λ.	For	example,	for	d/λ	is	slightly	less	than	1,	G/N	is	between	about	1.7	and	1.9,	whereas
when	d/λ	is	slightly	greater	than	1,	G/N	is	about	0.7.	In	other	words,	a	small	change	in	element



spacing,	relative	to	wavelength,	causes	the	directive	gain	to	vary	by	a	factor	of	about	1.8/0.7
or	4	dB.	The	reason	for	this	is	illustrated	in	Figure	12.10,	which	contains	a	plot	of	R(ε)	for	d/λ
values	of	0.9,	1.0,	and	1.1.	In	this	case,	R(ε)	is	plotted	versus	sine	to	better	illustrate	the	widths
of	the	grating	lobes	(the	lobes	not	at	zero).

Figure	12.9	Normalized	directive	gain	vs.	element	spacing.

For	 the	 case	 where	 d/λ	 is	 0.9	 (top	 plot	 of	 Figure	 12.10),	 the	 radiation	 pattern	 does	 not
contain	grating	lobes.	This	means	most	of	the	transmitted	power	is	focused	in	the	main	beam.
For	the	cases	where	d/λ	 is	either	1.0	or	1.1,	 the	radiation	pattern	contains	grating	lobes,	and
some	of	 the	 transmitted	power	 is	 transferred	 from	 the	main	 lobe	 to	 the	grating	 lobes.	This
reduces	 the	directive	gain	of	 the	antenna	 relative	 to	 the	case	where	d/λ	 is	0.9.	Furthermore,
since	there	are	two	grating	lobes	for	d/λ	=	1.1	and	only	one	grating	lobe	for	d/λ	=	1.0	(½	lobe
at	sin	ε	=	1	and	½	lobe	at	sin	ε	=	–1),	the	directive	gain	is	less	when	d/λ	is	1.1	than	when	it	is
1.0.

Based	on	Figure	12.9,	we	 expect	 similar	behavior	of	 the	directive	gain	 for	values	of	d/λ
near	other	integer	values,	which	is	what	happened.	However,	the	variation	in	directive	gain,	as
d/λ	 transitions	 from	 below	 to	 above	 integer	 values,	 decreases	 as	 the	 integer	 value	 of	 d/λ
increases.	This	is	due	to	the	number	of	grating	lobes.	As	d/λ	becomes	larger,	the	number	of
grating	 lobes	 increases.	Therefore,	 the	addition	of	one	grating	 lobe	for	 integer	d/λ,	and	 the
two	grating	lobes	for	d/λ	slightly	larger	 than	an	integer,	has	an	increasingly	smaller	 impact
on	the	overall	directive	gain	variation.



Figure	12.10	Radiation	patterns	for	d/λ	close	to	1.0.

As	a	note,	since	the	number	of	elements	is	fixed	at	20,	the	length	of	the	array	increases	as	d/
λ	 increases.	Because	of	 this,	 the	beamwidth	decreases,	and	the	directive	gain	increases.	This
increase	is	offset	by	the	increase	in	the	number	of	grating	lobes.	This	is	what	causes	the	curve
of	Figure	12.9	to	vary	about	the	nominal	value	of	1.

12.5 BEAMWIDTH,	SIDELOBES,	AND	AMPLITUDE	WEIGHTING

Figure	12.11	contains	a	plot	of	G(ε)	for	a	20-element	array	with	an	element	spacing	of	d/λ	=
0.5	 and	 uniform	weighting.	 In	 this	 case,	 the	 units	 on	 the	 vertical	 scale	 are	 in	 dBi.	 The	 unit
notation,	dBi,	 stands	 for	decibel	 relative	 to	an	 isotropic	 radiator	 and	 indicates	 the	directive
gain	is	referenced	to	the	directive	gain	of	an	isotropic	radiator,	which	is	unity.

As	discussed	earlier,	 the	lobe	near	ε	=	0	is	termed	the	main	beam.	The	 lobes	surrounding
the	main	beam	are	the	sidelobes.	The	first	couple	of	sidelobes	on	either	side	of	the	main	beam
are	 termed	 the	 near-in	 sidelobes,	 and	 the	 remaining	 sidelobes	 are	 termed	 the	 far-out
sidelobes.	For	this	antenna,	the	directive	gain	is	10log(20)	=	13	dB,	and	the	near-in	sidelobes
are	about	13	dB	below	the	peak	of	the	main	beam	(13	dB	below	the	main	beam).	The	far-out
sidelobes	are	greater	than	20	dB	below	the	main	beam.



The	beamwidth	is	defined	at	the	width	of	the	main	beam	measured	at	the	3-dB	points	on	the
main	beam.	For	the	pattern	of	Figure	12.11,	the	beamwidth	is	5°.

The	near-in	 sidelobe	 level	of	13	dB	 is	often	considered	undesirably	high.	To	 reduce	 this
level,	antenna	designers	usually	apply	an	amplitude	taper	to	the	array	by	setting	an	to	different
values.	Generally,	 the	values	of	an	 are	varied	 symmetrically	across	 the	elements	 so	 that	 the
elements	on	opposite	 sides	of	 the	 center	of	 the	 array	have	 the	 same	value	of	an.	 Designers
usually	try	to	choose	the	an	so	that	they	achieve	a	desired	sidelobe	level	while	minimizing	the
beamwidth	increase	and	directive	gain	decrease	usually	engendered	by	weighting.

Figure	12.11	Directive	gain	for	a	20-element	linear	array	with	a	uniform	taper.

The	optimum	weighting	in	this	regard	is	Chebyshev	weighting	[11,	12].	Up	until	 recently,
Chebyshev	 weights	 were	 difficult	 to	 generate.	 However,	 during	 the	 past	 10	 or	 so	 years,
standard	algorithms	have	become	available.	Chebyshev	weights	 can	be	chosen	 to	provide	a
specified	sidelobe	level.

A	popular	antenna	weighting	is	Taylor	[13–16].	Like	Chebyshev,	it	allows	specification	of
sidelobe	 levels.	 An	 algorithm	 for	 computing	 Taylor	 weights	 is	 given	 in	 Appendix	 12A.
Another	popular	weighting	is	the	cosn	weighting	discussed	in	Chapter	5	[14,	15].

In	space-fed	phased	arrays	and	reflector	antennas,	the	amplitude	taper	is	created	by	the	feed.
As	a	result,	the	type	of	taper	is	limited	by	the	design	of	the	feed.	In	constrained-feed	phased
arrays,	 the	 taper	 is	 controlled	 by	 the	 way	 power	 is	 delivered	 to,	 or	 combined	 from,	 the
various	elements.	Again,	this	limits	the	type	of	amplitude	taper	that	can	be	obtained.	In	solid-
state	 phased	 arrays,	 considerable	 flexibility	 exists	 in	 controlling	 the	 amplitude	 taper	 on
receive.	However,	it	is	currently	difficult	to	obtain	an	amplitude	taper	on	transmit	because	all
of	 the	 transmit/receive	 (T/R)	 modules	 are	 typically	 operated	 at	 full	 power	 to	 maximize
efficiency	[17].

Figure	 12.12	 contains	 a	 plot	 of	G(ε)	 for	 a	 20-element	 linear	 array	 with	 d/λ	 =	 0.5	 and
Chebyshev	weighting.	The	Chebyshev	weighting	was	chosen	to	provide	a	sidelobe	level	of	–
30	dB,	 relative	 to	 the	main	beam.	The	directive	gain	 is	about	12.4	dB	rather	 than	 the	13-dB



gain	associated	with	a	20-element	 linear	array	with	uniform	weighting.	Thus,	 the	amplitude
taper	has	 reduced	 the	antenna	gain	by	about	0.6	dB.	Also,	 the	beamwidth	of	 the	antenna	has
increased	to	6.32°	(a	broadening	factor	of	1.26).

Figure	12.12	Directive	gain	for	a	20-element	linear	array	with	Chebyshev	weighting.

12.6 STEERING

Thus	far,	the	antenna	patterns	we	have	generated	have	their	main	beams	located	at	0°.	We	now
want	to	address	the	problem	of	placing	the	main	beam	at	some	desired	angle.	This	is	termed
beam	 steering.	 First,	 we	 address	 the	 general	 problem	 of	 time-delay	 steering,	 and	 then	 we
develop	the	degenerate	case	of	phase	steering.

To	address	this	problem,	we	refer	to	the	N-element	linear	array	geometry	of	Figure	12.6.
Let	the	idealized,	normalized	E-field	from	the	point	source	be

where	τp	is	the	pulsewidth,	ƒo	is	the	carrier	frequency,	and	rect[x]	is	the	rectangle	function.	We
assume	the	point-source	radiator	is	stationary	and	located	at	some	range,	R.

The	idealized,	normalized	voltage	out	of	the	nth	antenna	element	(before	the	weighing,	an)
is

where	τn	is	the	time	delay	from	the	point-source	radiator	to	the	nth	element	and	is	given	by



Instead	of	treating	the	weights,	an,	as	multiplication	factors,	we	treat	them	as	operators	on
the	voltages	at	 the	output	of	 the	antenna	elements.	With	 this,	we	write	 the	voltage	out	of	 the
summer	as

We	want	 to	 determine	 how	 the	weighting	 functions,	a(vn(t),n),	must	 be	 chosen	 to	 focus	 the
beam	at	some	angle	εo.

Figure	12.13	Sketch	of	|vn(t)	|.

Figure	 12.13	 contains	 a	 sketch	 of	 the	 envelopes	 of	 the	 various	 vn(t).	 The	 main	 point
illustrated	 by	 Figure	 12.13	 is	 that	 the	 pulses	 out	 of	 the	 various	 antenna	 elements	 are	 not
aligned.	This	means	the	weighting	functions,	a(vn(t),n),	must	effect	some	desired	alignment	of
the	 signals.	 More	 specifically,	 the	 a(vn(t),n)	 must	 be	 chosen	 so	 that	 the	 signals	 out	 of	 the
weighting	 functions	 are	 aligned	 (and	 in-phase)	 at	 some	 desired	 εo.	 To	 accomplish	 this,	 the
a(vn(t),n)	must	 introduce	 appropriate	 time	 delays	 (and	 possibly	 phase	 shifts)	 to	 the	 various
vn(t).	The	a(vn(t),n)	must	 also	 appropriately	 scale	 the	 amplitudes	 of	 the	 various	 vn(t).	 This
introduction	of	time	delays	to	focus	the	beam	at	some	angle	εo	is	termed	time-delay	steering.

Substituting	for	τn	into	the	general	vn(t),	we	get

where	τdε	=	d	sin	ε/c.

To	time	align	all	of	the	pulses	out	of	the	weighting	functions,	the	weighting	function	must



introduce	 a	 time	 delay	 that	 cancels	 the	 nτdε	 term	 in	 vn(t).	 Specifically,	 a(vn(t),n)	 must	 be
chosen	such	that

where	τdo	=	d	sin	εo/c.	Using	this	with	the	Vn(t)	are

Note	that	at	ε	=	εo,	τdε	=	τdo,	and

In	 other	 words,	 the	 pulses	 out	 of	 the	 weighting	 functions	 are	 time	 aligned	 and	 properly
amplitude	weighted.

Time	delay	steering	is	expensive	and	not	easy	to	implement.	It	is	needed	in	radars	that	use
compressed	pulsewidths	that	are	small	relative	to	antenna	dimensions.	This	can	be	seen	from
examining	Figure	12.13.	If	τp	 is	small	 relative	 to	 (N	–	1)τdε,	 then,	 for	some	ε,	not	all	of	 the
pulses	align.	Stated	another	way,	the	pulse	out	of	the	first	element	is	not	aligned	with	the	pulse
out	of	 the	Nth	element.	However,	 this	 implies	either	a	very	small	τp	or	a	very	 large	antenna
(large	(N	–	1)τdε).	For	example,	if	τp	was	1	ns	and	the	antenna	was	2	m	wide,	we	would	have
(N	–	1)τdε	=	6.7	ns	>	τp,	and	 time-delay	steering	would	be	needed.	 If	τp	was	1	µs,	 the	pulses
would	 not	 be	 aligned,	 but	 the	misalignment	 would	 be	much	 less	 than	 the	 pulsewidth.	 This
means	that	the	pulses	can	be	summed,	and	time-delay	steering	is	not	necessary.

Figure	12.14	contains	a	plot	of	 the	boundary	where	 time-delay	steering	would	and	would
not	be	necessary.	The	line	in	Figure	12.14	corresponds	to	the	case	where	the	antenna	diameter,
D,	 is	 25%	 of	 the	 compressed	 pulsewidth.	 The	 choice	 of	 25%	 is	 somewhat	 arbitrary	 but	 is
probably	representative	of	practical	situations	where	the	beam	is	steered	to	a	maximum	angle
of	60°.	For	combinations	of	antenna	diameter	and	compressed	pulsewidth	to	the	right	of	the
line,	phase	steering	would	be	adequate.	For	regions	to	the	left	of	the	line,	time-delay	steering
may	be	needed.



Figure	12.14	Antenna	diameter	vs.	compressed	pulsewidth	trade.

The	two	regions	of	Figure	12.14	indicate	that	the	alternative	to	time-delay	steering	is	phase
steering.	Indeed,	if	we	assume	the	pulses	are	aligned,	we	can	write

or	an	=	 |an|exp(j2πnfoτdo).	That	 is,	 the	weights,	an,	modify	 the	amplitudes	and	phases	 of	 the
various	vn(t).	Therefore,	this	technique	is	called	phase	steering.

Substituting	for	τdo	in	the	phase	term	results	in

12.7 ELEMENT	PATTERN

In	the	equations	above,	it	was	assumed	that	all	of	the	elements	of	the	antenna	were	isotropic
radiators.	In	practice,	antenna	elements	are	not	isotropic	but	have	their	own	radiation	pattern.
This	 means	 the	 voltage	 (amplitude	 and	 phase)	 out	 of	 each	 element	 depends	 upon	 ε,
independent	 of	 the	 phase	 shift	 caused	 by	 the	 element	 spacing.	 If	 all	 of	 the	 elements	 are	 the
same,	and	oriented	the	same	relative	to	broadside,	the	dependence	voltage	upon	ε	is	the	same



for	each	element	(again,	ignoring	the	phase	shift	caused	by	the	element	spacing).	In	equation
form,	the	voltage	out	of	each	element	is

and	the	voltage	out	of	the	summer	(assuming	phase	steering)	is

The	resulting	radiation	pattern	is

In	 other	 words,	 to	 get	 the	 radiation	 pattern	 of	 an	 antenna	 with	 nonisotropic	 elements,	 we
multiply	the	array	radiation	pattern	(found	by	the	aforementioned	techniques)	by	the	radiation
pattern	of	the	element.

As	a	closing	note,	in	general,	the	element	pattern	is	not	steered.

12.8 PHASE	SHIFTERS

In	the	above	discussions,	a	tacit	assumption	is	that	the	phase	of	each	weight,	an,	can	take	on	a
continuum	of	values.	In	practice,	the	phase	can	only	be	adjusted	in	discrete	steps	because	the
devices	 that	 implement	 the	phase	 shift,	 the	phase	shifters,	 are	digital.	Typical	 phase	 shifters
use	3	to	6	bits	to	set	the	phase	shift.	If	Βϕ	is	the	number	of	bits	used	in	the	phase	shifter,	then
the	number	of	phases	is	Νϕ	=	2Bϕ.	As	an	example,	a	3-bit	phase	shifter	has	8	phases	that	range
from	0	to	2π	–	2π/8	in	steps	of	2π/8.	As	shown	in	Exercise	11,	the	phase	quantization	caused
by	the	phase	shifters	can	have	a	deleterious	effect	on	the	sidelobes	when	the	beam	is	steered	to
other	than	broadside.	Discussions	of	various	types	of	phase	shifters	can	be	found	in	several
texts	[14,	15,	18–20].

12.9 COMPUTATION	OF	ANTENNA	PATTERNS

In	Section	12.3,	we	determined	that	we	could	compute	the	radiation	pattern,	R(ε),	from

where



and

The	“brute	 force”	way	 to	compute	A(ε)	would	be	 to	 implement	 (12.64)	 in	a	 loop	 (e.g.,	FOR
loop,	DO	loop)	and	repeat	this	for	the	ε	values	of	 interest.	While	this	 is	sufficient	for	small
values	of	N	and	few	values	of	ε,	 it	 can	be	 time	consuming	when	either	or	both	of	 these	are
large.	By	 recasting	 (12.64)	 in	 a	 vector	 form,	 the	 computation	 of	A(ε)	 can	 be	 sped	 up	when
using	software	with	efficient	matrix	and	vector	routines.

Let	Wa	be	a	row	vector	(a	weight	vector)	of	the	an,	and	KN	be	a	column	vector	of	integers
that	range	from	0	to	N	–	1.	That	is,

and

where	the	superscript	T	denotes	the	transpose	operation.	Define	X	as

where	ε1,	ε2,	…,	εNε	are	the	angles	at	which	we	want	to	compute	A(ε)

With	the	above	definitions,	A(ε)	can	be	written	as

Equation	(12.69)	circumvents	the	need	for	loops	in	higher-level	languages	(such	as	MATLAB,
Mathcad,	and	Python®)	and	executes	very	quickly.	It	also	results	in	computer	code	that	is	very
concise.

12.10 PLANAR	ARRAYS

We	now	want	 to	extend	the	 linear	array	development	 to	planar	arrays.	 In	a	planar	array,	 the
antenna	elements	are	 located	on	some	 type	of	grid	 in	a	plane.	Generally,	 the	grid	pattern	 is
rectangular	or	triangular	(this	is	discussed	further	in	Section	12.10.3).	Figure	12.15	shows	an
example	that	would	apply	to	a	rectangular	grid.



The	 array	 lies	 in	 the	 x-y	 plane,	 and	 the	 array	 broadside	 is	 the	 z-axis.	 The	 dots	 with	 the
numbers	by	 them	are	 the	 elements.	The	 line	 located	 at	 the	 angles	α	 and	 ε	 point	 to	 the	 field
point	 (the	 target	on	 transmit	or	 the	source,	which	could	also	be	 the	 target,	on	 receive).	The
field	point	is	located	at	a	range	of	r	that	is	large	relative	to	the	dimensions	of	the	array	(far-
field	assumption).

The	array	shown	in	Figure	12.15	is	oriented	vertically.	With	this	orientation,	ε	is	elevation
angle	to	the	field	point	and	is	measured	from	the	x-z	plane,	which	would	be	the	local	ground
plane	 for	 a	ground-based	 radar.	The	 angle,	α,	 is	 azimuth	 and	 is	measured	 in	 the	x-z	 plane,
relative	 to	 the	z	 axis.	 If	 the	array	 is	 tilted	back	 from	vertical,	 as	 is	 typical,	ε	 and	α	 are	 still
thought	of	as	elevation	and	azimuth	angles;	although	strictly	speaking,	they	are	not.

Figure	12.15	Example	geometry	for	planar	arrays.

The	angles	we	are	using	are	not	the	traditional	angles	used	to	develop	the	radiation	pattern
for	 planar	 arrays	 [21–24].	 The	 traditional	 angles	 are	 those	 associated	 with	 a	 standard
spherical	coordinate	system	[25].	These	angles	are	θ	and	ϕ,	where	θ	 is	measured	from	the	z
axis,	and	ϕ	 is	measured	from	the	x	axis	 in	 the	x-y	plane.	We	are	using	α	and	ε	because	 they
generally	 correspond	 to	 azimuth	 and	 elevation,	 and	 they	 simplify	 the	 derivation	 of	 	 for
planar	arrays	(see	Section	12.10.7).

In	the	coordinate	system	of	Figure	12.15,	the	field	point	is	located	at



The	00	element	is	located	at	the	origin,	and	the	mnth	element	is	located	at	(mdx,ndy),	where
dx	is	the	spacing	between	elements	in	the	x	direction,	and	dy	is	the	spacing	between	elements	in
the	y	direction.	With	this	and	(12.70),	the	range	from	the	mnth	element	to	the	field	point	is

Since	r	is	much	larger	than	the	array	width	and	height,	we	can	drop	the	last	two	terms	of	the
radical,	and	factor	r2	from	the	square	root	to	give

Since	 the	second	 term	of	 the	 radical	of	 (12.72)	 is	 small	 relative	 to	1,	we	can	use	 (12.11)	 to
write

We	 invoke	 reciprocity	 and	 consider	 the	 receive	 case	 to	write	 the	 voltage	 out	 of	 the	mnth
element	as

where	amn	 is	 the	weight	 applied	 to	 the	mnth	 element.	 Summing	 the	 outputs	 of	 all	 elements
gives

where	M	is	the	number	of	elements	in	the	x	direction,	and	N	is	the	number	of	elements	in	the	y
direction.	Dividing	by	Vr	and	ignoring	the	first	exponential	term	(which	disappears	when	we
form	the	radiation	pattern),	we	get



At	this	point,	we	adopt	a	notation	that	is	common	in	phased	array	antennas:	sine	space.	We
define

and

and	write

Consistent	with	our	work	on	linear	arrays,	we	write	the	radiation	pattern	as

and	the	directive	gain	as

We	will	consider	 	shortly.

When	we	plot	R(u,v)	or	G(u,v),	we	are	plotting	the	radiation	or	directive	gain	pattern	in	sine
space.	When	we	plot	R(α,ε)	or	G(α,ε),	we	are	plotting	the	radiation	or	directive	gain	pattern	in
angle	space.

From	 (12.77)	 and	 (12.78),	 it	 can	 be	 shown	 (see	 Exercise	 18)	 that	 u	 and	 v	 satisfy	 the
constraint,	u2	+	v2	≤	1.	These	u	and	v	constitute	visible	space.	We	will	use	this	when	we	discuss
how	to	generate	and	plot	radiation	and	directive	gain	patterns.

12.10.1	Weights	for	Beam	Steering

In	 the	equation	 for	A(u,v),	amn	 are	 the	weights	used	 to	provide	a	proper	 taper	 and	 steer	 the
beam;	these	are	of	the	general	form

where	u0,v0	 are	 the	 desired	 steering	 angles	 in	 sine	 space.	 Equation	 (12.82)	 assumes	 phase
steering.



12.10.2	Array	Shapes	and	Element	Locations	(Element	Packing)

The	development	of	Section	12.10	is	applicable	to	rectangular	arrays	with	the	elements	placed
on	a	rectangular	grid.	Many	antennas	are	nonrectangular	(e.g.,	circular	or	elliptical),	and	their
elements	 are	 not	 placed	 on	 a	 rectangular	 grid	 (i.e.,	 rectangular	 packing).	 In	 both	 cases,	 the
deviations	from	rectangular	shape	and/or	rectangular	packing	are	usually	made	to	conserve
array	 elements	 and	 increase	 the	 efficiency	 of	 the	 antenna	 (the	 elements	 at	 the	 corners	 of
rectangular	arrays	do	not	contribute	much	to	the	directive	gain	and	can	cause	the	ridges	in	the
radiation	pattern).

The	 most	 common	 element	 packing	 scheme,	 besides	 rectangular	 packing,	 is	 triangular
packing.	 Figure	 12.16	 shows	 sections	 of	 a	 planar	 array	 with	 rectangular	 and	 triangular
packing.	With	triangular	packing,	the	elements	are	arranged	in	a	triangular	pattern.

12.10.3	Feeds

An	antenna	feed	is	the	mechanism	by	which	the	energy	from	the	transmitter	is	conveyed	to	the
array	so	that	it	can	be	radiated	into	space.	On	receive,	it	is	used	to	collect	the	energy	from	the
array	 elements.	Two	broad	 classes	 of	 feed	 types	 are	 used	 in	 phased	 arrays:	 space	 feed	 and
constrained	 feed.	These	 two	 types	 of	 feed	mechanisms	 are	 illustrated	 notionally	 in	 Figures
12.17	and	12.18.

In	a	space-fed	array,	the	feed	is	some	type	of	small	antenna	that	radiates	the	energy	to	the
array,	through	space.	The	feed	could	be	a	horn	antenna	or	even	another,	smaller,	phased	array.
The	feed	generates	an	antenna	pattern,	on	transmit,	which	is	captured	by	small	antennas	on	the
feed	side	of	the	array.	These	are	represented	by	the	sideways	v-shaped	symbols	on	the	left	side
of	 the	 array	 of	 Figure	 12.17.	 The	 outputs	 of	 the	 small	 antennas	 undergo	 a	 phase	 shift
(represented	by	the	circles	with	ϕ	 in	them)	and	are	radiated	into	space	by	the	small	antennas
represented	by	the	sideways	v-shaped	symbol	on	the	right	of	the	array.	On	receive,	the	reverse
of	the	above	occurs:

• Antennas	on	the	right	of	the	array	capture	energy	from	the	source.
• Phase	shifters	apply	appropriate	phase	shifts.
• Antennas	on	the	left	of	the	array	radiate	the	energy	to	the	feed.
• Feed	sends	the	energy	to	the	receiver.

The	 phase	 shifters	 provide	 the	 beam	 steering	 and	 perform	 what	 is	 called	 a	 spherical
correction.	 The	 E-field	 radiated	 from	 the	 feed	 nominally	 has	 constant	 phase	 on	 a	 sphere,
which	is	represented	by	the	arcs	in	Figure	12.17.	This	means	the	phase	will	not	vary	linearly
across	 the	 array,	 which	 is	 necessary	 to	 form	 a	 beam	 at	 a	 desired	 angle.	 This	 must	 be
accounted	for	in	the	setting	of	the	phase	shifters.	The	process	of	adjusting	the	phase	to	account
for	the	spherical	wave	front	is	spherical	correction.



Figure	12.16	Illustration	of	rectangular	and	triangular	element	packing.

The	feed	produces	its	own	directive	gain	pattern.	This	means	the	signals	entering	each	of
the	 phase	 shifters	 are	 at	 different	 amplitudes.	 Thus,	 the	 feed	 is	 applying	 the	 amplitude
weighting,	 |amn|,	 to	 the	 array.	The	 feed	 is	 usually	 designed	 so	 that	 its	 directive	gain	pattern
provides	a	desired	sidelobe	level	for	the	overall	antenna.	Feed	patterns	typically	approximate
a	cosn	function.	To	obtain	a	good	trade-off	between	directive	gain	and	sidelobe	levels	for	the
overall	antenna,	the	feed	pattern	is	such	that	the	level	at	the	edge	of	the	array	is	between	10	and
20	dB	below	the	peak	value,	 termed	an	edge	 taper.	A	feed	 that	provides	a	20-dB	edge	 taper
results	in	lower	array	sidelobes	than	a	feed	that	provides	a	10-dB	edge	taper	(see	Exercise	17).
However,	 a	 space-fed	 phased	 array	with	 a	 10-dB	 edge	 taper	 feed	 has	 higher	 directive	 gain
than	a	space-fed	phased	array	with	a	20-dB	edge	taper	feed.



Figure	12.17	Space-fed	phased	array.



Figure	12.18	Constrained-feed	phased	array.

In	 a	 constrained-feed	 phased	 array,	 the	 energy	 is	 routed	 from	 the	 transmitter,	 and	 to	 the
receiver,	by	a	waveguide	network.	This	 is	 represented	by	 the	network	of	connections	 to	 the
left	of	the	arrays	in	Figure	12.18.	The	drawing	on	the	left	depicts	a	parallel	feed	network,	and
the	drawing	on	the	right	depicts	a	series	feed	network.	Some	antennas	use	both	feed	types.	For
example,	the	rows	of	an	antenna	might	be	fed	by	a	series	network,	and	the	individual	elements
in	each	row	might	be	fed	by	a	parallel	network.	In	some	applications,	the	waveguide	network
can	be	structured	to	provide	an	amplitude	taper.

The	phase	shifters	in	a	constrained-feed	array	must	include	phase	shifts	to	account	for	the
different	path	lengths	of	the	various	legs	of	the	waveguide	network.

Space-fed	phased	arrays	are	 less	expensive	 to	build	 than	constrained-feed	arrays	because
they	do	not	require	the	waveguide	network	of	the	constrained-feed	phased	array.	However,	the
constrained-feed	 phased	 array	 is	 smaller	 than	 the	 space-fed	 phased	 array.	 The	 space-fed
phased	array	is	generally	as	deep	as	it	is	tall	or	wide	to	allow	proper	positioning	of	the	feed.
The	 depth	 of	 a	 constrained-feed	 phased	 array	 is	 only	 about	 twice	 the	 depth	 of	 the	 array
portion	of	a	space-fed	phased	array.	The	extra	depth	is	needed	to	accommodate	the	waveguide
network.	Finally,	 the	constrained-feed	phased	array	is	more	rugged	than	the	space-fed	array



since	almost	all	hardware	is	on	the	array	structure.

A	“limiting”	case	of	the	constrained-feed	phased	array	is	the	solid-state	phased	array.	For
this	 array,	 the	 phase	 shifters	 of	 Figure	12.18	 are	 replaced	 by	 solid-state	 T/R	modules.	 The
waveguide	network	can	be	replaced	by	cables	since	they	carry	only	low-power	signals.	The
transmitters	in	each	of	the	T/R	modules	are	low	power	(typically	10	to	1,000	W).	However,	a
solid-state	phased	array	can	contain	thousands	of	T/R	modules	so	that	the	total	transmit	power
is	comparable	to	that	of	a	space-fed	or	constrained-feed	phased	array.

12.10.4	Amplitude	Weighting

As	with	linear	arrays,	planar	phased	arrays	use	amplitude	weighting	to	reduce	sidelobes.	The
type	of	weighting	(Taylor,	Chebyshev,	or	cosn,	for	example)	is	the	same	as	in	linear	arrays.
The	difference	 is	 that	 the	weights	are	applied	 in	 two	dimensions.	Weights	can	be	applied	 in
two	basic	ways:

• Multiplicative	weighting3	and
• Elliptically	symmetric	weighting.

For	multiplicative	weighting,	we	would	write	the	magnitudes	of	the	weights	as

This	 type	of	weighting	 is	 sometimes	used	 in	constrained-feed	phased	arrays	because	of	 the
way	the	feed	structures	are	designed.

Approximations	 to	 elliptically	 symmetric	 weighting	 occur	 in	 space-fed	 phased	 arrays
because	the	weights	are	created	by	the	feed	pattern.	This	type	of	weighting	usually	provides
sidelobe	levels	that	are	symmetric	over	the	u-v	plane.

The	 following	 procedure	 can	 be	 used	 to	 generate	 elliptically	 symmetric	 weights	 for
antenna	modeling	purposes:

1. Generate	 a	 set	 of	 appropriate	 weights	 that	 has	 a	 number	 of	 terms	 equal	 to	 Nwt	 ≥
2Dmax/dmin,	where	2Dmax	 is	 the	maximum	antenna	dimension,	and	dmin	 is	 the	minimum
element	spacing.	Create	an	Nwt	element	array	of	numbers,	xw,	evenly	spaced	between	–1
and	1.	Compute	 an	Nwt	 array	 of	weights,	Wd,	 based	 on	 the	 desired	weighting	 function
(e.g.,	Chebyshev,	Taylor,	cosn).

2. Find	the	location	of	all	of	the	antenna	elements	relative	to	the	center	of	the	array.	Let	dxmn
and	dymn	be	the	x	and	y	locations	of	the	mnth	element	relative	to	the	center	of	 the	array.
Let	2Dx	 and	 2Dy	 be	 the	 antenna	widths	 in	 the	 x	 and	 y	 directions.	 Find	 the	 normalized
distance	from	the	center	of	the	array	to	the	mnth	element	using



3. Use	xmn	to	interpolate	into	the	array	Wd	to	get	the	|amn|.

4. If	xmn	>	1,	set	amn	=	0.	This	causes	the	array	to	have	the	shape	of	an	ellipse.

12.10.5	Computing	Antenna	Patterns	for	Planar	Arrays

In	Section	12.4,	we	presented	a	method	of	computing	 the	 radiation	pattern	of	a	 linear	array
that	 takes	 advantage	 of	 efficient	 matrix	 calculation	 routines	 available	 in	 modern	 software
(e.g.,	MATLAB,	Mathcad,	Python).	We	now	want	 to	extend	 the	method	 to	planar	arrays.	We
will	consider	variations	for	rectangular	and	triangular

packing.4

12.10.5.1	Rectangular	Packing

We	start	by	combining	(12.82)	with	(12.79),	and	write

Similar	to	(12.66),	we	collect	the	|amn|	into	a	matrix

and	define

and



We	combine	(12.86)	through	(12.90)	to	write

This	will	produce	a	matrix	of	A(u,v)’s	at	all	combinations	of	the	u’s	and	v’s	specified	in	the	U
and	V	vectors.

To	generate	an	elevation	principal	plane	pattern	(elevation	cut),	we	would	replace	the	first
exponential	 with	 a	 row	 vector	 containing	M–1’s.	 For	 an	 azimuth	 principal	 plane	 pattern
(azimuth	cut),	we	would	replace	the	second	exponential	with	a	column	vector	containing	N–
1’s.

To	generate	a	radiation	pattern	over	some	region	of	the	u,v	plane,	we	would	use	(12.87)	and
(12.88)	with	the	desired	values	of	u	and	v	and	some	desired	steering	angles	u0	and	v0.	As	an
example,	Figure	12.1	was	generated	using	the	following:

• dx/λ	=	dy/λ	=	1/2
• u0	=	v0	=	0
• U	=	[–1	–1+Δu	…	0	…	1–	Δu	1]
• V	=	[–1	–1+Δv	…	0	…	1–Δv	1]
• Δu	and	Δv	were	set	to	small	values.
• Amn	was	chosen	to	provide	an	elliptically	symmetric,	Taylor	weighting	with	 	=	6	and	SL
=	30	(Appendix	12A).

• N	and	M	were	set	to	51.

Because	of	the	way	U	and	V	are	defined,	(12.91)	can	have	nonzero	values	for	u2	+	v2	>	1,
which	 is	 not	 in	 visible	 space.	 This	 is	 taken	 into	 account	 by	 forcing	 the	 plotting	 routine	 to
ignore	A(u,v)	values	for	u,v	pairs	where	u2	+	v2	>	1.

12.10.5.2	Triangular	Packing

Calculation	of	A(U,V)	for	triangular	packing	is	more	complicated	in	that	it	must	be	computed
in	 two	parts.	Figure	12.19	 contains	 an	 illustration	 of	 triangular	 packing	 that	we	will	 use	 to
describe	the	method.	In	Figure	12.19,	 the	circles	and	squares	denote	elements	and	form	two
rectangular	lattices	that	are	offset	in	x	and	y	by	dx	and	dy.	Let	the	weights	associated	with	the
circles	be	amn	and	the	weights	associated	with	the	squares	be	bmn.	With	this,	we	write



Equation	(12.92)	 tells	us	 the	overall	A(u,v)	 is	 the	sum	of	A(u,v)’s	 for	 two	offset	arrays	with
rectangular	packing.	Since	the	equations	for	Aa(u,v)	and	Ab(u,v)	are	the	same	form	as	(12.89),
we	can	use	the	methodology	of	Section	12.10.5.1	and	write

To	compute	Aa(U,V)	we	would	use

and

Figure	12.19	Illustration	of	triangular	packing	used	to	explain	calculation	method.

To	compute	Aa(U,V),	we	would	use



and

The	amplitude	weights	can	be	computed	using	the	techniques	of	Section	12.10.4.	When	using
the	product	method,	we	would	start	with	Ma	+	Mb	weights	 in	 the	x	direction	and	alternately
allocate	them	to	am	and	bm.	Likewise,	for	the	y	direction,	we	would	start	with	Na	+	Nb	weights
and	alternately	allocate	them	to	an	and	bn.	For	 the	elliptically	symmetric	case,	we	recognize
that	 the	 location	 of	 the	ma,	nath	 element	 is	 (xa,ya)	=	madx,	nady	 for	 the	Wamn	 array.	 For	 the
Wbmn	array,	the	location	of	the	mb,	nbth	element	is	(xb,yb)	=	(mbdx,	nbdy).	In	these	equations,	ma
varies	from	0	to	2Ma	in	steps	of	2,	na	varies	from	0	to	2Na	in	steps	of	2,	mb	varies	from	1	to
2Mb	–	1	in	steps	of	2,	and	nb	varies	from	1	to	2Nb	–	1	in	steps	of	2.

12.10.6	Directive	Gain	Pattern

In	Section	12.4,	we	found	that	the	directive	gain	pattern	was	given	by

where

For	planar	arrays,	we	usually	compute	the	radiation	pattern	as	a	function	of	u	and	v	instead	of
α	and	ε.	Because	of	this,	we	write	the	directive	gain	pattern	as

Since	we	have	R(u,v)	 and	not	R(α,ε),	we	want	 an	 equation	 for	 	 in	 terms	 of	R(u,v).	 From
(12.76),	(12.77),	and	(12.78),	we	note	that	R(α,ε)	 is	a	function	of	u	=	 sinα	cosε	and	v	=	sinε.
Also,	we	normally	assume	R(α,ε)	is	zero	on	the	back	of	the	array.	Thus,	we	assume	R(α,ε)	 is
zero	for	α	outside	of	the	range	[–π/2,π/2].	With	this,	we	can	write	(12.101)	as

We	begin	the	derivation	by	making	the	change	of	variables	v	=	sin	ε,	and	write



where	we	made	use	of	cosε	≥	0	for	ε	∈[–π/2,π/2].
Next,	we	manipulate	the	α	integral	by	making	the	change	of	variables

which	gives

From	(12.70),	we	have

and	thus

where	we	made	use	of	cosα	≥	0	over	the	integration	limits.	Using	this	and	some	manipulation
(see	Exercise	20),	we	get

When	computing	 	by	numerical	integration,	be	careful	to	avoid	samples	on	the	unit	circle
of	the	u-v	plane.	One	way	to	do	this	is	to	set	the	integrand	to	zero	for	all	u,v	such	that	u2	+	v2	≥
1.	Also,	 it	has	been	 the	authors’	experience	 that	computing	 	 is	 sensitive	 to	 the	 integration
step	size.	Therefore,	it	is	recommended	that	care	be	exercised	in	its	use.

As	an	interesting	example,	we	consider	the	case	from	Chapter	2	where

This	tells	us	that	all	of	the	transmit	energy	is	concentrated	in	a	small	rectangular	area	centered
on	u	=	v	=	0.	For	this	case,	we	have



where	we	made	use	of	the	facts	that	Δu	is	small	and	v	is	near	zero.	Performing	the	integration
of	(12.111)	gives

where	we	made	use	of	the	fact	that	Δv	is	small.	With	this,	we	get	a	directive	gain	pattern

The	directive	gain	is	the	maximum	of	G(u,v)	or

Saying	the	beam	is	centered	on	u	=	v	=	0	is	the	same	as	saying	it	is	centered	on	α	=	ε	=	0.	This,
with	the	assumption	that	Δu	and	Δv	are	small,	gives,	Δu	=	Δα	and	Δv	=	Δε	 [see	 (12.77)	and
(12.78)].	This	leads	to

which	agrees	with	the	form	of	directive	gain	discussed	in	Chapter	2.



12.10.7	Grating	Lobes

We	 introduced	 the	 topic	 of	 grating	 lobes	 in	 Section	 12.4	 and	 noted	 that	 they	 are	 radiation
pattern	peaks	at	angles	other	than	the	location	of	the	main	beam.	Grating	lobes	are	undesirable
because	they	take	energy	away	from	the	main	beam	or	can	point	toward	interfering	objects,
such	as	the	ground.	In	this	section,	we	extend	the	discussion	of	grating	lobes	to	planar	arrays.
We	discuss	grating	lobes	for	arrays	that	use	rectangular	packing	and	arrays	that	use	triangular
packing.

12.10.7.1	Grating	Lobes	in	Arrays	with	Rectangular	Packing

We	start	by	examining	A(u,v)	from	(12.85):

We	use	A(u,v)	because	 it	 is	easier	 to	work	with	 than	R(u,v)	or	G(u,v).	Since	R(u,v)	=	 |A(u,v)|2
and	 ,	 grating	 lobe	 observations	we	 derive	 from	A(u,v)	 also	 apply	 to
R(u,v)	and	G(u,v).

At	the	main	beam	location,	(u0,v0),	we	have

At	any	other	(u,v)	=	(ug,vg)	where	2πdx(ug–u0)/λ	and	2πdy(vg–v0)/λ	are	both	multiples	of	2π,
the	exponentials	are	unity	for	all	m	and	n,	and	we	have

The	peaks	at	ug,vg	are	grating	lobes,	and	the	values	of	ug,vg	are	 the	 locations	of	 the	grating
lobes.	Thus,	we	say	that	grating	lobes	are	located	at	the	ug,vg	that	satisfy

and

where	p	and	q	are	integers.	Solving	(12.119)	and	(12.120)	for	the	pair	ug,vg,	we	get



where	p	and	q	are	integers	that	are	not	both	zero	(this	would	denote	the	main	beam).	Equation
(12.121)	tells	us	that	the	grating	lobes	are	located	at	integer	multiples	of	λ/dx	and	λ/dy	relative
to	the	main	beam	and	move	with	the	main	beam.

Figure	12.20	Grating	lobe	locations	for	rectangular	packing.

Figure	12.20	contains	a	sketch	showing	the	locations	of	the	main	beam	(the	square)	and	the
grating	lobes.	The	unit	circle	of	Figure	12.20	denotes	the	boundary	of	visible	space.	All	lobes
(grating	or	main	beam)	that	are	within	the	circle	translate	to	lobes	in	visible	space	(real	α,	ε
space),	and	 lobes	outside	of	 the	unit	circle	do	not	 (they	 translate	 to	 lobes	 in	 imaginary	α,	 ε
space).	 In	 the	example	of	Figure	12.20,	 the	main	beam	and	one	grating	 lobe	are	 in	 the	unit
circle.	 Thus,	 the	 main	 beam	 and	 one	 grating	 lobe	 are	 in	 visible	 space5	 since	 the	 spacing
between	 grating	 lobes	 is	 λ/dx	 and	 λ/dy.	 Whether	 or	 not	 grating	 lobes	 enter	 visible	 space
depends	on	the	element	spacing	(dx	and	dy)	and	the	desired	set	of	steering	angles	(u0,v0).	This
represents	 a	 trade-off	 array	 antenna	 designers	must	 face.	On	 one	 hand,	 there	 is	 a	 desire	 to
make	dx	and	dy	large	to	minimize	the	number	of	elements,	and	thus	array	cost.6	On	the	other
hand,	dx	and	dy	must	be	small	to	avoid	grating	lobes.7

The	first	grating	lobes	to	enter	visible	space	are	the	eight	that	surround	the	main	beam.	Of
these,	 the	four	immediately	adjacent	 to	the	main	beam	are	most	 likely	to	enter	visible	space
before	 the	 four	 located	 on	 the	 diagonals.	When	 a	 grating	 lobe	 enters	 visible	 space	 (as	 the
main	beam	is	moved),	it	does	so	on	the	unit	circle	boundary	of	the	u,	v	plane.	We	can	use	this
to	specify	the	maximum	dx	and	dy	that	avoid	grating	lobes	in	visible	space	at	some	maximum
steering	angles	of	|u0|max	and	|v0|max.	Specifically,	we	get

or



Table	12.1
d/λ	Spacing	to	Avoid	Grating	Lobes	as	Various	Maximum	Steering	Angles—Rectangular	Packing

Maximum	Steering	Angle d/λ

30 0.67

45 0.59

60 0.54

90 0.50

Table	12.1	contains	a	 list	of	dxmax/λ	and	dymax/λ	values	 for	a	 few	maximum	steering	angles.
Note	that	an	element	spacing	of	λ/2	prevents	grating	lobes	from	entering	visible	space	at	all
steering	angles	except	the	limiting	case	of	±90°.

12.10.7.2	Grating	Lobes	in	Arrays	with	Triangular	Packing

For	triangular	packing,	we	start	with	(12.92),	but	we	write	it	in	a	slightly	different	form	as

where

with	(N1,M1)	=	(Ma,Na),	(N2,M2)	=	(Mb,Nb),	and	cmn	replaced	by	amn	or	bmn	as	appropriate.	At
(u,	v)	=	(u0,	v0),	we	have

If	4πdx(ug	–	u0)/λ	and	4πdy(vg	–	v0)/λ	are	both	multiples	of	2π,	we	have	A1(ug,vg)	=	A1(u0,v0)
and	A2(ug,vg)	=	A2(u0,v0).	This	results	in



If	dx(ug	–	u0)/λ	+	dy(vg	–	v0)/λ	is	an	integer,	the	product	of	exponentials	is	unity,	and	we	have

If	we	combine	the	conditions	that	4πdx(ug	–	u0)/λ	and	4πdy(vg	–	v0)/λ	and	follow	the	logic	that
led	to	(12.121),	we	get	that	the	grating	lobes	are	located	at

The	 condition	 that	 dx(ug	 –	 u0)/λ	 +	 dy(vg	 –	 v0)/λ	 must	 be	 an	 integer	 leads	 to	 an	 additional
constraint	on	(12.129)	that	p	+	q	must	be	even.

Equation	 (12.129)	 tells	 us	 that	 grating	 lobes	 are	 located	 at	 the	 positions	 indicated	 by
(12.121)	with	the	added	constraint	that	p	+	q	must	be	even.	Figure	12.21	contains	a	sketch	of
the	grating	lobes	for	triangular	packing.	As	before,	the	square	denotes	the	main	beam,	and	the
unit	circle	denotes	the	boundary	of	visible	space.

The	first	grating	lobe	to	enter	visible	space	is	one	of	the	eight	surrounding	the	main	beam
(denoted	by	the	dashed	rings).	The	grating	lobe	to	enter	first	depends	on	the	specific	x	and	y
locations	 of	 the	 elements.	 The	 grating	 lobes	 to	 the	 left	 and	 right	 of	 the	 main	 beam	 enter
visible	space	when

The	grating	lobes	above	and	below	the	main	beam	enter	visible	space	when

Finally,	one	of	the	grating	lobes	on	the	diagonals	enters	visible	space	when

where



and	Dmax	is	the	maximum	beam	steering	angle	in	the	θ	direction.

Figure	12.21	Grating	lobe	locations	for	triangular	packing.

We	consider	the	classical	textbook	condition	[14,	18,	21,	27]	where	the	array	elements	are
arranged	on	an	equilateral	triangle	with	2dx	as	the	width	of	the	base	and	other	two	legs,	we	get

	(see	Figure	12.22).	With	this,	θ	=	30°	and	(12.132)	becomes

With	some	manipulation	(see	Exercise	18),	(12.134)	can	be	solved	to	determine

Table	12.2	contains	a	list	of	values	for	dx	and	dy	for	example	maximum	scan	angles.



Figure	12.22	Triangular	element	packing	parameters.

Table	12.2
d/λ	Spacings	to	Avoid	Grating	Lobes	as	Various	Maximum	Steering	Angles—“Standard”	Triangular	Packing

Maximum	Steering	Angle (dx/λ,	dy/λ)

30 (0.38,	0.67)

45 (0.34,	0.59)

60 (0.31,	0.54)

90 (0.29,	0.50)

12.11 POLARIZATION

Thus	far	in	our	discussions,	we	have	played	down	the	role	of	E-field	orientation	in	antennas.
We	 now	 discuss	 E-field	 orientation	 for	 the	 specific	 purpose	 of	 discussing	 polarization.	 E-
fields	have	both	direction	and	magnitude	(and	frequency).	In	fact,	an	E-field	is	a	vector	that	is
a	function	of	both	spatial	position	and	time.	If	we	consider	a	vector	E-field	that	is	traveling	in
the	z	direction	of	a	rectangular	coordinate	system,	we	can	express	it	as	[28]

where	 	and	 	are	unit	vectors.	Figure	12.23	contains	a	graphic	showing	the	above	E-field.
In	this	drawing,	the	z	axis	is	the	line-of-sight	(LOS)	vector	from	the	radar	to	the	target.	The	x-
y	plane	is	in	the	neighborhood	of	the	face	of	the	antenna.	The	y	axis	is	generally	up,	and	the	x
axis	 is	 oriented	 to	 form	 a	 right-handed	 coordinate	 system.	 This	 is	 the	 configuration	 for
propagation	from	the	antenna	to	the	target.	When	considering	propagation	from	the	target,	the
z	axis	points	along	the	LOS	from	the	target	to	the	antenna,	the	y	axis	is	generally	up,	and	the	x
is	again	oriented	to	form	a	right-handed	coordinate	system.



Figure	12.23	Axes	convention	for	determining	polarization.

When	we	speak	of	polarization,	we	are	interested	in	how	the	E-field	vector,	 ,	behaves
as	a	function	of	time	for	a	fixed	z,	or	as	a	function	of	z	for	a	fixed	t.	To	proceed	further,	we
need	 to	write	 the	 forms	 of	Ex	 (t,z)	 and	Ey	 (t,	 z).	We	 use	 the	 simplified	 form	 of	 sinusoidal
signal.	With	this,	we	get

where,	Exo	and	Eyo	are	positive	numbers	and	represent	 the	E-field	strength.	ƒo	 is	 the	carrier
frequency,	and	λ	is	the	wavelength,	which	is	related	to	ƒo	by	λ	=	c/ƒo.	ϕ	is	a	phase	shift	used	to
control	polarization	orientation.

If	 	 remains	 fixed	 in	 orientation	 as	 a	 function	 of	 t	 and	 z,	 the	 E-field	 is	 said	 to	 be
linearly	polarized.	In	particular,

• If	ϕ	=	0,	Exo	≠	0,	and	Eyo	=	0,	we	say	the	E-field	is	horizontally	polarized.
• If	ϕ	=	0,	Eyo	≠	0,	and	Exo	=	0,	we	say	the	E-field	is	vertically	polarized.
• If	ϕ	=	0,	and	Exo	=	Eyo	≠	0,	we	say	the	E-field	has	a	slant	45°	polarization.
• If	ϕ	=	0,	and	Exo	≠	Eyo	≠	0,	we	say	the	E-field	has	a	slant	polarization	at	some	angle	other
than	45°.	The	polarization	angle	is	given	by	tan-1	(Eyo	/	Exo).

• If	ϕ	=	±π/2	and	Exo	=	Eyo	≠	0,	we	say	we	have	circular	polarization.
If	ϕ	=	+π/2,	 the	polarization	is	 left-circular	because	 	 rotates	counter-clockwise,	or
to	the	left,	as	t	or	z	increases.	If	ϕ	=	–π/2,	the	polarization	is	right-circular	because	
rotates	clockwise,	or	to	the	right,	as	t	or	z	increases.

• If	ϕ	is	any	other	angle	besides	±π/2,	0,	or	π,	and/or	Exo	≠	Eyo	≠	0,	we	say	the	polarization
is	elliptical.	It	can	be	left	(ϕ	=	+π/2)	or	right	(ϕ	=	–π/2)	elliptical.

As	a	note,	polarization	 is	always	measured	 in	 the	direction	of	propagation	of	 the	E-field
to/from	the	antenna	from/to	the	target.	When	polarization	of	an	antenna	is	specified,	it	is	the



polarization	in	the	main	beam.	The	polarization	in	the	sidelobes	can	be	dramatically	different
than	the	polarization	in	the	main	beam.

12.12 REFLECTOR	ANTENNAS

Older	radars,	and	some	modern	radars	where	cost	is	an	issue,	use	reflector	types	of	antennas
rather	 than	 phased	 arrays.	 Reflector	 antennas	 are	 much	 less	 expensive	 than	 phased	 arrays
(thousands	to	hundreds	of	thousands	of	dollars	as	opposed	to	millions	or	tens	of	millions	of
dollars).	They	are	also	more	rugged	than	phased	arrays	and	are	generally	easier	to	maintain.
They	can	be	designed	to	achieve	good	directivity	and	low	sidelobes.	The	main	disadvantages
of	reflector	antennas,	compared	to	phased	array	antennas,	are	that	they	must	be	mechanically
scanned.	 This	 means	 radars	 that	 employ	 reflector	 antennas	 have	 limited	 multiple	 target
capability.	 In	 fact,	most	 target-tracking	 radars	 that	employ	reflector	antennas	can	 track	only
one	target	at	a	time.	Search	radars	that	employ	reflector	antennas	can	detect	and	track	multiple
targets,	but	the	track	update	rate	is	limited	by	the	scan	time	of	the	radar,	which	is	usually	on
the	order	of	1’s	to	10’s	of	seconds.	This,	in	turn,	limits	the	track	accuracy	of	these	radars.

Another	 limitation	 of	 radars	 that	 employ	 reflector	 antennas	 is	 that	 separate	 radars	 are
needed	for	each	function.	Thus,	separate	radars	would	be	needed	for	search,	track,	and	missile
guidance.	 This	 requirement	 for	multiple	 radars	 leads	 to	 trade-offs	 in	 radar	 system	 design.
With	 a	 phased	 array,	 it	 may	 be	 possible	 to	 use	 a	 single	 radar	 to	 perform	 the	 three
aforementioned	 functions	 (referred	 to	 as	 a	 multifunction	 radar).	 Thus,	 while	 the	 cost	 of	 a
phased	 array	 is	 high,	 relative	 to	 a	 reflector	 antenna,	 the	 cost	 of	 three	 radars	with	 reflector
antennas	may	be	even	more	expensive	than	a	single	phased	array	radar.

Almost	all	reflector	antennas	use	some	variation	of	a	paraboloid	(parabola	of	revolution)
[14].	An	example	of	such	an	antenna	is	shown	in	Figure	12.24.	The	feed	shown	in	Figure	12.24
is	 located	 at	 the	 focus	 of	 the	 parabolic	 reflector	 (focal	 point).	 Since	 it	 is	 in	 the	 front,	 this
antenna	would	be	termed	a	front-fed	antenna.	The	lines	from	the	reflector	to	the	feed	are	struts
used	to	keep	the	feed	in	place.

A	parabola	 is	used	as	a	 reflector	because	of	 its	 focusing	properties.	This	 is	 illustrated	 in
Figure	12.25.	In	Figure	12.25,	the	feed	is	at	the	focus	of	the	parabola.	From,	analytic	geometry
[29],	 if	 rays	emanate	 from	 the	 focus	and	are	 reflected	 from	 the	parabola,	 the	 reflected	 rays
will	be	parallel	 [14;	30,	p.	147].	 In	 this	way,	 the	parabolic	 antenna	 focuses	 the	divergent	E-
field	 from	 the	 feed	 into	 a	 concentrated	 E-field	 [31–33].	 Stated	 another	 way,	 the	 parabolic
reflector	collimates	the	E-field	of	the	feed.

As	with	space-fed	phased	arrays,	the	feed	pattern	is	used	to	control	the	sidelobe	levels	of	a
reflector	antenna	by	concentrating	 the	energy	at	 the	center	of	 the	reflector	and	causing	 it	 to
taper	toward	the	edge	of	the	reflector.

The	process	of	computing	the	radiation	pattern	for	a	parabolic	reflector	antenna,	where	the
feed	 is	 at	 the	 focus,	 is	 reasonably	 straightforward.	 Referring	 to	 Figure	 12.25,	 we	 place	 a
hypothetical	plane	parallel	to	the	face	of	the	reflector,	usually	at	the	location	of	the	feed.	This
plane	is	termed	the	aperture	plane.	We	then	put	a	grid	of	points	in	this	plane.	The	points	are
typically	arranged	on	a	rectangular	grid	and	are	spaced	λ/2	apart.	The	boundary	of	the	points



is	 a	 circle	 that	 follows	 the	 edge	 of	 the	 reflector.	 The	 points	 are	 used	 as	 elements	 in	 a
hypothetical	phased	array.

We	think	of	the	points,	pseudo	array	elements,	as	being	in	the	x-y	plane	whose	origin	is	at
the	feed.	The	z	axis	of	this	coordinate	system	is	normal	to	the	aperture	plane.

Figure	12.24	Example	of	a	parabolic	reflector	antenna.

Figure	12.25	Geometry	used	to	find	reflector	radiation	pattern.

If	we	draw	a	line,	in	the	x-y	plane,	from	the	origin	to	the	point	(x,	y),	the	angle	it	makes	with
the	x	axis	is



where	the	arctangent	is	the	four-quadrant	arctangent.	The	distance	from	the	origin	to	the	point
is

We	 can	 draw	 a	 line	 from	 the	 point,	 perpendicular	 to	 the	 aperture	 plane,	 to	 the	 reflector.
Examples	of	this	are	the	lines	l1	and	l2	in	Figure	12.25.	The	next	step	is	to	find	the	angle,	θ,
between	the	z	axis	and	the	point	on	the	reflector.	From	Figure	12.25

where	ƒ	is	the	focus	of	the	parabola.	Also

With	this,	we	can	solve	for	d	and	θ	to	yield

and

Next,	the	angles	ϕ	and	θ	are	used	to	find	the	directive	gain	of	the	feed	at	the	point	where	the
ray	 intersects	 the	parabolic	 reflector.	This	 directive	gain	gives	 the	 amplitude	of	 the	pseudo
element	at	(x,	y).

The	above	process	is	repeated	for	all	of	the	pseudo	elements	in	the	aperture	plane.	Finally,
the	 reflector	 antenna	 radiation	 pattern	 is	 found	 by	 treating	 the	 pseudo	 elements	 as	 a	 planar
phased	array.8

There	is	no	need	to	be	concerned	about	the	phase	of	each	pseudo	element	since	the	distance
from	the	feed	to	 the	reflector	 to	all	points	 in	 the	aperture	plane	is	 the	same.	This	means	the
various	rays	from	the	feed	take	the	same	time	to	get	to	the	aperture	plane.	This	further	implies
that	the	E-fields	along	each	array	have	the	same	phase	in	the	aperture	plane,	and	that	the	beam
is	steered	to	broadside.

If	the	feed	is	not	located	at	the	focus	of	the	paraboloid,	the	calculations	needed	to	find	the
amplitudes	 and	 phases	 of	 the	 E-field	 at	 the	 pseudo	 elements	 become	 considerably	 more
complicated.	It	is	well	beyond	the	scope	of	this	book.



12.13 OTHER	ANTENNA	PARAMETERS

In	Sections	12.2	and	12.3,	we	showed	that	 the	beamwidth	of	a	linear	array	was	a	function	of
the	length	of	the	array.	We	want	to	revisit	that	problem	and	develop	a	specific	relation	between
the	 array	 length	 and	 the	 beamwidth.	 For	 an	 N-element,	 uniformly	 illuminated	 linear	 array
steered	to	broadside,	we	have	[see	(12.38)]

To	determine	the	beamwidth,	we	need	to	find	the	value	of	ε3dB	 for	which	R(ε3dB)	=	½.	With
this,	 we	 have	 that	 the	 beamwidth	 is	 εB	 =	 2ε3dB.	 Through	 a	 numerical	 search,	 we	 find	 that
R(ε3dB)	=	½	when

which	gives

We	recognize	that	the	antenna	length	is	D	=	Nd	and	make	use	of	the	fact	that	D	is	large	relative
λ	to	arrive	at	(which	means	sin(ε3dB)	is	small)

If	the	array	uses	some	type	of	amplitude	weighting	for	sidelobe	reduction,	the	factor	of	0.886
can	 increase.	Experimentation	with	a	 few	weights	 indicates	 that	 the	 factor	can	be	as	high	as
about	1.4	for	heavy	Chebyshev	weighting.	The	30-dB	Chebyshev	weighting	used	to	generate
Figure	12.12	resulted	in	a	factor	of	1.1,	which	would	yield	a	beamwidth	of

This	 is	 a	 rule	 of	 thumb	 the	 authors	 use	 both	 for	 linear	 and	 planar	 arrays	 that	 employ	 an
amplitude	taper	to	reduce	sidelobes,	and	for	reflector	antennas.	Our	rule	of	thumb	for	arrays
that	use	uniform	illumination	is	(12.147).

The	beamwidth	equations	are	based	on	the	assumption	that	the	beam	is	steered	to	broadside.
As	the	beam	is	steered	off	of	broadside,	the	beamwidth	increases	and	these	equations	are	no
longer	valid.



In	Chapter	2,	we	defined	directivity	in	terms	of	effective	aperture	as

where	Ae	 is	 the	effective	aperture	and	 is	 related	 to	 the	physical	area	of	 the	antenna	by	Ae	 =
ρantA	 where	 A	 is	 the	 physical	 area	 of	 the	 antenna	 and	 ρant	 is	 the	 antenna	 efficiency.	 ρant
accounts	for	amplitude	tapers	and	the	fact	that	the	beam	may	not	be	steered	to	broadside.

The	derivation	of	(12.149)	for	the	general	antenna	is	very	difficult	because	of	the	difficulty
in	 expressing	 	 in	 terms	 of	 the	 antenna	 area.	However,	 Balanis	 [22,	 Section	 11.5.1]	 has	 a
derivation	for	the	case	of	a	rectangular	aperture	in	an	infinitely	conducting	ground	plane.	The
aperture	has	dimensions	of	a	and	b	and	the	electric	and	magnetic	fields	across	the	aperture	are
uniform	with	magnitudes	 of	E0	 and	E0/η,	 respectively.	 η	 is	 the	 radiation	 resistance.	 Under
these	conditions,	Balanis	shows	that	the	maximum	radiation	intensity	is

and

where	Prad	is	the	total	radiated	power.

From	(12.150)	and	(12.151),	Balanis	derives	the	maximum	directive	gain,	or	directivity,	as

where	A	 =	 ab	 is	 the	 area	 of	 the	 aperture.	 In	 Balanis’	 example,	 the	 aperture	 is	 uniformly
illuminated	 and	 the	 main	 beam	 is	 pointing	 along	 the	 normal	 to	 the	 aperture	 (broadside).
Because	of	this,	the	antenna	efficiency	is	ρant	=	1	and	Ae	=	A.	While	this	development	does	not
prove	 that	 (12.152)	 holds	 for	 all	 antennas,	 experience	 indicates	 that	 it	 does.	 That	 is,	 the
maximum	directivity	is	directly	proportional	to	effective	aperture	and	inversely	proportional
to	the	square	of	wavelength.

12.14 EXERCISES

1. Generate	the	plot	of	Figure	12.4.	What	are	the	beamwidths	for	the	three	cases?

2. Derive	(12.35).

3. Generate	the	plot	of	Figure	12.7.	What	are	the	beamwidths	for	the	three	cases?



4. Derive	(12.46).

5. Derive	(12.47).

6. Show	that	 	=	1	for	an	N-element	array	with	d	=	λ/2	and	 .

7. Reproduce	Figure	12.9.

8. Implement	the	computation	algorithm	described	in	Section	12.9,	and	use	it	to	generate	and
plot	the	radiation	pattern	for	a	20-element	linear	array	with	30-dB	Chebyshev	weighting.
Your	 plot	 should	 look	 similar	 to	 Figure	 12.12.	 In	 particular,	 the	 peak	 sidelobe	 level
should	be	30	dB	below	the	main	beam.

9. Compute	 	for	the	radiation	pattern	of	Exercise	8,	and	use	it	to	reproduce	the	directive
gain	 pattern	 of	 Figure	12.12.	 Steer	 to	 30°.	What	 happens	 to	 the	 directive	 gain	 [peak	 of
G(ε)]	relative	to	the	value	at	ε0	=	0°?	What	happens	to	the	beamwidth?	Repeat	this	for	ε0	=
60°.

10. Repeat	Exercises	8	and	9	but	with	N	=	50	(50	elements)	and	Taylor	weighting	with	 	=	6
and	SL=	–30	dB	(see	Appendix	12A).

11. Recompute	the	weights	you	used	to	steer	the	beam	of	Exercise	10	with	the	assumption	that
the	phases	are	set	by	a	6-bit	phase	shifter.	Repeat	for	the	case	where	the	phases	are	set	by	a
3-bit	phase	shifter.	Repeat	this	for	the	case	where	the	beam	is	steered	to	ε0	=	0°.	Can	you
explain	 the	 difference	 in	 the	 effect	 of	 quantization	 for	 this	 case	when	 compared	 to	 the
cases	where	the	beam	was	steered	to	30°	and	60°?

12. Implement	the	computation	algorithm	of	Section	12.10.5.1.	Use	it	to	generate	a	radiation
pattern	for	a	square	array	that	has	51	rows	and	51	columns	of	elements	(M	and	N	=	51).
Assume	an	element	spacing	of	dx/λ	=	dy/λ	=	½	and	uniform	weighting.	Steer	the	beam	to
(u0,v0)	=	(0,0).	Generate	a	three-dimensional	(3-D)	plot	of	the	form	shown	in	Figure	12.1.
Generate	azimuth	and	elevation	principal	plane	cuts	for	azimuth	and	elevation	angles	that
range	 from	 –5°	 to	 5°.	 The	 3-D	 plot	 for	 this	 exercise	 should	 have	 the	 principal	 plane
ridges	 indicated	 in	 Section	 12.10.5.12.	 Change	 the	 square	 array	 of	 Exercise	 11	 to	 a
circular	 array	 by	 using	 the	 method	 indicated	 in	 step	 4	 of	 the	 method	 for	 applying
elliptically	 symmetric	 weighting	 (Section	 12.10.5).	 Generate	 the	 plots	 indicated	 in
Exercise	 11.	 In	 this	 case,	 you	 will	 note	 that	 the	 principal	 plane	 ridges	 are	 no	 longer
present.

13. Repeat	Exercise	12	with	a	circularly	symmetric,	Taylor,	 	=	6,	SL	=	–30	dB	weighting
applied	to	the	array.	In	this	case,	the	3-D	plot	should	look	similar	to	Figure	12.1.

14. Compute	 	and	the	directive	gain	pattern	G(u,v)	for	 the	array	of	Exercise	11.	Generate
the	plots	indicated	in	Exercise	11.

15. Apply	multiplicative,	Taylor,	 	=	6,	SL	=	–30	dB	weighting	to	the	array	of	Exercise	11,
and	recompute	 	and	G(u,v).	Generate	 the	plots	 indicated	 in	Exercise	11.	Note	how	the
directive	 gains	 (directivities)	 and	 beamwidths	 of	 the	 patterns	 compare	 to	 those	 of
Exercise	13.



16. Apply	 an	 elliptically	 symmetric	 taper	 cos	 taper	 (cosn	 taper	with	 n	 =	 1)	 to	 the	 array	 of
Exercise	 12.	 For	 the	 first	 case	 use	 a	 10-dB	 edge	 taper.	 This	 means	 that	 you	 want	 the
amplitude	at	the	edge	of	the	array	to	be	10–(10/20)	relative	to	a	peak	value	of	1.	Repeat	this
for	a	20-dB	edge	taper.	Discuss	the	difference	in	directive	gain,	beamwidth,	and	sidelobe
levels	for	the	two	tapers.

17. In	Table	12.1,	we	 indicate	 that	 if	dx/λ	=	dy/λ,	 grating	 lobes	 enter	visible	 space	when	 the
beam	is	scanned	more	than	45°	from	broadside.	To	verify	this,	change	dx/λ	and	dy/λ	of	the
array	of	Exercise	11	to	0.59.	Steer	the	beam	to	(u0,	v0	=	10,	sin	50°).	Generate	an	elevation
principal	plane	cut.	This	plot	will	show	that	the	main	beam	is	steered	to	50°,	but	there	is
another	lobe,	the	grating	lobe,	at	a	negative	angle.	You	should	also	note	that	the	width	of
the	grating	lobe	is	larger	than	the	main	lobe.

18. Derive	(12.135).

19. Using	(12.77)	and	(12.78),	show	that	u	and	v	satisfy	the	constraint,	u2	+	v2	≤	1.

20. Derive	(12.108).
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APPENDIX	12A:	AN	EQUATION	FOR	TAYLOR	WEIGHTS

The	following	are	equations	for	calculating	Taylor	weights	for	an	array	antenna.	It	is	similar
to	 the	equation	on	page	20-8	of	 the	Antenna	Engineering	Handbook	 by	Richard	C.	 Johnson
[14],	with	some	clarifications	and	corrections.

The	un-normalized	weight	for	the	nth	element	of	the	N-element	linear	array	is

where



and

SL	is	the	desired	sidelobe	level,	in	decibels,	relative	to	the	peak	of	the	main	beam	and	is	a
positive	number.	For	example,	for	a	sidelobe	level	of	−30	dB,	SL	=	30.	This	indicates	that	the
sidelobe	is	30	dB	below	the	peak	of	the	main	beam.	 	is	the	number	of	sidelobes	on	each	side
of	the	main	beam	that	we	want	to	have	a	level	of	approximately	SL	below	the	main	beam	peak
amplitude.

The	xn	can	be	computed	using	the	following	MATLAB	notation:

Finally,	normalize	the	weights	by	dividing	all	of	the	an	by	 .

1	Sometimes	the	wave	number,	k	=	2π/λ,	is	used	to	simplify	notation.
2	In	this	book,	we	use	the	terms	directive	gain	pattern	and	antenna	pattern	synonymously.	We	also	use	directivity	and	directive
gain	synonymously.
3	Also	referred	to	as	array	separable.
4	The	algorithm	discussed	in	this	section	was	provided	by	Joshua	Robbins	of	Dynetics,	Inc.
5	The	main	beam	will	always	be	in	visible	space	since	(u0,v0)	=	(sinα0	cosε0,	sinε0)	satisfy	 .
6	Some	arrays,	termed	limited-scan	arrays,	are	specifically	designed	to	use	small	scan	angles	[19].
7	In	some	instances,	there	are	other	requirements	on	element	spacing	such	as	mutual	coupling	[26]	and	packaging.
8	Technically,	the	feed	and	supporting	struts	result	in	aperture	blockage,	which	causes	perturbations	in	the	radiation	pattern	(e.g.,
reduced	 gain,	 elevated	 sidelobes).	 This	 blockage	 can	 be	 accounted	 for	 by	 subtracting	 the	 antenna	 pattern	 of	 the	 blockage
from	the	antenna	pattern	without	blockage.



Chapter	13

Signal	Processor	Analyses

13.1 INTRODUCTION

In	this	chapter,	we	turn	our	attention	to	signal	processors	and	analysis	of	their	performance.
Our	 first	 encounters	 with	 signal	 processors	 were	 in	 Chapters	 7	 and	 8,	 where	 we	 studied
matched	filters	and	coherent	integrators.	In	those	studies,	the	purpose	of	the	signal	processor
was	 to	 improve	 SNR.	 In	 this	 chapter,	 we	 will	 be	 concerned	 with	 signal	 processors	 whose
primary	 function	 is	 clutter	 rejection,	 with	 SNR	 improvement	 as	 a	 secondary	 objective.	 By
clutter,	we	mean	returns	from	unwanted	sources	such	as	the	ground	or	rain.

Rather	than	discuss	clutter	and	signal	processor	analyses	in	general	terms,	we	will	explain
how	to	perform	specific	analyses.	To	this	end,	we	will	select	specific	radar,	target,	and	clutter
scenarios,	as	well	as	specific	signal	processors.	We	assume	the	radar	is	ground	based	and	has
the	 job	 of	 detecting	 and	 tracking	 airborne	 targets	 such	 as	 aircraft,	 helicopters,	 and	 cruise
missiles.	We	assume	the	targets	are	flying	at	low	altitudes	so	that	the	radar	is	receiving	returns
from	the	target,	the	ground,	and	possibly	rain.	In	our	case,	the	ground	and	rain	are	the	clutter
sources	(termed	ground	clutter	and	rain	clutter).	We	assume	the	radar	is	transmitting	a	pulsed
(as	opposed	to	CW)	signal.	We	will	consider	the	cases	where	the	radar	transmits	a	finite	and
infinite	 (actually,	 semi-infinite)	 series,	 or	 burst,	 of	 pulses	 with	 a	 given	 PRI.	 We	 will	 also
consider	 the	 case	 where	 the	 PRI	 varies	 from	 pulse-to-pulse.	We	 assume	 the	 target	 RCS	 is
SW0/SW5,	 SW1,	 or	 SW3.	 This	 means	 we	 assume	 the	 target	 RCS	 is	 constant	 over	 time
intervals	during	which	the	signal	processor	is	operating	(referred	to	as	a	coherent	processing
interval,	or	CPI).	We	also	assume	the	clutter	RCS	is	constant	over	this	time	interval.

We	will	consider	two	types	of	signal	processors:	moving	target	indicator	(MTI)	processors
and	 Doppler	 processors.	 MTI	 processors	 are	 used	 strictly	 for	 clutter	 rejection	 (usually
ground	clutter)	 and	Doppler	processors	 are	used	 to	provide	both	clutter	 rejection	and	SNR
improvement.	Doppler	processors	are	often	subdivided	into	high	PRF	(HPRF)	pulsed	Doppler
processors,	medium	PRF	 (MPRF)	 pulsed-Doppler	 processors,	 and	 low	PRF	 (LPRF)	 pulsed
Doppler	 processors.	 The	 latter	 are	 also	 sometimes	 termed	 moving	 target	 detector	 (MTD)
processors	[1–7].

Since	 we	 will	 be	 concerned	 with	 analyzing	 the	 clutter	 rejection	 properties	 of	 signal
processors,	we	begin	our	studies	by	defining	simple	ground	and	rain	clutter	models.	We	next
derive	 the	 form	 of	 the	 clutter,	 target	 and	 noise	 signals	 at	 the	 input	 to	 the	 signal	 processor.
During	 this	 derivation,	 we	 discuss	 some	 characteristics	 of	 the	 radar	 that	 affect	 the	 clutter
spectrum	so	as	to	also	characterize	their	impact	on	signal	processor	performance.

We	 follow	 the	 above	 characterizations	 with	 discussions	 of	 MTI	 and	 pulsed	 Doppler
processors.	In	addition	to	analyzing	their	clutter	rejection	and	SNR	improvement	properties,
we	address	related	topics	such	as	the	use	of	staggered	PRI	waveforms	with	MTI,	MTI	velocity



response,	 phase	 noise,	 analog-to-digital	 converter	 (ADC)	 quantization,	 and	 the	 transient
response	 of	 signal	 processors.	 Toward	 the	 end	 of	 the	 chapter,	 we	 develop	 a	 simple	 chaff
clutter	model	and	address	the	performance	of	MTI	and	Doppler	processors	in	the	presence	of
chaff.

It	appears	that	the	first	use	of	signal	processing	to	mitigate	clutter	occurred	during	World
War	II	when	radar	operators	noted	they	could	distinguish	targets	from	clutter	by	the	fluttering
of	the	clutter	return	on	an	A-scope,	which	came	to	be	known	as	the	butterfly	effect.	This	effect
was	 incorporated	 into	 a	 target-in-clutter	 detection	 system	 that	 came	 to	 be	 known	 as	 a
noncoherent	MTI	[8].	In	the	mid-1940s,	Alfred	G.	Emslie	invented	coherent	MTI,	for	which	he
was	granted	several	patents	[9–18].

Harry	 B.	 Smith,	 who	 was	 the	 president	 of	 the	 Westinghouse	 Defense	 and	 Electronics
Systems	 Center	 for	 10	 years,	 was	 inducted	 into	 the	 Innovation	Hall	 of	 Fame	 in	 1987	 “for
invention	 of	 pulsed	 Doppler	 radar	 and	 other	 innovations	 in	 airborne	 electronics”	 [19].
Likewise,	 Smith,	 Leroy	C.	 Perkins,	 and	David	H.	Mooney	were	 awarded	 the	 IEEE	 Pioneer
Award	 in	 1984	 “for	 Contributions	 to	 the	 development	 of	 the	 high-repetition-rate	 Airborne
Pulse	Doppler	Radar”	[20,	21].	Smith,	Perkins,	and	Mooney	were	awarded	patents	for	a	“Pulse
Doppler	Radar	System”	in	1961	and	1962	[22,	23].

It	is	not	clear	who	invented	the	MTD	processor.	In	2005,	Charles	E.	Muehe	was	awarded	the
IEEE	Aerospace	and	Electronic	Systems	Society	(AESS)	Pioneer	Award	“for	the	invention	of
the	Moving	Target	Detector	(MTD)	digital	signal	processor	for	aircraft	surveillance	radar”
[24–26].	However,	a	1977	MIT	Lincoln	Laboratories	report	seems	to	indicate	that	Ronald	S.
Bassford,	 William	 Goodchild,	 and	 Alfred	 de	 la	 Marche	 developed	 it	 to	 solve	 problems
associated	with	air	route	surveillance	radars	(ARSRs)	[27].

13.2 CLUTTER	MODEL

13.2.1 Ground	Clutter	Radar	Cross	Section	(RCS)	Model

A	drawing	we	will	use	to	develop	the	ground	clutter	model	is	shown	in	Figure	13.1	[28;	29,	p.
63;	 30;	 31,	 p.	 16–22;	 32].	 The	 top	 drawing	 represents	 a	 top	 view	 and	 the	 bottom	 drawing
represents	a	side	view.	For	the	initial	development	of	the	ground	clutter	model,	we	assume	the
earth	is	flat.	Later,	we	will	add	a	correction	factor	to	account	for	the	fact	that	the	earth	is	not
flat.	The	clutter	model	we	develop	is	 termed	a	smooth	earth	clutter	model,	which	means	we
are	not	modeling	specific	terrain	features	such	as	trees,	rocks,	buildings,	hills,	and	valleys.

The	triangle	and	semicircle	on	the	left	of	Figure	13.1	represents	the	radar,	which	is	located
a	height	of	h	above	the	ground.	When	we	discuss	radar	height,	we	refer	 to	the	height	 to	the
phase	center	of	the	antenna.	The	phase	center	is	usually	taken	to	be	the	location	of	the	feed	for
a	reflector	antenna	or	the	center	of	the	array	for	a	phased	array	antenna	[33–35].

The	dashed	lines	on	the	side	and	top	views	denote	the	3-dB	boundaries	of	the	antenna	main
beam.	The	angles	εB	and	αB	denote	the	elevation	and	azimuth	3-dB	beamwidths,	respectively.
The	horizontal	line	through	the	antenna	phase	center	is	a	reference	line.	It	is	not	the	elevation



angle	to	which	the	main	beam	is	steered.	The	target	is	located	at	a	range	of	R	and	an	altitude
of	hT.	The	elevation	angle	from	the	antenna	phase	center	to	the	target	is

Figure	13.1	Geometry	for	a	ground	clutter	model.

In	the	geometry	of	Figure	13.1,	the	clutter	patch	of	interest	is	also	located	at	a	range	of	R
from	the	radar.	In	most	applications,	this	is	the	region	of	clutter	that	is	of	interest	because	we
are	concerned	with	 the	clutter	 that	competes	with	 the	 target.	However,	 for	some	cases,	most
notably	MPRF	 and	HPRF	 pulsed	Doppler	 radars,	 the	 ground	 clutter	 that	 competes	with	 the
target	will	not	be	at	the	target	range,	but	at	a	much	shorter	range.

The	width	of	the	clutter	patch	along	the	R	direction	is	ΔR.	In	most	cases,	ΔR	is	taken	as	the
range	 resolution	 of	 the	 radar	 because	 almost	 all	 signal	 processors	 quantize	 the	 incoming
signal	into	range	cells	that	have	a	width	of	one	range	resolution	cell.	In	some	cases	a	range
resolution	 cell	 is	 large	 enough	 to	 cause	 problems	with	 the	 accuracy	 of	 the	 ground	 clutter
model.	 In	 this	 case,	 ΔR	 is	 taken	 to	 be	 smaller	 than	 a	 range	 resolution	 cell,	 and	 the	 signal
processor	calculations	must	include	integration	of	clutter	power	across	ΔR	intervals.

The	ground	region	that	extends	over	ΔR	at	a	range	of	R	is	an	annulus	centered	on	the	radar.



This	 is	 depicted	 in	 the	 top	 view	where	 a	 portion	 of	 the	 annulus	 is	 shown.	 For	 purposes	 of
calculating	the	RCS	of	the	ground	in	this	annulus,	it	is	divided	into	two	regions.	One	of	these
is	termed	the	main	beam	clutter	region	and	represents	the	ground	area	illuminated	by	the	main
beam	of	the	radar.	The	other	is	termed	the	sidelobe	clutter	region	and	represents	the	ground
area	 illuminated	 by	 the	 sidelobes	 of	 the	 radar.	We	will	 assume	 the	 sidelobe	 clutter	 region
extends	from	−π/2	to	π/2.	In	other	words,	we	assume	there	are	no	clutter	returns	from	the	back
of	the	radar.1	As	implied	by	the	statements	above,	the	ground	clutter	model	incorporates	the
transmit	 and	 receive	 antenna	 beam	 characteristics.	 In	 this	 development,	 we	 assume	 a
monostatic	radar	that	uses	the	same	antenna	for	transmit	and	receive.

The	size	of	the	clutter	RCS	will	depend	upon	the	size	of	the	ground	area	illuminated	by	the
radar	(the	region	discussed	in	the	previous	paragraph)	and	the	reflectivity	of	the	ground.	We
denote	 this	 reflectivity	by	 the	variable	σ0.	Consistent	with	 the	previous	discussions	of	 target
RCS,	we	can	think	of	clutter	reflectivity	as	 the	ability	of	 the	ground	to	absorb	and	reradiate
energy.	 In	general,	clutter	 reflectivity	depends	upon	the	 type	of	ground	(soil,	water,	asphalt,
gravel,	 sand,	 grass,	 or	 trees)	 and	 its	 roughness.	 It	 also	 depends	 upon	moisture	 content	 and
other	 related	 phenomena.	 Finally,	 it	 also	 depends	 upon	 the	 angle	 to	 the	 clutter	 patch	 (εR	 in
Figure	13.1).	Detailed	discussions	of	σ0	can	be	found	in	[1,	2,	31,	33,	36–44].

For	the	analyses	we	consider	in	this	book,	we	will	use	three	values	for	σ0:	σ0	=	−20	dB,	σ0	=
−30	 dB,	 and	σ0	 =	−40	dB	 (Table	13.1).	 These	 are	 fairly	 standard	 values	 currently	 used	 for
radars	that	operate	in	the	5-	to	10-GHz	range.	The	first	case	corresponds	to	moderate	clutter
and	 would	 be	 representative	 of	 trees,	 fields,	 and	 choppy	 water.	 The	 second	 value	 is	 light
clutter	and	would	be	representative	of	sand,	asphalt,	and	concrete.	The	third	value	is	very	light
clutter	and	would	be	representative	of	smooth	ice	and	smooth	water	[2,	28–30,	32,	39].

With	the	above,	we	can	write	the	RCS	of	the	main	beam	ground	area	as

where	the	various	parameters	are	shown	on	Figure	13.1.	An	assumption	in	this	equation	is	that
the	azimuth	beamwidth,	αB,	 is	small	so	 that	 the	arc	subtended	by	αB	can	be	assumed	 to	be	a
straight	line	that	is	perpendicular	to	Δd.

From	 the	bottom	part	of	Figure	13.1,	we	note	 that	 the	 clutter	 area	 is	 not	 located	 at	 beam
center.	This	means	the	clutter	patch	is	not	being	fully	illuminated,	in	elevation,	by	the	antenna
main	beam.	To	account	for	this,	we	include	a	loss	term	(actually,	a	gain	that	is	less	than	unity)
that	depends	upon	the	normalized	directive	gain	pattern	of	the	antenna.	One	approach	is	to	use
a	normalized	version	of	directive	gain	pattern	of	the	antenna,	G(α,ε),	evaluated	at	α	=	0	[see
(12.40)	 of	 Chapter	 12].	 An	 alternate	 is	 to	 use	 a	 generic	 pattern	 that	 provides	 a	 reasonable
approximation	of	the	actual,	(normalized),	pattern,	at	least	in	the	main	beam	[2,	p.	150;	28;	29,
pp.	 147–148].	 One	 of	 these	 generic	 patterns	 is	 the	 pattern	 of	 an	 antenna	 with	 uniform
illumination.	 In	 the	 main	 beam	 region,	 this	 pattern	 is	 a	 sinc2(x)	 function	 and	 leads	 to	 the
generic	form



Another	generic	form	that	works	reasonably	well	is	the	Gaussian	approximation

In	 (13.3)	 and	 (13.4),	 ε	 is	 the	 elevation	 angle	 off	 of	 beam	 center	 and	 εB	 is	 the	 elevation
beamwidth	 of	 the	 antenna.	 Showing	 that	 the	 above	 models	 are	 reasonably	 good
approximations	 in	 the	mainbeam	 region	 is	 left	 as	 an	 exercise	 (Exercise	1).	Of	 the	 two,	 the
second	is	easier	to	use	because	it	is	not	a	piecewise	function.

Table	13.1
Ground	Clutter	Backscatter	Coefficients

Backscatter	Coefficient,	σ0	(dB) Comment

−20 Moderate	clutter—trees,	fields,	choppy	water

−30 Light	clutter—sand,	asphalt,	concrete

−40 Very	light	clutter—smooth	ice,	smooth	water

With	this,	we	can	modify	the	equation	for	the	main	beam	clutter	as

where	εo	is	the	elevation	pointing	angle	of	the	main	beam	and	εR	=	sin−1(h/R)	is	the	angle	to
the	ground	patch.	In	some	applications,	we	assume	the	main	beam	is	pointed	at	the	target	so
that	εo	=	εT.

Equation	 (13.5)	 carries	 the	 assumption	 that	 the	 transmit	 and	 receive	 elevation	 antenna
patterns	 are	 the	 same.	 If	 they	 are	 different,	we	would	 replace	G2(ε)	with	GT(ε)GR(ε),	 where
GT(ε)	and	GR(ε)	are	the	transmit	and	receive	antenna	patterns.

The	basic	approach	for	sidelobe	clutter	is	the	same	as	for	the	main	beam	clutter,	but	in	this
case	we	need	to	account	for	the	fact	that	the	sidelobe	clutter	represents	ground	areas	that	are
illuminated	 through	 the	 transmit	 antenna	 sidelobes	 and	 whose	 returns	 enter	 through	 the
receive	antenna	sidelobes.	The	ground	area	of	concern	is	the	semicircular	annulus	excluding
the	mainbeam	region.	Relatively	speaking,	 the	ground	area	illuminated	by	the	main	beam	is
small	 compared	 to	 the	 ground	 area	 illuminated	 by	 the	 sidelobes.	 Because	 of	 this,	 it	 is
reasonable	to	simplify	calculations	by	including	the	main	beam	area	in	with	the	sidelobe	area.
With	this,	the	RCS	of	the	clutter	in	the	sidelobe	region	is



where	SL	is	the	average	antenna	sidelobe	level	relative	to	the	main	beam	peak.	A	typical	value
for	SL	is	−30	dB	or	0.001.	However,	it	could	be	as	low	as	−40	to	−45	dB	for	“low	sidelobe”
antennas.	The	equation	above	 includes	 (SL)2	 to	 account	 for	 the	 fact	 that	 the	 clutter	 is	 in	 the
sidelobes	 of	 the	 transmit	 and	 receive	 antenna.	 If	 the	 sidelobes	 of	 the	 transmit	 and	 receive
antennas	are	different,	we	would	use	SLT	×	SLR	instead	of	(SL)2.

To	 get	 the	 total	 clutter	 RCS	 from	 both	 the	 main	 lobe	 and	 the	 sidelobes,	 we	 assume	 the
clutter	 signals	 are	 random	 processes	 that	 are	 uncorrelated	 from	 angle	 to	 angle.	 (We	 also
assume	 the	 clutter	 signals	 are	uncorrelated	 from	 range	 cell	 to	 range	 cell.)	Since	 the	 clutter
signals	are	uncorrelated	random	processes,	and	since	RCS	is	indicative	of	energy	or	power,
we	can	get	the	total	clutter	RCS	by	adding	the	main	beam	and	sidelobe	RCSs.	Thus,

In	this	equation,	the	terms	d	and	∆d	are	related	to	range,	R,	and	range	resolution,	∆R,	by	d	=
RcosεR	and	∆d	=	∆R/cosεR	(see	Figure	13.1).	We	use	this	to	rewrite	(13.7)	as

For	the	final	step,	we	need	a	term	to	account	for	the	fact	that	the	earth	is	round	and	not	flat.
We	do	this	by	including	a	pattern	propagation	factor.	This	pattern	propagation	factor	allows
the	clutter	RCS	to	gradually	decrease	as	clutter	cells	move	beyond	the	radar	horizon.	David
Barton	performed	detailed	analyses	that	led	to	sophisticated	models	for	computing	the	pattern
propagation	effects	[1,	37,	38,	45].	He	also	provided	a	simple	approximation	that	works	well.
Specifically,	he	defined	a	loss	factor	as

where	Rh	is	the	range	to	the	radar	horizon	and	is	defined	as

with	RE	=	6,371,000	m	being	the	mean	radius	of	the	earth.	The	4/3	factor	in	the	above	equation
invokes	 the	 constant	 4/3	 earth	 model.	 This	 model	 states	 that,	 to	 properly	 account	 for
diffraction,	we	need	 to	 increase	 the	earth	 radius	 to	effectively	 reduce	 its	curvature.	The	4/3
earth	model	is	discussed	in	several	references	[1,	2,	46–49].	The	derivation	of	(13.10)	 is	 left
as	an	exercise	(Exercise	2).

If	we	combine	(13.9)	and	(13.8),	we	get



Figure	13.2	contains	a	plot	of	clutter	RCS	for	a	typical	scenario.	In	particular,	the	radar	uses
a	circular	beam	with	a	beamwidth	of	2°.	Thus,	αB	=	εB	=	2(π/180)	rad.	We	assume	a	sidelobe
level	of	SL	=	0.001	(−30	dB)	and	a	range	resolution	of	ΔR	=	150	m	(a	1-µs	pulse).	The	phase
center	 of	 the	 antenna	 is	 at	 h	 =	 6	 m.	 The	 three	 curves	 of	 Figure	 13.2	 correspond	 to	 beam
pointing	 angles	 (εo)	 of	 0,	 ½,	 and	 1	 beamwidth	 above	 horizontal.	 The	 clutter	 backscatter
coefficient	was	assumed	to	be	σ0	=	0.01	(−20	dB).

The	first	observation	from	Figure	13.2	is	that	the	ground	clutter	RCS	is	quite	large	for	low
beam	elevation	angles	and	short	ranges.	This	means,	for	low	altitude	targets	at	short	ranges
(less	than	about	30	km),	the	clutter	RCS	will	be	larger	than	typical	aircraft	targets,	which	have
RCSs	in	the	range	of	6	to	10	dBsm	[2,	30].	Thus,	unless	the	radar	includes	signal	processing
to	reduce	the	clutter	returns,	they	will	dominate	the	target	returns.	At	larger	elevation	angles,
the	 problem	 is	 less	 severe	 because	 the	 ground	 is	 no	 longer	 being	 illuminated	 by	 the	main
beam.

Figure	13.2	Ground	clutter	RCS	for	σ0	=	−20	dB.

The	 shape	 of	 the	 curves	 of	 Figure	 13.2	 requires	 some	 discussion.	 Examination	 of	 the
equation	for	clutter	RCS	indicates	that	the	numerator	term	increases	with	increasing	range	to
the	clutter.	However,	for	ranges	past	the	radar	horizon,	which	is	at	a	range	of	9.2	km	for	this
radar,	 the	pattern	propagation	 factor	 of	 (13.9)	 starts	 to	 predominate	 and	 reduces	 the	 clutter
RCS.	This	is	what	causes	the	curves	of	Figure	13.2	to	first	increase	and	then	decrease.

13.2.2 Ground	Clutter	Spectrum	Model

The	main	signal	characteristic	we	use	to	distinguish	clutter	from	targets	is	Doppler	frequency.
Because	of	this,	we	need	a	model	for	the	spectrum	of	signals	returned	from	clutter.



The	 simplest	 Doppler	 spectrum	 model	 for	 ground	 clutter	 is	 to	 assume	 the	 Doppler
frequency	 is	 zero.	However,	 this	 is	not	 strictly	correct	because,	 in	most	 cases,	 the	elements
that	make	 up	 ground	 clutter	 (leaves,	 grass,	 or	waves,	 for	 example)	 are	 in	motion	 and	 thus
have	a	nonzero	range	rate.	This	will	cause	the	Doppler	frequency	to	have	a	small	spread.	The
spread	is	important	because,	as	we	will	learn,	it	is	a	significant	factor	in	the	ability	of	some
signal	processors,	notably	MTI	processors,	to	reject	the	clutter.

Several	models	for	the	frequency	spectrum	of	ground	clutter	have	been	proposed	over	the
years	[2,	p.	152].	A	standard	model	used	in	many	texts	is	the	Gaussian	model,	defined	by

where	σf	=	2σv/λ	and	σv	is	the	velocity	spread	of	the	clutter,	in	m/s.	Skolnik	provides	values	of
σv	 for	 several	 environment	 and	 wind	 conditions	 [50].	 A	 sampling	 of	 these	 is	 contained	 in
Table	13.2.

The	 spectrum	 currently	 believed	 to	 be	 the	 best	 for	 land	 clutter	 was	 developed	 by	 MIT
Lincoln	 Laboratories	 as	 part	 of	 an	 extensive	 clutter	 characterization	 effort	 [27,	 39].	 The
Lincoln	Laboratories	tests	considered	an	environment	that	consisted	of	trees	and	“vegetation”
and	 gathered	 data	 at	 low	 elevation	 angles	 and	 several	 frequencies.	 A	 form	 of	 the	 model
presented	in	[51–53]	is

where	β	 is	a	parameter	 that	depends	on	wind	speed	and	r	 is	a	parameter	 that	apportions	 the
spectrum	between	the	spectral	line	at	f	=	0	and	the	spread	part	defined	by	the	exponential.	λ	is
the	wavelength	and	δ(f)	 is	 the	Dirac	 delta.	Table	13.3	 contains	 values	 of	β	 provided	 in	 [39,
51–53]	for	different	wind	speeds.	J.	Barrie	Billingsley	points	out	that	the	entries	for	the	first
three	wind	 conditions	 are	 based	 on	measurements,	 but	 the	 entries	 for	 gale	 force	winds	 are
estimates.	We	term	(13.13)	the	exponential	spectrum	model	in	this	book.

Table	13.2
Sample	Values	of	σv

Environment σv	m/s

Sparse	woods,	calm	winds 0.017

Wooded	hills,	20-knot	wind 0.22

Wooded	hills,	40-knot	wind 0.32
Source:	[50].

Table	13.3
Clutter	Spectrum	Shape	Parameters



Source:	[39,	p.	578].

Billingsley	provides	an	equation	for	r,	which	is	[39,	p.	580]

where	w	is	the	wind	speed	in	mph	and	fo	is	the	radar	carrier	frequency	in	GHz.

The	β	values	given	above	have	not,	to	the	authors’	knowledge,	been	extended	to	sea	clutter.
Skolnik	provides	a	related	parameter	that	we	might	use	to	infer	a	β	value	for	sea	clutter	[50].
Specifically,	 he	 provides	 a	 standard	 deviation	 parameter,	 σv,	 that	 is	 used	 in	 the	 Gaussian
clutter	spectrum	model.	That	parameter	has	the	units	of	m/s,	as	opposed	to	the	s/m	units	of	β.

Skolnik	 provides	 value	 of	σv	 =	 0.22	m/s	 for	 “wooded	 hills”	 in	 a	 20-knot	wind	 (23-mph
wind).	We	note	that	1/σv	=	4.55	s/m,	which	is	somewhat	close	to	the	value	of	5.2	to	5.8	listed	in
Table	13.3	for	wind	speeds	between	15	and	30	mph.	This,	and	a	comparison	of	units,	suggests
an	 inverse	 relation	 between	 β	 and	 σv.	 For	 sea	 clutter,	 Skolnik	 has	 values	 of	 σv	 that	 range
between	0.46	and	1.1	m/s.	If	we	use	the	inverse	relation	between	β	and	σv,	we	can	speculate	that
reasonable	values	of	β	for	sea	clutter	might	be	0.91	s/m	to	2.2	s/m.	We	might	further	speculate
that	 the	 lower	 value	 corresponds	 to	 a	 high	 sea	 state	 and	 the	 larger	 value	 corresponds	 to	 a
lower	sea	state.

In	addition	to	spectrum	spread,	sea	clutter	can	also	have	a	center	value	that	depends	on	wind
velocity	and	its	direction	relative	to	the	radar.	Nathanson	provides	a	chart2	that	shows	a	mean
velocity	of	3.4	m/s	for	sea	state	4	and	looking	directly	into	the	wind	[30,	p.	294].	He	indicates
that,	 depending	 upon	 look	 direction,	 this	mean	 velocity	 could	 vary	 anywhere	 between	−3.4
m/s	and	3.4	m/s	depending	on	the	direction	of	the	wind	relative	to	the	beam	direction.

An	implication	of	characterizing	the	clutter	spectral	properties	by	C(f)	is	that	the	clutter	is	a
wide-sense	stationary	(WSS)	random	process	[54,	55].	Also,	since

for	the	clutter	spectrum	models	of	(13.12)	and	(13.13)	(see	Exercise	4),	the	clutter	spectrum	is
normalized	to	unity	power.	To	get	the	actual	clutter	spectrum,	we	multiply	C(f)	by	the	clutter
power,	which	we	compute	from	the	clutter	RCS	and	the	radar	range	equation.

13.2.3 Rain	Clutter	RCS	Model



Figure	13.3	contains	a	sketch	of	the	geometry	we	use	for	the	rain	clutter	model.	We	term	the
volume	 of	 the	 elliptical	 cone	 frustum	 the	 main	 beam	 clutter	 volume,	 VCM,	 and	 use	 it	 to
compute	 the	 rain	 clutter	 RCS	 in	 the	main	 beam	 (the	main	 beam	 is	 represented	 by	 the	 two
slanted	lines).	If	we	assume	the	elevation	and	azimuth	beamwidths	αB	and	εB,	are	small,	we	can
treat	the	cone	frustum	as	an	elliptical	cylinder	and	compute	its	volume	as3

Similar	 to	 the	ground	clutter	case,	 the	rain	RCS	(due	 to	rain	 in	 the	main	beam	region)	 is
determined	by	multiplying	VCM	by	a	rain	reflectivity,	or	backscatter	coefficient,	η.	That	is

Figure	13.3	Geometry	for	rain	clutter	model.

Table	13.4

Example	Rain	Reflectivity	Values	[dB(m2/m3)]

Barton	provides	an	equation	for	η	as



where	r	is	the	rainfall	rate	in	mm/hr	and	λ	is	the	radar	wavelength	in	m	[29,	p.	341].	Several
examples	of	η	based	on	this	equation	are	given	in	Table	13.4.

Figure	 13.4	 contains	 plots	 of	 σC	 versus	 R	 for	 a	 rainfall	 rate	 of	 4	 mm/hr,	 the	 four
frequencies	of	Table	13.4,	αB	=	εB	=	2°,	and	ΔR	=	150	m.	Unlike	ground	clutter	RCS,	which
increased	 then	 decreased	 with	 increasing	 range,	 rain	 clutter	 RCS	 continues	 to	 increase	 as
range	increases.	This	makes	sense,	as	VCM	increases	with	increasing	range.

Two	assumptions	not	previously	mentioned	are	that	 the	rain	RCS	model	assumes	the	rain
occupies	the	entire	main	beam	and	that	it	is	present	at	all	ranges.	The	assumption	that	the	rain
occupies	 the	 entire	 main	 beam	 may	 be	 reasonable	 for	 pencil	 beam	 radars	 since	 their
beamwidths	 are,	 at	 most,	 a	 few	 degrees.	 For	 fan	 beam	 radars,	 this	 assumption	 becomes
questionable.	Also,	David	Barton	noted	that,	in	fact,	the	RCS	would	eventually	decrease	when
the	 top	 of	 the	 beam	moves	 above	 the	 top	 of	 the	 rain.	To	 account	 for	 this,	 he	 states	 that,	 in
(13.16),	εBR	should	be	replaced	by	hm	−	h0	where	h0	=	R2/2(4RE/3)	is	the	altitude	at	which	the
rain	is	at	the	horizon	for	the	range	R	and	hm	is	the	maximum	rain	altitude.	He	states	that	hm	is
on	the	order	of	a	few	kilometers.	To	avoid	a	negative	area,	we	suggest	using	the	maximum	of
hm	−	h0	and	zero.

The	 assumption	 that	 the	 rain	 is	 present	 at	 all	 ranges	 is	 also	 questionable.	 However,	 for
preliminary	investigations,	it	is	probably	a	reasonable	assumption	since	it	would	represent	a
worst-case	scenario	in	terms	of	the	clutter	rejection	the	signal	processor	must	provide.

Figure	13.4	Rain	clutter	RCS	plots	for	4	mm/hr	rainfall	rate.



Figure	13.5	Side	view	of	hemispherical	shell	used	to	compute	sidelobe	rain	clutter	RCS.

Another	assumption	of	the	above	formulation	of	σC	is	that	it	includes	only	main	beam	rain
clutter.	 In	general,	 this	 is	 a	good	assumption.	To	 support	 this	 claim,	we	consider	 a	 specific
example.

Suppose	 the	 antenna	 has	 a	 uniform	 sidelobe	 level	 of	 SL	 over	 a	 hemisphere	 of	 radius	R
centered	on	 the	 radar.	Further	 suppose	 rain	 is	present	over	 the	volume	encompassed	by	 the
hemisphere,	and	that	the	backscatter	coefficient,	η,	is	the	same	throughout	the	volume.	We	are
interested	in	the	rain	RCS	in	a	hemispherical	shell	with	a	width	of	ΔR	located	at	a	range	of	R.
A	cross	section	of	the	shell	is	depicted	in	Figure	13.5.

The	approximate	volume	of	the	hemispherical	shell	is	(see	Exercise	6)

Thus,	the	RCS	of	the	rain	in	the	shell	is

where	we	included	SL	to	reflect	the	fact	that	the	power	(energy)	returned	from	the	rain	in	the
shell	is	in	the	sidelobes	of	the	transmit	and	receive	antenna	radiation	patterns.

The	ratio	of	sidelobe	to	main	lobe	RCS	is

As	 a	 specific	 example,	 we	 consider	 the	 case	where	 the	 sidelobe	 levels	 of	 the	 transmit	 and
receive	antennas	are	uniformly	30	dB	below	the	main	beam	peak	(SL	=	10−3)	and	εB	=	αB	=	2°.
With	this,	we	get



In	other	words,	the	RCS	of	the	rain	clutter	in	the	shell	is	well	below	the	main	beam	RCS.	We
note	 that	 (13.21)	has	assumed	 the	rain	exists	at	all	altitudes	and	ranges,	which	 is	clearly	not
realistic.	 Our	 only	 purpose	 for	 including	 it	 is	 to	 point	 out	 that,	 generally,	 the	 major
contributor	to	rain	RCS	is	the	rain	in	the	main	beam.	If	the	geometry	is	such	that	the	rain	is	not
in	the	main	beam,	the	major	contributor	becomes	rain	in	the	sidelobes.

13.2.4 Rain	Clutter	Spectral	Model

According	 to	 several	 sources	 [1,	 30,	 56],	 the	 spectrum	width	 of	 rain	 clutter	 depends	 upon
several	factors	including	wind	shear,	turbulence,	fall	velocity	of	the	rain,	and	variation	in	the
fall	velocity	across	the	main	beam.	Of	these,	wind	shear	appears	to	be	the	main	contributor	to
the	width	of	the	spectrum.	Fred	Nathanson	provides	an	equation	for	wind	shear	as4

where	Rkm	is	range	in	km	and	k	=	4.0	m/(sec-km)	[30].	Nathanson	states	that	this	value	of	k	is
averaged	over	all	azimuths.	He	goes	on	to	say	that	σvshear	 is	 limited	to	6	m/s	for	elevation
beamwidths,	 εB,	 less	 than	 2.5°.	 In	 (13.23),	 σvshear	 is	 the	 standard	 deviation	 of	 a	 Gaussian
spectrum	 model.	 Nathanson	 indicates	 that	 the	 other	 three	 contributors	 (turbulence,	 fall
velocity,	and	fall	velocity	variation),	combined,	are	in	the	vicinity	of	1.5	m/s.

Nathanson	provides	graphs	of	measured	data	 that	 indicate	 the	 total	 rain	velocity	 standard
deviation,	σvrain,	is	between	0.5	and	1.5	m/s	for	ranges	below	about	20	km	and	between	2	and	3
m/s	for	ranges	of	about	60	km.	In	another	chart	corresponding	to	a	high	shear	case,	he	shows
σvrain	 values	 that	 vary	 between	 1	 and	 5	 m/s,	 independently	 of	 range,	 over	 a	 0-	 to	 100-km
range.	Barton	[1]	shows	measured	data	for	a	2-D	search	radar	that	indicates	a	σvrain	of	5	m/s.
These	values	are	summarized	in	Table	13.5.

σvrain	 is	 the	 standard	 deviation	 for	 a	 Gaussian	 spectrum	 model.	 Since	 there	 is	 no
justification	for	using	an	exponential	spectrum	model	for	rain,	it	should	probably	not	be	used.

Table	13.5
Sample	Values	of	σvrain	From	Several	Sources

σvrain	m/s Source

<6 Nathanson	[30]

0.5	to	1.5	at	20	km	range Nathanson	Graph	[30]

2	to	3	at	60	km	range Nathanson	Graph	[30]

1	to	5	for	ranges	between	0	and	100	km Nathanson	[30]

5 Barton	[1]

1.8	to	4 Skolnik	[50]

Rain	 can	 have	 a	mean	 velocity	 that	 depends	 on	wind	 velocity	 and	 direction	 of	 the	wind



relative	to	the	beam	direction.	Nathanson	has	an	example	that	shows	peak	mean	velocities	of
about	30	m/s	at	moderate	altitudes	[30,	p.	294].

13.3 SIGNAL	MODEL

We	will	evaluate	the	clutter	rejection	properties	of	signal	processors	using	frequency	domain
techniques.	To	do	so,	we	need	to	develop	equations	for	the	signal,	clutter,	and	noise	spectra	at
the	input	to	the	signal	processor.	As	we	will	show,	these	spectra	will	depend	not	only	on	the
spectra	of	the	signal,	clutter,	and	noise,	but	also	on	other	radar	properties	such	as	phase	noise,
antenna	scanning,	the	matched	filter,	and	the	sampling	(or	ADC)	operation.

To	 develop	 the	 required	 spectrum	 models,	 we	 will	 trace	 a	 signal	 from	 its	 generation,
through	the	transmitter	and	antenna,	to	the	target	or	clutter,	back	to	the	antenna,	and	through
the	receiver,	matched	filter,	and	sampler	(or	ADC).	As	we	will	see,	 the	various	components
indicated	above	influence	the	spectrum	at	the	input	to	the	signal	processor.

13.3.1 Signal	Model	Generation

A	simplified	block	diagram	of	a	radar	transmitter	and	receiver	is	shown	in	Figure	13.6.	The
block	diagram	contains	only	the	elements	essential	 to	our	development.	Specifically,	 it	does
not	 contain	 any	 of	 the	 IF	 amplifiers	 and	 filters,	 nor	 the	 mixers	 needed	 to	 upconvert	 and
downconvert	the	various	signals,	except	for	the	STALO	(STAble	Local	Oscillator),	which	we
need	 to	 include	because	of	phase	noise.	We	have	not	 lost	any	generality	with	 this	 technique
because	 we	 will	 use	 normalized,	 complex	 signal	 notation.	 This	 allows	 us	 to	 ignore	 IF
processes.

Figure	13.6	Transmitter,	receiver,	and	signal	processor.

Complex	signal	notation	has	an	advantage	of	being	easy	to	manipulate	since	the	signals	are
represented	 by	 complex	 exponentials	 rather	 than	 sines	 and	 cosines.	 Operations	 such	 as
filtering,	sampling,	and	transforms	are	treated	the	same	with	complex	signals	and	real	signals.
We	must	take	care	when	using	complex	signals	in	nonlinear	operations	such	as	mixing.	For
example,	in	the	transmit	mixer	of	Figure	13.6	we	used	vLO(t),	whereas	on	 the	receive	mixer
we	used	its	conjugate,	v*LO(t).	We	knew	we	needed	 to	do	 this	based	on	real	signal	analyses.



Specifically,	 we	 performed	 real	 signal	 analyses	 and	 used	 the	 results	 to	 determine	 what
complex	signal	operations	we	needed	to	perform.

In	Figure	13.6,	vp(t)	is	the	pulse	train	and	is	a	complex,	baseband	signal.	This	means	that	its
energy,	or	power,	is	concentrated	around	0	Hz,	as	opposed	to	some	IF.	As	a	note,	signals	that
have	a	Doppler	frequency	are	usually	considered	baseband	signals,	even	though	their	energy
is	not	truly	concentrated	around	0	Hz.

The	typical	vp(t)	of	interest	is	a	sequence	of	rectangular	pulses	with	a	width	of	τp	and	a	PRI
of	T.	vp(t)	could	consist	of	a	burst	of	pulses	or	a	semi-infinite	string	of	pulses,	depending	on
the	 radar	 and	 the	waveform.	 In	an	older,	dish	 type	of	 radar	 that	 tracks	a	 single	 target,	vp(t)
would	consist	of	a	semi-infinite	string	of	pulses.	In	phased	array,	multifunction	radars,	vp(t)
would	contain	a	burst	of	tens	to	hundreds	of	pulses.

A	graphical	representation	of	vp(t)	(actually	|vp(t)|)	is	shown	in	Figure	13.7.

Figure	13.7	Depiction	of	|vp(t)|.

In	equation	form,	vp(t)	is

where	δ(t)	 is	 the	Dirac	 delta	 and	*	 denotes	 convolution.	The	 summation	notation	denotes	 a
summation	over	the	number	of	pulses	that	make	up	vp(t)—that	is,	the	number	of	pulses	in	the
burst.

The	form	of	vp(t)	implies	that	the	pulses	are	unmodulated.	A	more	general	form	would	be

where	p(t)	 is	 a	 complex	 signal	 notation	of	 a	 complicated	waveform	 such	 as	 a	 phase-coded
pulse	or	an	LFM	pulse.

The	STALO	signal,	vLO(t),	is	of	the	form

In	(13.26),	 fc	=	ωc/2π	 is	 the	carrier	 frequency.	ϕ(t)	 is	 termed	 the	phase	noise	 [57–61]	on	 the



STALO	signal	and	represents	the	instability	of	the	oscillator	that	generates	the	STALO	signal.
As	implied	by	its	name,	ϕ(t)	is	a	random	process	and	is	such	that	exp[jϕ(t)]	is	WSS.	We	will
address	 phase	 noise	 later.	 Phase	 noise	 is	 included	 because	 it	 is	 often	 a	 limiting	 factor	 on
clutter	attenuation	capabilities	of	the	signal	processor.

In	most	radars,	vLO(t)	also	includes	an	amplitude	noise	component	such	that

However,	A(t)	is	usually	made	very	small	by	the	radar	designer	and	is	normally	considered	to
have	a	much	smaller	influence	on	signal	processor	performance	than	ϕ(t).	For	this	reason,	it
is	almost	always	ignored	in	signal	processor	analyses.	Having	said	this,	it	should	be	noted	that
modern	STALOs	are	becoming	so	stable	 that	 the	amplitude	noise	may	soon	overtake	phase
noise	as	the	limiting	factor	in	signal	processor	performance	[62–68].5

vT(t)	is	the	signal	at	the	transmitter	output	and	is	given	by

vS(t)	is	a	term	we	include	to	account	for	the	fact	that	the	antenna	may	be	scanning	(which	is
generally	 taken	 to	mean	 the	 beam	 is	 rotating	 horizontally,	 as	 in	 a	 search	 radar).	 If	we	 are
considering	 a	 tracking	 radar	 or	 a	 phased	 array	 radar	 that	 moves	 its	 beam	 in	 steps	 and
transmits	a	burst	of	pulses	at	each	beam	position,	vS(t)	=	1.	A	standard	form	of	vS(t)	 for	 the
scanning	case	is	[69,	p.	134]

where

TSCAN	 is	 the	 scan	 period	 (in	 seconds)	 and	αB	 is	 the	 azimuth	 beamwidth	 (in	 radians).	 If	 the
antenna	is	scanning	in	elevation	instead	of	azimuth,	we	would	replace	αB	with	εB,	the	elevation
beamwidth.	The	form	of	(13.29)	is	based	on	the	antenna	pattern	model	of	(13.4).

In	 practice,	 vS(t)	 is	 a	 periodic	 function	with	 a	 period	 of	TSCAN.	 However,	 since	 the	 time
period	of	 interest	 in	 the	 signal	processor	 is	 small	 relative	 to	TSCAN,	 it	 is	 assumed	 the	 radar
beam	scans	by	the	target	only	one	time.	The	time	period	of	interest	in	the	signal	processor	is
the	coherent	processing	interval	(or	CPI).

vobj(t)	is	the	object	signal	and	is	our	means	of	capturing	the	power	spectrum	properties	of
the	clutter	or	target.	vobj(t)	is	a	random	process	and	is	assumed	to	be	WSS.6	For	clutter	we	use



vobj(t)	=	C(t)	and	for	targets	we	use	vobj(t)	=	T(t)	where	T(t)	represents	the	target	signal.

The	spectrum	of	vobj(t)	is	given	by

where

is	the	autocorrelation	of	vobj(t).

For	clutter,	we	replace	Vobj(f)	by	C(f)	where	C(f)	is	given	by	(13.12)	or	(13.13).	For	targets,
we	replace	Vobj(f)	with

That	 is,	we	 assume	 the	 target	 is	 represented	 by	 a	 single	 spectral	 line	 at	 the	 target	Doppler
frequency	of	fd.	As	discussed	in	Chapter	3,	we	normally	assume	the	target	signal	is	a	random
process.	In	this	chapter,	we	further	assume	it	is	WSS.

To	complete	our	definitions,	vrec(t)	is	the	received	signal	after	it	goes	through	the	antenna,
vm(t)	is	the	output	of	the	receiver ’s	mixer,	and	vMF(t)	is	the	matched	filter	output.	vo(t)	is	the
sampled	version	of	vMF(t)	 and	 is	 the	 signal	 that	 goes	 to	 the	 signal	 processor.	The	matched
filter	is	usually	matched	to	a	single	pulse	of	the	original	pulse	train,	vp(t).

13.3.2 Signal	Analysis

We	now	want	to	develop	an	equation	for	vo(t)	and,	ultimately,	 its	power	spectrum,	So(f).	We
start	our	analysis	by	noting	that	the	mixer	is	a	multiplication	process.	Thus,	the	signal	sent	to
the	antenna	is

If	 the	 antenna	 is	 scanning,	 its	 pattern	modulates	 the	 amplitude	 of	 vT(t).	We	model	 this	 as	 a
multiplication	of	vT(t)	by	vS(t).	Thus,	the	signal	that	leaves	the	antenna	is

Recall	that	we	set	vS(t)	=	1	if	we	consider	the	tracking	problem	or	a	phased	array	where	the
beam	is	fixed	during	the	CPI.

After	 the	 signal	 leaves	 the	 antenna,	 it	 propagates	 a	distance	of	R	 to	 the	 object	 (clutter	 or



target).	We	represent	this	propagation	by	incorporating	a	delay,	which	we	denote	as	τd/2,	into
vantT(t).	We	should	also	include	an	attenuation	that	depends	on	R.	However,	we	will	ignore	it
for	now.	We	will	consider	the	actual	power	in	the	clutter	and	target	signal	at	a	later	time.

With	the	above,	the	signal	that	arrives	at	the	object	is

The	 object	 “reflects”	 the	 signal	 back	 to	 the	 radar	 and	 imposes	 its	 temporal,	 and	 spectral,
characteristics	 on	 the	 reflected	 signal.	We	 represent	 this	 operation	by	multiplying	vCT(t)	 by
vobj(t),	the	function	that	we	use	to	represent	the	temporal	properties	of	the	object.	We	represent
the	operation	by	multiplication	because	the	interaction	of	the	signal	with	the	clutter	(or	target)
is	essentially	a	modulation	process.	We	learned	this	in	Chapter	1	when	we	found	the	motion	of
a	target	caused	a	shift	in	the	frequency	of	the	signal	(Doppler	shift)	and	the	amplitude	of	the
return	signal	was	a	function	of	the	target	RCS	[70].

The	signal	reflected	by	the	object	is

and	the	signal	at	the	receive	antenna	is

This	signal	next	picks	up	the	scan	modulation	and	is	then	heterodyned	by	the	receiver	mixer
to	produce	the	matched	filter	input,	vm(t).	In	equation	form,

We	now	want	 to	 study	and	manipulate	 this	equation.	We	start	by	 simplifying	 the	equation
and	making	some	approximations.	Since	the	antenna	will	not	move	much	over	the	round	trip
delay,	τd,	we	can	assume	vS(t)	does	not	change	much	over	τd.	This	means	vS(t	 −	 τd)	≈	vS(t).
With	this	we	get

The	output	of	the	matched	filter	is



where	 m(t)	 is	 the	 matched	 filter	 impulse	 response.	 Finally,	 the	 signal	 sent	 to	 the	 signal
processor	is

That	 is,	vo(t)	 is	 a	 sampled	 and	 held	 version	 of	 vMF(t).	As	 a	 note,	 in	 practice,	many	 sets	 of
vMF(kT)	will	be	sent	to	the	signal	processor—one	set	for	each	range	cell	of	interest.

The	 next	 step	 in	 the	 development	 is	 to	manipulate	 (13.40)	 through	 (13.42)	 to	 eventually
derive	an	equation	for	So(f).	The	development	is	very	interesting,	but	also	tedious	and	lengthy.
As	a	result,	we	have	moved	it	to	Appendix	13A.	We	present	the	final	results	here	and	use	them
to	begin	our	signal	processor	analyses.

The	spectrum	input	to	the	signal	processor	is

MF(f)	 is	 the	matched-range,	Doppler	cut	of	 the	cross	ambiguity	function	of	p(t)	and	q(t),
the	signal	to	which	the	matched	filter,	m(t),	is	matched	(see	Appendix	13A).	Specifically,

Typically,	q(t)	=	p(t).	 For	 uncoded	pulses,	 phase	 coded	 pulses,	 and	LFM	pulses	 that	 do	 not
incorporate	weighting	for	range	sidelobe	reduction,	MF(f)	is	of	the	form

where	τp	is	the	uncompressed	pulsewidth.

From	Appendix	13A,

where

and



The	overbar	in	(13.47)	denotes	the	averaged	autocorrelation	of	r(t)	and	is	necessary	because
the	 (generally)	 periodic	 nature	 of	 v2S(t)	 makes	 r(t)	 wide-sense	 cyclostationary	 (WSCS)
instead	of	simply	WSS	(see	Appendix	13A	and	Appendix	13B).

We	can	reasonably	assume	the	random	processes	vobj(t)	and	Φ(t)	are	independent	because
the	statistical	properties	of	one	has	no	influence	on	the	statistical	properties	of	the	other.	With
this,	we	can	write

where	Robj(τ)	is	given	by	(13.32)

and

is	the	averaged	time	autocorrelation	of	v2S(t).

Since	Rr(τ)	 is	 a	 product	 of	 autocorrelations,	 Sr(f)	 is	 the	 convolution	 of	 their	 associated
spectrums.	Thus

The	scanning	function	spectrum,	VS(f),	is	of	the	form	[1,	69]

where

If	the	radar	antenna	is	not	scanning,	VS(f)	reduces	to

For	 clutter,	 we	 replace	Vobj(f)	 by	C(f),	 where	C(f)	 was	 given	 earlier	 as	 [see	 (13.12)	 and



(13.13)]

for	the	Gaussian	spectrum	model	and

for	 the	 exponential	 spectrum	model.	 For	 targets,	we	 replace	Vobj(f)	 by	 the	 target	 spectrum
T(f),	where

and	fd	is	the	target	Doppler	frequency.

Φ(f)	represents	the	phase	noise	spectrum	of	the	radar.	As	shown	in	Appendix	13A,	we	can
write

where	∆ϕ(t)	is	the	total	transmit	and	receive	phase	noise	of	the	STALO.	We	note	that	∆ϕ(t)	 is
small	relative	to	unity	and	write	[57]

With	this	we	get	the	autocorrelation	of	vPH(t)	as

where	we	made	the	tacit	assumption	that	∆ϕ(t)	is	zero-mean	and	WSS.

From	(13.61)	we	get	the	power	spectrum	of	vPH(t)	as

If	we	assume	∆ϕ(t)	is	white,	we	get



where	Φ0	is	termed	the	phase	noise	sideband	level.	Later	we	will	consider	phase	noise	models
where	∆ϕ(t)	is	not	white	and	investigate	other	forms	of	Φ∆ϕ(f).

Φ0	is	caused	by	noise	in	the	STALO	circuitry.	In	dB	terms,	it	has	the	units	of	dBc/Hz,	which
means	 dB	 relative	 to	 the	 power	 in	 the	 carrier	 of	 the	 radar,	measured	 in	 a	 1-Hz	 bandwidth.
Rough	estimates	 for	Φ0	 are	−125	 to	−150	dBc/Hz	 for	 radars	 that	 use	STALOs	 that	 employ
very	 narrowband	 filters	 or	 phase-locked	 loops	 (such	 as	 klystron-based	 STALOs),	 −110	 to
−130	 dBc/Hz	 for	 radars	 that	 use	 frequency	 multiplied	 crystal	 or	 digitally	 synthesized
STALOs,	and	around	−90	dBc/Hz	for	radars	that	use	magnetron	transmitters.	To	repeat,	these
values	are	rough	estimates	because	the	field	of	STALOs	is	moving	rapidly,	especially	crystal-
based	STALOs.	Modern,	well-designed	radars	that	use	good	STALOs	have	phase	noise	values
in	 the	vicinity	of	−125	 to	−135	dBc/Hz.	Some	advanced	radar	designs	appear	 to	be	pushing
phase	noise	to	−150	to	−160	dBc/Hz.

If	we	ignore	phase	noise,	Φ(f)	reduces	to

δ(f)	is	the	center	spectral	line,	or	carrier,	and	represents	a	pure	sinusoid.

The	power	at	 the	output	of	 the	sampler,	which	is	also	the	input	to	the	signal	processor,	 is
given	by	(see	Appendix	13A)

If	we	reverse	the	order	of	summation	and	integration,	we	get

In	each	of	the	integrals,	we	make	the	change	of	variables	α	=	f	−	l/T	to	get

We	recognize	(13.67)	as	an	infinite	sum	of	nonoverlapping	integrals,	which	we	can	write	as

or,	using	(13.52),



where	we	changed	the	variable	of	integration	from	α	back	to	 f.	As	a	note,	because	power	is
preserved	in	the	sampling	process,	Po	is	also	the	power	at	the	output	of	the	matched	filter.

Po,	as	defined	by	(13.69),	is	a	normalized	power	because	each	of	the	spectra	in	the	brackets
has	an	area	of	unity	[if	we	ignore	the	phase	noise	part	of	Φ(f)].	To	properly	scale	this	power
for	clutter	and	targets,	we	need	to	associate	their	respective	powers	with	their	spectra.	If	we	do
this,	we	 get	 clutter	 and	 target	 power	 at	 the	matched	 filter	 output	 (which	 is	 the	 same	 as	 the
power	at	sampler	output	and	the	input	to	the	signal	processor)	as

and

where,	for	our	purposes,	PC	and	PS	are	scaling	factors	related	 to	 the	clutter	and	target	RCS
and	the	various	terms	of	the	radar	range	equation.	We	assign	values	to	these	scaling	factors
based	on	SNR	and	CNR,	which	we	can	compute	using	the	radar	range	equation.

We	can	write	the	SNR	and	CNR	at	the	output	of	the	matched	filter	as

Assuming	 we	 know	 PNo,	 we	 can	 solve	 (13.72)	 for	 PSo	 and	 PCo.	 Further,	 for	 the	 ideal
conditions	where	we	 assume	T(f)	=	C(f)	=	δ(f),	 the	 antenna	 is	 not	 scanning,	 and	we	 ignore
phase	 noise	 (all	 of	 which	 are	 tacit	 assumptions	 we	 make	 when	 we	 use	 the	 radar	 range
equation),	 the	 integrals	 of	 (13.70)	 and	 (13.71)	 are	 unity	 (see	 Exercise	 7).	 From	 this	 and
(13.72),	we	have

This	 gives	 us	 a	means	 of	 scaling	 clutter	 and	 signal	 power	 relative	 to	 some	 arbitrary	 noise
power	through	the	radar	range	equation.

13.4 SIGNAL	PROCESSOR	ANALYSES

13.4.1 Background



Now	that	we	have	equations	for	clutter	and	target	spectra	at	the	input	to	the	signal	processor,
we	turn	our	attention	to	considering	how	to	use	them	to	perform	signal	processor	analyses.
We	will	consider	 sampled	data	 signal	processors.	This	could	 include	signal	processors	 that
use	analog	components	or	signal	processors	that	are	implemented	with	digital	hardware.	The
characteristic	 that	 dictates	 we	 use	 sampled	 data	 techniques	 is	 the	 assumption	 that	 we	 are
dealing	with	pulsed	radars.	Because	of	this,	the	signals	into	the	signal	processor	are	sampled
once	per	PRI.	The	sampling	can	be	performed	by	a	 sample-and-hold	device	 for	processors
that	include	analog	devices,	or	an	ADC	for	processors	that	use	digital	signal	processing.	As	a
note,	 the	 sampler	 (sample-and-hold	or	ADC)	gathers	 several	 samples	within	every	PRI	 [71,
72].	 It	 gathers	 one	 sample	 for	 each	 range	 cell	 to	 be	 processed,	 and	 the	 signal	 processor	 is
replicated	 for	 every	 range	 cell	 that	 is	 processed.	 In	 some	 cases,	 notably	 with	 analog
processors,	 the	 signal	 processor	 replication	 may	 require	 replication	 of	 hardware.	 For
example,	 if	Nrngcell	 range	 cells	 are	 processed,	Nrngcell	 signal	 processors	may	 be	 needed.	 In
digital	 implementations,	 the	 replication	 is	 accomplished	 by	 time	 multiplexing.	 That	 is,	 a
single	digital	signal	processor	sequentially	processes	the	signals	from	each	range	cell.

We	initially	consider	digital	signal	processors	and	assume	we	have	a	signal	processor	with
a	z-transfer	function	of	H(z)	and	equivalent	frequency	response	of

We	 are	 using	 the	 form	of	 frequency	 response	 usually	 used	 in	 analyzing	 random	processes
because,	 by	 assumption,	 our	 clutter	 (and	 target)	 signal	 is	 a	 random	 process	 at	 the	 signal
processor	input.

The	standard	way	of	performing	digital	signal	processor	analyses	in	the	frequency	domain
is	to	find	So(f)	from	(13.43)	[with	the	appropriate	Sr(f)],	multiply	it	by	H(f),	and	integrate	the
result	over	(−1/2T,	1/2T]	to	find	the	power	at	the	output	of	the	signal	processor.	Recall	that	we
use	 this	 approach	 because,	 for	 digital	 signals,	 the	 only	 valid	 frequency	 region	 is	 (−1/2T,
1/2T].

As	we	did	to	find	Po,	we	propose	a	different	approach.	Rather	than	use	So(f)	over	 (−1/2T,
1/2T],	we	use	SMF(f)	=	MF(f)Sr(f)	over	(−∞,∞).	We	also	use	H(f)	over	(−∞,∞).	As	before,	we
multiply	these	and	integrate	to	find	the	power;	except	this	time	we	integrate	over	(−∞,∞).	With
this	approach,	we	are	“unfolding”	So(f)	and	H(f)	and	then	“refolding”	them	when	we	find	the
power.	This	approach	has	the	advantage	of	avoiding	the	So(f)	summation	of	(13.43).

We	digress	to	show	that	the	approach	we	propose	is	valid	in	terms	of	computing	the	power
out	 of	 the	 signal	 processor.	 We	 start	 by	 noting	 that	 the	 power	 at	 the	 output	 of	 the	 signal
processor	is	(see	Appendix	13A)



We	substitute	for	So(f)	and	bring	H(f)	inside	of	the	sum	to	yield

We	note	H(f)	is	periodic	with	a	period	of	1/T.	This	allows	us	to	replace	H(f)	with	H(f	−	 l/T)
since	H(f	 −	 l/T)	 =	H(f).	Doing	 this,	 and	 reversing	 the	 order	 of	 summation	 and	 integration,
results	in

In	each	of	the	integrals	of	the	sum,	we	make	the	change	of	variables	α	=	f	−	l/T	to	get

Finally,	we	recognize	the	above	as	an	infinite	sum	of	nonoverlapping	integrals,	which	we	can
write	as	a	single	integral	over	(−∞,∞).	That	is,

which	is	the	desired	result.	Note	that	we	changed	the	variable	of	integration	from	α	back	to	f.

13.4.2 Moving	Target	Indicator	(MTI)

We	are	now	ready	to	consider	our	first	signal	processor:	a	moving	target	indicator,	or	MTI.
An	MTI	is	a	highpass	digital	filter	designed	to	reject	clutter,	but	not	targets	that	are	moving.	A
block	 diagram	 of	 a	 two-pulse	MTI	 is	 shown	 in	 Figure	 13.8.	 It	 is	 termed	 a	 two-pulse	MTI
because	 it	 operates	 on	 two	 pulses	 at	 a	 time.	 It	 successively	 subtracts	 the	 returns	 from	 two
adjacent	pulses.	For	signal	processor	buffs,	it	is	a	first-order,	nonrecursive,	highpass,	digital
filter.

The	 block	with	 z−1	 represents	 a	 one	 PRI	 delay.	 In	modern	MTI	 processors,	 the	 delay	 is
implemented	using	digital	memory.	In	older	MTI	processors,	it	was	implemented	using	delay
lines.

A	time	domain	model	of	the	filter	is



Note	 that	 if	vo(k)	=	K,	 then	vSP(k)	=	vo(k)	−	vo(k	−	1)	=	K	−	K	=	0.	Thus,	 the	MTI	perfectly
cancels	DC,	or	zero-frequency	signals.

Taking	z-transform	of	both	sizes	of	(13.80),	we	get

which	we	solve	to	yield	the	filter	transfer	function

Figure	13.8	Two-pulse	MTI.

where	 we	 use	 the	 subscript	 U	 to	 denote	 the	 fact	 that	 the	 filter	 transfer	 function	 is
unnormalized.	We	will	 discuss	 normalization	of	 the	MTI	 shortly.	From	 (13.82)	we	 find	 the
filter	frequency	response	as

A	plot	of	HU(f)	is	shown	in	Figure	13.9	for	the	case	where	T	=	400	µs.

13.4.2.1 MTI	Response	Normalization

Before	we	turn	our	attention	to	computing	the	clutter	rejection	capabilities	of	an	MTI,	we	need
to	normalize	the	MTI	response	to	something.	Without	normalization,	it	is	difficult	to	quantify
the	clutter	rejection	capabilities	of	 the	MTI	because	we	have	no	reference.	The	instinct	 is	 to
say	the	clutter	rejection	is	a	measure	of	the	clutter	power	out	of	the	MTI	relative	to	the	clutter
power	into	the	MTI.	However,	we	can	make	this	anything	we	want	with	the	appropriate	MTI
gain.	To	avoid	this	problem,	we	normalize	the	MTI	so	that	it	has	a	noise	gain	of	unity.	In	this
way,	we	can	compute	the	clutter	rejection	by	comparing	the	CNR	at	the	output	of	the	MTI	to
the	CNR	at	the	input,	since	we	have	noise	power	as	a	common	reference.	In	a	similar	fashion,
we	will	be	able	to	characterize	the	SNR	improvement,	or	degradation,	through	the	MTI.



Figure	13.9	Frequency	response	of	an	unnormalized	two-pulse	MTI.

Figure	13.10	Normalized	frequency	response	of	a	2-pulse	MTI.

We	assume	 the	 noise	 into	 the	MTI,	n(k),	 is	 zero-mean	 and	white	with	 a	 power	 of	PNo	 =
E{|n(k)|2},	add	a	gain,	KMTI,	to	(13.80),	let	vo(k)	=	n(k),	and	write

As	a	 reminder,	PNo	 is	 the	noise	power	at	 the	 sampler,	 and	matched	 filter,	output.	The	noise
power	at	the	MTI	output	is

In	(13.85),	the	cross	expectations	on	the	third	line	are	zero	because	of	the	assumption	that	n(k)
is	white	and	zero-mean.	The	relation	E{KMTI2|n(k)|2}	=	E{KMTI2|n(k	−	1)|2}	comes	from	the



assumption	 that	 n(k)	 is	 WSS.	 From	 the	 above,	 note	 that,	 for	 PNout	 =	 PNo,	 we	 require	
.	If	we	apply	this	to	our	previous	derivation	of	H(f),	we	get

A	plot	of	the	normalized	H(f)	is	shown	in	Figure	13.10.

13.4.2.2 MTI	Clutter	Performance

Now	that	we	have	normalized	 the	MTI	response,	we	want	 to	compute	 its	clutter	attenuation
and	signal-to-clutter	 ratio	 (SCR)	 improvement.	 SCR	 is	 the	 ratio	 of	 signal	 (target)	 power	 to
clutter	 power.	 The	 IEEE	 Dictionary	 defines	 what	 we	 term	 SCR	 improvement	 as	 the	MTI
improvement	factor	[29,	73].

We	start	with	clutter	attenuation,	which	is	defined	as	the	ratio	of	the	CNR	at	the	input	to	the
MTI	to	the	CNR	at	the	output	of	the	MTI.	The	CNR	at	the	input	to	the	MTI	is	the	CNR	at	the
output	of	the	sampler	(and	matched	filter)	and	is	given	by	the	radar	range	equation.	The	CNR
at	the	output	of	the	MTI	is	the	clutter	power	out	of	the	(normalized)	MTI	divided	by	the	noise
power	at	the	output	of	the	MTI.	However,	the	noise	power	at	the	output	of	the	MTI	is	equal	to
the	noise	power	at	the	input.	Thus,	the	clutter	attenuation	is	the	ratio	of	the	clutter	power	at	the
input	to	the	MTI	and	the	clutter	power	at	the	output	of	the	MTI.	In	equation	form

where	the	last	equality	follows	from	(13.73).

The	clutter	power	at	the	output	of	the	MTI	is

where	SCr(f)	is	[see	(13.52)	and	(13.70)]

With	this

Comparing	(13.90)	to	(13.87),	we	have



This	means	we	only	need	compute

The	form	of	(13.92)	does	not	lend	itself	to	a	simple	closed	form	solution.	However,	we	can
obtain	approximate	closed	form	solutions	by	making	some	assumptions	about	VS	(f),	C(f)	and
Φ(f).	The	first	assumption	is:	we	temporarily	ignore	phase	noise	and	let	Φ(f)	=	δ(f).	We	will
include	phase	noise	later.

We	will	derive	approximate	values	for	CA	for	the	Gaussian	and	exponential	clutter	spectra
models	of	Sections	13.2.2	and	13.2.4.	The	Gaussian	model	 leads	 to	 the	CA	 formulation	 that
appears	in	most	radar	texts	that	discuss	MTI	[1,	2].	We	will	also	use	the	VS(f)	of	(13.53).	With
this,	we	have

where	 .	If	the	radar	is	not	scanning,	VS(f)	=	δ(f)	and	we	would	use	σT	=	σf.	We
made	 use	 of	 the	 fact	 that	 the	 convolution	 of	 two	 Gaussian	 functions	 is	 another	 Gaussian
function	[54].

Substituting	(13.93)	into	(13.92)	gives

It	can	be	shown	(see	Exercise	8)	that

for	typical	values	of	σT	and	τp.	With	this,	we	can	simplify	(13.94)	to



This	 integral	 does	 not	 have	 a	 simple,	 closed-form	 solution.	 However	 we	 can	 simplify	 the
integral	by	observing	 that,	over	 the	 region	of	 f	where	exp[−f2/(2σT2)]	 is	 large,	πfT	 is	 small
and	sin(πfT)	≈	πfT.	Over	the	rest	of	f,	exp[−f2/(2σT2)]	is	very	small.	Thus,	the	integrand	is	very
small	and	adds	little	to	the	value	of	the	integral	(see	Exercise	9).	With	this,	GCGauss	becomes
[28]

From	properties	of	Gaussian	density	functions	[54],	we	recognize	the	term	in	parentheses	as	
	and	write

From	(13.91)

which	is	the	form	found	in	many	radar	texts	[1,	2].

For	the	exponential	model,	we	use	(13.13)	and	approximate	VS(f)	by	a	similar	exponential
model.7	Specifically,

With	this,	we	have

In	(13.100)	and	(13.101),	we	used	βS	=	2/(λσS)	and	βC	comes	from	Table	13.3.	The	derivation
of	(13.101)	is	left	as	an	exercise.	As	a	reminder,	we	are	ignoring	phase	noise	so	Φ(f)	=	δ(f).

We	next	use	(13.101)	in	(13.92)	with	H(f)	=	2sin2(πfT)	to	compute	GCexp.	While	the	resulting
integral	 can	 be	 evaluated	 in	 closed	 form,	 the	 closed	 form	 expression	 is	 somewhat
complicated.	 A	 simpler	 form	 of	 the	 integral	 can	 be	 obtained	 by	 using	 sin(πfT)	 ≈	πfT.	 The
result	is	(see	Exercise	11)



For	the	nonscanning	case,	this	reduces	to

The	clutter	attenuation	is

We	next	examine	SCR	improvement,	which	is	defined	as	the	SCR	out	of	the	MTI	divided	by
the	SCR	into	the	MTI,	averaged	over	all	Doppler	frequencies	of	interest.	Averaging	is	needed
because	the	signal	power	out	of	the	MTI	will	depend	upon	the	target	Doppler	frequency.	As	a
result,	the	SCR	improvement	will	be	a	function	of	Doppler	frequency,	which	is	cumbersome.

To	compute	the	signal	power	at	the	MTI	output,	we	use	an	equation	of	the	form	of	(13.90)
but	replace	C(f)	with	T(f)	and	PC	with	PS.	The	result	is

For	target	signals,	we	can	ignore	scanning	and	phase	noise.	We	do	this	by	using	VS(f)	=	δ(f)
and	Φ(f)	=	δ(f).	With	this	and	T(f)	=	δ(f	−	fd)	(13.105)	becomes

In	most	situations	we	can	assume	MF(fd)	=	1	for	Doppler	frequencies	of	interest.8	With	this

which	means	the	signal	power	at	 the	output	of	the	MTI	depends	on	Doppler	frequency.	This
says	 the	SNR	 improvement	 is	 a	 function	 of	Doppler	 frequency	 and	 cannot	 be	 conveniently
represented	by	a	single	number,	as	we	would	like.	To	circumvent	this	inconvenience,	PSout	is
averaged	over	Doppler	frequencies	of	interest.

From	(13.86),	the	average	of	H(fd)	is	unity,	as	is	the	noise	gain.	Because	of	this,	the	average
SNR	 gain	 through	 the	 MTI	 is	 unity.	 That	 is,	 SNRout	 =	 SNRin.	 With	 this,	 and	 the	 clutter
attenuation	results	from	above,	we	get



That	 is,	 the	 (average)	SCR	 improvement	 is	 equal	 to	 the	clutter	 attenuation.	We	note	 that	 the
peak	SCR	improvement	is	KMTI2CA,	or	2CA	in	this	case,	since	the	peak	SNR	gain	through	the
MTI	is	KMTI2	W/W.

13.4.2.3 Example	1

For	this	example,	we	consider	radar	with	a	carrier	frequency	of	8	GHz	and	a	PRI	of	400	µs.
We	assume	ground	clutter	that	consists	of	wooded	hills	 in	a	20-knot	wind	and	use	σv	=	0.22
m/s	 (Table	 13.2)	 for	 the	 Gaussian	 spectrum	 model.	 From	 this,	 we	 compute	 the	 frequency
spread	as

For	 the	 exponential	 spectrum	 model,	 we	 assume	 a	 20-knot	 wind	 represents	 a	 windy
condition	and	use	βC	=	5.5	s/m	from	Table	13.3.	With	a	change	of	units	from	knots	to	mph,	we
get	a	wind	speed	of	w	=	23	mph	and	use	this	in	(13.14)	to	compute

We	 first	 assume	 the	 case	 where	 the	 radar	 beam	 is	 stationary	 during	 the	 CPI,	 which	 we
accommodate	by	VS(f)	=	δ(f).	With	this	we	get	σT	=	σf	=	11.7	Hz.	The	clutter	attenuation	and
SCR	improvement	using	the	Gaussian	spectrum	model	is

For	the	exponential	spectrum	model,	we	get

which	is	very	close	to	the	value	we	obtained	with	the	Gaussian	spectrum	model.9

As	an	extension,	we	assume	the	same	radar	and	clutter	parameters	but	use	a	scanning	radar
that	 has	 a	 two-second	 scan	 period.	 We	 use	 the	 beamwidth	 associated	 with	 the	 example	 of
Figure	13.2	(i.e.,	αB	=	2°).	From	(13.54),	we	have



For	the	Gaussian	spectrum	model,	we	get	a	total	spectrum	width	of

It	is	interesting	to	note	that	scanning	is	the	major	contributor	to	the	frequency	spread.	For	the
exponential	 spectrum	model,	we	 get	 βS	 =	 2/(λσS)	 =	 2.24	 s/m.	 In	 this	 equation,	we	 used	 the
inverse	relation	between	β	and	σv.

The	resulting	clutter	attenuation	for	the	Gaussian	spectrum	model	is

For	the	case	of	the	exponential	spectrum,	we	use	(13.102)	and	(13.104)	to	obtain

In	this	case,	the	clutter	attenuation	using	the	Gaussian	spectrum	model	is	slightly	larger	than
with	the	exponential	spectrum	model.

Let	us	carry	this	example	further	and	examine	SNR,	CNR,	and	SIR.	SIR	is	the	acronym	for
signal-to-interference	ratio	and	is	defined	as

It	is	the	ratio	of	the	signal	power	to	the	total	interference	power.	In	a	clutter	environment,	SIR
is	 the	 parameter	 used	 to	 evaluate	 detection	 and	 tracking	 performance.	 For	 a	 target	 to	 be
detected,	the	signal	power	must	be	greater	than	the	total	interference	power	by	some	margin
(i.e.,	 the	 detection	 threshold).	 Since	 SIR	 is	 a	measure	 of	 signal	 power	 to	 total	 interference
power,	 it	 is	 the	 quantity	 that	 should	 be	 used.	 The	 same	 argument	 applies	 to	 tracking
performance.

In	addition	 to	 the	aforementioned	parameters,	we	assume	 the	additional	 radar	parameters
listed	in	Table	13.6.

Using	 the	parameters	of	Table	13.6,	 the	SNR,	CNR,	and	SIR	 versus	R	 at	 the	 sampler	 (and
thus	matched	filter)	output	is	as	shown	in	Figure	13.11.

Table	13.6
Radar	Parameters	for	Example	1

Peak	power 50	kW



System	noise	temperature 1,000	K

Pulsewidth 4	µs	(a	4-chip,	Barker	coded	pulse)

Total	losses	for	the	target	and	clutter 10	dB

Height	of	the	antenna	phase	center 5	m

Azimuth	and	elevation	beamwidth 2°

Antenna	directivity	on	transmit	and	receive 38	dB

rms	antenna	sidelobes −30	dB

Clutter	backscatter	coefficient −20	dB

Target	RCS 6	dBsm

Ranges	of	interest 2	km	to	50	km

Figure	13.11	SNR,	CNR,	and	SIR	at	matched	filter	output.

The	SNR	is	reasonable,	but	the	SIR	is	too	low	to	support	detection	and	track.	(The	hook	in
the	CNR	plot	is	caused	by	the	fact	that	we	assumed	the	radar	beam	was	pointed	at	the	target,
rather	than	at	a	fixed	angle,	as	was	the	case	for	the	plots	of	Figure	13.2.)	Also,	the	Gaussian
antenna	pattern	model	[see	(13.4)]	was	used	in	the	clutter	RCS	generation	routine.

Figure	13.12	contains	plots	similar	to	those	of	Figure	13.11	for	the	two	cases	(nonscanning
and	scanning)	where	an	MTI	is	used.	Since	the	clutter	attenuation	was	almost	the	same	for	the
two	 spectrum	models,	 only	 one	 set	 of	 plots	 is	 shown.	 For	 the	 nonscanning	 case,	 the	MTI
provided	 enough	 clutter	 attenuation	 to	 give	 an	SIR	 that	 remained	 above	 13	 dB	 (a	 value	we
used	for	detection	threshold	in	previous	examples)	for	ranges	below	50	km.	For	the	scanning
case,	the	clutter	attenuation	was	not	quite	adequate,	and	the	SIR	dipped	to	fairly	low	values	at
short	ranges.	This	indicates	 that	 it	might	be	necessary	 to	consider	a	higher	order	MTI,	with
the	hope	that	it	will	provide	better	clutter	attenuation	and,	thus,	SIR	improvement.



Figure	13.12	SNR,	CNR,	and	SIR	at	MTI	output.

As	an	extension	to	this	example,	we	examine	the	behavior	of	 the	radar	 in	rain	clutter.	We
use	the	Gaussian	spectrum	model	with	σv	=	3	m/s.	This	velocity	spread	is	an	intuitive	average
of	the	values	given	in	Table	13.5.	We	compute	the	rain	clutter	RCS	from	(13.17)	and	(13.18)
for	 a	 rainfall	 rate	 of	 4	mm/hr	 and	 a	 carrier	 frequency	 of	 8	GHz	 (η	 =	−66	 dB(m2/m3).	We
assume	 the	 mean	 velocity	 of	 the	 rain	 is	 zero.	 We	 also	 ignore	 phase	 noise	 and	 assume	 a
stationary	beam.

To	determine	the	clutter	attenuation	and	SCR	improvement,	we	use	(13.99)	with	σT	=	2σv/λ	=
160	Hz.	This	gives



which	is	clearly	not	very	large.	Figure	13.13	illustrates	the	impact	of	 the	small	value	of	CA.
The	 top	 plot	 corresponds	 to	 the	 case	 where	 the	 MTI	 is	 not	 used,	 and	 the	 bottom	 plot
corresponds	 to	 the	 case	 where	 the	 radar	 uses	 a	 2-pulse	 MTI.	 As	 can	 be	 seen,	 the	 SIR	 is
unacceptably	low	in	both	cases.

13.4.2.4 Phase	Noise

We	 next	 examine	 the	 impact	 of	 phase	 noise	 on	 the	 MTI	 clutter	 attenuation	 and	 SCR
improvement.	We	use	Φ(f)	=	δ(f)	+	Φ0	for	the	phase	noise	(see	Section	13.3.2).	With	this,	we
get

where	we	took	advantage	of

With	this,	we	get

where	GC	is	given	by	(13.98),	(13.102),	or	(13.103)	depending	of	the	clutter	spectrum	model
and	 whether	 or	 not	 the	 antenna	 is	 scanning.	 Derivation	 of	 the	 second	 term	 is	 left	 as	 an
exercise.	The	resulting	cutter	attenuation	is

To	get	an	idea	of	the	impact	of	phase	noise	on	the	performance	of	MTI	signal	processors,
we	revisit	the	previous	example	and	plot	clutter	attenuation	versus	phase	noise	level,	Φ0.	This
plot	is	shown	in	Figure	13.14	for	scanning	and	nonscanning	cases.



Figure	13.13	SNR,	CNR,	and	SIR	at	MTI	input	(top)	and	output	(bottom)—rain	clutter.



Figure	13.14	Phase	noise	effects	on	MTI	clutter	attenuation.

For	the	nonscanning	case,	the	phase	noise	starts	to	degrade	the	clutter	attenuation	at	a	phase
noise	 level	 of	 about	 −95	 dBc/Hz.	 For	 the	 scanning	 case,	 the	 phase	 noise	 degradation	 is
delayed	until	a	phase	noise	level	of	about	−85	dBc/Hz.	The	reason	for	this	difference	is	due	to
the	 relative	 sizes	 in	 the	 denominator	 of	 (13.122).	 If	 GC	 is	 small	 (meaning	 the	 clutter
attenuation	without	 phase	 noise	 is	 large),	 the	Φ0/τp	 term	 begins	 to	 predominate	 the	 overall
clutter	 attenuation	 for	 relatively	 small	 values	 of	Φ0.	However,	 if	GC	 is	 large	 (meaning	 the
clutter	attenuation	without	phase	noise	 is	small),	Φ0	must	be	fairly	 large	before	 it	begins	 to
predominate	the	overall	clutter	attenuation.

13.4.2.5 Higher	Order	MTI	Processors

In	 the	 previous	 example,	 we	 found	 the	 2-pulse	 MTI	 did	 not	 provide	 sufficient	 clutter
attenuation	to	mitigate	rain	clutter.	This	leads	to	the	question	of	how	much	clutter	attenuation
could	we	obtain	if	we	use	a	3-pulse,	4-pulse	or	even	higher	order	MTI.	Or	alternately,	what
order	MTI	is	needed	to	obtain	a	desired	clutter	attenuation.

To	 obtain	 an	 NMTI-pulse	 MTI	 we	 cascade	 NMTI	 −	 1,	 2-pulse	 MTIs.	 Specifically,	 if	 the
transfer	function	of	a	2-pulse	MTI	is	H(z),	the	transfer	function	of	an	NMTI-pulse	MTI	is

where	the	constant	KNMTI	is	used	to	normalize	HNMTI(z)	to	provide	unity	noise	gain.

The	specific	transfer	functions	for	2-,	3-,	4-,	and	5-pulse	MTIs	are	[28]



Note	that	the	coefficients	of	the	powers	of	z	are	binomial	coefficients	with	alternating	signs
[31].

Following	the	method	we	used	for	the	2-pulse	MTI,	we	can	compute	the	MTI	gain	as

where	the	bm	are	the	binomial	coefficients	indicated	above.	Specific	values	of	K2NMTI	for	the
2-,	3-,	4-	and	5-pulse	MTI	are	summarized	in	Table	13.7.	K2NMTI	for	an	NMTI-pulse	MTI	with
binomial	coefficients	is

where	(2m	−	1)!!	=	1	×	3	×	5	×	···	×	(2m	−	1)	and	(2m)!!	=	2	×	4	×	···	×	2m,	(0)!!	=	1.

Table	13.7
	for	Various-Size	MTIs

MTI	Order—NMTI

2 1/2

3 1/6

4 1/20

5 1/70

NMTI

If	 we	 extend	 the	 results	 of	 the	 2-pulse	 analysis,	 we	 can	 write	 the	 normalized	 frequency
response	of	an	NMTI-pulse	MTI	as



Figure	13.15	contains	plots	of	 the	normalized	 frequency	 responses	of	3-	and	4-pulse	MTIs.
Note	 that	 the	peaks	of	 the	 response	become	narrower,	 and	 the	valleys	become	wider	 as	 the
order	of	the	MTI	increases.	This	means	we	should	expect	higher	clutter	attenuation	and	SCR
improvement	as	the	MTI	order	increases.

We	 can	 compute	 the	 clutter	 attenuation	 for	 the	 general	NMTI-pulse	MTI	 by	 extending	 the
work	 we	 did	 for	 the	 two	 pulse	MTI.	 For	 the	 Gaussian	 spectrum	model,	 we	 again	 use	 the
approximation	that	sin(πfT)	≈	πfT.	With	this,	we	get

where	GCGauss	now	becomes

Figure	13.15	Normalized	frequency	response	of	a	3-	and	4-	pulse	MTI.

Evaluation	of	this	integral	yields	[54]



We	can	write	the	clutter	attenuation	as	[28]

As	with	the	2-pulse	MTI	case,	we	can	show	that	the	MTI	gain,	averaged	across	all	expected
target	Doppler	frequencies,	is	equal	to	unity.	With	this,	the	SCR	improvement,	as	before,	is

Specific	values	of	CAGauss	and	IscrGauss	for	a	3-	and	4-pulse	MTI	are

and

Table	 13.8	 contains	 values	 of	 CAGauss	 for	 the	 nonscanning,	 scanning,	 and	 rain	 cases	 of
Example	1.	The	clutter	attenuation	is	large	for	the	case	of	ground	clutter.	However,	even	the	4-
pulse	MTI	does	not	provide	adequate	clutter	attenuation	for	rain	clutter.

Table	13.8
Clutter	Attenuation	for	Gaussian	Spectrum	Model—dB

An	equation	 for	 the	clutter	attenuation	and	SCR	improvement	 for	higher	order	MTIs	and
the	exponential	spectrum	is



where

The	derivation	of	(13.136)	is	tedious,	but	straightforward,	and	left	as	an	exercise.

13.4.2.6 Staggered	PRIs

Examination	of	the	MTI	frequency	response	plots	of	Figures	13.10	and	13.15	indicates	that	the
SNR	 gain	 through	 the	 MTI	 can	 vary	 considerably	 with	 target	 Doppler	 frequency.	 This	 is
quantified	 in	Figure	13.16,	which	 is	a	plot	of	 the	percent	of	 time	 the	MTI	gain	 is	above	 the
value	indicated	on	the	horizontal	axis.	For	example,	the	MTI	gain	is	above	−5	dB	73%	of	the
time	for	the	2-pulse	MTI,	and	60%	and	52%	of	the	time	for	the	3-	and	4-	pulse	MTIs.	If	we
say,	arbitrarily,	that	the	MTI	is	blind	when	the	gain	drops	below	-5	dB,	we	can	say	the	2-pulse
MTI	is	blind	27%	of	the	time,	and	the	3-	and	4-pulse	MTIs	are	blind	40%	and	48%	of	the	time.

Figure	13.16	Percent	of	time	MTI	gain	above	x-axis	levels.

Figure	13.17	Two-position	stagger	waveform.



We	can	improve	this	situation	by	using	staggered	PRIs.	That	is,	we	use	waveforms	where
the	spacing	between	pulses	changes	on	a	pulse-to-pulse	basis.	With	staggered	PRIs,	we	“break
up”	the	orderly	structure	of	the	MTI	frequency	response	and	“fill	in”	the	nulls.	We	also	reduce
the	peaks	in	the	frequency	response.	The	net	effect	is	to	provide	an	MTI	frequency	response
that	has	fewer	deep	nulls	and	large	peaks	but,	rather,	a	somewhat	constant	level.	The	response
still	has	the	null	at	zero	frequency	and	still	provides	clutter	rejection.

To	analyze	the	frequency	response	of	an	MTI	with	a	staggered	PRI,	we	start	by	examining
the	output	of	the	sampler	for	the	staggered	PRI	waveform	shown	in	Figure	13.17.	We	assume
the	 sampler	 samples	 the	 matched	 filter	 output	 at	 a	 delay	 of	 τd,	 after	 each	 pulse.	 Thus,	 the
sampler	samples	 the	output	at	τd,	τd	+	T1,	τd	+	T1	+	T2,	τd	+	T1	 +	T2	 +	T1,	 and	 so	 forth.	We
further	 assume	 τd	 is	 such	 that	we	 are	 sampling	 the	matched	 filter	 output	 on	 the	 peak	 of	 its
response	to	a	target	return.

If	 the	 target	 return	consists	of	a	(complex)	sinusoid	at	a	Doppler	frequency	of	 fd,	we	can
write	the	sampler	output	for	the	kth	PRI	as

where

and	PRIl	 is	 the	 interpulse	spacing	of	 the	 lth	PRI	 interval.	For	 the	waveform	of	Figure	13.17,
PRI0	=	0,	PRI1	=	T1,	PRI2	=	T2,	PRI3	=	T1,	PRI4	=	T2,	and	so	forth.

For	the	2-pulse	MTI	we	have,	from	(13.80),	with	the	addition	of	KMTI

The	output	of	the	MTI	after	the	first	two	pulses	is

After	the	second	two	pulses,	the	output	is



In	general,	after	the	kth	pair	of	pulses	the	output	will	be

We	can	extend	this	to	an	NMTI-pulse	MTI	and	write

where	bl	are	binomial	coefficients	defined	by

We	would	start	computing	vSP(k)	for	k	=	NMTI	−	1	to	allow	time	for	the	MTI	transients	to	settle
(more	on	this	shortly).

If	we	were	to	plot	|vSP(k)|2	versus	k,	we	would	find	that	it	is	not	constant,	as	was	the	case	for
the	 unstaggered	 waveform.	 To	 smooth	 the	 variation	 with	 k,	 we	 average	 the	 |vSP(k)|2	 over
several	k.	That	is,	we	form

Figure	13.18	Block	diagram	of	an	MTI	with	output	power	averaging.

K	is	determined	by	the	waveform	and	MTI	order.	We	will	discuss	this	shortly.	We	added	fd	as
an	 argument	 of	 VSP	 to	 recognize	 that	 it	 depends	 on	 Doppler	 frequency.	 As	 a	 note,	 the
exponential	on	the	outside	of	the	sum	of	(13.143)	goes	away	when	we	form	|vSP(k)|2.

Because	of	 the	KNMTI	 normalization,	VSP(fd)	 is	 power	 gain	 of	 the	MTI	 at	 a	 frequency	 fd.
That	is



The	 averaging	 process	 just	 discussed	 is	 used	 in	 actual	 MTI	 implementations.	 This	 is
illustrated	in	Figure	13.18.

If	the	waveform	consists	of	a	burst	of	Npulse	pulses	and	the	MTI	is	of	order	NMTI,	a	typical
value	of	K	is

This	requires	Npulse	≥	NMTI.	We	average	the	MTI	output	through	the	burst	and	record	a	single
output	at	 the	end	of	 the	burst.	 If	 the	waveform	consists	of	a	semi-infinite	string	of	pulses,	a
rule	of	thumb	is	to	choose	K	as	the	length	of	the	PRI	sequence	(this	applies	to	higher	order
MTIs	and	staggered	PRI	waveforms).	For	example,	suppose	a	sequence	of	PRIs	was	T1,	T2,
T3,	T2,	T1,	T2,	T3,	 T2,	 and	 so	 forth.	 This	 sequence	 repeats	 every	 4	 PRIs.	 That	 is,	 the	 PRI
sequence	is	T1,	T2,	T3,	T2	and	has	a	length	of	4.	We	would	thus	choose	K	=	4.

We	can	assemble	the	above	into	an	algorithm	for	generating	MTI	frequency	responses	or,
as	they	are	commonly	termed,	MTI	velocity	responses.	The	latter	name	derives	from	the	fact
that	we	normally	plot	H(fd)	versus	v	where	v	=	λfd/2.	The	algorithm	is

• Identify	the	number	of	pulses,	Npulse,	in	the	burst,	along	with	their	PRIs.
• If	the	waveform	is	semi-infinite	(semi-infinite	burst	of	pulses)	use	Npulse	=	NPRI	+	1	where
NPRI	is	the	number	of	PRIs	in	the	PRI	sequence.

• Compute	the	Tk	using	(13.138)	for	k	=	0	to	Npulse	−	1.
• Select	the	MTI	order,	NMTI.
• Compute	vSP(k)	using	(13.143)	for	k	=	NMTI	−	1	to	Npulse	−	1	 (without	 the	exponential	 in
front	of	the	summation).

• Compute	H(fd)	using	(13.146)	with	K	as	discussed	in	the	previous	paragraph.
• Repeat	the	above	steps	for	the	fd	(or	v)	of	interest.

As	an	example,	we	consider	a	burst	of	Npulse	=	10	pulses	with	repeating	PRIs	of	T1	=	385	µs
and	T2	=	415	µs.	We	consider	a	3-pulse	MTI	so	NMTI	=	3.	This	gives	K	=	Npulse	−	NMTI	+	1	=	8,
so	we	need	to	compute	8	values	of	vSP(k)	using10

with

for	k	=	NMTI	–	1	to	Npulse	–	1	or	2	to	9.	We	then	average	the	8	values	of	|vSP(k)|2	to	get	H(fd)



[see	(13.146)].	The	result	of	this	is	shown	in	Figure	13.19.	In	the	figure,	the	horizontal	axis	is
range	 rate	 and	 was	 computed	 using	 the	 conversion	 λfd/2	 with	 λ	 =	 0.0375	 m	 (8-GHz	 RF).
Actually,	we	started	with	range	rates	and	computed	the	Doppler	frequencies	from	them.

The	response	with	the	staggered	waveform	still	has	a	considerable	variation	in	MTI	gain	as
a	function	of	range	rate	because	we	only	used	a	two-position	stagger	(a	PRI	sequence	repeats
after	two	PRIs).	This	can	often	be	improved	by	using	more	than	two	values	of	Tk.	That	is,	a
higher	 position	 stagger	 with	 more	 interpulse	 periods.	 Skolnik	 discusses	 this	 in	 his	 Radar
Handbook	[31].

Figure	13.19	3-pulse	MTI	response	with	stagger.

To	determine	the	clutter	attenuation	of	an	MTI	with	a	staggered	waveform,	we	use	the	same
formulas	 as	 for	 the	 unstaggered	 case.	 To	 find	 the	 SNR	 gain	 through	 the	MTI,	we	 find	 the
average	signal	gain	from	the	MTI	frequency	response	(e.g.,	Figure	13.19)	and	use	this	as	the
SNR	gain.	We	can	do	this	because	the	MTI	is	still	normalized	and	provides	unity	noise	gain.
We	often	find	the	average	MTI	gain	via	the	“eyeball”	method;	we	estimate	it	from	the	plot.	A
better	method	would	be	to	numerically	average	the	gain	(in	W/W)	across	the	range	rates	of
interest.	The	MTI	gain	indicated	via	the	“eyeball”	method	for	the	response	of	Figure	13.19	is
about	0	dB.	The	calculated	gain	is	−0.08	dB.

13.4.2.7 MTI	Transients

In	the	previous	section,	we	noted	that	we	would	not	use	the	MTI	output	until	it	had	processed
NMTI	pulses.	That	is,	until	k	=	NMTI	–	1	(recall,	k	starts	at	0).	We	do	this	because	the	MTI	is	in
its	transient	phase	for	the	first	NMTI	–	1	pulses.	If	the	input	contains	clutter,	the	clutter	rejection
of	the	MTI	will	not	be	realized	until	after	the	transient.	As	an	illustration	of	this,	consider	a	3-
pulse	MTI	where	the	input	is	a	sequence	of	ones.	That	is,	for	k	≥	0,	vo(k)	=	1	and	for	k	<	0,



vo(k)	 =	 0.	 By	 using	 these	 values	 in	 (13.148)	we	 note	 that	 vSP(0)	 =	K3MTI,	 vSP(1)	 =	 −K3MTI,
vSP(2)	=	0,	vSP(3)	=	0,	and	so	forth.	That	is,	the	output	does	not	settle	to	zero	until	k	=	2	=	NMTI
–	 1.	 To	 avoid	 having	 the	 transient	 affect	 detection	 and	 tracking	 functions	 that	 use	 the	MTI
output,	the	MTI	output	is	usually	gated	off	during	the	transient	period.

13.4.3 Pulsed	Doppler	Processors

The	exact	origin	of	the	phrase	“pulsed	Doppler”	is	not	clear.	It	probably	derives	from	early
pulsed	 Doppler	 radars,	 which	 performed	 CW	 processing	 using	 pulsed	 waveforms.
Specifically,	 classical	 CW	 radars	 work	 primarily	 in	 the	 frequency	 (and	 angle)	 domain,
whereas	pulsed	radars	work	primarily	in	the	time	(and	angle)	domain.	It	 is	assumed	that	the
phrase	 pulsed	Doppler	was	 coined	when	 designers	 started	 using	 pulsed	 radars	 that	worked
primarily	in	the	frequency,	or	Doppler,	domain.	Early	pulsed	Doppler	radars	used	a	50%	duty
cycle	 pulsed	 waveform	 and	 had	 virtually	 no	 range	 resolution	 capability,	 only	 Doppler
resolution.	The	use	of	a	pulsed	waveform	was	motivated	by	the	desire	to	use	only	one	antenna
and	to	avoid	isolation	problems	caused	by	CW	operation.	Modern	pulsed	Doppler	radars	are
actually	low-,	medium-,	or	high-PRF	pulsed	radars	with	typical	duty	cycles	in	the	5%	to	10%
range.	They	are	used	for	both	range	and	Doppler	measurement.

Three	classes	of	pulsed	Doppler	waveforms	have	evolved	over	the	years.

1. The	“classical”	pulsed	Doppler	waveform	has	a	high	PRF	and	operates	ambiguously	in
range,	but	is	unambiguous	in	Doppler.	High-PRF	(HPRF)	waveforms	have	PRFs	in	the
approximate	range	of	50	to	over	100	kHz	and	pulsewidths	in	the	range	of	0.5	to	2	µs.

2. Medium	 PRF	 (MPRF)	 pulsed	 Doppler	 waveforms	 are	 ambiguous	 in	 both	 range	 and
Doppler.	 These	waveforms	 have	 PRFs	 in	 the	 approximate	 range	 of	 10	 to	 50	 kHz	 and
pulsewidths	 in	 the	 range	 of	 2	 to	 10	 µs.	 In	 some	 instances,	 the	 pulses	 of	 (MPRF)
waveforms	are	phase	modulated	to	improve	range	resolution	and	reduce	clutter	power
entering	the	signal	processor.

3. Low-PRF	 (LPRF)	 waveforms	 are	 unambiguous	 in	 range	 and	 ambiguous	 in	 Doppler.
LPRF	waveforms	have	PRFs	in	the	range	of	1	to	10	kHz	and	pulsewidths	in	the	range	of
10	 to	 100	µs.	LPRF	waveforms	 almost	 always	use	 phase	modulated	pulses	 to	 provide
adequate	 range	 resolution	 and	 energy,	 and	 reduce	 clutter	 power	 entering	 the	 signal
processor.

When	we	say	the	waveform	is	ambiguous	in	range,	we	mean	the	PRI	is	shorter	than	target
ranges	of	interest.	When	we	say	the	waveform	is	ambiguous	in	Doppler,	we	mean	the	PRF	is
smaller	than	the	target	Doppler	frequencies	of	interest.

Some	of	the	benefits	of	using	pulsed	Doppler	waveforms	in	a	radar	are:

• The	waveform	can	be	used	for	detection	of	short-	and	long-range	targets	without	the	need
to	change	pulsewidths	to	maintain	sufficient	energy	and	counter	blind	range	(recall	that	a
radar	is	“blind”	to	targets	whose	range	is	less	than	the	radar	pulsewidth).

• Pulsed	 Doppler	 processors	 can	 directly	 measure	 range	 rate	 by	 measuring	 Doppler
frequency.	This	can	be	helpful	 in	 tracking	and	mitigating	ECMs	such	as	 range-gate	pull



off	(RGPO)	[74–76].
• Pulsed	Doppler	 processors	 are	Doppler	 selective	 in	 that	 they	 can	 be	 designed	 to	 reject
returns	not	at	the	target	Doppler	frequency.	Because	of	this,	they	are	capable	of	mitigating
clutter	whose	Doppler	frequency	is	not	zero,	such	as	rain	and	chaff.

• Pulsed	 Doppler	 processors	 can	 provide	 both	 range	 and	 frequency	 information	 to	 the
operator	or	computer.	This	can	be	used	to	detect	and	counter	separating	targets	or	various
types	of	pull-off	ECM	such	as	RGPO,	velocity	deceptive	jamming,	or	range	and	velocity
deceptive	jamming.

Some	 of	 the	 myths,	 or	 misconceptions,	 associated	 with	 radars	 that	 use	 pulsed	 Doppler
waveforms	are:

• They	are	better	at	 rejecting	ground	clutter.	 From	a	 radar	 system	perspective,	 this	 is	 not
totally	 correct.	 Pulsed	 Doppler	 processors	 (usually)	 provide	 higher	 SCR	 improvement
than	radars	with	MTI	processors.	However,	with	MPRF	and	HPRF	waveforms,	the	SCR	at
the	processor	input	is	much	lower	than	with	waveforms	used	with	MTI	processors.	This	is
because,	in	range	ambiguous	pulsed	Doppler	radars,	the	target	must	compete	with	clutter
at	 much	 shorter	 ranges.	With	 LPRF	waveforms,	 the	 target	 competes	 with	 clutter	 at	 the
target	range.

• Pulsed	 Doppler	 radars	 are	 less	 susceptible	 to	 noise	 jamming.	 This	 is	 not	 correct	 for
broadband	 noise.	Mitigation	 of	 broadband	 noise	 depends	 on	 the	 ratio	 of	 the	 target	 and
jamming	energy	at	 the	radar	receiver	 input.	This	 is	not	changed	by	the	signal	processor.
Pulsed	Doppler	waveforms	could	help	mitigate	noise	jamming	if	the	jammer	bandwidth	is
less	than	the	radar	PRF.

Some	problems	associated	with	pulsed	Doppler	waveforms	and	processors	are:

• Pulsed	Doppler	 signal	processors	are	generally	more	complicated	 than	MTI	processors
because	 of	 the	 added	 dimension	 of	Doppler	 frequency.	This	 extends	 to	 post	 processing
such	as	detection	logic	and	track	algorithms.

• Local	oscillators	must	have	low	phase	noise	since	this	is	often	a	limiting	factor	in	pulsed
Doppler	 SCR	 improvement.	 Pulsed	 Doppler	 radars	 also	 have	 stringent	 timing	 jitter
requirements	since	timing	jitter	translates	to	phase	noise.

• MPRF	 an	 HPRF	 pulsed	 Doppler	 radar	 receivers	 must	 have	 large	 dynamic	 range	 to
simultaneously	 accommodate	 large	 clutter	 returns	 from	 the	 first	 range	 ambiguity,	 and
small	 signal	 returns	 from	 subsequent	 ambiguous	 regions.	 This	 extends	 to	 the	 ADC	 in
radars	where	clutter	rejection	is	performed	by	the	digital	portion	of	the	signal	processor.

13.4.3.1 Pulsed	Doppler	Clutter

The	ground	clutter	environment	in	MPRF	and	HPRF	pulsed	Doppler	radars	is	generally	more
severe	than	in	pulsed	radars	that	are	unambiguous	in	range.	This	is	because,	 in	these	pulsed
Doppler	 radars,	 the	 signal	 returned	 from	 long-range	 targets	 must	 compete	 with	 clutter	 at
short	ranges.11	This	is	illustrated	in	Figure	13.20.	The	solid	triangle	in	the	figure	is	a	target
return	from	the	first	(left-most)	pulse	in	the	burst	of	pulses	and	indicates	that	the	target	return
does	not	arrive	until	several	PRIs	after	 the	transmit	pulse	that	caused	the	return.	The	dashed



triangles	are	returns	from	the	same	target,	but	different	pulses.	The	solid,	curved	line	through
the	solid	triangle	represents	the	clutter	from	the	pulse	immediately	preceding	the	triangle,	and
previous	pulses.	The	dashed,	curved	 lines	are	clutter	 returns	related	 to	previous	pulses	(and
pulses	before	them).	The	significance	of	what	signal	comes	from	which	pulse	has	to	do	with
range	attenuation.	The	 target	 is	at	a	 range	of	Rtgt	 and	will	have	a	 range	attenuation	of	Rtgt4.
The	clutter	in	the	target	range	cell	is	at	a	range	of	Rclut	and	will	undergo	a	range	attenuation
of	Rclut3	(recall	that	clutter	attenuation	varies	as	R3).

Since	Rtgt	»	Rclut,	the	target	will	undergo	much	more	attenuation	than	the	clutter.	The	result
of	this	is	that	the	SCR	at	the	input	to	the	signal	processor,	 in	pulsed	Doppler	radars	that	use
range	 ambiguous	waveforms,	 is	much	 lower	 than	 for	 the	 same	 scenario	 in	 radars	 that	 use
range	unambiguous	waveforms.

Figure	13.20	Target	and	clutter	returns	in	an	MPRF	or	HPRF	pulsed	Doppler	radar.

We	will	explain	this	difference	with	the	help	of	Figure	13.21.	The	top	curve	is	a	plot	of	SNR
versus	range	and	is	applicable	to	both	pulsed	and	pulsed	Doppler	waveforms	that	use	the	same
pulsewidth.	The	middle	 curve	 is	 a	 plot	 of	CNR	 for	 a	 radar	 that	 uses	 a	 range	 unambiguous
waveform	(e.g.,	LPRF	waveform),	at	least	over	the	50	km	range	interval	shown.	In	this	case,
the	CNR	continuously	decreases	with	range.	(The	SNR,	CNR,	and	SCR	discussed	here	are	the
SNR,	CNR,	and	SCR	at	the	output	of	the	single-pulse	matched	filter.)

The	bottom	curve	is	a	plot	of	CNR	for	a	radar	that	uses	a	range	ambiguous	waveform	(e.g.,
a	MPRF	or	HPRF	waveform).	In	this	case,	the	CNR	decreases	for	a	while	and	then	resets	to	a
large	value.	This	reset	occurs	with	every	pulse	of	the	waveform,	which	means	the	CNR	stays
large	over	 the	50-km	 range	of	 the	plot.	At	 the	 same	 time,	 the	SNR	 is	decreasing.	Thus,	 the
SCR	will	continually	decrease	as	target	range	increases.



Figure	13.21	Plots	of	SNR	and	CNR	for	LPRFand	MPRF	or	HPRF	waveforms.

Figure	13.22	Plots	of	SCR	for	LPRF	and	MPRF	or	HPRF	waveforms.

The	net	effect	of	the	resetting	of	CNR	and	continual	decrease	in	SNR	is	illustrated	in	Figure
13.22,	which	 is	 a	 plot	 of	 SCR	 for	 LPRF	 and	MPRF	 or	HPRF	waveforms.	As	 illustrated	 in
Section	 13.2.1,	 the	 SCR	 for	 the	 LPRF	 waveform	 initially	 decreases	 and	 then	 increases.
However,	 the	 SCR	 for	 the	 MPRF/HPRF	 waveform	 continually	 decreases.	 Also,	 the	 SCR



values	 for	 the	MPRF/HPRF	waveform	 are	much	 lower	 than	 for	 the	 LPRF	waveform.	 This
means	the	pulsed	Doppler	signal	processor	must	provide	much	larger	SCR	improvement	for
MPRF	or	HPRF	waveform	than	it	would	for	the	LPRF	waveform.

The	aforementioned	resetting	phenomenon	can	be	explained	with	the	help	of	Figure	13.23,
which	 shows	notional	 clutter	 returns	 from	 three	 successive	 pulses,	 plus	 a	 composite	 return
signal	at	the	bottom.

Figure	13.23	Illustration	of	clutter	return	resetting	phenomenon.

The	first	pulse	causes	a	clutter	return	that	peaks	after	the	pulse	and	decays	as	the	range	to
the	clutter	increases.	The	same	thing	happens	on	the	second	and	third	pulses.	As	returns	from
the	successive	pulses	are	received,	their	power	is	added	to	the	power	from	the	previous	pulses
and	causes	the	sum	to	increase	after	each	pulse.

The	bottom	plot	shows	that,	not	only	does	the	composite	return	peak	after	each	pulse,	but
each	 peak	 is	 a	 little	 larger	 than	 the	 previous	 peak	 because	 residual	 clutter	 returns	 from
previous	pulses.	In	practice,	this	increase	will	level	out	with	increasing	pulse	number	because
the	 contribution	 of	 earlier	 pulses	 decreases	 with	 range.	 The	 buildup	 of	 CNR	 is	 a	 clutter
transient.	The	CNR	resetting	is	sometimes	termed	clutter	folding.

The	discussions	above	indicated	the	clutter	return	in	a	particular	range	cell	is	the	sum	of	the
clutter	 returns	 from	 the	 current	 pulse	 and	 all	 previous	 pulses.	 Since	 the	 returns	 are	 from
clutter	 at	 different	 ranges,	 and	 we	 assume	 the	 clutter	 returns	 from	 different	 ranges	 are
uncorrelated,	we	sum	the	clutter	powers.	To	derive	the	appropriate	equations,	we	consider	a
clutter	cell	at	a	range	R	where	R	is	greater	than	some	start	range,	Rstart,	and	less	than	the	PRI
range,	RPRI	 (=	 cT/2)	minus	 some	 stop	 range,	Rstop	 (i.e.,	R	 <	RPRI	 −	Rstop).	Rstart	 is	 usually
chosen	 greater	 than	 c	τp/2	 because	 the	 receiver	 is	 off	 during	 the	 transmit	 pulse	 and	 cannot
fully	process	returns	from	clutter	cells	(or	targets)	at	shorter	ranges.	Rstop	is	also	chosen	to	be
larger	than	c	τp/2	to	allow	time	for	the	receiver	to	fully	process	pulse	returns	before	it	shuts
off	 in	 preparation	 for	 transmit.	When	 the	 radar	 receives	 a	 signal	 from	clutter	 at	 a	 range	R



close	 to	 the	most	 recent	 pulse,	 it	 also	 receives	 signals	 from	 clutter	 at	R	 –	RPRI	 due	 to	 the
immediately	prior	pulse,	R	–	2RPRI	from	two	pulses	back,	R	–	3RPRI	from	three	pulses	back,
and	 so	 forth.	 Since	 the	 powers	 from	 these	 returns	 add,	 the	 total	 power	 associated	with	 the
clutter	return	from	the	most	recent	pulse	is

As	k	increases,	the	associated	PC1(R	−	kRPRI)	contributes	less	and	less	to	the	sum	because	it	is
due	 to	 clutter	 at	 longer	 and	 longer	 ranges.	 In	many	 applications,	 the	 contribution	 becomes
very	small	after	only	a	few	pulses.

A	means	of	incorporating	this	clutter	folding	into	the	previous	RCS	model	(Section	13.2.1)
is	as	follows.

• Generate	σC	and	CNR	using	the	equations	in	Section	13.2.1	and	the	radar	range	equation.
Extend	 the	 range	 to	 the	 point	where	 the	CNR	 is	 about	 20	 dB	 below	 its	 peak	 level.	 For
HPRF	waveforms,	this	will	be	about	10	PRIs.	For	LPRF	waveforms	it	will	usually	be	one
PRI	and	for	MPRF	waveforms	it	will	be	between	1	and	10.

• Implement	(13.150)	for	Npul	equal	to	the	number	of	PRIs	determined	in	the	previous	step
and	R	between	Rstart	and	RPRI	–Rstop	in	steps	of	ΔR	where	ΔR	is	the	range	resolution	of	the
waveform.

• To	 generate	 a	 CNR	 plot	 like	 Figure	 13.21,	 replicate	 PCpd(R)	 for	 the	 number	 of	 PRIs
needed	to	cover	the	range	extent	of	interest.

To	generate	an	associated	SNR	and	SCR	plots:

• Generate	an	array	of	SNR	values	over	the	range	extent	of	interest.
• Blank	the	range	cells	between	Rstart	and	RPRI–Rstop	for	each	PRI.
• Generate	the	SCR	by	dividing	the	SNR	array	by	the	CNR	array.

Figure	13.24	 contains	 the	 result	 of	 implementing	 these	 algorithms	 for	 the	 parameters	 of
Example	1	with	a	waveform	PRF	of	50	kHz.

The	 aforementioned	 procedures	 can	 also	 be	 used	 for	 rain	 clutter.	 The	 result	 of	 such	 an
application	 for	 the	 rain	 clutter	 example	 of	 Section	 13.4.2.3,	 and	 the	 50-kHz	 waveform,	 is
contained	in	Figure	13.25.



Figure	13.24	Plot	of	SNR,	CNR,	and	SCR	for	the	parameters	of	Example	1	and	a	50-kHz	PRF	waveform—ground	clutter.



Figure	13.25	Plot	of	SNR,	CNR,	and	SCR	for	the	parameters	of	Example	1	and	a	50-kHz	PRF	waveform—rain	clutter.

13.4.3.2 Signal	Processor	Configuration

The	 signal	 processor	 configuration	 we	 will	 use	 to	 evaluate	 the	 clutter	 attenuation,	 SNR
improvement,	and,	ultimately,	SCR	and	SIR	improvement	is	illustrated	in	Figure	13.26.	This	is
a	generic	pulsed	Doppler	signal	processor	that	is	applicable	to	all	pulsed	Doppler	processors
considered	 in	 this	 chapter.	 It	 applies	 to	 analog	 or	 digital	 processors	 for	HPRF,	MPRF,	 and
LPRF	pulsed	Doppler	waveforms.	 It	 is	also	similar	 to	 the	configuration	we	used	 to	analyze
MTI	processors,	with	the	MTI	replacing	the	highpass	filter	(HPF)	and	bandpass	filter	(BPF).
The	block	diagram	can	be	extended	 to	hybrid	processors	 (analog	HPF	and	digital	BPF)	by
adding	an	ADC	between	the	HPF	and	BPF.

As	 before,	 the	 matched	 filter	 is	 matched	 to	 a	 single	 pulse	 of	 the	 transmit	 waveform.	 The
sampler	 samples	 the	 matched	 filter	 output,	 in	 range,	 once	 per	 PRI.	 For	 our	 analyses,	 we
assume	 it	 samples	 on	 the	 peak	 of	 the	 matched	 filter	 response.	 As	 indicated	 in	 the	 MTI
discussions,	the	sampler	actually	generates	several	samples	per	PRI	(one	for	each	range	gate)
and	stores	them	for	processing	after	it	has	gathered	samples	for	all	pulses	in	the	burst,	or	CPI.
The	samples	within	a	PRI	are	usually	spaced	one	range	resolution	cell	apart.

Figure	13.26	Pulsed	Doppler	signal	processor.

In	 the	 previous	 paragraph,	we	 indicated	 the	 sampler	 output	 from	 all	 pulses	 in	 a	 burst	 is
stored	 and	 then	 sent	 to	 the	 processor.	 This	would	 be	 the	 standard	 approach	 for	 radars	 that
transmit	 the	 waveforms	 in	 bursts,	 such	 as	 phased	 arrays.	 In	 older,	 dish-type	 radars,	 the
waveform	consists	of	a	semi-infinite	string	of	pulses,	and	the	processor	would	process	them
continuously,	mostly	using	analog	hardware	for	the	HPF	and	BPF.	In	those	cases,	the	“burst,”
or	CPI,	is	roughly	the	inverse	of	the	BPF	bandwidth.

Since	 we	 are	 using	 frequency-domain	 techniques	 in	 the	 analyses,	 they	 apply	 to	 both	 the
burst	of	pulses	and	the	semi-infinite	string	of	pulses.	A	caveat	regarding	the	burst	of	pulses	is
we	 assume	 processor	 transients	 have	 settled	 so	 that	 the	 frequency	 domain	 analyses	 apply
(since	 they	only	 apply	 to	 steady	 state	 conditions).	This	 is	 a	 consideration	 in	 the	design	 and
implementation	of	pulsed	Doppler	signal	processors.12

In	 radars	 that	 use	 digital	 HPFs	 and/or	 BPFs,	 the	 sampler	 is	 an	 ADC.	 In	 radars	 that	 use
analog	or	hybrid	processing,	it	is	a	sample-and-hold	device.

The	 HPF	 following	 the	 sampler	 is	 used	 to	 reduce	 the	 clutter	 power	 located	 near	 zero
Doppler.	 In	 addition	 to	 reducing	 clutter	 power,	 it	 also	 serves	 to	 reduce	 the	 dynamic	 range
requirements	on	the	BPF	following	the	HPF.	It	is	usually	included	in	processors	for	HPRF	and
MPRF	waveforms	because	of	their	high	clutter	attenuation	requirements.	It	can	be	omitted	in



LPRF	 pulsed	 Doppler	 processors	 since	 the	 clutter	 attenuation	 requirements	 of	 those
waveforms	 are	 generally	 more	 modest.	 Having	 said	 this,	 modern	 radars	 that	 use	 high
dynamic	range	digital	signal	processors	can	eliminate	the	HPF	and	rely	on	the	BPF	to	provide
both	clutter	attenuation	and	SNR	improvement

In	digital	signal	processors,	the	HPF	is	sometimes	implemented	before	the	ADC	to	limit	the
dynamic	range	of	the	signal	into	the	ADC.	In	the	past,	it	was	thought	that	the	dynamic	range	of
the	ADC	needed	to	be	greater	than	the	SCR	at	the	ADC	input.	However,	recent	analyses	[77]
indicate	 this	 is	 not	 the	 case.	We	will	 address	 the	 impact	 of	ADC	dynamic	 range	 in	 Section
13.4.3.6.

The	final	device	in	the	signal	processing	chain	is	the	BPF.	In	the	diagram,	we	show	it	as	a
single	BPF,	which	is	all	that	is	needed	for	these	analyses.	We	assume	the	BPF	is	centered	on
the	target	Doppler	frequency.	We	account	for	this	not	being	the	case	in	practice	by	including	a
Doppler	mismatch	loss	in	the	radar	range	equation	for	the	target	signal	(see	Chapter	5).	The
main	 purpose	 of	 the	 BPF	 is	 to	 increase	 SNR	 (and	 thus	 SCR),	 although	 it	 also	 provides
additional	clutter	rejection	by	reducing	phase	noise	power.

In	practice,	the	HPF	output	could	feed	several	BPFs	centered	at	different	frequencies.	The
processor	 used	 during	 search	would	 require	 enough	 BPFs	 to	 span	 the	 PRF	 [recall	 that,	 in
sampled	 data	 systems,	 the	 sampler	 “folds”	 the	 entire	 signal	 spectrum	 of	 the	matched	 filter
output	 into	 a	 frequency	 band	 between	 –PRF/2	 and	 PRF/2	 (between	 −1/2T	 and	 1/2T)].	 The
processor	 used	 during	 track	 needs	 only	 a	 few	BPFs	 since	 the	 target	 Doppler	 frequency	 is
known	reasonably	well	during	track.

The	implementation	of	pulsed	Doppler	signal	processors	has	evolved	over	the	years	from
all	analog	to	all,	or	almost	all,	digital.	The	evolution	has	generally	been	driven	by	the	speed,
availability,	and	cost	of	ADCs	and	digital	signal	processing	components.	Older	radars	(pre-
1980s	 or	 so)	 used	 all-analog	 signal	 processors.	 Radars	 designed	 between	 about	 1980	 and
2000	used	a	mix	of	digital	and	analog	components.	Modern	pulsed	Doppler	signal	processors
are	 almost	 exclusively	 digital.	 Some	 digitize	 the	 signal	 at	 the	 matched	 filter	 output,	 as	 in
Figure	13.26.	Others	digitize	the	signal	at	the	IF	amplifier	output	and	implement	the	matched
filter	in	the	digital	domain	(see	Chapter	14).

In	 digital	 processors,	 the	 BPFs	 used	 in	 search	 are	 often	 implemented	 using	 FFTs	 with
amplitude	weighting	 to	reduce	Doppler	sidelobes.	The	FFT	is	attractive	because,	by	default,
its	taps	span	the	PRF.	It	is	also	computationally	efficient.	Since	only	a	few	BPFs	are	required
in	 the	 signal	 processor	 used	 in	 the	 track	 channel,	 they	 can	 be	 implemented	 using	 finite
impulse	response	(FIR)	filters.	It	is	not	unusual	that	the	HPF,	when	used,	is	implemented	with
an	 infinite	 impulse	 response	 (IIR)	 filter	 because	 it	 generally	 requires	 sharp	 cutoff
characteristics.

13.4.3.3 Digital	Signal	Processor	Analysis	Techniques

We	analyze	digital,	pulsed	Doppler	signal	processors	using	techniques	very	similar	to	those
used	for	MTI	processors.	Specifically,	we	compute	the	clutter	and	target	power	at	the	output
of	the	signal	processor	using	equations	similar	to	(13.90)	for	clutter	and	(13.106)	 for	 target



signals	with	H(f)	 replaced	 by	HH(f)HB(f).	We	 normally	 ignore	 scanning	 in	 pulsed-Doppler
analyses,	but	always	consider	phase	noise.	With	this,	we	have

for	the	clutter	signal	and

for	 the	 target	 signal.	We	will	 discuss	 the	 noise	 shortly.	 The	 integral	 of	 (13.151)	 is	 usually
computed	numerically	because	a	closed	form	solution	is	usually	impossible	to	derive.	PSout	is
also	sometimes	evaluated	numerically	because	of	the	forms	of	HH(f)	and	HB(f).

Because	of	the	impulse	function	(Dirac	delta),	we	can	write	PSout	as

and

In	 most	 applications,	 the	 main	 lobe	 of	MF(fd)	 (the	 matched-range	 Doppler	 cut	 of	 the
ambiguity	 function)	 is	 wider	 than	 the	 expected	 span	 of	 target	 Doppler	 frequencies	 so	 that
MF(fd)	≈	1.	Also,	the	target	Doppler	frequency	is	normally	assumed	to	be	in	the	pass	band	of
the	HPF,	and	the	BPF	is	assumed	to	be	centered	very	close	to	the	target	Doppler	frequency	so
that	HH(fd)	 ≈	 1	 and	HB(fd)	 ≈	 1.	 Combining	 these	 leads	 to	 the	 observation	 that	GS	 ≈	 1.	We
account	for	the	fact	that	the	various	terms	of	(13.154)	are	not	exactly	unity	by	including	a	loss
term	in	the	radar	range	equation.	However,	the	general	form	of	GS	is	useful	for	determining
the	 limits	 the	HPF	might	 place	 on	 the	 ability	 of	 the	 radar	 to	 detect	 and	 track	 low	Doppler
targets,	 or	 targets	whose	Doppler	 frequency	 approaches	 a	multiple	 of	 the	PRF	 (ambiguous
Doppler	operation).	In	this	case,	the	fact	that	GS	≠	1	is	not	included	in	the	losses.

Figure	13.27	contains	a	sketch	of	the	various	spectra	discussed	above.	Note	that	because	of
sampling,	the	clutter	spectrum,	C(f),	and	the	target	spectrum,	T(f),	are	repeated	at	intervals	of
1/T.	Also,	because	of	the	HPF	and	BPF	are	digital,	their	responses	are	periodic	with	a	period
of	1/T.	As	indicated,	MF(f)	is	very	wide	relative	to	the	other	spectra.



Figure	13.27	Spectra	applicable	to	digital	pulsed	Doppler	signal	processor	analyses.

For	the	clutter,	C(f)	is	one	of	the	forms	discussed	in	Sections	13.2.2	and	13.2.4.	For	Φ(f),	we
use	the	general	form	of	(13.62).	PC	is	computed	via	CNR	using	the	folded	clutter	discussed	in
Section	13.4.3.1.	Using	this,	we	have

where

and

We	 term	GC	 the	 central	 line	 clutter	 gain	 and	Gϕ	 the	 phase	 noise	 clutter	 gain.	GC	 is	 a
measure	of	 the	ability	of	 the	processor	 to	 reject	clutter	 if	 there	was	no	phase	noise.	Gϕ	 is	a



measure	of	the	effect	of	phase	noise	on	the	ability	of	the	signal	processor	to	reject	clutter.	As
we	will	show,	Gϕ	is	usually	much	larger	than	GC.	That	is,	phase	noise	is	usually	the	limiting
factor	on	the	ability	of	the	signal	processor	to	reject	clutter.

We	 treat	 receiver	 noise	 (what	 we	 have	 called	 noise)	 differently	 than	 target	 and	 clutter
signals	 because	 the	 target	 and	 clutter	 signal	methodology	 does	 not	 apply	 to	 noise.	 For	 the
former,	we	developed	the	appropriate	equations	by	propagating	a	signal	from	the	transmitter
to	the	target	or	clutter,	back	to	the	radar,	and	through	the	receiver	to	the	output	of	the	sampler.
Noise	 originates	 in	 all	 receiver	 stages	 (including	 the	 ADC),	 but	 the	 current	 practice	 is	 to
reference	it	to	the	receiver	input	by	specifying	system	noise	temperature,	Ts,	or	a	system	noise
figure,	Fn.13	This	is	then	used	to	compute	the	(white)	noise	power	spectral	density	N0	=	kTs	or
N0	 =	 kT0Fn	 depending	 on	 the	 noise	model	 used	 (see	Chapter	 4).	 To	 be	 consistent	 with	 the
terminology	we	have	used	thus	far,	we	need	noise	power	at	the	matched	filter	output,	not	noise
power	 spectral	 density	 at	 the	 receiver	 input.	 If	we	 had	 an	 appropriate	 bandwidth,	we	 could
compute	 the	 noise	 power	 at	 the	 matched	 filter	 output.	 However,	 there	 is	 an	 easier	 way	 to
approach	the	problem.	Specifically,	we	reference	everything	to	the	noise	power	at	the	matched
filter	output.	That	way,	we	do	not	need	to	specifically	know	PN	and	we	can	determine	PS	and
PC	 from	SNR	 and	CNR	 at	 the	matched	 filter	 output,	which	we	 can	 compute	 from	 the	 radar
range	equation.

Since	the	power	at	the	output	of	a	(theoretical)	sampler	(or	ADC)	is	the	same	as	the	power
at	its	input,	we	have	PNo	=	PN.	Also,	since	the	bandwidth	of	the	noise	out	of	the	matched	filter
is	much	 larger	 than	 the	 sample	 frequency,	 1/T,	 we	 can	 reasonably	 assume	 the	 noise	 at	 the
output	of	 the	sampler	 is	white	(see	Exercise	18).	By	definition,	 if	 the	power	associated	with
white	sampled	data	(discrete	time)	noise	is	PNo,	its	power	spectral	density	is	also	PNo,	that	is,
Ns	=	PNo	=	PN.	With	this,	we	can	write	the	noise	power	at	the	signal	processor	output	as

where

is	the	noise	gain	of	the	signal	processor.

Recalling	 that	PSo	 =	PS	 and	PCo	 =	 PC,	 we	 can	 use	 (13.132)	 through	 (13.135)	 to	 derive
equations	for	the	SNR,	CNR,	and	SCR	gains	through	the	signal	processor.	The	SNR	gain	is



The	CNR	gain	is

CA	is	the	reciprocal	of	GCNR.	The	SCR	gain,	or	SCR	improvement,	is

13.4.3.4 Phase	Noise

In	high-	and	medium-PRF	pulsed	Doppler	radars,	phase	noise	is	the	major	factor	that	limits
clutter	attenuation	and,	as	a	result,	SCR	and	SIR	improvement.	Because	of	this,	we	extend	the
phase	 noise	model	 beyond	 the	 simple	 form	 of	 (13.63).	 In	 particular,	 we	want	 to	 derive	 an
expression	for	ΦΔϕ(f).	From	(13.61)	and	(13.62),	we	can	write

where

and	(see	Appendix	13A)

In	(13.165),	τd	=	2RC/c	is	the	time	delay	to	the	clutter	(one	of	the	point	clutter	sources	that
make	up	the	clutter	patch	illuminated	by	the	pulse,	or	prior	pulses—see	Section	13.4.3.1)	and
ϕ(t)	is	the	local	oscillator	(LO)	phase	noise.	Using	(13.165)	in	(13.164),	we	get



where

is	the	autocorrelation	of	the	LO	phase	noise.	Substituting	(13.166)	into	(13.163)	results	in

where

is	the	LO	phase	noise	spectrum.

Equation	 (13.168)	 is	 interesting	 because	 it	 indicates	 the	 phase	 noise	 component	 of	 the
clutter	return	depends	on	the	LO	phase	noise	and	the	range	delay	to	the	(point)	clutter	source.
This	dependency	is	termed	range	correlation	[1,	50,	57,	78,	79].	It	indicates	that	returns	from
clutter	 at	 close	 range,	 due	 to	 phase	 noise,	 will	 be	 correlated	 and	 will	 cancel	 in	 the	 mixer
where	the	LO	signal	is	removed	from	the	return	signal.	This	assumes	the	same	LO	signal	is
used	in	the	transmitter	and	receiver.	If	they	use	different	LOs,	there	will	be	no	correlation	and
the	 bracketed	 term	 of	 (13.168)	 would	 not	 be	 2,	 assuming	 the	 phase	 noise	 spectra	 of	 the
different	LOs	are	the	same.

Equation	 (13.168)	 applies	 to	 a	 single,	 point	 source	 of	 clutter.	 Since	 clutter	 is	 distributed
over	 a	 range	 extent,	 the	 spectrum	 of	 (13.168)	must	 be	 integrated	 over	 the	 range	 region	 of
interest.	In	this	integration,	we	must	also	account	for	the	variation	of	clutter	power	with	range.
Thus,	to	find	the	phase	noise	spectrum	for	a	clutter	region,	we	compute	the	integral

where	 	 is	 a	 region	 that	 contains	 the	 clutter	 ranges	 of	 interest	 and	 K	 is	 a	 normalizing
constant.	The	R3	factor	accounts	for	the	nominal	cubic	decrease	in	ground	clutter	power	with



range.	For	rain	clutter,	we	would	use	R2.	R0	is	a	reference	range.	It	is	the	range	to	the	front	of
the	closest	clutter	patch.

The	 equation	 for	 HR(f,R0)	 is	 somewhat	 complicated	 and	 is	 included	 in	 Appendix	 13C.
Appendix	13C	also	contains	an	approximation	that	works	well.	That	approximation	is

Figure	13.28	Range	correlation	effect.

Figure	 13.28	 contains	 plots	 of	 HR(f,R0)	 using	 the	 equation	 of	 Appendix	 13C	 and
approximation	of	(13.171).	As	indicated,	they	match	reasonably	well.	The	plot	was	generated
for	a	waveform	with	a	100-kHz	PRF,	a	1-µs	unmodulated	pulse	and	R0	=	700	m	(R0	is	Rstart).	It
is	 interesting	 to	note	 that	 the	 curve	 levels	out	 at	 3	dB.	This	 is	 because	 the	 clutter	 “voltage”
[vobj(t)	in	Figure	13.6]	is	multiplied	by	vLO(t)	on	transmit	and	receive.	Thus,	the	phase	noise
component	of	vLO(t)	is	added	twice.

As	indicated,	Sϕ(f)	 is	 the	phase	noise	spectrum	of	 the	LO.	Figure	13.29	contains	a	sample
phase	 noise	 spectrum	 for	 an	 8.64-GHz	 LO.	 The	 LO	 signal	was	 created	 by	multiplying	 the
frequency	of	a	320-MHz	surface	acoustic	wave	(SAW)	oscillator	by	a	factor	of	27.	This	phase



noise	spectrum	represents	mid-level	technology	in	that	the	spectrum	floor,	Φ0,	is	about	−146
dBc/Hz.

The	dashed	line	on	Figure	13.29	was	generated	using	a	mathematical	model	developed	by
D.	B.	Leeson	[80],	with	modifications	 suggested	by	Rick	Poore	 in	an	Agilent	Technologies
report	[81].	That	model	is

As	can	be	seen,	the	Leeson-Poore	model	fits	the	measured	curve	very	well.

Figure	13.29	Measured	and	modeled	phase	noise	plot.	(Source:	Bill	Myles,	Dynetics,	Inc.	Used	with	permission.)

Figure	13.30	contains	a	notional	Bode	plot	[82]	of	Sϕ(f).	For	frequencies	below	f3,	the	Bode
plot	has	a	slope	of	zero.	Between	f3	and	f1,	the	slope	is	−30	dB/decade,	which	indicates	a	f−3

variation	of	Sϕ(f).	At	f1,	the	slope	changes	to	−20	dB/decade,	and	at	f2,	it	changes	to	zero.	Sϕ(f)
converges	to	the	phase	noise	floor	of	Φ0.	For	the	dashed	curve	of	Figure	13.29,	we	used	f1	=	3
kHz,	f2	=	15	kHz,	f3	=	10	Hz,	and	Φ0	=	−146	dBc/Hz.



Figure	13.30	Bode	plot	of	the	modified	Leeson	phase	noise	spectrum	model.

Figure	13.31	Total	phase	noise	spectrum	with	and	without	range	correlation.

Figure	13.31	 contains	 a	 plot	 of	 the	ΦΔϕ(f)	 that	 results	 from	using	 the	HR(f,R0)	 of	Figure
13.28	and	the	Sϕ(f)	model	of	(13.172).	An	interesting	feature	of	Figure	13.31	is	that	the	rise	in
Sϕ(f)	at	low	frequencies	is	canceled	by	HR(f,R0)	to	produce	a	total	phase	noise	spectrum	that	is
essentially	 flat.	 It	 is	 not	 clear	 whether	 this	 is	 a	 coincidence	 of	 this	 example	 or	 a	 general
behavior.

The	next	step	is	to	perform	the	convolution	of	C(f)	with	ΦΔϕ(f)	that	is	indicated	in	(13.157).
The	result	of	using	the	Gaussian	clutter	spectrum	of	Example	1,	with	σv	=	0.22	m/s,	is	shown



in	Figure	13.32.	The	solid	curve	is	the	spectrum	after	convolution,	and	the	dashed	curve	is	the
spectrum	 before	 convolution.	 The	 slight	 difference	 in	 the	 amplitudes	 is	 caused	 by	 the
frequency	step	size	used	in	the	numerical	convolution.

Figure	13.32	Plot	of	C(f)*Φ∆ϕ(f)	and	Φ∆ϕ(f).

As	can	be	seen,	convolving	ΦΔϕ	(f)	with	C(f)	had	almost	no	effect	on	the	shape	of	the	phase
noise	spectrum.	This	is	expected	because,	relative	to	the	variations	in	ΦΔϕ	(f),	C(f)	is	virtually
an	 impulse	 function	 (Dirac	 delta).	 Thus,	 convolving	 ΦΔϕ(f)	 with	C(f)	 produces	 almost	 the
same	result	as	convolving	ΦΔϕ(f)	with	a	Dirac	delta.

13.4.3.5 Summary	and	Rules	of	Thumb

Table	13.9	 contains	 a	 summary	 of	 the	 results	we	 obtained	 in	 the	 above	 discussions.	 It	 also
contains	some	rules	of	thumb	that	were	discussed,	or	will	be	discussed	shortly.

Table	13.9
Summary	of	Digital	Pulsed	Doppler	Signal	Processor	Analysis	Equations



To	derive	the	rule	of	thumb	for	GN,	we	assume	the	stopband	of	the	HPF	is	much	narrower
than	the	PRF	(narrower	than	1/T),	and	the	BPF	is	ideal	with	a	bandwidth	of	B	and	a	gain	of
unity.	We	assume	the	BPF	passband	is	centered	at	some	frequency,	fB,	 in	 the	passband	of	 the
HPF.	Under	these	conditions,



Deriving	the	rule	of	thumb	for	Gϕ	is	a	little	more	involved.	With	C(f)*Φ∆ϕ(f)	=	Φ0,	we	have

We	can	approximate	MF(f)	as	an	ideal	LPF	with	a	two-sided	bandwidth	of	1/τp.	We	assume	T/
τp	is	an	integer,	N,	so	that	HH(f)	and	HB(f)	will	be	repeated	N	 times	over	the	interval	of	1/τp.
We	 further	 use	 the	GN	 rule-of-thumb	 assumptions	 on	HH(f)	 and	HB(f)	we	 used	 to	 arrive	 at
(13.173).	With	this,	and	a	little	thought,	Gϕ	becomes

where	we	made	use	of	(13.173).	We	leave	it	as	an	exercise	to	verify	(13.175)	via	simulation.
The	remainder	of	the	rules	of	thumb	were	discussed	previously.

13.4.3.6 Example	2

To	illustrate	the	above	procedures,	we	consider	two	examples.	The	first	is	a	pulsed	Doppler
radar	 that	 uses	 a	 PRF	 of	 100	 kHz	 and	 an	 unmodulated	 pulse	 with	 a	 width	 of	 1	 µs.	 The
remaining	radar,	target,	and	clutter	parameters	are	given	in	Table	13.10.

For	 this	analysis,	we	assume	 the	 radar	 is	 searching	and	only	consider	 the	case	where	 the
radar	beam	is	½	beamwidth	above	the	horizon,	which	is	at	0°	elevation.	We	assume	the	target
is	flying	radially	toward	the	target	at	the	azimuth	and	elevation	angle	of	the	radar	beam.14	 In
the	 clutter	 RCS	 generation	 computer	 code,	 we	 use	 the	 sinc(x)	 antenna	 pattern	 of	 (13.3).
Although	 we	 are	 interested	 in	 target	 ranges	 between	 2	 and	 50	 km,	 we	 must	 model	 clutter
returns	 from	 much	 shorter	 ranges.	 We	 assume	 the	 receiver	 timing	 is	 such	 that	 the	 radar
receives	 returns	 from	 clutter	 located	 at	 225	 m.	 This	 means	 the	 receiver	 is	 off	 during	 the
transmit	pulse	(150	m)	and	for	½	pulsewidth	after	the	transmit	pulse.	The	receiver	remains	on
until	1½	pulsewidths	before	the	next	transmit	pulse.	Thus,	the	receiver	processes	returns	from
clutter	(and	targets)	over	a	range	window	that	extends	from	225	m	to	1,275	m	after	the	leading
edge	 of	 the	 transmit	 pulse.	 Of	 course,	 it	 receives	 returns	 from	 multiples	 of	 this	 window
repeated	every	PRI.	During	the	time	of	225	m	before	and	after	the	leading	edge	of	the	transmit
pulse,	 the	 receiver	 is	off,	which	means	 the	 radar	 is	blind	during	 these	 times.	 In	 search,	 this
does	not	generally	pose	a	problem	because	targets	will	fly	through	the	blind	regions	quickly.
During	track,	it	can	pose	problems.	However,	during	track,	pulsed	Doppler	radars	adjust	the
PRF	to	assure	the	target	is	not	in	a	range	or	Doppler	blind	region.

Figure	13.33	contains	plots	of	SNR,	CNR,	SCR,	and	SIR	at	the	matched	filter	output	for	this
example.	At	long	ranges,	the	SNR	is	about	-10	dB,	which	is	too	low	to	support	detection	and



tracking.	To	raise	the	SNR	to	about	13	dB,	the	Doppler	processor	needs	to	provide	about	23
dB	of	SNR	gain.

Table	13.10
Radar,	Target,	and	Clutter	Parameters	for	Example	2

Peak	power 10	kW

Operating	frequency 8	GHz

System	noise	temperature 1,500	K

PRF 100	kHz	(PRI	=	10	µs)

Burst	length 7	ms	(700	pulses	per	burst)

Pulsewidth 1	µs

Total	losses	for	the	target	and	clutter 6	dB

Height	of	the	antenna	phase	center 3	m

Antenna	gain 38	dB

Azimuth	and	elevation	beamwidth 2°

Beam	angle Beam	parked	at	½	beamwidth	above	0°	elevation

RMS	antenna	sidelobes 30	dB	below	the	peak	gain

Clutter	backscatter	coefficient −20	dB

Target	RCS −10	dBsm

Ranges	of	interest 2	km	to	50	km



Figure	13.33	SNR,	CNR,	SCR,	and	SIR	at	matched	filter	output	for	Example	2.

The	CNR	 has	 peaks	 of	 about	 80	 dB,	which	 cause	 the	 SCR	 and	 SIR	 to	 be	 very	 low.	 It	 is
estimated	that	the	signal	processor	will	need	to	provide	80	to	90	dB	of	clutter	attenuation	to
raise	the	SCR	and	SIR	to	reasonable	levels.	The	blank	regions	of	the	SNR	and	other	plots	are
the	regions	where	the	receiver	is	gated	off.

The	signal	processor	consists	of	an	HPF	for	clutter	rejection	followed	by	a	bank	of	BPFs	to
provide	SNR	gain.

We	want	the	radar	to	be	able	to	detect	and	track	targets	with	range	rates	down	to	about	40
m/s.	This	means	we	must	choose	the	cutoff	frequency	of	the	HPF	to	be

We	 choose	 fch	 =	 2,000	Hz.	We	 use	 a	 fifth-order,	 Butterworth	HPF	 [83].	An	 approximate
HH(f)	for	this	filter	is



with

and

This	 response	 is	 derived	 from	 the	H(f)	 of	 an	 analog	 LPF	 by	 using	 the	 substitutions	 of
(13.178)	and	(13.179)	to	make	the	response	periodic	with	a	period	of	1/T.	Equations	(13.178)
and	(13.179)	are	derived	from	the	bilinear	transform	[83,	84].

We	typically	want	to	choose	the	bandwidth	of	the	BPF	to	be	as	small	as	possible	since	this
sets	the	limit	on	SNR	and	SCR	improvement.	For	the	radar	of	this	example,	the	burst	length	of
7	ms	 sets	 an	 absolute	 lower	 limit	 of	 about	 140	 Hz.15	 However,	 we	must	 allow	 for	 clutter
transients	 in	 the	HPF,	 the	duration	of	which	 is	 typically	 set	 by	 the	HPF	cutoff	 frequency.	A
rough	rule	of	thumb	is	that	the	transients	will	settle	in	a	time	period	equal	to	about	five	times
the	reciprocal	of	the	HPF	cutoff	frequency.	For	the	HPF	of	this	example,	this	would	be	about
5/2000	s	or	about	2.5	ms.	We	will	allow	3.5	ms	for	clutter	transients.	In	other	words,	we	gate
the	output	of	the	HPF	off	for	3.5	ms	and	send	the	last	3.5	ms	of	pulses	to	the	BPFs.	Because	of
this,	the	effective	burst	length,	in	terms	of	BPF	bandwidth,	is	3.5	ms	and	means	the	minimum
BPF	bandwidth	is	1/(3.5	ms)	or	286	Hz.	We	choose	a	bandwidth	of	350	Hz.

The	idea	of	gating	the	HPF	output	off	to	allow	for	transients	is	sometimes	termed	clutter
gating.	In	some	applications,	even	the	clutter	gating	is	not	sufficient	to	mitigate	the	deleterious
effects	of	HPF	transients.	In	those	cases,	 the	signal	out	of	the	clutter	gate	is	weighted,	in	the
time	domain,	by	some	type	of	function	that	starts	at	zero	and	increases	to	unity	over	a	short
period	of	 time.	This	 is	often	 termed	cosine	weighting	 because	 its	 shape	 is	 of	 the	 form	 [1	–
cos(αt)]/2.	In	still	other	instances,	the	clutter	gate	can	be	eliminated	and	only	cosine	weighting
used.	This	is	a	design	trade-off	that	depends	upon	many	factors	including	burst	length,	clutter
rejection	requirements,	and	desired/required	SNR	improvement,	among	others.

We	assume	 the	BPF	 is	 a	 sixth-order	Butterworth	 filter.	For	purposes	of	our	analyses,	we
assume	 it	 is	centered	on	 the	 target	Doppler	 frequency	of	8,000	Hz	 (which	corresponds	 to	a
target	range	rate	of	−150	m/s).	An	approximate	HB(f)	for	the	BPF	is

where



and

In	these	equations,	fd	=	8,000	Hz	and	fcb	=	350	Hz.	The	BPF	is	derived	from	a	third-order
Butterworth	LPF	by	using	 a	 frequency	 transformation	derived	 from	 the	bilinear	 transform,
with	a	frequency	shift	to	center	the	response	at	fd.16

The	clutter	spectrum	is	the	Gaussian	model	of	Section	13.2.2	with	σv	=	0.22	m/s.	Also,	we
use	the	C(f)*ΦΔϕ(f)	of	Figure	13.32	but	represent	it	by	a	constant	value	of	Φ0	=	−143	dBc/Hz
since	Figure	13.32	indicates	C(f)*ΦΔϕ(f)	is	fairly	constant.

Since	MF(fd)≈1	and	the	target	Doppler	is	well	within	the	passband	of	the	HPF,	we	can	use
the	rule	of	thumb	that	GS	=	1.

GN	is	computed	by	numerically	evaluating

with	 HH(f)	 and	 HB(f)	 from	 (13.177)	 and	 (13.180).	 This	 results	 in	 GN	 =	 0.0037	 W/W.
Alternately,	we	could	have	used	the	rule	of	thumb	from	Table	13.9	to	arrive	at	a	value	of	GN	=
0.0035	W/W.	From	this,	the	SNR	gain	is

which	is	a	little	larger	than	the	desired	value	of	23	dB.

The	center	line	clutter	gain	is

which,	as	predicted,	is	very	small.	The	phase	noise	component	of	the	total	clutter	gain	is



The	rule-of-thumb	value	(see	Table	13.9)	is	also	−107	dB.	Equations	(13.185)	and	(13.186)	are
computed	using	numerical	integration.

With	the	above,	the	SCR	improvement	is

which	is	quite	large.	The	result	of	applying	the	gains	to	the	plot	of	Figure	13.33	is	shown	in
Figure	13.34.	 The	 shape	 and	 level	 of	 the	 SIR	 curve	 is	 very	 close	 to	 the	 SNR	 curve,	which
means	the	signal	processor	has	effectively	eliminated	the	clutter,	and	resulted	in	noise-limited
operation.	The	SIR	and	SNR	values	are	much	improved	over	the	values	at	the	matched	filter
output,	but	still	a	little	low	at	long	ranges.

A	consideration	in	digital	signal	processors	is	the	impact	of	the	ADC	on	SCR	improvement.
The	 specific	 ADC	 properties	 of	 concern	 are	 the	 number	 of	 bits	 in	 the	 ADC,	 quantization
noise,	 internal	 ADC	 noise,	 and	 ADC	 dynamic	 range.	 A	 common	 rule	 of	 thumb	 used	 to
characterize	 the	 impact	 of	 the	 ADC	 on	 SCR	 improvement	 is	 to	 say	 the	 ADC	 imposes	 an
absolute	limit	on	performance	of

Where	Nbit	is	the	number	of	bits	in	the	ADC.	While	Iscr	is	influenced	by	the	number	of	bits	in
the	ADC,	 the	 hard	 limit	 given	 by	 (13.188)	 is	 not	 valid	when	 processing	 gain	 is	 taken	 into
consideration.	A	more	 representative	equation	 for	 Iscr	 that	 includes	 the	effects	of	GC,	 phase
noise,	and	the	ADC	is	[77]



Figure	13.34	SNR,	CNR,	SCR,	and	SIR	at	digital	signal	processor	output	for	Example	2.

PADC	 is	 the	 level	of	 the	clutter	at	 the	ADC	input	relative	 to	 the	ADC	saturation	 level.	 It	 is
normally	 taken	 to	 be	 −6	 dB	 to	 ensure	 clutter	 fluctuations	 do	 not	 occasionally	 cause	 ADC
saturation.17	The	presence	of	PADC	 implies	 there	is	some	type	of	gain	control	 that	monitors
the	clutter	level	into	the	ADC	and	adjusts	the	gain	to	keep	the	level	6	dB	below	ADC	saturation
(full	scale	input).

The	 term	 PNADC	 encompasses	 quantization	 noise,	 noise	 generated	 internally	 by	 ADC
circuitry,	 and	 any	 additional	 dither	 noise	 that	 is	 added	 to	 the	 ADC	 input	 to	 assure	 linear
operation	of	 the	ADC.	This	 raises	an	 important	 issue	concerning	 the	ADC:	For	 the	ADC	to
preserve	the	relative	sizes	of	signal,	clutter,	and	noise	after	quantization,	there	must	always	be
sufficient	noise	at	the	ADC	input	(see	Section	14.8.1.5).	A	reasonable	value	of	PNADC	is	[77]

where	Nbit	is	the	number	of	bits	in	the	ADC	and	q	is	the	number	of	quantization	levels	of	the
dither	noise	at	the	input	to	the	ADC.	Typical	values	of	q	are	1/2	to	1.	[Note:	if	we	say	dither
noise	toggles	the	least	significant	bit	(lsb)	of	the	ADC,	q=1;	if	 it	 toggles	the	lower	two	bits,
q=3.]



Fs	 is	 the	 ADC	 sample	 rate.	 It	 is	 normally	 taken	 to	 be	 the	 modulation	 bandwidth	 of	 the
waveform	if	range	gating	is	performed	after	the	ADC.	For	an	unmodulated	pulse,	Fs	=	1/τp.	If
the	 radar	 uses	 IF	 sampling	 with	 digital	 downconversion,	 Fs	 can	 be	 much	 larger	 than	 the
modulation	bandwidth.

The	Iscr	equation	of	(13.189)	is	written	in	terms	used	for	a	pulsed	Doppler	signal	processor.
It	is	also	applicable	to	the	MTI	processor	with	GSNR	=	1	and	GC	=	1/CA.

For	our	example,	if	we	use	a	12-bit	ADC	with	one	bit	of	quantization	noise	(i.e.,	q	=	1),	the
SCR	 improvement	 would	 be	 limited	 to	 about	 84	 dB	 instead	 of	 the	 107	 dB	 indicated	 in
(13.187).	To	get	close	to	107	dB,	we	would	need	a	16-bit	ADC.	With	a	14-bit	ADC,	the	SCR
improvement	would	be	96	dB,	which	would	be	sufficient	 to	raise	 the	SIR	curve	close	to	the
SNR	curve.

13.4.3.7 Example	3

For	 this	 example,	 we	 consider	 a	 LPRF	 pulsed	 Doppler	 radar.	 We	 want	 to	 maintain
approximately	the	same	burst	length	and	want	the	radar	to	operate	range	unambiguously	at	the
maximum	range	of	50	km.	To	satisfy	 these	constraints,	we	use	a	PRI	of	400	µs,	which	will
provide	an	unambiguous	range	of	60	km.	We	also	use	a	burst	of	16	pulses	with	the	thought
that	 an	 FFT	will	 be	 used	 as	 the	 signal	 processor.	We	will	 sacrifice	 some	minimum	 range
capability	and	choose	a	pulsewidth	of	25-µs.	To	maintain	the	same	resolution	as	with	Example
2,	we	use	LFM	modulation	with	a	bandwidth	of	1	MHz.	The	remainder	of	 the	radar,	clutter,
and	target	parameters	are	the	same	as	in	Example	2.

Figure	13.35	contains	a	plot	of	CNR,	SNR,	SCR,	and	SIR	at	 the	matched	filter	output	 for
this	 case.	 It	 does	 not	 exhibit	 the	 periodic	 behavior	 of	 Figures	 13.33	 and	 13.34	 because	 the
waveform	is	unambiguous	in	range	over	the	range	interval	of	interest.	Consistent	with	the	25
µs	 pulsewidth,	 the	minimum	 range	 of	 the	 curves	 is	 3.75	 km.	 The	 SIR	 and	 SCR	 curves	 are
virtually	coincident	because	SCR	is	the	main	contributor	to	SIR.	Recall	that



Figure	13.35	SNR,	CNR,	SIR,	and	SCR	at	the	matched	filter	output	for	Example	3	with	ground	clutter.

For	the	HPRF	waveform	of	Example	2,	the	SCR	ranged	from	zero	to	about	−90	dB.	With
this	waveform,	the	SCR	ranges	from	about	−5	to	−30	dB,	because	there	is	no	folding	of	the
clutter	 in	 range	 (see	 (13.150).	 The	 difference	 in	 SCR	 values	 is	 due	 to	 two	 factors:	 1)	 the
closest	clutter	cell	is	located	at	3,750	m	as	opposed	to	225	m	for	the	HPRF	waveform,	and	2)
the	 target	 return	 only	 competes	with	 clutter	 at	 its	 range,	 rather	 than	with	 clutter	 at	 shorter
ranges.	Since	the	SCR	is	not	extremely	low,	the	signal	processor	does	not	need	to	provide	the
large	clutter	attenuation	and	SCR	 improvement	of	 the	HPRF	case.	The	SNR	for	 this	case	 is
lower	than	desired	so	the	signal	processor	must	provide	SNR	improvement.	Since	high	clutter
attenuation	 is	not	needed,	 the	HPF	can	be	deleted	from	the	signal	processor.	Also,	since	 the
waveform	contains	16	pulses,	we	will	implement	the	BPF	with	a	16-tap	FFT.	We	include	a	50-
dB	Chebyshev	weighting	to	provide	clutter	attenuation	by	suppressing	the	Doppler	sidelobes.

Figure	13.36	FFT	frequency	response.

A	plot	of	 the	 frequency	response	of	one	FFT	 tap	 is	contained	 in	Figure	13.36.	The	 tap	 is



centered	on	a	Doppler	frequency	we	arbitrarily	identified	as	fd,	which	we	assume	is	the	target
Doppler	frequency.	The	span	of	the	plot	is	the	PRF	of	2,500	Hz.

The	plot	of	Figure	13.36	has	been	normalized	to	the	response	of	a	16-tap	FFT	with	uniform
weighting	 to	show	the	 loss	due	 to	 the	Chebyshev	weighting.	This	 loss	 is	about	1.6	dB.	This
loss	is	incorporated	into	the	SNR	gain	of	the	processor.

We	 could	 analyze	 the	 performance	 of	 this	 signal	 processor	 using	 the	 techniques
summarized	in	Table	13.9.	However,	since	it	contains	only	an	FFT	processor,	which	is	an	FIR
filter,	 we	 can	 use	 techniques	 similar	 to	 those	 we	 used	 in	 the	 MTI	 analyses.	 Denoting	 the
Chebyshev	 weights	 by	 w(k)	 and	 assuming	 the	 input	 voltage	 is	 vin(k),	 the	 voltage	 at	 the
aforementioned	tap	is

If	vin(k)	is	(sampled	data)	white	noise,	n(k),	with	a	power	of	PN,	the	noise	at	the	FFT	output
is

and

Since	we	assumed	the	signal	is	centered	on	the	FFT	tap	of	interest,	we	can	write

and

With	this,	the	SNR	at	the	signal	processor	output	is



where	SNRMF	is	the	SNR	at	the	output	of	the	matched	filter	(see	Section	13.3.2).	With	this	we
get

To	compute	the	SCR	gain	through	the	signal	processor,	we	first	assume	the	sidelobe	region
has	 a	 constant	 value	 equal	 to	 the	 peak	 of	 the	 sidelobes	 of	 Figure	13.36.	 Thus,	 the	 sidelobe
level	 is	−50	dB.	 If	 the	clutter	 spectrum	 is	contained	 in	 the	 sidelobe	 region	of	Figure	 13.36,
then,	relative	to	the	target,	the	clutter	will	experience	an	attenuation	of	50	dB.	With	this,	a	rule-
of-thumb	estimate	for	GSCRC	is	50	dB.	This	is	equivalent	to	GS/GC	using	the	terminology	of
Table	 13.9	 and	 is	 thus	 termed	 the	 central	 line	 SCR	 improvement.	 This	 is	 the	 logic	 behind
assigning	it	the	symbol	GSCRC.

To	determine	the	impact	of	phase	noise,	we	consider	the	Gϕ	term	of	Table	13.9	and	use	the
rule	of	thumb	for	Gϕ	along	with	the	equation	for	GSNR.	Combining	these,	we	get

It	 is	 interesting	 to	note	 that,	 for	 this	 signal	processor,	 the	 limit	on	SCR	 improvement	 is	 the
central	line	clutter	rejection	capability	of	the	signal	processor	and	not	the	phase	noise.

Combining	 (13.199)	 with	GSCRC,	 the	 overall	 SCR	 improvement	 due	 to	 both	 central	 line
clutter	and	phase	noise	is

Finally,	we	can	compute	GCNR	using	Table	13.9	as

which	means	the	signal	processor	provides	a	clutter	attenuation	of	39.5	dB.

Figure	13.37	contains	the	result	of	applying	the	above	values	to	the	curves	of	Figure	13.35.



The	50-dB	SCR	improvement	offered	by	the	signal	processor	was	adequate	because	it	moved
the	SIR	curve	close	to	the	SNR	curve	at	long	ranges	and	still	provided	reasonable	SIR	values
at	short	ranges.	The	SNR	is	still	less	than	desired	at	the	maximum	range	of	50	km.

As	 an	 extension	 to	 this	 example,	 we	 examine	 how	 well	 the	 processor	 performs	 in	 rain
clutter.	Recall	from	Example	1	that	the	MTI	was	not	able	to	adequately	reject	rain	clutter.

Figure	13.38	 contains	 plots	 of	SNR,	CNR,	SIR,	 and	SCR	at	 the	matched	 filter	 and	 signal
processor	output	 for	 the	rain	parameters	used	 in	Example	1.	As	with	 the	ground	clutter,	we
assumed	 the	 rain	 spectrum	 was	 in	 the	 sidelobe	 region	 of	 the	 signal	 processor	 frequency
response.	Although	the	Doppler	processor	provides	better	performance	than	the	MTI,	it	is	still
not	quite	sufficient,	as	evidenced	by	the	fact	that	the	SIR	at	the	signal	processor	output	is	lower
than	 the	 SNR	 curve.	 If	 the	 clutter	 attenuation	 was	 increased	 by	 10	 dB,	 to	 49.5	 dB,	 the
performance	would	be	acceptable.

Figure	13.37	SNR,	CNR,	SIR,	and	SCR	at	the	signal	processor	output	for	Example	3	with	ground	clutter.



Figure	13.38	SNR,	CNR,	SIR,	and	SCR	at	the	matched	filter	(top)	and	signal	processor	(bottom)	output	for	Example	3	with
rain	clutter.

As	 a	 note,	 the	 calculations	 used	 in	 the	 example	 were	 based	 mainly	 on	 rule-of-thumb
equations.	An	extension	of	the	analysis	would	be	to	use	the	more	exact	integrals	summarized
in	Table	13.9.	It	is	expected	that	the	result	will	be	a	slight	increase	in	clutter	attenuation,	which
might	help	for	the	rain	clutter	case.

13.4.3.8 Analog	Pulsed	Doppler	Processors

In	analog	processors,	HH(f)	and	HB(f)	are	not	periodic	functions	of	frequency.	As	a	result,	we
cannot	use	the	same	analysis	techniques	we	used	for	digital	pulsed	Doppler	processors	and	the
MTI	 processor	 of	 Section	 13.4.2.	 Instead,	we	must	 compute	 the	 folded	 spectrum,	So(f)	 and
work	with	it.	We	must	also	specifically	include	the	hold	part	of	the	sampler,	which	we	assume
to	be	a	zero-order	hold	(ZOH).	This	configuration	is	illustrated	in	Figure	13.39.

Figure	13.39	Analog	Doppler	processor	block	diagram.



The	frequency	response	of	the	ZOH	is	[83,	84]	is

As	before,	we	assume	the	receiver	noise	at	the	sampler	output	is	white	with	a	power	of	PNo
=	PN,	where	PN	is	the	noise	power	at	the	matched	filter	output.	Since	the	noise	at	the	sampler
output	 is	a	sampled	signal,	 its	power	spectral	density	 is	also	PN.	That	 is,	SoN(f)	=	PNo	=	PN.
The	noise	power	spectrum	at	the	output	of	the	ZOH	is

and	the	noise	spectrum	at	the	processor	output	is

The	noise	power	at	the	processor	output	is

and	the	noise	gain	through	the	processor	is

Figure	13.40	contains	sketches	of	SNo(f),	HZ(f),	HH(f),	and	HB(f).	As	shown,	HZ(f)	is	a	sinc2(x)
function	that	has	a	first	null	at	f	=	±1/T.

Figure	13.40	Sketches	of	SNo(f),	HZ(f),	HH(f),	and	HB(f).

An	 important	point	 to	note	 is	 that	 the	BPF	 is	 centered	below	1/2T	 (i.e.,	PRF/2).	This	 is	 a
requirement	because	of	frequency	folding.	That	is,	all	of	the	relevant	frequency	information
in	the	signal	folds	into	a	region	between	f	=	−1/2T	and	f	=	1/2T.



We	can	develop	a	rule-of-thumb	equation	for	GN	by	making	some	simplifying	assumptions
about	HH(f)	and	HB(f).	We	assume	HB(f)	is

where	fB	is	in	the	passband	of	the	HPF	and	B	 is	small	relative	to	1/T.	We	further	assume	the
HPF	has	a	passband	gain	of	unity.	With	this,	we	get

which	is	close	to	the	form	we	derived	for	the	digital	processor.

The	target	spectrum	at	the	sampler	output	is

where	SrS(f)	=	δ(f	−	fd)	and	PS	is	the	target	signal	power	at	the	matched	filter	output.	With	this
we	have

The	target	spectrum	at	the	ZOH	output	is

The	spectrum	at	the	signal	processor	output	is



Figure	13.41	Sketches	of	T(f),	HZ(f),	HH(f),	and	HB(f).

Figure	13.41	contains	depictions	of	the	various	signal-related	spectra.	In	this	figure,	the	BPF
is	 centered	 on	 the	 target	 return.	Note	 that	 even	 though	 there	 are	many	 target	 spectral	 lines
present	in	the	ZOH	output,	only	one	is	in	the	passband	of	the	BPF.	Again,	note	that	the	BPF	and
target	spectral	line	of	interest	are	in	the	range	f	∈	(−1/2T,1/2T].
The	target	signal	power	at	the	processor	output	is

with

If	we	use	the	assumptions	about	HH(f)	and	HB(f)	 that	we	used	for	 the	noise	 rule	of	 thumb
and	assume	fB	=	fd,	we	obtain	a	rule-of-thumb	equation	for	signal	gain	as

If	we	further	make	the	(reasonable)	assumption	MF(fd)	≈	1,	we	get

We	 can	 combine	 the	 results	 we	 obtained	 thus	 far	 to	 derive	 an	 equation	 for	 SNR	 gain
through	the	processor	as

where	GS	 is	given	by	 (13.214)	and	GN	 is	given	by	 (13.206).	 If	we	make	use	of	 the	 rules	 of



thumb	for	GS	and	GN,	we	get	a	rule-of-thumb	equation	for	GSNR	as

which	is	the	same	result	we	obtained	for	the	digital	signal	processor.

The	spectrum	at	the	output	of	the	sampler	for	the	clutter	signal	is

where

The	spectrum	at	the	signal	processor	output	is

Figure	13.42	contains	a	sketch	of	the	various	spectrum	components	that	make	up	SCout	(f).

The	clutter	power	at	the	signal	processor	output	is

with



and

In	 general,	 these	 integrals	must	 be	 evaluated	 numerically.	However,	 for	 the	 case	where	 the
range	correlation	results	in	Sϕ(f)HR(f,R0)	=	Φ0,	(13.224)	reduces	to

Figure	13.42	Sketches	of	S∆ϕ(f),	C(f),	HZ(f),	HH(f),	and	HB(f).

If	we	use	the	assumption	we	used	to	derive	(13.208)	and	represent	MF(f)	by	an	ideal	LPF	with
a	bandwidth	of	1/τp,	the	summation	of	(13.225)	reduces	to	N	where	N	=	T/τp.	If	we	carry	this	a
step	 further	 and	 use	 the	HH(f)	 and	HB(f)	 assumptions	 we	 used	 to	 derive	 the	 rule-of-thumb
equation	for	GN,	we	can	further	reduce	(13.225)	to

From	(13.162),	we	can	write	the	SCR	gain	of	the	signal	processor	as



The	above	equations	and	rules	of	thumb	are	summarized	in	Table	13.11.

13.4.3.9 Example	4

To	 illustrate	 the	 analog	 processor	 analysis	 procedures,	 we	 consider	 the	 Example	 2	 pulsed
Doppler	radar	that	uses	a	PRF	of	100	kHz	and	an	unmodulated	pulse	with	a	width	of	1	µs.	The
remaining	 radar,	 target,	 and	 clutter	 parameters	 are	 given	 in	 Table	 13.10	 and	 discussed	 in
Example	2.	Because	of	this,	the	plots	of	SNR,	CNR,	SCR,	and	SIR	at	the	matched	filter	output
are	as	shown	in	Figure	13.33.

We	 will	 use	 the	 same	 types	 of	 filters	 as	 in	 Example	 2,	 except	 that	 they	 are	 analog	 as
opposed	to	digital.	The	frequency	responses	are

for	the	HPF	and

for	the	BPF.	In	the	above	fh	=	2,000	Hz,	fB	=	8,000	Hz,	and	B	=	350	Hz.

Table	13.11
Summary	of	Analog	Pulsed	Doppler	Signal	Processor	Analysis	Equations





GN	is	computed	by	numerically	evaluating

This	 results	 in	GN	 =	 0.0036	W/W.	Alternately,	we	 could	 use	 the	 rule	 of	 thumb	 from	Table
13.11	to	arrive	at	a	value	of	GN	=	0.0034	W/W.

GS	is	computed	from

which	yields	GS	=	0.98	W/W.	The	rule-of-thumb	equation	of	Table	13.11	also	results	in	GS	=
0.98	W/W.

Combining	GS	and	GN	results	in	a	processor	SNR	gain	of

The	central	line	and	phase	noise	clutter	gains	are	computed	from

and

We	used	the	form	of	(13.234)	to	compute	the	phase	noise	clutter	gain	because	we	previously
showed	 that,	 for	 all	 practical	 purposes,	 Sϕ(f)HR(f,R0)	 =	Φ0	 where	Φ0	 =	 −143	 dBc/Hz.	 The
resulting	values	for	these	two	gains	are	GC	=	−242	dB	and	Gϕ	=	−107	dB

With	the	above,	the	SCR	improvement	is



Figure	13.43	Plots	of	SNR,	CNR,	SCR,	and	SIR	at	analog	processor	output.

The	 results	 of	 applying	 these	 gains	 are	 shown	 in	 Figure	 13.43.	 If	 we	 compare	 the
performance	results	using	the	analog	and	digital	processors,	we	note	they	are	very	close,	as
expected.

For	a	hybrid	signal	processor,	we	would	use	the	approach	of	this	section	to	determine	the
noise,	signal,	and	clutter	spectrums	at	 the	output	of	 the	analog	portion	of	 the	processor.	We
would	 then	 use	 these	 in	 place	 of	MF(f)Sr(f)	 in	 the	 digital	 processor	 analyses.	 We	 would
compute	 the	 various	 powers	 out	 of	 the	 digital	 portion	 using	 (13.79)	 with	 substitutions	 for
MF(f)Sr(f).

13.4.4 Chaff	Analysis

Another	form	of	clutter	of	concern	in	military	radars	is	chaff.	Chaff	consists	of	short	tuned
dipoles	made	of	strips	of	aluminum	foil	or	aluminum	coated	pieces	of	glass,	 fiberglass,	or
Mylar	which,	when	dispensed,	bloom	into	a	cloud	 that	has	a	very	 large	RCS	[30,	75,	 85].18
Since	 the	 dipoles	 have	 large	 aerodynamic	 drag,	 they	 can	 remain	 aloft	 for	 long	 periods	 of
time.	The	RCS,	center	velocity,	and	velocity	spread	of	chaff	can	cause	problems	in	tracking
radars	not	designed	to	mitigate	chaff.	Specifically,	the	chaff	has	an	initial	velocity	close	to	that
of	the	dispensing	aircraft.	Since	the	chaff	RCS	is	large,	it	can	capture	the	radar	tracking	gates



and	cause	the	radar	to	track	the	chaff	instead	of	the	aircraft.	Its	ability	to	do	this	depends	on
how	the	chaff	is	dispensed,	the	characteristics	of	the	radar	track	loops,	and	the	type	of	signal
processor.	In	general,	pulsed	Doppler	signal	processors	are	less	susceptible	to	chaff	than	are
MTI	processors,	and	radars	that	do	not	use	some	type	of	clutter	mitigation	technique.

The	time	behavior	of	chaff	RCS	consists	of	four	phases	denoted	as:	1)	the	transient	phase,
2)	the	bloom	phase,	3)	the	mature	phase,	and	4)	the	decay	phase.	For	self-screening	chaff,	the
transient	phase	is	the	explosive	birth	phase	of	the	chaff	cloud	and	is	the	time	a	chaff	cartridge
is	ejected	from	the	aircraft	and	explodes	to	dispense	the	chaff	dipoles.19	During	this	time,	the
RCS	is	small	since	the	dipoles	are	still	tightly	packed.	This	is	also	the	time	the	initial	velocity
is	highest	and	the	velocity	spread	is	highest.	The	latter	property	is	most	likely	due	to	the	fact
that	the	explosion	imparts	widely	differing	velocities	to	the	chaff	particles.

The	 bloom	 phase	 begins	 immediately	 after	 the	 chaff	 cartridge	 has	 exploded	 and	 is
characterized	 by	 rapid	 chaff	 cloud	 growth,	 which	 is	 important	 for	 masking	 the	 aircraft
quickly	and	becomes	more	critical	the	faster	the	aircraft	is	traveling	and	the	better	rejection
the	 opposing	 radar	 has.	 This	 is	 also	 the	 time	 period	 in	 which	 the	 RCS	 rapidly	 increases
because	of	the	spreading	of	the	chaff	cloud.	During	this	phase,	 the	chaff	center	velocity	and
velocity	 spread	decrease	 to	 a	 level	 that	depends	on	 factors	 such	as	wind	 speed,	wind	 shear,
turbulence,	and	fall	velocity	[85].

The	 mature	 phase	 is	 the	 time	 period	 when	 the	 full	 RCS	 of	 the	 chaff	 cloud	 is	 realized.
During	 this	 period,	 the	 center	 frequency	 and	 velocity	 spread	 are	 likewise	 determined	 by
factors	such	as	wind	shear,	turbulence,	and	fall	velocity	[85].

In	 the	 decay	 phase,	 the	 chaff	 dipoles	 spread	 to	 the	 point	where	 the	 chaff	may	 no	 longer
appear	 as	 a	 single	 cloud.	 As	 a	 result,	 the	 RCS	 decays	 and	 the	 velocity	 spread	 becomes
narrower.

Several	 authors	 have	 presented	 discussions	 of	 chaff	 RCS,	 center	 frequency,	 and	 spectral
spread	(velocity	spread).	However,	there	is	limited	data	on	the	transient	behavior	of	chaff.	We
present	models	 that	might	be	useful	 in	evaluating	 the	 transient	behavior.	The	models	use	an
exponential	 decay	 or	 increase	 since	 exponential	 functions	 are	 easy	 to	 use,	 and	we	 have	 no
justification	for	more	complex	models.	The	model	we	propose	for	RCS	dynamics	is

where	σSS	 is	the	bloom	RCS	and	σI	 is	the	RCS	at	the	start	of	the	bloom	phase.	τσ	 is	 the	RCS
time	 constant.	Equation	(13.236)	 is	 a	 variation	 of	 a	model	 found	 in	 [87,	 88]	 and	 allows	 an
initial	RCS	other	than	0	dBsm.	Nathanson	[30]	provides	an	equation	for	σSS	 that	he	attributes
to	Schlesinger	[89].	That	equation	is	[30,	p.	335]



where	Wchaff	 is	 the	 weight	 of	 the	 chaff	 bundle,	 in	 pounds,	 and	 fc	 is	 the	 radar	 operating
frequency,	 in	GHz.	This	equation	applies	 to	chaff	made	of	aluminum	foil	 that	 is	0.001	 inch
thick,	λ/2	long,	and	0.01	inch	wide.	He	notes	that	one	pound	of	this	chaff	at	3-GHz	operating
frequency	would	have	an	RCS	of	1,000	m2	[30,	90,	91].	Nathanson	points	out	that	one	pound
of	chaff	designed	to	cover	a	frequency	range	of	1	to	10	GHz	might	have	a	σSS	of	60	m2.	It	is
not	clear	what	value	should	be	chosen	for	σI.	A	guess	might	be	0	to	5	dBsm	since	this	is	the
beginning	of	the	bloom	phase.

Determining	τσ	is	more	difficult	since	there	seems	to	be	a	dearth	of	published	information
in	 this	 area.	 Nathanson	 notes,	 “Chaff	 dipoles	 have	 high	 aerodynamic	 drag:	 their	 velocity
drops	to	that	of	the	local	wind	a	few	seconds	after	they	are	dispensed.”	Based	on	this,	it	seems
as	if	a	reasonable	value	of	τσ	might	be	1	to	2	seconds.

The	model	we	propose	for	chaff	spectral	width	is

In	 this	 equation,	BI	 is	 the	 3	 dB	 bandwidth	 at	 the	 beginning	 of	 the	 bloom	 phase,	BSS	 is	 the
bandwidth	at	the	end	of	the	bloom	stage	and	τB	is	the	time	constant	associated	with	the	change
in	bandwidth.	Nathanson	notes	that	the	same	components	that	affect	the	spectral	spread	of	rain
also	affect	the	spectral	spread	of	chaff.	In	particular,	he	notes	that	the	shear	component	is	the
same	as	rain.	According	to	a	graph	in	his	book	[30],	the	spread	due	to	shear	can	range	from	0
to	 5	 m/s	 depending	 upon	 altitude	 and	 beam	 elevation	 angle.	 He	 goes	 on	 to	 note	 that	 a
reasonable	value	for	the	turbulence	component	is	0.7	to	1	m/s.	He	provides	equations	for	the
spread	due	to	fall	velocity	and	spectrum	broadening	due	to	its	elevation	dispersion	across	the
radar	beam.	Although	he	does	not	state	it,	we	assumed	that	these	values	are	for	BSS.	If	we	were
to	summarize	the	various	numbers	into	rule-of-thumb	values,	we	would	suggest	a	range	of	1
to	5	m/s.

It	is	more	difficult	to	guess	values	for	BI.	However,	if	we	use	the	premise	that	BI	is	larger
than	BSS,	a	guess	might	be	to	choose	BI	2	to	5	times	BSS.	As	with	the	case	of	RCS,	a	reasonable
value	of	τB	might	be	one	to	two	seconds.

Our	proposed	model	for	mean	chaff	radial	velocity	is

where	VI	is	the	radial	velocity	at	the	beginning	of	the	bloom	stage,	Vwind	is	the	radial	velocity
of	 the	wind	and	 τV	 is	 a	 chaff	 deceleration	 time	constant	 [88].	The	 chaff	 center	 frequency	 is
therefore	f(t)	=	2V(t)/λ.	As	with	rain,	Vwind	depends	on	the	actual	wind	velocity	and	direction,
and	the	direction	of	the	radar	antenna	beam.	For	chaff	that	is	“dropped,”	VI	would	equal	 the



target	 range	 rate,	 or	 smaller	 if	 it	 is	 assumed	 the	 cartridge	 does	 not	 explode	 until	 it	 has
separated	from	the	aircraft	by	some	distance.	If	the	chaff	cartridge	is	ejected	forward	of	the
aircraft,	VI	could	be	considerably	larger	than	the	aircraft	range	rate.	As	with	the	other	models,
a	 reasonable	 value	 of	 τV	 might	 be	 one	 to	 two	 seconds.	 The	 separation	 between	 the	 chaff
centroid	and	aircraft	can	be	expressed	as

Given	the	nature	of	chaff,	a	suggested	spectral	model	for	chaff	is	the	Gaussian	model	given
by	(13.12)	discussed	in	Section	13.2.2	[92].	This	suggestion	is	based	on	the	assertion	that	the
velocities	of	the	dipoles	are	most	likely	governed	by	a	Gaussian	distribution.	Because	of	the
direct	 relation	between	velocity	and	 frequency,	 this	 leads	 to	a	Gaussian	 frequency	spectrum
[54].	This	spectral	model	for	chaff	can	be	expressed	as

where	 Pchaff	 is	 the	 total	 chaff	 power,	 fm	 is	 the	 mean	 chaff	 frequency	 and	 σB	 is	 the	 chaff
frequency	standard	deviation.	The	chaff	frequency	standard	deviation	is	related	to	the	chaff	3
dB	bandwidth	by	(see	Exercise	29)

where	B(t)	is	the	distance	between	3	dB	points	of	the	chaff	power	spectrum	given	by	(13.238).

To	 evaluate	 a	 radar ’s	 response	 to	 chaff,	 we	 apply	 the	 chaff	 and	 target	 to	 the	 signal
processor	in	question,	using	the	dynamic	characteristics	of	the	chaff.	For	an	initial	analysis,
we	 assume	 the	 track	 point	 stays	 centered	 on	 the	 aircraft.	Utilizing	models	 of	 the	 chaff	 and
signal	 processing	we	 quantify	 ISCR,	 which	 is	 a	 function	 of	 the	mismatch	 between	 the	 track
point	and	the	chaff	centroid.	Given	the	spectral	spread	of	the	chaff	model,	we	use	numerical
integration	 to	determine	 ISCR.	Once	 the	 ISCR	 is	 determined,	we	 can	 calculate	 the	SCR	at	 the
output	 of	 the	 processor.	 The	 general	 sequence	 of	 computation	 used	 here	 for	 a	 preliminary
chaff	analysis	is:

• Select	time
• Compute	chaff	RCS	from	(13.236)
• Compute	S/C	input	from	S/CIN	=	σt/σC
• Compute	chaff	spectral	width	from	(13.238)	and	f	=	2V/λ
• Compute	chaff	center	frequency	from	(13.239)
• Compute	S/C	improvement	based	upon	signal	processing
• Compute	output	S/C	from	S/CIN	=	ISCR(σt/σC)
• Repeat	for	next	selected	time



While	more	detailed	analysis	can	be	performed,	the	results	of	the	procedure	above	generally
provide	a	case	useful	for	initial	chaff	performance	assessments.

Table	13.12
Chaff	Parameters	Used	in	Chaff	Simulation

Parameter Value

Pulsewidth 30	μs

LFM	bandwidth 1	MHz

Target	range	rate 150	m/s

Initial	chaff	RCS 5	dBsm

Steady-state	chaff	RCS 30	dBsm

Chaff	RCS	time	constant 1	sec

Initial	chaff	bandwidth 1	kHz

Final	chaff	bandwidth 250	Hz

Chaff	bandwidth	time	constant 2	sec

Location	of	MTI	notch 5	m/s

Initial	chaff	velocity 150	m/s

Final	chaff	velocity 5	m/s

Chaff	velocity	time	constant 1	sec

Figures	13.44	and	13.45	contain	plots	from	a	simulation	of	the	use	of	chaff	against	a	radar
that	 uses	 MTI.	 For	 this	 example,	 the	 radar	 operates	 at	 8	 GHz	 and	 uses	 a	 staggered	 PRI
waveform	with	PRIs	of	520	and	572	µs.	It	uses	a	3-pulse	MTI,	with	wind	compensation	used	to
place	the	MTI	notch	at	the	final	chaff	velocity.	The	target	RCS	was	set	to	0	dBsm.	The	chaff
parameters	used	in	the	examples	are	listed	in	Table	13.12.

For	Figure	13.44,	the	aircraft	dispensed	a	single	chaff	cartridge	(sometimes	referred	to	as	a
puff)	and	in	Figure	13.45,	the	aircraft	dispensed	five	chaff	cartridges	spaced	one	second	apart.
For	the	single	chaff	cartridge,	the	slowdown	of	the	chaff	cloud	caused	the	target	and	chaff	to
separate	and	thus	allowed	the	SCR	to	rise.	We	assumed	the	range	gate	of	the	radar	remained
with	the	target.

For	 the	 multiple	 cartridge	 case,	 the	 chaff	 continued	 to	 obscure	 the	 target	 since	 it	 was
dispensing	cartridges	with	a	 spacing	equal	 to	 the	various	 time	constants	associated	with	 the
chaff	model.	Again,	we	assumed	the	range	gate	remained	with	the	target.



Figure	13.44	MTI	performance	for	single	chaff	cartridge.

Figure	13.45	S/C	vs.	time—cartridge	ejected	every	second	for	5	seconds—MTI.

An	interesting	extension	of	this	study	would	be	to	include	a	range	track	loop	model	to	see
what	would	 be	 required	 for	 the	 chaff	 to	 cause	 the	 radar	 to	 break	 target	 lock	 and	 track	 the
chaff.

Figures	13.46	and	13.47	contain	plots	like	those	of	Figures	13.44	and	13.45,	for	a	radar	that
uses	a	pulsed	Doppler	waveform	and	processor.	For	 this	example,	 the	 radar	uses	a	25	kHz,
semi-infinite	 pulsed	 Doppler	 burst	 with	 unmodulated,	 4-µs	 pulses.	 The	 signal	 processor
consists	 of	 a	 fifth-order	Butterworth	HPF	with	 a	 cutoff	 frequency	of	 1,000	Hz	 and	 a	 sixth-
order	Butterworth	BPF	with	a	bandwidth	of	800	Hz.	The	range	gate	and	BPF	are	centered	on
the	target	range	and	Doppler	frequency,	respectively.	As	illustrated	in	Figure	13.46,	when	one
chaff	cartridge	was	used,	the	SCR	rose	very	quickly	and	stopped	obscuring	the	aircraft,	in	less
than	 0.5	 seconds.	This	 is	 because	 the	 chaff	 and	 target	 separated	 in	Doppler	 frequency	 very
quickly.	Figure	13.47	shows	 the	 results	of	 ten	chaff	cartridges	dispensed	every	0.2	 seconds,
which	extends	the	target	masking	due	to	chaff	to	about	2	seconds.	This	would	seem	to	support
an	assertion	that	a	pulsed	Doppler	processor	might	be	effective	in	countering	chaff.



Figure	13.46	Pulsed	Doppler	performance	for	single	chaff	cartridge.

Figure	13.47	S/C	vs.	time—cartridge	ejected	every	0.2	seconds	for	2	seconds—Pulsed	Doppler.

13.5 EXERCISES

1. Show	that	 (13.3)	and	(13.4)	provide	 reasonable	 approximations	 to	 the	main	beam	of	 an
antenna	 radiation	 pattern.	 Show	 this	 for	 a	 linear	 array	 with	 uniform	 weighting	 and	 a
linear	array	with	 	=	6,	30-dB	Taylor	weighting.

2. Derive	(13.10).

3. Reproduce	the	plot	of	Figure	13.2.

4. Show	that	(13.13)	satisfies	(13.15).

5. Reproduce	the	plot	of	Figure	13.4.

6. Derive	(13.19).

7. Show	that	 the	integrals	of	(13.70)	and	(13.71)	equal	1	 for	 the	case	where	VS(f)	=	C(f)	=
T(f)	=	Φ(f)	=	d(f).



8. Show	the	approximation,	MF(f)	=	1,	is	valid	for	the	parameters	of	Example	1.

9. Show	 the	 approximation,	 sin(πfT)	 ≈	 πfT,	 is	 valid	 for	 clutter	 spectrum	 spread	 values
considered	in	this	chapter.

10. Derive	(13.101).

11. Derive	(13.102)	and	(13.103).

12. Show	that

for	the	case	where	H(f)	is	given	by	(13.74)	and	MF(f)	is	given	by	(13.45).

13. Repeat	Example	1	and	reproduce	all	of	the	plots.

14. Derive	(13.126).

15. Derive	(13.130).

16. Derive	(13.136).

17. Implement	the	algorithm	of	Section	13.4.2.6	and	reproduce	Figure	13.19.

18. Show	that

for	all	NMTI.

19. Use	 (13.43)	 to	 experimentally	 show	 (i.e.,	 by	 simulation)	 that	 the	 noise	 spectrum	 at	 the
sampler	output	of	Figure	13.26	is	essentially	constant.	That	is,	that	the	noise	is	white.	Use
a	matched	filter	matched	to	an	unmodulated,	1-µs	pulse	and	sample	periods	of	10	and	100
µs.

20. Derive	(13.175)	and	verify	it	by	simulation	using	the	parameters	of	Examples	2	and	3.

21. Reproduce	the	plot	of	Figure	13.32.

22. Repeat	Example	2	and	produce	the	plots	of	Figures	13.33	and	13.34.

23. Verify	the	statements	in	the	paragraph	above	Section	13.4.3.5.

24. Repeat	Example	3	and	produce	the	plots	of	Figures	13.35,	13.37,	and	13.38.

25. Repeat	Exercise	23	using	the	integrals	of	Table	13.9,	rather	than	the	rules	of	thumb.

26. Derive	(13.194)	and	(13.196).

27. Repeat	Example	4	and	reproduce	Figure	13.43.

28. Use	(13.239)	to	derive	the	equation	for	the	range	to	the	chaff	centroid.



29. Derive	 the	 relationship	 between	 the	 standard	 deviation	 and	 the	 3	 dB	 bandwidth	 of	 the
power	spectrum	of	(13.242).

30. Implement	the	algorithm	of	Section	13.4.2.9	for	an	MTI	processor	and	generate	a	plot	like
Figure	13.45.	Use	a	target	range	rate	of	300	m/s	and	1.2	s	between	chaff	puffs	or	else	use
the	 parameters	 listed	 in	Table	13.12.	Generate	 plots	 of	 chaff	RCS,	 bandwidth,	 velocity,
and	 center	 frequency	 as	 a	 function	 of	 time.	 How	 fast	 should	 chaff	 be	 dispensed	 to
improve	performance?

31. Using	a	target	range	rate	of	300	m/s,	implement	the	pulsed	Doppler	processor	described
in	 the	example	and	generate	a	plot	 like	Figure	13.47.	Use	 the	chaff	parameters	 in	Table
13.12.	 Generate	 plots	 of	 chaff	 RCS,	 bandwidth,	 velocity,	 and	 center	 frequency	 as	 a
function	 of	 time.	 How	 fast	 should	 chaff	 be	 dispensed	 to	 mask	 the	 aircraft	 for	 two
seconds?	How	many	chaff	bundles	are	necessary?
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APPENDIX	13A:	DERIVATION	OF	(13.43)

We	start	the	derivation	at	(13.40),	which	is

For	the	first	step,	write	the	product	of	the	last	two	terms	as

where	Δϕ(t)	=	ϕ(t−τd)	−	ϕ(t).	Δϕ(t)	represents	the	total	(transmit	and	receive)	phase	noise	in	the
radar.	We	note	that	Δϕ(t)	is	small	relative	to	unity	so	that	[57,	58]

With	this,	vm(t)	becomes

Note	 that	we	dropped	 the	phase	 term,	exp(−jωc	 τd).	We	were	able	 to	do	 this	because	we	can
normalize	it	away	in	future	calculations.
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We	further	simplify	(13A.3)	by	shifting	the	time	origin	by	−τd.	This	yields

We	argued	 earlier	 that	vS(t)	 changes	 slowly	 relative	 to	 τd	 so	 that	 vS2(t	 +	 τd)	 ≈	 vS2(t).	 Also,
vobj(t)	and	Φ(t)	are	WSS	random	processes.	This	means	their	means	and	autocorrelations	do
not	depend	on	time	origin.	Thus,	we	can	replace	vobj(t	+	τd/2)	with	vobj(t)	and	Φ(t	+	τd)	with
Φ(t)	 and	 not	 change	 their	 means	 and	 autocorrelations	 [the	 autocorrelation	 is	 what	 we
eventually	use	to	find	the	power	spectrum	of	vm(t)].	With	this,	we	get

where

We	dropped	the	prime	and	reverted	to	the	notation	vm(t)	for	convenience.

The	 next	 step	 in	 our	 derivation	 is	 to	 process	 vm(t)	 through	 the	 matched	 filter	 and	 then
sample	the	matched	filter	output	via	the	sampler/ADC	(see	Figure	13.6).	Before	we	do	this,	we
need	to	examine	vm(t)	more	closely.	If	we	substitute	for	vp(t)	[see	(13.25)]	into	(13A.5),	we	get

Since	vobj(t)	 and	Φ(t)	 are	 random	processes,	 the	 product	 r(t)	=	vS2(t)vobj(t)Φ(t)	 is	 also	 a
random	 process.	 However,	 because	 vS(t)	 is	 periodic,	 r(t)	 is	 not	WSS,	 though	 we	 show	 in
Appendix	13B	that	r(t)	is	wide	sense	cyclostationary	(WSCS).	As	a	result	of	this,	we	can	use
the	averaged	statistics	of	r(t)	and	treat	it	as	a	WSS	process	in	the	following	development.	With
this	we	write

where	we	 treat	r(t)	 as	 if	 it	was	a	WSS	 random	process.	We	note	 that	vm(t)	 is	not	 stationary
because	of	the	p(t	–	kT)	term.	We	address	this	in	the	following	discussions.

If	we	represent	the	impulse	response	of	the	matched	filter	as	m(t),	we	can	write	the	output	of
the	matched	filter	as	[28]



We	 normally	 derive	 m(t)	 by	 saying	 the	 matched	 filter	 is	 matched	 to	 some	 signal	 q(t).
Recalling	matched	filter	theory,	this	means	we	can	write

As	a	reminder,	the	matched	filter	is	termed	a	single-pulse	matched	filter.	The	matched	filter	is
often	matched	to	the	transmit	pulse,	p(t),	in	which	case	we	would	use.

When	p(t)	is	an	LFM	pulse,	m(t)	could	include	an	amplitude	taper	to	reduce	range	sidelobes.
In	that	case	q(t)	will	not	exactly	equal	p(t).	In	the	remainder	of	this	derivation	we	will	use	the
more	general	form	of	(13A.10).

Substituting	(13A.10)	into	(13A.9)	yields

or

where	we	replaced	the	convolution	notation	(*)	by	the	integral	it	represents.

Figure	13A.1	contains	depictions	of	|vm(τ)|,	|q*(τ	−	t)|	and	|vMF(t)|	for	the	case	where	p(t)	is
an	unmodulated	pulse	and	m(t)	is	matched	to	p(t)	[i.e.,	q(t)	=	p(t)].	As	expected	from	matched
filter	theory,	vMF(t)	is	a	series	of	triangle	shaped	pulses	whose	amplitudes	depend	upon	r(t).

Since	vm(t)	is	a	nonstationary	random	process,	so	is	vMF(t).	This	makes	vMF(t)	difficult	 to
deal	 with	 since	 we	 do	 not	 have	 very	 sophisticated	 mathematical	 tools	 and	 procedures	 that
allow	us	 to	 efficiently	 analyze	nonstationary	 random	processes.	Fortunately,	 because	of	 the
sampler/ADC,	we	do	not	need	to	deal	directly	with	vMF(t).	We	will	only	work	with	samples	of
vMF(t).

r(t)	 is	 a	 WSCS	 random	 process	 with	 an	 averaged	 autocorrelation	 of	 Rr(τ)	 and
corresponding	power	spectral	density	of	Sr(f).

For	now,	we	assume	the	sampler/ADC	samples	the	output	of	the	matched	filter,	vMF(t),	once
per	PRI,	T,	 at	 the	 peak	 of	 the	matched	 filter	 response.	We	 also,	without	 loss	 of	 generality,
assume	 the	 matched	 filter	 peaks	 occur	 at	 t	 =	 lT.	 With	 this	 we	 can	 write	 the	 output	 of	 the
sampler/ADC	as



Figure	13A.1	Depictions	of	|vm(τ)	|	(top	plot),	|q
*(τ	–	t)	|	(center	plot),	and	|vMF(t)	|	(bottom	plot).

If	we	assume	p(t)	and	q(t)	are	of	the	form

and	τp	<	T/2,	then	all	of	the	terms	of	the	summation	of	(13A.14)	are	zero	except	for	the	case
where	k	=	l.	With	this	(13A.14)	reduces	to

or,	with	the	change	of	variables	from	l	back	to	k

To	find	the	power	spectrum	of	vo(k),	we	must	first	show	vo(k)	is	WSS.	To	that	end	we	form



From	previous	discussions	we	note	that

where	the	overbar	denotes	the	averaged	expected	value	(see	Appendix	13B).	Using	this	for	the
expectation	in	(13A.18)	gives

By	making	use	of

we	can	write

We	now	make	the	change	of	variables,	α	=	τ	−	t,	dα	=	dτ	to	write



We	next	make	the	change	of	variables	β	=	α	+	t	–	k1T,	dβ	=	dα	and	get

Rearranging	yields

For	the	next	change	of	variables	we	let	γ	=	t	–	k2T,	dγ	=	dt	to	yield

The	 first	 thing	 we	 note	 about	 (13A.26)	 is	 the	 right	 side	 is	 a	 function	 of	 k1	 –	 k2.	 This
constitutes	the	proof	that	vo(k)	is	WSS.	The	next	thing	we	note	is	that	the	two	integrals	in	the
brackets	are	conjugates	of	each	other.	Finally,	from	ambiguity	function	theory,	we	recognize
that	we	can	write	the	product	of	the	integrals	as

where	χpq(0,f)	is	the	matched-range,	Doppler	cut	of	the	cross	ambiguity	function	of	p(t)	and



q(t).	In	the	remainder	we	will	use	the	notation	χpq(0,f)	=	MF(f).	With	all	of	 the	statements	 in
this	paragraph,	we	can	write

We	next	want	to	find	the	power	spectrum	of	vo(k).	We	could	do	this	by	taking	the	discrete-
time	Fourier	transform	of	Ro(k).	However,	the	math	associated	with	this	will	probably	be	quite
involved.	We	will	take	an	indirect	approach.

Let	v(t)	be	a	WSS	random	process	with	an	autocorrelation	of	R(τ)	and	a	power	spectrum	of
S(f).	Further	assume	that	we	can	sample	v(t)	to	get	vo(k).	That	is

vo(k)	is	the	same	as	the	random	process	defined	by	(13A.14).	From	random	processes	theory
we	can	write

Further,	 from	the	 theory	of	discrete-time	signals	and	 their	associated	Fourier	 transforms,	 if
S(f)	is	the	power	spectrum	of	v(t)	the	power	spectrum	of	vo(k)	is

From	this	same	theory	we	can	write

If	we	substitute	(13A.31)	into	(13A.32),	we	get

or



We	now	make	the	change	of	variables	x	=	f	–	l/T	to	get

where	we	made	use	of	ej2πkl	=	1.

We	recognize	that	the	last	term	is	an	infinite	summation	of	integrals	over	nonoverlapping
intervals,	 and	 that	 the	 total	 of	 the	 nonoverlapping	 intervals	 cover	 the	 range	 of	 x	∊	 (−∞,∞).
With	this	we	can	write

where	we	made	the	change	of	variables,	x	=	f.

If	we	compare	(13A.36)	to	(13A.28),	we	have

With	this	and	(13A.31)	we	arrive	(13.43).	That	is,

Since	we	will	need	it	later,	we	note	that	we	can	write	the	power	in	vo(k)	as

APPENDIX	13B:	PROOF	THAT	r(t)	IS	WIDE-SENSE
CYCLOSTATIONARY

In	this	appendix,	we	show	that	the	process	[28]



is	wide-sense	cyclostationary	(WSCS).	To	show	that	r(t)	is	WSCS,	we	must	show

for	some	TSCAN.	That	is,	we	must	show	that	the	autocorrelation	of	r(t)	is	a	periodic	function	of
t.

We	recall	C(t)	and	Φ(t)	are	WSS	random	processes.	Thus	the	product	C(t)Φ(t)	is	also	WSS.
The	function	vs2(t)	 is	a	deterministic	function	and	is	periodic	with	a	period	of	TSCAN	where
TSCAN	is	the	scan	period	of	the	antenna.	If	we	form

we	get

where	 we	 made	 use	 of	 the	 fact	 that	C(t)	 and	 Φ(t)	 are	 independent	 and	WSS.	 In	 a	 similar
fashion,	we	can	write

However,	since	vS2(t)	is	periodic	with	a	period	of	TSCAN,	we	have

and

which	says	r(t)	is	WSCS.

From	the	theory	of	WSCS	random	processes	[54],	we	can	use	the	averaged	autocorrelation
of	r(t)	to	characterize	the	average	behavior	of	r(t).	Specifically,	in	place	of	Rr(t,τ)	we	use

where	the	integral	notation	means	to	perform	the	integration	over	one	period	of	Rr(t,τ).	As	a
note,	(13B.8)	shows	a	system	will	respond	on	average	to	r(t)	 in	 the	same	manner	as	a	WSS
process	 that	 has	 the	 autocorrelation	 .	We	will	 dispense	with	 the	 overbar	 and	 use	 the



notation	Rr(τ).

APPENDIX	13C:	DERIVATION	OF	(13.170)

In	this	appendix,	we	present	 the	equations	necessary	to	compute	(13.170).	More	specifically,
we	derive	an	equation	for

We	begin	by	examining	the	clutter	spectrum	at	the	input	to	the	matched	filter.	The	equation	for
that	spectrum	is

We	 included	R	 in	 the	 argument	 of	SC(f)	 and	ΦΔϕ(f)	 to	 acknowledge	 that	 the	 spectrum	 is	 a
function	of	range.	PC(R)	is	the	total	clutter	power	at	the	input	to	the	matched	filter	for	a	single,
point	clutter	source	at	a	range	of	R.

If	 we	 ignore	 the	 R4	 attenuation	 for	 clutter	 past	 the	 radar	 horizon	 (which	 is	 reasonable
because	the	predominant	contributors	to	PC(R),	for	pulsed	Doppler	waveforms,	are	at	ranges
close	to	the	radar),	PC(R)	is	of	the	form

With	this	we	get

To	obtain	 the	 contribution	 of	 the	 clutter	 in	 the	 range	 region	 of	 interest,	 ,	 we	 integrate
SC(f,R)	over	 .	For	pulsed	Doppler	waveforms,	 	is	defined	by

where	ΔR	=	cT/2	is	the	range	equivalent	of	the	PRI	and	δR	is	the	range	resolution	of	the	pulses



of	the	burst.	R0	is	the	range	to	the	front	of	the	clutter	cell	closest	to	the	radar.	With	this	we	get

where	we	anticipated	the	final	answer	and	wrote

From	(13.137)	we	have

With	this	we	get

and

To	evaluate	this	integral,	we	use	the	trigonometric	identity	sin2θ	=	(1	–	cos2θ)/2	and	write

Evaluation	 of	 the	 first	 integral	 is	 simple.	 The	 basis	 for	 evaluating	 the	 second	 integral	 is
(2.639.2)	in	[93,	p.	187]



where

is	the	cosine	integral	is	(8.230.2)	in	[93,	p.	928]

After	some	manipulation,

with

and

Figure	13C.1	contains	a	plot	of	HR(f,R0)	for	R0	=	700	m,	∆R	=	1,500	m	and	δR	=	150	m.	It
also	contains	the	approximation

that	fits	the	exact	curve	well.



Figure	13C.1	P	lots	of	(13C.14)	and	(13C.17)	for	R0	=	700	m,	∆R	=	1,500	m	and	δR	=	150	m.

1	 This	 is	 valid	 for	 ground-based	 radars.	However,	 for	 airborne	 radars,	 there	will	 be	 clutter	 returns	 from	 the	 entire	 annulus.
Further,	the	Doppler	frequency	will	vary	around	the	annulus.	For	an	example	of	this,	see	Example	4	of	Chapter	16.
2	Sea	state	4	is	termed	a	moderate	sea	state.	It	is	associated	with	wave	heights	of	1.25	to	2.5	m.
3	David	Barton	pointed	out	that	the	model	of	(13.16)	assumes	uniform	illumination	across	the	ellipse	of	Figure	13.3.	To	account
for	the	fact	that	the	illumination	is	not	uniform,	π/4	should	be	replaced	by	1/1.77.	This	ratio	is	based	on	a	Gaussian	beamshape.
4	Nathanson	uses	a	factor	of	0.42	instead	of	0.3.	However,	in	his	model,	εB	is	a	two-way	beamwidth	rather	than	the	one-way
beamwidth	used	in	(13.23).	The	value	0.3	is	approximately	0.42/(2½).
5	 Another	 factor	 that	 affects	 signal	 processor	 performance	 is	 timing	 jitter	 [67,	 68].	 It	 is	 also	 normally	 ignored,	 but	 could
become	a	limiting	factor	as	the	phase	noise	of	STALOs	continues	to	improve.
6	A	note	about	stationarity:	Realistically,	none	of	the	random	processes	we	are	dealing	with	are	truly	WSS.	However,	over	the
CPI,	we	can	reasonably	assume	they	are	stationary	(actually,	cyclostationary).	From	random	processes	theory,	we	know	that	if
a	process	is	stationary	in	the	wide	sense,	over	a	CPI,	then	we	can	reasonably	assume	that	it	is	WSS.	This	stems	from	the	fact
that	we	are	interested	only	in	the	random	process	over	the	CPI.
7	The	validity	of	 this	as	 the	spectrum	due	to	scanning	is	questionable.	However,	we	use	it	anyway	because	Gaussian	form	of
VS(f)	convolved	with	the	exponential	clutter	model	does	not	lead	to	an	easily	computed	closed	form	expression	for	G.
8	This	is	a	valid	assumption	for	narrow	pulses.	However,	for	long,	modulated	pulses	and	large	Doppler	frequencies,	it	may	be
necessary	to	include	the	MF(fd)	term.
9	David	Barton	indicated	it	would	be	worth	noting	that	use	of	the	exponential	clutter	model	is	important	when	values	of	CA	≫
20	dB	are	needed.
10	Had	the	burst	been	semi-infinite,	we	would	have	used	K	=	2,	the	length	of	the	PRI	sequence.
11	This	is	not	the	case	for	LPRF	pulsed	Doppler	radars	since	LPRF	waveforms	are	unambiguous	in	range.
12	Some	analysts	ascribe	the	terms	clutter	transients	or	clutter	fill	time	to	signal	processor	transients.
13	Actually,	the	“receiver”	noise	also	contains	environment	noise	as	discussed	in	Chapters	2	and	4.
14	This	target	trajectory	is	obviously	unrealistic.	However,	it	is	an	assumption	used	in	some	search	radar	analyses.	An	alternate



would	be	the	more	realistic	assumption	that	the	target	is	flying	toward	the	radar	at	a	constant	altitude.
15	This	is	somewhat	of	a	“soft”	lower	limit.	In	some	instances,	we	could	use	a	BPF	with	a	very	small	bandwidth	and	not	be
concerned	with	the	filter	response	reaching	steady	state.	Such	a	filter	is	sometimes	termed	a	bandpass	integrator.
16	The	filter	defined	by	(13.149)	is	ideal	in	that	it	only	has	one	passband	at	fd	rather	than	passbands	at	±fd.	Such	a	filter	could
be	built	with	digital	hardware	that	allows	complex	filter	coefficients.
17	ADC	full	scale	has	been	normalized	to	0	dB	in	(13.189).
18	 Typically,	 chaff	 clouds	 are	 designed	 to	 cover	 the	 frequency	 bands	 associated	 with	 the	 intended	 victim	 radars.	 This	 is
accomplished	by	mixing	dipoles	within	the	cloud	that	are	cut	to	the	appropriate	lengths	so	that	resonance	occurs	at	each	of	the
victim	radar	frequencies.
19	 Some	 chaff	 dispensers	 rely	 on	 air	 turbulence	 generated	 by	 the	 aircraft	 to	 disperse	 chaff	 packets.	 Others	 use	 small
pyrotechnic	charges	shortly	after	the	chaff	leaves	the	aircraft.	One	explosive	technique	achieved	an	average	time	to	bloom	as
short	as	12	ms	[17].



Chapter	14

Radar	Receiver	Basics

14.1 INTRODUCTION

The	general	function	of	a	radar	receiver	is	to	amplify,	filter,	shift	frequency,	and	demodulate
signal	 returns	 without	 distortion	 of	 the	 waveform	 modulation.	 The	 objective	 of	 a	 radar
receiver	 is	 to	 facilitate	 discrimination	 between	 desired	 signals	 and	 unwanted	 noise	 and
interference	 such	 as	 galactic	 noise,	 receiver	 noise,	 other	 radars,	 jamming,	 and	 clutter.	 In
doing	so,	two	principal	design	goals	for	a	receiver	are	to	ensure	sufficient	sensitivity	to	detect
weak	returns	and	to	ensure	adequate	dynamic	range	to	operate	linearly	for	all	expected	return
power	levels.

There	have	been	a	number	of	receiver	configurations	used	for	radar	over	the	decades	(e.g.,
crystal,	 superregenerative,	 tuned	 RF,	 homodyne,	 heterodyne).	 However,	 the	 focus	 of	 this
chapter	 is	 the	 superheterodyne	 receiver.1	While	 the	 earliest	 receivers	were	 entirely	 analog,
receiver	technology	is	rapidly	trending	more	digital,	less	analog.	In	this	chapter,	we	consider
a	superheterodyne	receiver	employing	direct	IF	sampling.

Major	 Edwin	 Howard	 Armstrong	 invented	 the	 superheterodyne	 receiver	 in	 1918	 while
serving	 with	 the	 U.S.	 Army	 Signal	 Corps	 during	 World	 War	 I	 [1–3].2	 Since	 then,	 the
superheterodyne	 receiver	 has	 become	 predominant	 and	 is	 employed	 in	 virtually	 all	 radar
receivers.	For	this	and	other	contributions	to	the	art	of	radio	electronics,	Armstrong	was	the
first	recipient	of	the	Institute	of	Radio	Engineers’	(IRE)	Medal	of	Honor	in	1917	and	was	later
awarded	the	American	Institute	of	Electrical	Engineers’	(AIEE)	Edison	Medal	in	1942	[4].

The	superheterodyne	 receiver	 is	based	on	 the	heterodyne	principle,	 invented	by	Reginald
Aubrey	Fessenden	in	1902	[5].	Heterodyning	is	 the	process	of	combining	or	mixing	signals
with	carrier	frequencies	of	f1	and	f2	to	generate	two	other	signals	with	frequencies	of	f1	+	f2
(sum	 frequency)	 and	 f1	–f2	 (difference	 frequency).	Fessenden	coined	 the	 term	“heterodyne”
from	 the	 Greek	 words	 for	 difference	 (hetero)	 and	 force	 (dyne)	 [7].	 In	 early	 heterodyne
receivers,	the	difference	frequency	was	in	the	audible	range	so	a	telephone	or	telegraph	signal
could	be	heard	in	a	headset	[8].

Armstrong’s	superheterodyne	receiver	design	was	made	possible	by	the	first	triode	vacuum
tube,	 called	 an	 audion,	 invented	by	Lee	De	Forest	 in	1906	 [9–12].	The	 audion	was	 the	 first
vacuum	tube	device	that	could	both	detect	and	amplify	signals	[13,	14].	In	contrast	to	the	audio
signal	 used	 by	 Fessenden’s	 heterodyne	 receiver,	 Armstrong’s	 superheterodyne	 uses	 a
comparatively	 high	 (inaudible)	 frequency	 he	 termed	 the	 intermediate	 receiver	 frequency.
Armstrong	used	the	moniker	“super”	because	of	the	supersonic	IF.



14.2 SINGLE-CONVERSION	SUPERHETERODYNE	RECEIVER

A	block	diagram	of	a	basic,	single-conversion,	superheterodyne	receiver	found	in	radars	 is
given	in	Figure	14.1.	Such	a	block	diagram	is	sometimes	referred	 to	as	a	receiver	chain.	 In
current	 receiver	 vernacular,	 the	 components	 from	 the	 receiver	 input	 to	 the	 input	 to	 the
detector	 are	 referred	 to	 as	 the	 radio	 frequency	 (RF)	 front	 end.	 Earlier	 usage	 of	 the	 term
stopped	 at	 the	 output	 of	 the	 first	 mixer.	 Single-conversion	 receivers	 are	 typically	 used	 in
radars	with	bandwidth	less	than	20	MHz	with	limited	tuneable	bandwidth.

Ideally,	the	receiver	input	consists	of	signals	from	targets	of	interest.	One	problem	is	there
is	 a	 chance	 unwanted	 signals	 will	 also	 be	 present	 in	 the	 received	 signal.	 A	 bandpass	 filter
(BPF),	 called	 a	 “preselector,”	 is	 used	 to	 preserve	 the	 desired	 signal	 while	 eliminating
unwanted	signals	(interference)	such	as	those	from	other	radars,	jammers,	or	other	sources	of
“out-of-band”	energy	[15].

The	preselector	is	a	low-loss	device	(typically	<	1	dB),	such	as	a	cavity	or	waveguide	filter,
to	minimize	its	impact	on	system	noise	figure.	The	preselector	is	usually	low	order,	typically
2nd	 to	 5th,	 to	minimize	 unwanted	 ringing	 and	 overshoot.3	 Also,	 low-order	 filters	 generally
have	lower	insertion	loss,	have	less	sensitivity	to	temperature,	are	less	costly,	and	are	smaller
and	lighter	than	higher	order	filters.

Figure	14.1	Superheterodyne	receiver	with	amplitude	detection.

The	 attenuators	 shown	 in	 Figure	 14.1	 are	 used	 to	 extend	 receiver	 dynamic	 range	 by
reducing	the	power	level	of	large	returns	in	order	to	prevent	saturating	subsequent	receiver
components.	 The	 total	 attenuation	 necessary	 is	 typically	 distributed	 between	 RF	 and	 IF,	 as
shown	in	Figure	14.1.	The	exact	amount	of	attenuation	required,	and	how	it	is	distributed	in	a
receiver	chain,	is	determined	via	cascade	analysis	(see	Section	14.7).

Controlling	 the	 amount	 of	 attenuation	 is	 generally	 accomplished	 using	 automatic	 gain
control	AGC	or	sensitivity	time	control	(STC)	circuitry.	AGC	monitors	the	power	level	of	a
tracked	target	signal	and	adjusts	 receiver	gain	 to	establish	a	desired	constant	power	 level	at
the	 detector	 output.4	 STC	 uses	 an	 attenuation	 profile	 unrelated	 to	 target	 presence.	 When
considering	AGC,	 STC,	 and	 dynamic	 range,	 Barton	 notes	 that	 the	 following	 general	 rules
apply:

• A	 target	 echo	 that	 saturates	 the	 receiver	 remains	detectable	 in	 search	 radar,	while	 angle
tracking	receivers	(including	both	sum	and	difference	channels	in	monopulse	radar)	must
avoid	saturation	by	the	target	to	be	tracked	or	measured.

• Clutter	 must	 not	 saturate	 the	 receiver	 or	 exceed	 the	 linear	 region	 in	 either	 search	 or



tracking	 radars	 if	 high	 clutter	 attenuation	 is	 required.	 With	 modern	 digital	 signal
processing,	receiver	gain	control	using	a	high-resolution	clutter	map	offers	an	effective
method	 of	 avoiding	 clutter	 nonlinearity	 on	 clutter	 peaks	 with	 minimal	 loss	 of	 target
detections.

• Search	 radars	 cannot	 use	 AGC	 other	 than	 from	 a	 high-resolution	 clutter	 map	 because
detection	 is	 required	 on	 small	 targets	 in	 the	 same	 beam	 as	 the	 strong	 signal	 on	which
conventional	AGC	is	based.

• STC	can	be	used	in	both	search	and	tracking	radars	with	LPRF	waveforms	(and	possibly
with	MPRF	 if	 the	STC	action	 is	 limited	 to	 a	 small	 fraction	 of	 the	PRI),	 never	 in	HPRF
radar.	Receiver	saturation	on	short-range	clutter	extends	the	region	after	the	transmission
in	which	targets	are	suppressed	(eclipsed).

• A	 tracking	 radar	 can	 combine	 STC,	 AGC,	 and	 transmitter	 power	 variation	 to	 keep	 the
target	signal	within	the	linear	region,	since	echoes	from	ranges	beyond	the	target	need	not
be	detectable.

When	a	low-PRF	waveform	is	used,	STC	circuitry	can	be	used	to	extend	receiver	dynamic
range.	 STC	 reduces	 gain	 over	 the	 initial	 portion	 of	 the	 PRI	 according	 to	 an	 STC	 law,
restoring	 full	gain	 for	 the	 remainder	of	 the	PRI.	The	 type	of	gain	variation	depends	on	 the
particular	 application.	 For	 example,	when	 targets	 are	 expected	 to	 dominate	 the	 short-range
returns,	the	law	is	1/R4;	if	surface	clutter	is	expected	to	dominate,	the	law	is	1/R3	[16–18].

Figure	14.2	STC	attenuation	profile	for	1/R4	STC	law.

The	portion	of	 each	PRI	during	 the	beam	dwell	over	which	STC	 is	 applied	affects	more
than	just	a	few	µs	(or	meters	of	range),	but	typically	tens	of	µs	or	km	in	range.	The	STC	law
must	be	established	for	a	given	application	and	applied	without	knowledge	of	target	presence
or	power	in	any	given	beam	dwell.

For	illustration,	Figure	14.2	shows	a	1/R4	STC	law	designed	to	operate	from	1.5	km	to	10
km.	The	attenuation	is	held	constant	at	33	dB	for	the	first	1.5	km	and	then	decreases	to	0	dB	at
10	 km.	 A	 1/R4	 STC	 law	 results	 in	 the	 receiver	 output	 power	 for	 targets	 being	 range
independent	(within	the	range	STC	is	active).	For	a	1/R3	STC	law,	receiver	output	power	for
clutter	becomes	range	independent.

The	 RF	 amplifier	 of	 Figure	 14.1	 is	 a	 low	 noise	 amplifier	 (LNA)	 used	 to	 establish	 the
receiver	noise	figure.	The	receiver	noise	figure	is	also	influenced	by	prior	lossy	components



before	and	stages	after	the	LNA.	Lossy	components	prior	to	the	LNA	increase	the	noise	figure
by	 their	 insertion	 loss,	 dB	 for	 dB.	This	makes	 it	 important	 to	minimize	 losses	 prior	 to	 the
LNA.

The	LNA	also	has	fairly	high	gain	so	 that,	 ideally,	devices	following	 the	RF	LNA	do	not
significantly	contribute	to	the	overall	receiver	noise	figure	(see	Section	4.6).	For	higher	noise
figure	systems,	an	LNA	gain	of	20–25	dB	is	usually	sufficient	to	ensure	this.	However,	while
the	intent	may	be	to	allow	negligible	contributions	from	the	stages	following	the	LNA,	this	is
not	always	realistic	(especially	when	LNA	technology	achieves	noise	figures	of	1	or	2	dB).

Early	 radars	did	not	use	RF	amplifiers	 and,	 as	 a	 result,	 their	 noise	 figure	was	 set	 by	 the
mixer	 and	 components	 after	 the	 mixer.	 Skolnik	 notes	 that	 early	 receivers	 achieved	 noise
figures	of	12	to	15	dB,	with	1960s	vintage	receivers	having	typical	noise	figures	of	7	to	8	dB
[19].	The	noise	figure	of	modern	LNAs	is	typically	in	the	range	of	1	to	5	dB,	and	continues	to
fall	as	technology	improves.

The	 RF	 LNA	 in	 older	 systems	 is	 usually	 tube-based	 technology,	 for	 example,	 traveling
wave	tube	(TWT),	backward	wave	amplifier	(BWA),	electrostatic	amplifier	(ESA),	cyclotron
wave	electrostatic	amplifier	 (CWESA),	and	electrostatic	combined	amplifier	 (ESCA).5	Tube
amplifiers	 tend	 to	 be	 robust;	 some,	 such	 as	 the	 CWESA	 and	 ESCA,	 are	 essentially	 self-
protected	 from	 overload	 [19–23].	 The	 self-protecting	 nature	 of	 cyclotron	 devices	 led	 to
production	 by	 ISTOK6	 of	 the	 cyclotron	 protective	 device	 (CPD),	 functioning	 as	 receiver
protection	rather	than	LNA	[24–27].

Radars	 are	 trending	 toward	 solid-state	 LNAs	 such	 as	 bipolar	 junction	 transistor	 (BJT),
gallium	arsenide	(GaAs),	and	gallium	nitride	(GaN).	Solid-state	LNAs	require	more	care	to
protect	from	overload,	but	generally	have	a	lower	noise	figure.	The	overall	noise	figures	and
gains	 of	 tube	 amplifiers	 versus	 solid	 state	 LNAs	 preceded	 by	 diode	 limiter	 overload
protection	circuitry	are	similar.

Solid-state	 LNAs	 must	 not	 only	 be	 protected	 from	 overload	 but	 from	 destruction	 by
leakage	 from	 the	 transmitter.	Whether	 this	 protector	 is	 considered	 part	 of	 the	 receiver	 or
assigned	 to	 the	duplexer,	 the	use	of	 a	 solid-state	 limiter	 is	 the	 current	 practice,	 and	 its	 loss
must	be	included	in	calculating	radar	system	noise.

The	mixer	is	a	nonlinear	device	used	as	a	frequency	heterodyne	to	translate	the	signal	from
the	 incoming	 RF	 to	 a	 desired	 IF	 using	 a	 reference	 frequency.	 In	 addition	 to	 the
superheterodyne	 receiver,	 invention	of	 the	mixer	 is	usually	attributed	 to	Armstrong	as	well
[28].	The	reference	oscillator	used	for	the	RF	to	IF	conversion	in	a	receiver	is	referred	to	as
the	local	oscillator	(LO)	[29].	This	reference	frequency	is	denoted	as	the	LO	frequency.	This
process	is	referred	to	as	mixing.

The	ideal	mixer	is	a	multiplier.	Specifically,	if	the	RF	and	LO	signal	are	represented	by



The	mixing,	or	heterodyning,	process	is	represented	by

Thus,	an	ideal	mixer	produces	an	output	that	contains	the	sum	of	the	RF	and	LO	frequencies
and	 the	difference	of	 the	RF	and	LO	frequencies.	The	LO	frequency	can	be	either	above	or
below	the	RF.7	The	absolute	value	in	(14.2)	underlines	the	fact	that	either	fLO	>	fRF	or	fLO	<	fRF
are	 valid	 RF	 to	 LO	 relationships.8	 For	 downconversion,	 the	 difference	 of	 the	 RF	 and	 LO
frequencies	is	what	we	are	after.	The	sum	of	the	RF	and	LO	frequencies	is	removed	by	the	IF
BPF	in	Figure	14.1.

The	absolute	value	in	(14.2)	also	means	that	there	are	two	RF	frequencies	that	result	in	the
same	IF.	One	is	 the	desired	RF	used	in	 the	receiver;	we	term	the	other	 the	image	frequency.
Any	signal	at	the	image	frequency,	when	mixed	with	the	target	signal,	results	in	another	signal
at	the	desired	IF.	Jammers	can	exploit	this	by	placing	interference	at	the	image	frequency.	The
image	frequency	is	one	of	the	unwanted	signals	the	preselector	must	reject.	It	is	not	unusual
for	a	preselector	to	provide	more	than	45	dB	of	image	signal	rejection.

Since	there	are	two	RF	frequencies	that	will	translate	to	the	desired	IF,	an	image	reject	filter
(IRF)	is	sometimes	necessary	after	the	LNA	to	suppress	unwanted	receiver	noise	generated	by
the	LNA	in	the	image	band.	This	has	the	benefit	of	preventing	image	noise	from	entering	the
passband,	 resulting	 in	 noise	 components	 from	 both	 the	main	 and	 image	 responses	 adding,
which	would	double	the	noise	figure	of	the	mixer.	To	minimize	the	effect	of	image	noise,	~20
dB	of	image	rejection	is	generally	sufficient.

For	frequency	plans	with	a	low	IF,	image	filters	can	be	difficult	to	implement	because	the
image	is	too	close	to	the	passband.	In	these	cases,	an	image	reject	(single	sideband)	mixer	is
often	 used	 instead	 of	 a	 filter.	 As	 the	 name	 implies,	 an	 image	 reject	 mixer	 uses	 phase
cancelling	 techniques	 to	suppressed	 the	 image	 in	order	 to	prevent	 the	 image	sideband	from
converting	 to	 the	 IF	 passband.	 An	 image	 reject	mixer	 can	 usually	 provide	 25	 to	 35	 dB	 of
image	 suppression	 [30,	 p.	 230].	 The	 absence	 of	 an	 image	 reject	 filter	 after	 the	LNA	 in	 the
receiver	in	Figure	14.1	tacitly	implies	the	use	of	an	image	reject	mixer.

Figure	14.3	contains	an	illustration	of	an	image	frequency.	In	the	figure,	fRF	is	4,040	MHz
and	 the	desired	 fIF	of	40	MHz.	The	LO	frequency	we	chose	 is	 fLO	=	 fRF	–fIF	 =	 4,040	 –40	=
4,000	MHz	(low	side).	The	image	frequency	is	then	fIMAGE	=	fRF	–2fIF	=	fLO	–fIF	=	3,960	MHz.
If	we	had	used	an	LO	where	fLO	>	fRF	(high	side),	the	LO	frequency	would	be	4,080	MHz	and
the	image	would	be	4,120	MHz.



Figure	14.3	Low	side	mixer	downconversion	example.

Practical	 mixers	 are	 implemented	 by	 nonlinear	 devices	 such	 as	 diodes.	 As	 a	 result,	 in
addition	to	signals	at	|fRF	–fLO|	and	fRF	+	fLO,	signals	at	harmonics	of	fRF	and	fLO	are	generated.
This	can	be	expressed	as

where	m	and	n	are	integers	[19,	28,	31].	These	harmonics	are	unwanted	mixer	byproducts	that
are	referred	to	as	spurious	signals,	or	simply	spurs.	The	order	of	a	spur	is	given	by	|m|	+	|n|.
Except	when	an	image	reject	mixer	is	necessary,	double-balanced	mixers	are	the	most	widely
used	in	radar	receivers.	This	is	because	a	double-balanced	mixer	is	designed	to	suppress	the
LO,	 the	RF,	 and	 even	 ordered	 products	 at	 the	 output	 of	 the	mixer.	Double-balanced	mixers
also	provide	isolation	between	all	mixer	ports.9

The	mixer	spurs	for	 the	above	example,	up	to	 |m|	+	|n|	=	10th	order,	are	plotted	 in	Figure
14.4.	Only	the	spurs	from	0	to	450	MHz	and	above	-120	dBc	are	visible.	The	spurs	shown	in
Figure	14.4	are	multiples	of	the	40	MHz	IF.	The	other	spurs	are	either	much	farther	away	in
frequency	or	are	too	low	in	power	to	be	of	concern.	This	is	because	as	spur	order	increases,
the	level	of	the	spur	decreases.10

For	 this	example,	 there	are	only	a	 few	spurs	above	-100	dBc	within	 the	450	MHz	shown.
The	 BPF	 following	 the	 mixer	 in	 Figure	 14.1	 is	 used	 to	 reduce	 these	 spurs	 further.	 For
illustration,	the	frequency	response	of	a	4th	order	Butterworth	filter	with	an	8-MHz	passband
centered	on	an	IF	of	40	MHz	is	also	shown	in	Figure	14.4.11	The	spurs	at	80	MHz	and	120
MHz	would	be	further	suppressed	by	>	56	dB	by	the	BPF	shown.	Since	the	closest	spur	to	fIF
is	40	MHz	away,	the	design	of	the	post	mixer	BPF	is	easier	than	if	the	spur	were,	say,	5	MHz
away,	which	would	 require	a	higher	order	 filter	 for	 the	 same	amount	of	 spurious	 rejection
because	the	spur	is	closer	to	the	filter	passband.

Considering	the	large	number	of	spurs	generated	according	to	(14.3),	there	are	sometimes
spurs	within	the	passband	of	the	BPF	following	the	mixer	that	are	unavoidable.	Beyond	about
9th	order	though,	mixer	spurs	are	usually	low	enough	to	be	ignored,	but	not	always.	Selection
of	the	fRF,	fLO,	and	fIF	combination	is	an	important	consideration	to	insure	that	no	low	order
spurs	fall	within	the	IF	passband.

The	IF	BPF	is	generally	a	filter	that	has	a	fairly	constant	passband	gain,	with	a	linear	phase
in	the	passband.	The	constant	gain	and	linear	phase	are	desirable	to	minimize	distortion.	The



order	 of	 this	 BPF	 is	 typically	 low	 (4th	 or	 5th)	 to	 avoid	 excessive	 ringing	 and	 overshoot.
Lumped-element	 LC	 filter	 technology,	which	 is	 suitable	 for	 lower	 frequencies,	 is	 typically
used	for	implementation.

Figure	14.4	Mixer	output	spur	example.

The	typical	IF	for	a	superheterodyne	receiver	is	30	to	100	MHz.	In	addition	to	the	spurious
considerations	 described	 earlier,	 a	 particular	 IF	 is	 selected	 because	 of	 the	 performance	 of
available	 components.	 Generally	 speaking,	 as	 the	 IF	 is	 decreased,	 the	 cost	 of	 components
goes	 down	 and	 performance	 improves.	 For	 example,	 a	 low	 IF	 simplifies	 the	 design	 of
narrowband	filters.

The	IF	amplifier	is	used	to	make	up	for	the	losses	in	the	previous	devices	and	to	amplify
the	signal	to	desired	levels	for	subsequent	components.	The	detector	is	typically	the	last	stage
considered	 to	 be	 part	 of	 the	 receiver.	When	 coherent	 processing	 is	 not	 required,	 linear	 or
square	law	amplitude	detectors	are	typically	used	(see	Chapter	6)	and	the	BPF	is	replaced	by	a
pulse	matched	filter.	For	coherent	processing,	a	synchronous	(or	quadrature)	detector	is	used
to	 preserve	 phase	 information	 in	 the	 signal,	with	matched	 filtering	 occurring	 in	 the	 signal
processor.12

If	we	consider	a	frequency	agile	radar,	where	the	RF	can	vary	rapidly	over	a	fairly	large
range,	we	 need	 a	wideband	 preselector	 and	 a	 higher	 IF.	While	 increasing	 the	 IF	 simplifies
image	rejection	by	placing	the	image	frequency	further	in	the	stopband	of	the	preselector,	the
complexity	of	narrowband	filter	design	is	increased.	Also,	frequency	agility	complicates	the
issue	of	avoiding	spurious	mixer	products	within	the	IF	passband	greatly.

The	approach	typically	used	to	alleviate	these	issues	is	to	add	more	downconversion	stages.
The	higher	IF	in	the	first	frequency	conversion	stage	has	the	benefit	of	good	image	rejection
via	the	preselector	[31].	The	lower	IF	in	the	second	stage	of	conversion	enjoys	the	benefit	of
easier	 implementation	 of	 narrowband	 filters	 [31].	 An	 additional	 key	 point	 to	 adopting
multiple	downconversion	stages	is	that	additional	stages	simplify	the	problem	of	mixer	spurs.
Two	downconversion	stages	are	typically	sufficient	to	ensure	that	passband	spurs	are	at	least
8th	or	9th	order	(which	have	very	low	power	levels).



Figure	14.5	Dual-conversion	superheterodyne	receiver	with	synchronous	detection.

14.3 DUAL-CONVERSION	SUPERHETERODYNE	RECEIVER

A	 block	 diagram	 of	 a	 dual-conversion	 superheterodyne	 receiver	 is	 shown	 in	 Figure	 14.5.
From	the	preselector	to	the	IF	attenuator	output,	the	topology	is	identical	to	that	of	the	single-
conversion	 superheterodyne	 receiver	 of	 Figure	 14.1.	 The	 principal	 differences	 are	 a
wideband	preselector,	an	agile	first	LO,	and	the	inclusion	of	a	second	downconversion	stage
consisting	of	 a	mixer,	 filter,	 and	amplifier	 cascade.	Additionally,	we	have	chosen	 to	use	 an
analog	I/Q	demodulator	to	preserve	phase	information.13

The	wideband	preselector	is	used	to	limit	frequencies	to	the	agile	range	of	interest.	As	with
the	 single-conversion	 superheterodyne	 receiver,	 the	 preselector	 is	 a	 low-loss	 device	 to
minimize	 its	 impact	 on	 the	 system	 noise	 figure.	 The	 preselector	 passband	 must	 be	 wide
enough	to	accommodate	the	desired	frequency	agility	band.	A	typical	RF	agility	range	is	100
to	500	MHz.

As	with	 the	 single	 downconversion	 receiver,	 the	 attenuators	 are	 used	 to	 extend	 receiver
dynamic	range.	Likewise,	the	LNA	and	prior	lossy	elements	establish	the	overall	noise	figure
of	 the	radar,	but	must	now	be	broadband.	The	IF	amplifiers	make	up	for	 losses	 in	previous
devices	and	amplify	the	signal	to	desired	levels	for	subsequent	components.

To	 simplify	 subsequent	 IF	 filtering,	 we	 chose	 to	 use	 an	 agile	 1st	 LO	 for	 the	 first
downconversion	stage.	This	agile	LO1	tracks	with	the	RF,	resulting	in	fixed	first	and	second



IFs.	As	a	result,	we	only	need	one	IF	filter	per	downconversion	stage.	The	first	IF	is	selected
to	optimize	suppression	of	the	image	frequency	and	other	spurious	signals	generated	by	the
first	 mixer.	 Because	 of	 the	 wide	 bandwidth,	 higher	 IFs	 generally	 simplify	 rejection	 of	 the
image	and	spurs.	Additionally,	the	first	IF	must	be	high	enough	to	accommodate	the	RF	agility
bandwidth.	A	general	rule	of	thumb	is	for	the	first	IF	to	be	1.5	to	2	times	the	agility	bandwidth
to	simplify	component	design.

The	 second	 IF	 is	 now	 analogous	 to	 the	 IF	 of	 a	 single	 downconversion	 superheterodyne
receiver.	The	second	IF	is	generally	chosen	to	be	low	(<100	MHz)	to	simplify	design	of	the
narrowband	 IF	 filtering	 and	 other	 components.	 Spurious	 considerations	 are	 simplified
because	the	bandwidth	at	the	second	IF	is	relatively	narrow.	Using	a	high	IF	followed	by	a	low
IF	in	our	receiver	design,	we	get	the	benefits	of	both.

Both	IF	BPFs	in	Figure	14.5	are	used	 to	 reject	mixer	spurs.	The	bandwidth	of	 the	first	 IF
filter	is	generally	on	the	order	of	the	RF	channel	spacing	(e.g.,	10	or	20	MHz)	to	reduce	spurs
while	 simplifying	 filter	 design.	 The	 bandwidth	 of	 the	 second	 BPF	 is	 usually	 somewhat
narrower	than	the	first,	on	the	order	of	two	to	three	times	the	modulation	bandwidth,	to	ensure
the	 modulation	 is	 undistorted	 (see	 Chapter	 7).	 For	 example,	 if	 the	 radar	 uses	 an	 LFM
waveform	with	a	bandwidth	of	2	MHz,	the	second	IF	BPF	should	have	a	bandwidth	of	about	6
MHz.	 As	 a	 note,	 choice	 of	 RFs,	 IFs,	 and	 LO	 frequencies	 is	 sometimes	 referred	 to	 as	 a
frequency	plan.

At	this	point,	we	should	emphasize	that	we	are	generally	not	interested	in	the	second	IF	in
and	 of	 itself,	 but	 the	 amplitude	 and	 phase	 information	 it	 carries	 via	 modulation.	 It	 is	 the
modulation	 that	 contains	 the	 information	 we	 want,	 such	 as	 waveform,	 delay	 to	 target,	 and
Doppler	information.

This	 brings	 us	 to	 the	 I/Q	 demodulator14	 shown	 in	 Figure	 14.5,	 which	 translates	 a	 real
bandlimited	 signal,	 xIF(t),	 to	 baseband.	 Quadrature	 demodulation	 is	 usually	 done	 after
downconversion	to	a	low	IF,	which	for	this	example	is	the	second	IF.

The	 demodulator	 topology	 depicted	 in	 Figure	 14.5	 is	 the	 classical	 approach	 of	 splitting
xIF(t)	and	 then	using	 two	matched	phase	detectors	using	reference	frequencies	which	are	90
degrees	out	of	phase	(in	phase	quadrature).	Each	detector	 is	 implemented	as	a	mixer,	which
performs	a	downconversion	of	xIF(t)	 to	baseband,	followed	by	an	LPF	to	remove	unwanted
harmonics.	The	difference	here	is	that	the	desired	IF	is	0	Hz.

Recall	that	a	real	bandlimited	IF	signal	can	be	represented	as



where	A(t)	and	ϕ(t)	 represent	 the	amplitude	and	phase	modulation,	 respectively.	The	signals
xI(t)	=	A(t)cos[ϕ(t)]	and	xQ(t)	=	A(t)sin[ϕ(t)]	are	the	in-phase	and	quadrature	baseband	signals
of	interest.	The	output	of	the	in-phase	channel	mixer	is

After	lowpass	filtering,	the	I-channel	phase	detector	output	becomes

Similarly,	the	Q-channel	phase	detector	output	becomes

Equations	(14.6)	and	(14.7)	contain	all	of	the	modulation	information	of	(14.4)	without	the	IF.

The	quadrature	detector	uses	an	extremely	stable	reference	oscillator	for	phase	detection.
This	 reference	oscillator	 is	usually	of	equal	 frequency	 to	 the	IF	and	always	phase	coherent.
The	term	coined	for	this	oscillator	is	 the	COHerent	Oscillator,	or	COHO	[29],	because	 it	 is
related	to	the	IF.

A	problem	with	analog	quadrature	demodulation	is	amplitude	and	phase	misalignments	in
the	circuity,	which	can	cause	 imbalances	between	 the	 I	 and	Q	channels.	This	 imbalance	can
generate	unwanted	image	and	DC	signals,	which	have	a	negative	impact	on	subsequent	signal
processing.	A	means	of	avoiding	such	problems	is	to	perform	the	quadrature	detection	with
digital	hardware	[34].	The	resulting	receiver	is	termed	a	digital	receiver	and	will	be	discussed
in	Section	14.8.

14.4 RECEIVER	NOISE

As	discussed	in	Chapter	2,	 the	two	main	contributors	to	noise	in	radars	are	the	environment
(via	 the	 antenna)	 and	 thermal	noise	generated	by	 the	 electronic	 components	of	 the	 receiver
[35].	As	discussed	in	Chapter	4,	the	noise	level	present	in	a	radar	can	be	quantified	in	terms	of
equivalent/effective	noise	temperature,	or	noise	figure.

When	 considering	 radars	 with	 very	 low	 noise	 figures,	 where	 environmental	 noise	 is	 a
major	noise	contributor,	an	effective	noise	temperature	approach	is	favored	[19].	For	radars
with	larger	noise	figures	(greater	than	about	7	dB),	where	receiver	noise	normally	dominates
environment	noise,	 a	noise	 figure	approach	 is	generally	preferred	 [19].	Radars	 in	 the	VHF
band	 have	 such	 high	 environmental	 noise	 that	 the	 noise	 temperature	 characterization	 is
appropriate	even	when	receiver	noise	figures	are	not	very	low.

In	this	chapter,	we	take	a	measurement	point	of	view,	considering	the	receiver,	and	perhaps



the	signal	processor	in	cascade,	but	not	the	entire	radar.	The	importance	of	this	is	that	analysis
and	 measurement	 of	 the	 receiver	 or	 receiver	 and	 signal	 processor	 as	 a	 subsystem	 can	 be
carried	out	under	 the	assumption	 that	 the	 input	 is	 terminated	 in	a	 resistor	at	290	K.	For	 this
reason,	we	will	use	a	noise	figure	approach	as	opposed	to	noise	temperature	approach	in	this
chapter.

Likewise,	we	will	consider	thermal	noise	generated	in	the	receiver,	not	environment	noise.
When	 making	 receiver	 noise	 measurements,	 noise	 figure	 is	 used,	 and	 the	 reference
temperature	is	T0	=	290	K	by	definition	[29].	Also,	 in	a	measurement	setting,	 the	receiver	is
usually	disconnected	from	the	antenna,	with	test	equipment	used	to	inject	test	signals	into	the
receiver	and	to	make	measurements	of	various	parameters	such	as	gain,	bandwidth,	dynamic
range,	and	noise	figure.

While	much	of	 radar	 theory	 is	 concerned	with	 ratios	 (e.g.,	 SNR,	CNR,	SCR,	SIR),	when
considering	receivers,	knowing	absolute	levels	is	a	key	consideration.	One	important	level	in
a	 receiver	 is	 the	 noise	 level,	 often	 referred	 to	 as	 the	 noise	 floor,	 since	 receiver	 noise
generally	establishes	 the	noise	 level	competing	with	weak	signals.	The	notable	exception	 to
this	is	for	radars	operating	at	frequencies	below	about	300	MHz.	This	is	because	of	the	steep
increase	 in	 cosmic	 and	 other	 environmental	 noise	 below	 about	 300	MHz	 (see	 Figure	 2.5)
resulting	 in	 receiver	 noise	 no	 longer	 dominating	 the	 system	 noise	 temperature	 and
equivalently	the	system	noise	figure	[36].

Given	 a	 reference	 temperature	 of	T0	 =	 290	K	 for	 our	measurements,	 the	 power	 spectral
density,	and	thus	noise	power	or	noise	floor	in	a	receiver,	 is	established	at	the	output	of	the
LNA.	The	noise	floor	at	the	output	of	each	receiver	stage	can	be	determined	using

or	in	logarithmic	form

where	k	is	Boltzmann’s	constant,	1.38×10–23	W/(Hz	K)	and	T0	=	290	K.	F,	Bn,	and	G	are	 the
noise	figure,	bandwidth	and	gain,	respectively,	up	to	the	output	each	receiver	stage.

In	 using	 the	 forms	 of	 (14.8)	 and	 (14.9),	 we	 make	 the	 tacit	 assumption	 that	 bandwidths
remain	 the	 same	 or	 decrease	 as	 one	 progresses	 through	 the	 various	 components	 of	 the
receiver	[37].	While	not	always	true,	this	is	a	common	assumption	used	for	cascade	analysis,
where	the	overall	RF	to	IF	bandwidth	is	usually	set	by	the	last	filter	(or	tuned	amplifier)	in	the
chain	[38,	p.	15].	We	also	make	the	implied	assumption	that	there	is	sufficient	gain	ahead	of
any	ADC	to	minimize	the	impact	of	an	ADC’s	relatively	high	effective	noise	figure	(e.g.,	30
dB),	which	requires	a	lot	of	receiver	gain	prior	to	the	ADC	to	make	the	ADC	noise	a	small
fraction	of	total	noise	(see	Section	14.8.1.4).

For	 example,	 consider	 the	RF	 front	 end	 shown	 in	 Figure	 14.6.	 The	 preselector	we	 have
chosen	is	a	4th	order	Chebyshev	Type	I	filter	with	0.1	dB	ripple	and	a	10-MHz	bandwidth15	It
has	a	loss	of	0.7	dB,	which	means	its	gain	is	–0.7	dB.	The	second	filter	is	a	5th	order	Bessel



filter	with	an	8-MHz	bandwidth16	and	a	gain	of	–1.5	dB.	The	amplifiers	are	assumed	to	have
bandwidths	equal	 to	 the	preceding	 filter.	Note	also	 that	we	are	driving	 the	circuit	under	 test
with	a	calibrated	noise	source	at	standard	temperature,	T0.

From	Chapter	4,	if	we	assume	the	filters	are	lossy	passive	devices,	their	noise	figures	equal
their	losses	(Fn	=	L)	[39–42].	We	would	like	to	calculate	the	noise	power	generated	by	the	RF
front	 end	 as	well	 as	 the	 noise	 power	 after	 each	 component.	 Note	 that	 carrier	 frequency	 is
irrelevant	for	this	analysis.

Figure	14.6	Noise	floor	example.

At	the	cascade	input,	the	noise	is	assumed	white	with	a	power	spectral	density	expressed,	in
various	units,	as

Until	we	impose	a	bandwidth,	the	noise	power	is	theoretically	infinite.	Using	(14.9),	the	noise
power	out	of	the	preselector	is

The	noise	power	out	of	the	RF	amplifier	is

This	process	 is	continued	stage	by	stage.	Note	 that	after	 the	amplifier,	we	need	 to	use	 the
Friis	 formula	 for	 cascade	noise	 figure	 (see	Section	14.7	 and	Chapter	4)	 [43].	 The	RF	 to	 IF
bandwidth	is	8	MHz.	The	gain,	noise	figure,	and	noise	power	out	of	the	entire	chain	are	30.8
dB,	5.4	dB,	and	–68.7	dBm,	respectively.	The	remaining	details	are	left	as	an	exercise.

We	have	now	reflected	on	what	 is	often	considered	 the	 low	end	for	signals	 in	a	receiver,



namely	the	noise	floor.	Signals	below	this	level	are	said	to	be	buried	in	the	noise	and	cannot
be	discerned	(without	subsequent	signal	processing).17	We	now	will	consider	the	top	end	for
signal	level.

We	have	thus	far	assumed	the	amplifiers	amplify	signals	in	a	linear	fashion.	In	practice,	this
is	not	the	case	because	above	a	certain	input	power	level,	the	amplifier	will	saturate.	This	is
because	a	finite	DC	voltage	is	used	to	power	the	amplifiers,	which	limits	how	large	a	signal
can	 be	 linearly	 amplified.	 This	 leads	 to	 two	 important	 radar	 receiver	 concepts:	 the	 1-dB
compression	 point,	 and	 dynamic	 range.	 These	 terms	 apply	 equally	 to	 components	 and
receivers,	with	some	minor	differences,	as	will	be	discussed.

14.5 THE	1-dB	GAIN	COMPRESSION	POINT

Ideally,	analog	components	amplify	signals	in	a	perfectly	linear	fashion.	However,	if	over
driven	 by	 large	 input	 signals,	 the	 amplifier	 gain	 will	 become	 nonlinear.	 This,	 in	 turn,
generates	unwanted	spurious	signals.	The	compression	point	of	a	device,	which	is	defined	as
the	level	of	the	output	signal	at	which	the	gain	of	a	device	is	reduced	by	a	specific	amount,	is	a
useful	 index	of	 the	 amount	of	distortion	 that	 can	be	accepted	 [29].	A	 specific	 index	used	 in
amplifier	 analyses	 is	 termed	 the	 1-dB	 compression	 point.	 Consistent	 with	 the	 definition	 of
compression	point,	 it	 is	 the	output	signal	 level	where	 the	gain	 is	 reduced	by	1	dB	(from	its
nominal,	constant	value)	[16].

The	 definition	 of	 1-dB	 compression	 point	 of	 the	 previous	 paragraph	 is	 the	 formal
definition	used	for	components,	in	general.	For	receivers,	the	standard	definition	is	that	it	is
the	input	level	at	which	the	gain	decreases	by	1	dB	from	its	(nominally)	constant	value.

Figure	14.7	contains	a	plot	of	output	power	versus	input	power	for	a	notional	device.	We
will	denote	the	1-dB	compression	point	as	P1.	To	avoid	ambiguity,	we	will	use	prefixes,	with
O	designating	output	and	I	designating	input,	for	example,	OP1	stands	for	1-dB	compression
point	at	the	output.	The	1-dB	compression	point	at	the	input	is	related	to	the	1-dB	compression
point	at	the	output	by	[44,	p.	541]

where	G	is	the	nominal	device	gain,	in	dB.

The	general	procedure	used	to	measure	the	1-dB	compression	point	is	to	inject	a	signal	and
increase	its	amplitude	until	the	gain	is	decreased	by	1	dB	[45].	This	test	is	sometimes	referred
to	 as	 a	 “transfer	 test”	 because	 a	 transfer	 curve	 is	 usually	 generated.	 The	 transfer	 curve
associated	with	 a	 typical	 1-dB	 compression	 point	measurement	 is	 also	 illustrated	 in	Figure
14.7.

For	the	example	presented	in	Figure	14.7,	we	consider	an	IF	amplifier	with	a	gain,	G,	of	30
dB.	We	sweep	the	input	test	signal	power	from	–40	dBm	to	0	dBm,	while	measuring	the	output
power.	The	1	dB	compression	point	at	the	output,	OP1,	occurred	at	10	dBm.	Using	(14.13),	the
1	dB	compression	point	at	the	input	is	–19	dBm.	Thus,	we	say	that	this	amplifier	has	an	output,



1-dB	compression	point	of	10	dBm	and	an	input,	1-dB	compression	point	of	-19	dBm.

The	amplifier	output	saturated	at	an	output	power	level,	PSAT,	of	14	dBm.	As	a	general	rule
of	 thumb,	 compression	usually	 starts	 about	 5	 to	 10	dB	below	 the	output	 1-dB	compression
point.	 Similarly,	 saturation	 typically	 occurs	 around	 3	 to	 6	 dB	 higher	 than	 the	 output	 1-dB
compression	point.

Figure	14.7	A	1-dB	compression	point	example.

14.6 DYNAMIC	RANGE

The	dynamic	range	of	a	receiver,	depicted	by	Figure	14.8,	is	commonly	defined	as	the	ratio	of
the	maximum	input	signal	that	can	be	handled	to	the	minimum	signal	input	capable	of	being
detected	[19].	The	maximum	level	is	usually	taken	to	be	the	1-dB	compression	point	because
that	 is	 where	 we	 normally	 assume	 the	 device	 is	 departing	 from	 linear	 operation.	 The
minimum	level	is	often	denoted	MDS.	There	are	however	a	number	of	variations	of	what	is
meant	by	MDS,	as	we	shall	see.

Dynamic	range	can	be	expressed	as

There	 is	 no	 shortage	 of	 definitions	 concerning	 both	 dynamic	 range	 and	 the	 minimum



levels	 used	 for	 determining	 the	 dynamic	 range	 of	 a	 receiver	 [46–49].	 We	 also	 note	 that
various	 definitions	 and	 terminology	 can	 potentially	 clash.	 To	 help	 explain	 and	 hopefully
avoid	some	of	the	confusion	about	MDS,	we	will	present	MDS	definitions	applicable	to	radar
receivers	 [30,	 50–54].	 We	 will,	 in	 short	 order,	 have	 three	 “standard”	 definitions	 that	 are
commonly	used	in	radar	and	radar	receivers.

Figure	14.8	Dynamic	range.

For	 this	 chapter,	 though,	 we	 define	 dynamic	 range	 in	 terms	 of	 the	 receiver	 sensitivity,
which	 is	 taken	 as	 the	 minimum	 input	 signal	 required	 to	 produce	 a	 specified	 output	 signal
having	 a	 specified	 signal-to-noise	 ratio	 [55].	 For	 measurement	 purposes,	 we	 typically
consider	the	output	signal	detectable	when	it	is	at	or	above	the	noise	level,	or	SNR	=	0	dB	(S	=
N).	Defining	 dynamic	 range	 in	 terms	 of	 receiver	 sensitivity	 allows	 us	 to	measure	 receiver
dynamic	range	without	regard	to	noise	sources	from	the	environment.	Thus,	 if	we	consider
receiver	noise	without	 its	preceding	 subsystems,	 the	 input	noise	will	 come	 from	a	 resistive
termination	at	290	K	by	definition.

Likewise,	 receiver	dynamic	range	can	be	characterized	without	considering	 the	effects	of
signal	processing	that	provides	detectability	of	signals	below	noise	level.	However	we	often
do	measure	 the	 dynamic	 range	 of	 both	 the	 receiver	 and	 the	 receiver	 and	 signal	 processor
combined.

14.6.1	Sensitivity

As	mentioned	already,	receiver	sensitivity	is	defined	as	the	minimum	input	signal	required	to
produce	an	output	signal	with	a	specified	SNR.	Sensitivity	 is	only	concerned	with	 internally



generated	 receiver	noise	 [50,	 p.	 76].	This	 is	 because	 external	noise	 from	 the	 antenna	 is	 not
something	we	 can	 control	when	 designing	 a	 receiver.	While	 a	 receiver ’s	 sensitivity	 can	 be
expressed	in	terms	of	power	or	voltage,	we	usually	use	power	in	dBm.

A	 receiver ’s	 sensitivity	 is	 largely	 determined	 by	 the	RF	 front-end	 components,	 since	 the
noise	floor	in	a	receiver	is	the	limiting	factor	on	receiver	sensitivity.	Also,	this	definition	for
sensitivity	 relates	 to	 power	 levels,	 not	 detection	 performance.	 It	 does	 not	 include
specifications	 for	 Pd	 or	 Pfa.	 In	 receiver	 vernacular,	 sensitivity	 is	 sometimes	 used
synonymously	with	minimum	detectable	 signal	 and	minimum	discernable	 signal,	 adding	 to
the	multiple	MDS	definition	confusion	[31,	33,	49].

The	preselector	input	is	a	common	input	reference	point	used	when	defining	or	measuring
sensitivity.	When	considering	just	the	receiver,	the	output	measurement	point	typically	used	is
the	 IF	 amplifier	 output	 just	 prior	 to	 detection.	When	 considering	 the	 receiver	 input	 to	 the
signal	processor	output,	the	term	“system	sensitivity”	is	used.	For	this	discussion,	we	confine
ourselves	to	just	the	receiver	and	choose	to	use	the	input	to	the	preselector	and	IF	amplifier
output	prior	to	detection	as	our	analysis,	or	measurement,	points.

Receiver	sensitivity	can	be	expressed	as

or	in	dBm

where	PSmin	is	the	minimum	signal	level	at	the	receiver	input	(preselector	input)	and	SNRmin	is
a	 specified	 SNR	 (at	 the	 IF	 amplifier	 output).	 Using	 an	 SNRmin	 of	 either	 0	 dB	 or	 3	 dB	 is
customary	in	the	context	of	receiver	sensitivity	[19,	44,	49,	56].	Equations	(14.15)	and	(14.16)
are	similar	to	(14.8)	and	(14.9)	where	gain	is	replaced	by	SNR,	since	the	relevant	quantity	is
SNR	 instead	 of	 absolute	 levels.	 Also,	 the	 terms	 in	 (14.15)	 and	 (14.16)	 are	 the	 overall
bandwidth	and	noise	figure	of	the	receiver	(or	receiver/signal	processor).

If	we	consider	the	RF	front	end	shown	in	Figure	14.6,	and	stipulate	a	minimum	acceptable
SNR	(SNRmin)	of	3	dB,	the	sensitivity	becomes

If	we	 compare	PSmin	 and	Pn,	 we	 see	 that	 they	 differ.	 Specifically,	 they	 differ	 by	G–SNRmin
rather	than	SNRmin	because	for	(14.15)	the	SNR	is	specified	at	the	output,	but	PSmin	is	specified
at	the	receiver	input.	For	(14.8)	Pn	is	specified	at	the	output	of	the	receiver,	not	the	input.

Sensitivity,	PSmin,	 can	 be	measured	 by	 injecting	 a	 calibrated	 target	 signal	with	 a	 constant
power	 level	 (SW0)	 at	 the	 receiver	 input	 and	 determining	 the	 SNR	 at	 the	 output	 of	 the



receiver.18	As	discussed	earlier,	we	typically	use	an	SNRmin	=	1	or	0	dB,	for	this	measurement.
This	results	in

at	the	output	of	the	radar ’s	receiver	(signal	power	=	noise	power)	[49,	57].	This	can	be	related
to	Pn	using

which	is	the	same	as	(14.8).	Skolnik	refers	to	(14.19)	as	the	minimum	signal	of	interest	[46,	p.
3.4].19	Stephen	Erst	presents	a	test	methodology	based	upon	the	relationship	between	S/N	and
(S	+	N)/N	rms	voltage	ratios	the	authors	have	put	to	good	use	in	the	field	which	can	be	used	to
determine	 when	 SNR	 =	 0	 dB	 at	 the	 output	 of	 the	 receiver	 (or	 the	 entire	 receiver	 signal
processor	chain)	[50,	pp.	76–78].

Measuring	 a	 receiver ’s	 sensitivity	 is	 important	 because	 it	 is	 closely	 tied	 to	 detection
performance	 and	 can	 help	 determine	 or	 verify	 gain	 and	 loss	 terms	 in	 the	 radar	 range
equation,	overall	noise	figure,	and	overall	bandwidth.	Measuring	receiver	noise	directly	also
results	 in	a	consistent	quantity	verifiable	using	only	 test	equipment	and	a	SW0	target	signal
injected	directly	into	the	RF	front	end.

14.6.1.1	Tangential	Sensitivity

The	criterion	of	SNR	=	0	dB	at	the	output	of	a	receiver	is	sometimes	referred	to	erroneously
as	 tangential	 sensitivity	 (TSS).	 Tangential	 sensitivity,	 defined	 in	 [18,	 p.	 456],	 corresponds
(approximately)	to	SNR	=	8	dB.	TSS	gets	its	name	from	the	use	of	what	is	called	a	tangential
signal	 to	 estimate	 sensitivity.	 Specifically,	 noise	 and	 signal	 plus	 noise	 are	 viewed	 on	 an
oscilloscope,	and	the	signal	power	is	adjusted	until	the	bottom	of	the	signal-plus-noise	trace
aligns	with,	or	is	tangent	to,	the	top	of	the	noise-only	trace	(see	Exercise	7).

TSS	is	generally	accurate	to	within	±1	dB,	and	is	influenced	by	the	RF	bandwidth,	the	video
bandwidth,	the	noise	figure,	and	the	detector	characteristic	[48].	There	is	no	theoretical	value
for	 tangential	 sensitivity,	 since	 it	 depends	 on	 a	 subjective	matching	 of	 the	 “peak	 level”	 of
noise	with	the	minimum	level	of	signal	plus	noise	outputs	on	an	A-scope	display,	neither	level
having	a	measureable	value.

14.6.2	Minimum	Detectable	and	Minimum	Discernable	Signal

Minimum	 detectable	 signal	 (MDS)	 for	 radar	 detection	 applications	 is	 the	 minimum	 signal
power	 necessary	 to	 give	 reliable	 detection	 performance	 in	 the	 presence	 of	white,	Gaussian
noise,	that	is,	the	minimum	signal	level	needed	to	give	a	specified	Pd	with	a	specified	Pfa	[29].
Specifying	Pd	and	Pfa	 is	 necessary	 for	 this	 definition	of	MDS	because	minimum	detectable
signal	is	a	statistical	quantity.



Minimum	detectable	signal	in	the	radar	range	equation	can	be	expressed	as

where	Bn	 is	 the	equivalent	noise	bandwidth	(see	Chapter	2).	Equation	(14.20)	 is	of	 the	same
form	 as	 (14.15),	with	 the	 addition	 of	 a	 loss	 term	L.	 In	 this	 context,	MDS	 encompasses	 the
entire	 receiver	 and	 signal	 processor,	 and	 is	 related	 to	 the	measureable	 quantity	 of	 (14.15).
This	definition	of	MDS	is	also	concerned	with	both	internally	generated	noise	and	externally
generated	noise.

Minimum	discernable	 signal	 (MDS)	 is	 defined	 as	 “The	minimum	 detectable	 signal	 for	 a
system	using	an	operator	and	display	or	aural	device	for	detection”	[29].	Including	sensitivity,
which	 is	 sometimes	 referred	 to	 as	MDS,	we	 now	 have	 three	 “standard”	 definitions	 for	 the
acronym	MDS.

14.6.3	Intermodulation	Distortion

Dynamic	range	can	also	be	defined	in	terms	of	spurious	signals,	which	is	called	the	“spurious
free	 dynamic	 range.”	 While	 we	 use	 mixers	 as	 intentionally	 nonlinear	 devices	 to	 generate
harmonics	 of	 the	 input	 signals,	 other	 active	 devices,	 such	 as	 amplifiers,	 are	 only
approximately	linear,	and	also	act	like	mixers	(just	not	very	good	ones),	generating	unwanted
signals	which	are	harmonics	of	the	input.	This	phenomenon	of	generating	spurious	signals	is
termed	 intermodulation	 distortion	 (IMD).	 The	 term	 “two	 tone”	 is	 sometimes	 used	 when
discussing	intermodulation	products	because	two	tones	are	used	to	measure	and	characterize
intermodulation	distortion.

Like	a	mixer,	if	we	let	the	desired	frequencies	at	the	input	to	an	amplifier	be	f1	and	f2,	 the
spurious	signals	occur	at	frequencies	of

where	m	and	n	are	integers.	The	harmonics	that	usually	cause	difficulties	in	receivers	are	the
2nd-	and	3rd-order	harmonics	(recall	the	order	of	a	harmonic	|m|	+	|n|).	This	is	because	the	2nd-
and	3rd-order	 harmonics	 tend	 to	 be	 the	 largest	 spurs	 and	 closest	 in	 frequency	 to	 f1	 and	 f2,
respectively.

Because	 they	 are	 apt	 to	 be	 the	 biggest	 spurs,	 intermodulation	 distortion	 performance	 is
usually	 specified	 in	 terms	 of	 the	 2nd-	 and	 3rd-order	 intercept	 points.	 For	 superheterodyne
receivers,	the	3rd	order	intercept	is	most	important	because	they	are	closest	in	frequency	to	the
desired	tones,	making	them	problematic	or	impossible	to	filter	out.	The	2nd	order	intercept	is
more	 important	 than	 the	 3rd	 order	 intercept	 point	 in	 homodyne	 receivers	 [45].	 We	 will
compute	both	in	this	chapter.

For	example,	let	f1	=	30	MHz	and	f2	=	31	MHz.	The	3rd-order	intermodulation	frequencies
are	2f2	–f1	=	32	MHz	and	2f1	–f2	=	29	MHz.	The	2nd-order	intermodulation	frequencies	occur



farther	 away	 at	 1	 MHz	 and	 61	 MHz.	 This	 demonstrates	 a	 major	 problem.	 The	 2nd-order
products,	while	potentially	large,	can	possibly	be	filtered	out.	The	3rd-order	 intermodulation
products	in	this	example	cannot	be	filtered	out	because	of	their	close	proximity	to	the	desired
tones	generating	them.

Figure	 14.9	 depicts	 the	 concept	 of	 intercept	 points.	 The	 2nd-order	 intercept	 point,	 IP2,
corresponds	 to	 a	 projected	 power	 level	 at	 which	 the	 2nd-order	 intermodulation	 product
crosses	a	perfectly	 linear	response.	The	2nd-order	 intermodulation	product	gain	has	a	slope
twice	that	of	the	linear	gain	of	the	desired	input.

Figure	14.9	Diagram	of	2nd	and	3rd	order	intercept	points.

Similarly,	the	order	intercept	point,	IP3,	relates	to	a	projected	power	level	at	which	the	3rd-
order	intermodulation	product	would	intersect	a	projection	of	the	linear	gain.	The	3rd-order
intermodulation	product	gain	has	a	 slope	 three	 times	 that	of	 the	desired	 input.	As	a	general
rule	of	thumb,	the	order	intercept	point	is	10	to	15	dB	higher	than	the	1-dB	compression	point.

For	 example,	 increasing	 the	 desired	 (first	 order)	 signal	 by	 3	 dB	 increases	 the	 2nd-order
signal	 by	 6	 dB,	 and	 the	 3rd-order	 signal	 by	 9	 dB.	 This	 results	 in	 the	 2nd-and	 3rd-order
intermodulation	 distortion	 products	 rapidly	 becoming	 nearly	 the	 same	 amplitude	 as	 the



desired	 input.	 Power	 exceeding	 the	 3rd-order	 intercept	 point	 causes	 intermodulation
distortion.

It	should	be	emphasized	that	both	the	2nd	and	3rd	intercept	points	are	much	higher	than	the
1-dB	compression	point.	Because	of	this,	neither	the	2nd	or	3rd	order	 intercept	points	can	be
measured	directly.	 Instead,	 they	 are	projected	 from	measurements	made	using	 lower	 signal
levels.

The	 spurious	 free	 dynamic	 range	 of	 a	 receiver	 is	 defined	 as	 the	 range	 over	 which	 a
receiver	 does	 not	 compress	 an	 input	 signal	 and	 no	 spurious	 signal	 is	 above	 the	 receiver ’s
noise	floor	[58].	The	spurious	free	dynamic	range	is	then	defined	in	terms	of	the	third-order
intercept	point	as	[58,	59]

Note	that	the	SFDR	of	(14.22)	is	defined	in	terms	of	the	minimum	required	signal	being	equal
to	 the	 noise	 level	 of	 the	 receiver	 rather	 than	minimum	discernable	 or	minimum	detectable
signals.

For	example,	consider	a	receiver	with	a	3rd	order	intercept	of	IIP3	=	–14	dBm,	an	RF	to	IF
bandwidth	of	4	MHz,	and	a	noise	 figure	of	5	dB.	Using	 (14.22),	 the	 spurious	 free	 dynamic
range	becomes

14.6.4	Required	Dynamic	Range

Now	 that	we	 can	 quantify	 dynamic	 range,	 it	would	 be	 useful	 to	 estimate	what	 the	 dynamic
range	 needs	 to	 be.	 Radar	 echoes	 can	 cover	 a	 wide	 range	 (typically	 90	 to	 100	 dB)	 due	 to
variations	in	target	RCS,	clutter	RCS	(see	Section	13.2),	and	the	1/R4	range	dependency.	At	a
minimum	we	can	predict	the	variation	due	to	RCS	and	that	due	to	1/R4.

Recall	from	Chapter	2	that	the	signal	power	at	the	input	to	the	receiver	is

where	 PT	 is	 the	 peak	 transmit	 power,	 GT	 denotes	 directivity	 of	 the	 transmit	 antenna,	 GR
denotes	 the	directivity	of	 the	 receive	antenna,	λ	denotes	 the	radar	wavelength,	σ	 denotes	 the



average	target	or	clutter	RCS,	and	R	denotes	the	slant	range	from	the	radar	to	the	target.

Let	 us	 specify	 a	 minimum	 and	 maximum	 target	 or	 clutter	 RCS	 of	 σmin	 and	 σmax,
respectively.	 Likewise,	 let	 us	 specify	 a	 minimum	 and	 maximum	 range	 of	 Rmin	 and	 Rmax,
respectively.	The	maximum	power	present	at	the	receiver	is	then

and	the	minimum	power	is

The	minimum	dynamic	 range	necessary	 to	 accommodate	 for	σmin	and	σmax	 and	Rmin	 and
Rmax	is

In	logarithmic	form

Equation	(14.28)	gives	a	preliminary	lower	bound,	since	it	does	not	 take	into	account	target
fluctuation.	Fluctuations	in	RCS	can	potentially	span	another	30	dB	[20,	p.	737].

For	 example,	 consider	 a	 radar	 transmitting	 a	 10-μs	 pulse	with	 a	maximum	 instrumented
range	of	100	km.	This	radar	is	expected	to	accommodate	RCSs	between	σmin	=	0.001	m2	(–30
dBsm)	and	σmax	=	1,000	m2	(30	dBsm).	We	determine	means	of	the	pulsewidth	as	c-x/2	=	1.5
km.	Using	(14.28)	results	in



For	this	example,	we	need	133	dB	of	dynamic	range.	This	does	not	mean	our	radar	has	133
dB	 of	 dynamic	 range,	 but	 we	 would	 like	 it	 to.	 The	 required	 dynamic	 range	 of	 133	 dB	 is
available	 only	 if	 the	 receiver	 gain	 is	 changed	 by	 STC,	AGC,	 and/or	 change	 in	 transmitted
power.	This	gets	us	back	 to	 the	rules	mentioned	 in	Section	14.2,	which	depend	on	 the	radar
objective	and	waveform.

It	 should	 be	 noted	 that	 the	 dynamic	 range	 of	 inputs	 in	 most	 surface-based	 radars	 is
determined	 not	 by	maximum	 target	 RCS	 and	 range,	 but	maximum	 clutter	 RCS	 and	 range.
Only	for	a	tracking	radar	operating	on	targets	more	than	one	beamwidth	above	the	surface	is
the	 maximum	 target	 RCS	 of	 concern.	 In	 search	 radar,	 the	 target	 remains	 detectable	 and
reportable	even	if	it	is	above	the	saturation	level	of	the	receiver.	The	calculations	here	should
use	maximum	possible	clutter	RCS	at	the	range	where	the	lower	edge	of	the	radar	beam	first
encounters	 the	 clutter	 source.	Any	number	of	 land-	 and	 ship-based	 radars	 encounter	 clutter
from	structures	that	project	into	the	beam	at	short	range,	which	is	why	STC	is	used.

14.7 CASCADE	ANALYSIS

Dynamic	 range	 and	 noise	 figure	 (sensitivity)	 considerations,	 along	with	 how	much	 gain	 is
necessary	 at	 any	particular	 receiver	 stage	 to	get	 the	 final	 desired	overall	 receiver	gain	 and
output	 signal	 level,	 leads	 to	 the	 necessity	 of	 considering	 component	 selection	 and	 gain
distribution	through	the	receiver.

For	example,	some	receiver	parameters,	such	as	gain	and	dynamic	range,	are	antithetical.
As	such,	when	selecting	components	for	a	receiver	design,	a	certain	amount	of	compromise
is	necessary.	As	another	example,	we	may	use	a	high	gain	LNA	as	the	first	amplifier,	but	if	we
follow	it	with	high	gain	high	noise	figure	amplifiers,	the	LNA	(and	prior	lossy	components)
will	no	longer	dominate	the	total	noise	figure.

This	makes	 it	 important	 to	 track	noise	 and	 signal	power	 levels	 through	 the	 stages	of	 the
receiver	to	ensure	receiver	operation	remains	linear	(avoid	exceeding	the	1-dB	compression
point)	over	desired	range	of	signal	amplitude.

The	tool	used	to	evaluate	the	above	considerations	is	called	cascade	analysis,	which	refers
to	 the	 process	 of	 tracking	 parameters	 such	 as	 signal	 power,	 signal	 gain,	 noise	 gain,	 noise
figure,	 1-dB	 compression	 point,	 noise	 floor,	 dynamic	 range,	 and	 bandwidth	 through	 the
stages	 of	 a	 receiver.	 Cascade	 analysis	 helps	 predict	 and	 evaluate	 the	 interaction	 between
various	receiver	parameters	and	guides	component	selections.

As	an	example,	 to	design	a	 receiver ’s	1	dB	compression	point,	we	need	 to	know	in	what
order	 these	 devices	 reach	 the	 1-dB	 compression	 point.	 Ideally,	 the	 last	 component	 in	 a
receiver	chain	(e.g.,	 the	amplifier	prior	 to	detection)	 is	 the	first	and	only	device	 to	saturate.
Knowing	which	device	saturates	first,	second,	third,	and	so	forth	determines	where	to	put	gain
control	and	how	much	is	necessary.

14.7.1	Cascade	Analysis	Conventions



It	 should	 be	 noted	 that	 some	 parameters	 do	 not	 apply	 to	 some	 components.	 For	 instance,
passive	devices,	such	as	a	waveguide	filter,	do	not	compress	or	saturate.	For	these	devices,	we
generally	use	a	very	high	compression	point,	such	as	150	dBm,	to	effectively	remove	these
components	from	the	cascade	1-dB	compression	point	calculations.

It	is	conventionally	assumed	that	the	narrowest	bandwidth	component	in	the	receiver	chain
sets	the	overall	RF	to	IF	bandwidth	[31,	p.	15].	This	is	frequently	the	last	IF	filter	bandwidth.
For	 components	 with	 comparatively	 broad	 bandwidths	 (e.g.,	 several	 GHz),	 such	 as
waveguide,	 isolators,	and	couplers,	we	generally	use	a	 large	 token	bandwidth,	 for	example,
900	MHz.	With	 the	 cascade	 bandwidth	 taken	 to	 be	 the	 narrowest	 bandwidth	 up	 to	 the	 point
being	analyzed	in	the	chain,	using	900	MHz	effectively	removes	these	components	from	the
cascade	bandwidth	calculations.

The	noise	figure	of	a	passive	device,	such	as	an	attenuator,	is	frequently	considered	equal
to	 its	 loss	 (see	 Section	 4.4.2).	While	 this	 results	 in	 the	 noise	 level	 into	 and	 out	 of	 devices
remaining	unchanged,	it	should	be	stressed	that	the	same	cannot	be	said	for	signals.	Similarly,
for	well-designed	passive	mixers,	a	common	rule	of	thumb	is	that	the	noise	figure	of	a	mixer
is	equal	to	its	conversion	loss	[60].20	Conversion	loss	is	the	difference	between	the	input	RF
power	level	and	the	output	IF	power	[19,	44].

It	 is	 presumed	 all	 devices	 are	 impedance	 matched.	 While	 1	 Ω	 is	 often	 assumed	 when
absolute	 power	 is	 not	 important,	 we	 will	 use	 a	 system	 impedance	 of	 R0	 =	 50	 Ω.	 A	 50-Ω
impedance	is	typical	of	RF	and	microwave	devices	used	in	radar	receivers.	Likewise,	RF	test
equipment	is	usually	matched	to	50	Ω.	When	there	is	an	impedance	mismatch	(e.g.,	an	ADC
with	a	1	kΩ	input)	impedance	matching	must	be	used	(or	the	loss	accounted	for).

14.7.2	Procedure

The	 general	 forms	 of	 cascade	 equations	 can	 quickly	 become	 unwieldy	 when	 applied	 to	 a
receiver	 chain,	 for	 example,	 (4.43)	 and	 (4.44).	 As	 a	 result,	 cascade	 calculations	 are	 often
performed	 iteratively,	 two	 stages	 at	 a	 time.	 This	 technique	 simplifies	 the	 analysis	 and	 is
amenable	to	computer	programming.	The	general	procedure	is	as	follows	[19,	44]:

• Start	at	the	first	stage.
• Perform	two-stage	analysis	on	first	two	stages	computing	cascaded	noise	figure,	gain,	1-
dB	compression	point,	and	so	forth.

• Replace	 these	 first	 two	 components	 by	 an	 equivalent	 single	 stage	 with	 above	 cascaded
parameter.

• Perform	two-stage	analysis	on	the	equivalent	component	and	the	third	stage.
• Repeat	until	all	stages	are	included.

As	we	will	see	below,	 the	various	cascade	equations	are	used	 in	 linear	form,	 logarithmic
form,	or	a	combination	 thereof.	The	choice	of	 form	is	generally	a	matter	of	programming
simplicity	or	preference.	For	convenience,	results	are	usually	carried	along	in	both	linear	and
logarithmic	 forms.	 Likewise,	 since	 the	 various	 parameters	 can	 be	 referenced	 to	 either	 the
device	 input	 or	 output,	 we	 generally	 compute	 the	 cascade	 for	 one,	 such	 as	 the	 output,	 and



relate	this	to	the	input,	carrying	both	results.

We	will	 use	 the	 receiver	 chain	 shown	 in	 Figure	 14.10	 for	 illustration	 of	 the	 cascade	 of
various	 receiver	 parameters.	 The	 various	 component	 parameters	 are	 summarized	 in	 Table
14.1.

Figure	14.10	Example	1:	superheterodyne	receiver	block	diagram.

Table	14.1
Example	1:	Device	Specifications

We	note	that,	for	cascade	analysis,	the	various	RFs	and	IFs	are	not	important	beyond	their
impact	on	individual	component	parameters.	Also,	we	need	to	keep	in	mind	the	compression
point	of	an	amplifier	is	usually	defined	referenced	to	the	output,	while	for	mixers	the	input	is



the	typical	reference	point.

As	 a	 note	 on	 terminology,	 for	 passive	 components	with	 a	 loss,	 the	 term	“insertion	 loss”
(IL)	is	often	used.	For	mixers,	the	term	“conversion	loss”	(CL)	is	used.	Mixers	typically	have
a	conversion	loss	of	4.5	to	9	dB	[60].

14.7.3	Power	Gain

The	cascaded	gain,	in	dB,	at	the	output	of	a	particular	device	is	the	sum,	in	dB,	of	all	of	the
prior	stage	gains	to	the	point	in	the	receiver	chain	of	interest.	It	is	sometimes	more	convenient
to	 use	 linear	 gain	 and	 use	 the	 product	 of	 gains.	 The	 gain	 of	 a	 receiver,	 from	 the	 source
through	Device	N	is	[38,	44]

Following	 the	 procedure	 outlined	 above,	 we	 first	 consider	 a	 two-stage	 cascade	 of	 the
preselector	and	the	LNA.	Using	(14.30)	for	N	=	2,	we	get

Next	we	consider	the	mixer,	using	the	results	of	(14.32),	which	results	in

This	iterative,	two-device	cascade	process	is	repeated	as	necessary.

14.7.4	Noise	Figure	and	Noise	Temperature

In	 a	 typical	 design,	 the	 receiver	 noise	 figure	 is	 established	by	 the	RF	LNA	and	prior	 lossy
elements.	To	ensure	that	subsequent	components	do	not	increase	noise	figure	appreciably,	we
evaluate	 the	noise	 figure	 through	 the	entire	 receiver	chain	when	selecting	components.	The
Friis	formula	for	the	cascade	of	noise	figure	and	noise	temperature	were	covered	in	Section
4.5	of	Chapter	4,	specifically,	(4.43)	and	(4.44)	[43].	In	keeping	with	our	iterative	procedure,
we	consider	a	two-stage	cascade.	The	noise	figure	for	a	two-stage	cascade	is	given	in	linear
and	logarithmic	form,	respectively,	by	[61–63]



Similarly,	 the	 equivalent/effective	 noise	 temperature	 for	 a	 two-stage	 cascade	 is	 given	 by
[61–63]

where	the	relationship	between	noise	figure	and	noise	temperature	is	[61]

We	 continue	 our	 example	 and	 find	 the	 noise	 figure	 of	 the	 first	 three	 devices.	 Applying
(14.34),	the	combined	noise	figure	of	the	preselector	and	LNA	is

The	result	is	the	sum	of	the	LNA	noise	figure	and	the	loss	of	the	preceding	device,	which	in
this	case	 is	 the	preselector.	This	demonstrates	 the	 importance	of	minimizing	 losses	prior	 to
the	LNA,	which	add	dB	for	dB	to	overall	noise	figure	[19,	61].

Using	the	results	of	(14.32)	and	(14.38),	we	proceed	to	the	output	of	the	mixer	stage.	Using
(14.34)	again	we	get

Note	that	because	of	the	high	gain	of	the	LNA,	we	see	that	there	is	very	little	change	in	noise
figure	due	to	the	following	mixer.

14.7.5	1-dB	Compression	Point

The	1-dB	compression	point	is	explained	in	Section	14.5.	Like	gain	and	noise	figure,	we	can
determine	 the	1-dB	compression	point	at	 each	stage	of	 the	 receiver.	The	1-dB	compression
point	at	the	output	of	a	two-device	cascade	is	[64,	p.	58]



which	is	usually	used	when	specifying	an	amplifier.	If	we	reference	this	at	the	input,	typically
used	for	receivers,	we	can	use

For	our	purposes,	we	first	use	(14.40)	and	then	apply	(14.41).

Considering	the	preselector	and	the	LNA	in	cascade,	we	use	(14.40)	to	get

where	 we	 use	 OIP11	 of	 150	 dBm	 for	 the	 filter,	 since	 it	 does	 not	 compress.	 The	 1-dB
compression	point	is	therefore	equal	to	the	compression	point	of	the	LNA	for	this	case.

Next,	 we	 consider	 the	 mixer	 in	 cascade.	 We	 first	 note	 the	 1-dB	 compression	 point	 is
specified	at	the	input.	Relating	this	to	the	output,	we	get

Applying	(14.40)	again,	we	get

As	before,	we	would	continue	the	process	iteratively.

14.7.6	Second-Order	Intercept

As	noted	earlier,	the	2nd	order	intercept	is	usually	referenced	at	the	output	for	amplifiers,	and



at	 the	 input	 for	mixers.	The	2nd	 order	 intercept	 should	 be	 kept	 as	 high	 as	 possible	 because
signal	powers	exceeding	the	2nd	order	intercept	point	causes	intermodulation	distortion.	As	a
general	 rule	 of	 thumb,	 the	 2nd	 order	 intercept	 point	 is	 20	 to	 25	 dB	 higher	 than	 the	 1-dB
compression	point.

When	performing	a	cascade	analysis,	we	assign	a	suitably	high	 intercept	point	 to	passive
devices	 so	 they	 do	 not	 affect	 the	 overall	 system	 intercept	 point	 (>	 100	 dBm	 is	 usually
sufficient).	This	is	because	passive	devices	do	not	have	intercept	points.

The	 2nd	 order	 intercept	 compression	 point	 of	 a	 two-device	 cascade,	 referenced	 to	 the
device	output,	is	given	by	[49,	51]

or	in	logarithmic	form	[62]

We	can	reference	the	device	input	using

While	we	could	use	(14.45)	or	(14.46)	 to	determine	 the	cascade	 intercept	point,	we	 take	a
lesson	from	the	1-dB	compression	point	example	and	note	 that	since	the	2nd	order	 intercept
for	a	passive	filter	is	treated	as	essentially	infinite,	the	2nd	order	intercept	for	the	cascade	of
the	 preselector	 and	 LNA	 is	 simply	 that	 of	 the	 LNA	 or	 39	 dBm.	 Adding	 the	 mixer	 to	 the
cascade,	we	use	(14.46)	to	get

The	 2nd	 order	 intercept	 point	 is	 not	 always	 specified	 by	 manufacturers,	 nor	 used	 in	 a
cascade	analysis	because	the	spurious	free	dynamic	range	for	a	superheterodyne	receiver	is
usually	a	 function	of	 the	3rd	order	 intercept,	which	 typically	manifests	before	 the	2nd	 order
intercept.



14.7.7	Third-Order	Intercept

The	 3rd	 order	 intercept	 is	 an	 extrapolated	 value	 (see	 Section	 14.6.3)	 that	 occurs	 when	 the
output	power	of	the	desired	input	tones	are	equal	to	the	3rd	order	intercept	power	level	(four
tones	total)	[45].	Using	the	3rd	order	intercept	as	a	measure	of	linearity	was	first	suggested	by
Avantek	 around	 1964	 [45].	 The	 3rd	 order	 intercept	 is	 usually	 specified	 at	 the	 output	 for
amplifiers	and	at	the	input	for	mixers,	but	not	always.

Signal	powers	exceeding	the	3rd	order	intercept	point	cause	intermodulation	distortion,	so
the	higher	the	better.	As	a	general	rule	of	thumb,	the	3rd	order	intercept	point	is	typically	10	to
15	dB	greater	than	the	1-dB	compression	point	[45,	p.	397].

Since	the	3rd	order	intercept	is	lower	(typically	by	about	10	dB)	than	the	2nd	order	intercept,
3rd	order	intermodulation	products	appear	earlier	than	2nd	order	products.	This	is	why	the	3rd
order	 intercept	 is	 used	 to	 specify	 spurious	 free	 dynamic	 range.	 When	 receiver	 gains	 are
significant,	the	3rd	order	intercept	of	the	last	stage	dominates	the	cascade.

The	3rd	order	intercept	compression	point	for	two	stages	is	given	by	[38,	65,	66]

In	logarithmic	form,	we	get	[50,	62]:

If	we	use	the	device	input	as	a	reference,	we	can	relate	to	the	device	output	using	[45]

As	 before,	 by	 observing	 the	 very	 high	 intercept	 of	 the	 preselector,	 we	 can	 note	 that	 the
cascaded	3rd	order	intercept	for	the	preselector	and	LNA	is	that	of	the	LNA,	or	27	dBm.	Using
(14.50),	we	now	add	the	mixer	to	the	cascade,	resulting	in



Our	results	thus	far	are	summarized	in	Table	14.2.	The	remaining	cascade	analysis	is	left	as
an	 exercise.	 For	 the	 last	 column	 in	 Table	 14.2,	 we	 recall	 that	 the	 convention	 is	 for	 the
narrowest	 bandwidth	 component	 to	 set	 the	 overall	 bandwidth	 [38,	 p.	 15].	 The	 cascade
bandwidth	 is	 therefore	 set	 to	 the	 narrowest	 bandwidth	 of	 previous	 devices	 and	 the	 current
device.	A	summary	of	cascade	equations	is	provided	in	Table	14.3.

Table	14.2
Example	1:	Cascade	Example—First	Three	Stages

Table	14.3
Two-Stage	Cascade	Equations	Used	for	Iterative	Analysis



Figure	14.11	contains	plots	of	the	results	of	cascading	gain	and	noise	figure	for	the	entire
receiver	chain	of	Figure	14.10.	As	we	can	see,	the	noise	figure,	and	thus	the	sensitivity	of	the
receiver,	 is	 dominated	 by	 the	LNA.	The	 only	 noticeable	 bump	 (~0.3	 dB)	 in	 noise	 figure	 is
because	of	the	ADC,	which	we	treated	as	a	zero	gain	amplifier	with	a	very	large	noise	figure
(see	Section	14.8.1.4).	The	general	up-down	trend	of	gain	tends	to	yield	the	largest	dynamic
range.



Figure	14.11	Example	1:	gain	and	noise	figure.

While	 the	 noise	 figure	 of	 Figure	 14.11	 is	 established	 by	 the	 RF	 LNA	 (and	 prior	 lossy
elements),	it	should	be	noted	that	an	LNA	with	23-dB	gain	and	no	preceding	RF	attenuator	is
likely	 to	 be	 saturated	 by	 short-range	 clutter	 in	 a	 land-based	 radar.	 Either	 STC	 attenuation
preceding	 the	LNA	or	a	 lower	LNA	gain	may	be	necessary	 to	avoid	saturation	of	 the	LNA.
Either	of	these	choices	leads	to	a	receiver	noise	figure	higher	than	that	of	the	LNA	itself.

Figure	 14.12	 contains	 plots	 of	 the	 noise	 floor	 (see	 Section	 14.4)	 and	 1	 dB	 compression
point	 referenced	 to	 each	 device	 input.	 As	 indicated,	 the	 LNA	 and	 the	 preselector	 loss
establishes	 the	 noise	 floor.	 Subsequent	 amplifiers	 add	 negligibly	 small	 amounts	 of	 noise.
Passive	components	do	not	change	the	noise	floor	at	all.	The	only	lowering	of	noise	floor	is	a
result	 of	 narrowing	 bandwidth	 via	 the	 filters.	 The	 smooth	 decreasing	 trend	 of	 the	 1-dB
compression	point	indicates	no	components	with	a	detrimentally	low	1-dB	compression	point.

Figure	14.12	Example	1:	noise	floor	and	compression	point.



Figure	14.13	Example	1:	dynamic	range.

The	 difference	 between	 the	 1-dB	 compression	 point	 and	 the	 noise	 floor	 is	 one	 of	 the
definitions	for	dynamic	range	(see	Section	14.6),	and	is	plotted	in	Figure	14.13.	We	note	here
that	 dynamic	 range	 is	 generally	 decreased	 by	 lossy	 components	 and	 active	 devices,	 and
increased	when	the	noise	bandwidth	is	decreased.	The	mixer	usually	causes	a	dip	in	dynamic
range	because	 it	 is	a	 lossy	device	early	 in	 the	chain.	For	 this	example,	 the	overall	dynamic
range	 is	 72	 dB	 and	 is	 constrained	 by	 the	 amplifier	 prior	 to	 the	 ADC,	 which	 is	 a	 limiting
amplifier.	We	chose	the	limiting	amplifier	saturation	point	to	be	~	1	dB	below	the	full-scale
value	of	the	ADC	of	10	dBm	to	prevent	potential	damage	to	the	ADC	due	to	overloads.

If	we	have	an	overall	goal	of	100	dB	of	dynamic	 range	 for	our	 radar	design,	we	would
need	 about	 30	 dB	 of	 AGC	 and/or	 STC	 to	 extend	 the	 dynamic	 range	 of	 the	 receiver	 (see
Section	14.2).	Coherent	integration	also	increases	the	overall	dynamic	range	of	the	radar.	The
cascade	analysis	presented	thus	far	can	be	extended	past	the	receiver	to	the	output	of	the	signal
processor	by	accounting	for	SNR	improvements	and	losses	after	 the	receiver.	For	example,
coherent	integration	of	N	pulses	yields	a	10·log(N2)	increase	in	signal	power	and	an	increase
of	10·log(N)	 in	noise	power—likewise	for	various	 losses.	Another	way	to	capture	 this	 is	 to
use	the	measured	bandwidth	of	the	signal	processor.

14.8 DIGITAL	RECEIVER

As	mentioned	in	Section	14.3,	analog	I/Q	detectors	suffer	from	I/Q	channel	imbalance	issues.
One	 method	 of	 avoiding	 imbalance	 problems	 is	 to	 use	 digital	 hardware	 to	 perform
quadrature	 detection	 [34].	 A	 block	 diagram	 of	 a	 wideband,	 frequency	 agile,	 digital,
superheterodyne	receiver	or,	more	simply,	a	digital	receiver,	is	presented	in	Figure	14.14.



Figure	14.14	Digital	receiver	with	direct	IF	sampling.

The	use	of	direct	IF	sampling	in	the	superheterodyne	receiver	of	Figure	14.14	is	what	earns
the	moniker	digital.21	ADCs	are	normally	used	in	digital	receivers	because	digital	signals	are
more	 reliable	 and	more	 flexible	 than	 analog	parallels	 and	offer	 reduced	 cost,	 size,	weight,
and	power	dissipation.

Up	 to	 the	 differential	 amplifier	 preceding	 the	ADC,	 the	 configuration	 is	 the	 same	 as	 the
double	 downconversion	 receiver	 of	 Section	 14.3.	 However,	 we	 replaced	 the	 synchronous
detector	shown	in	Figure	14.5	with	an	ADC	that	 is	directly	sampling	 the	IF	signal—thus	 the
term,	 “direct	 IF	 sampling.”	 The	 amplitude	 and	 phase	 balance	 is	 much	 better	 (theoretically
perfect)	than	that	achieved	by	baseband	sampling	[34].22

Since	we	are	digitizing	the	IF,	the	analog	signal	needs	to	pass	through	an	antialiasing	filter
(AAF)	 designed	 to	 pass	 expected	 modulation	 bandwidths	 prior	 to	 analog-to-digital
conversion.	The	AAF	reduces	noise	bandwidth	and	assures	that	negligible	amounts	of	aliasing
occur	as	a	result	of	analog-to-digital	conversion.	For	the	receiver	shown	in	Figure	14.14,	the
second	 IF	 BPF	 serves	 as	 an	 antialiasing	 filter,	 in	 addition	 to	 eliminating	 spurious	 signals
output	of	the	second	mixer.

We	 do	 need	 to	 make	 a	 clarification,	 though,	 when	 talking	 about	 the	 AAF.	 An	 AAF	 is
classically	 lowpass	 in	 accordance	 with	 the	 Nyquist	 sampling	 theorem,	 which	 applies	 to
lowpass	signals	(signals	centered	about	0	Hz).	The	Nyquist	sampling	theorem	states	that	if	a
time-varying	signal	is	sampled	periodically,	the	sampling	frequency	should	be	at	least	twice
the	highest	frequency	component	of	the	signal	to	prevent	aliasing	[67–70].	This	theorem	also
bears	the	monikers	of	the	Shannon	sampling	theorem	[71,	72]	and	the	Kotel’nikov	sampling
theorem	[73]	(as	well	as	others).	This	theorem	can	be	represented	as

where	 fs	 is	 the	 sampling	 frequency,	 and	B	 is	 the	 highest	 frequency	 contained	 in	 the	 signal.



Equation	(14.53)	is	referred	to	as	the	Nyquist	criterion.	The	values	2B	and	fs/2	are	called	the
Nyquist	 rate	and	Nyquist	 frequency,	 respectively.	Satisfying	 the	Nyquist	criterion	allows	 the
original	signal	to	be	perfectly	recovered	from	the	sampled	values.

For	 example,	 let	 us	 consider	 sampling	 a	 40-MHz	 IF	 and	 a	 4-MHz	 chirp	 waveform.
According	to	the	Nyquist	criterion,	we	should	use	a	sampling	frequency	of

which	corresponds	to	a	Nyquist	frequency	of	fs/2	=	42	MHz.	The	driving	factor	is	the	40-MHz
IF,	not	the	4-MHz	modulation,	which	contains	the	information	in	the	signal.

However,	when	using	a	signal	centered	about	some	IF,	we	often	use	a	special	case	of	 the
Nyquist	 sampling	 theorem,	 referred	 to	as	 the	bandpass	sampling	 theorem,	which	only	 takes
the	 signal	 bandwidth,	 B,	 that	 contains	 the	 information	 we	 want	 from	 the	 signal,	 into
consideration	 [74–76].	 Brigham	 explains	 that	 a	 bandpass	 signal	 can	 be	 reconstructed	 from
samples	if	the	sampling	frequency,	fs,	satisfies	the	relationships	[74,	75,	p.	322]

and

where	n	is	an	integer.	The	variables	fH	and	fL	are	the	highest	and	lowest	frequency	component
of	 a	 signal,	 respectively.	 Expressing	 the	 minimum	 sample	 frequency	 in	 terms	 of	 signal
bandwidth,	B	=	fH	–fL,	we	can	use	(14.55)	and	(14.56)	to	form	[70]

Equation	(14.57)	 requires	 the	 sampling	 frequency	used	 for	direct	 IF	 sampling	 to	be	at	 least
twice	the	modulation	bandwidth	B.	The	necessary	AAF	is	now	bandpass	rather	than	lowpass.

When	 using	 direct	 IF	 sampling,	 the	 signal	 is	 usually	 allowed	 to	 alias	 intentionally,	 by
undersampling	 with	 respect	 to	 the	 IF,	 acting	 as	 another	 downconversion	 stage	 [77].23	 For
cases	where	the	IF	is	under	sampled,	the	criteria	of	(14.55)	and	(14.56)	ensure	that	we	avoid
spectrum	overlap	corrupting	the	aliased	signal	bandwidth	[75].

The	concept	of	Nyquist	zones	is	often	used	to	help	in	visualizing	aliasing	when	using	direct
IF	sampling	[59].	Nyquist	zones,	depicted	 in	Figure	14.15,	are	bands	of	 frequency	 fs/2	wide
[70].



Analog	frequencies	centered	on	fIF	in	an	odd	Nyquist	zone	are	downconverted	via	aliasing
to	a	digital	IF	of

where	rem(a,b)	 denotes	 the	 remainder	 after	 division	 of	a	 divided	 by	b	 [59,	 78].	 Similarly,
analog	frequencies	in	an	even	Nyquist	zone	alias	to	[59,	78]

Analog	signals	that	fall	within	odd	Nyquist	zones	result	in	a	mirrored	spectrum.	Signals	that
fall	within	even	Nyquist	zones	alias	without	frequency	mirroring	[70].	This	is	generally	not	a
concern,	so	long	as	we	know	if	the	aliased	spectrum	is	mirrored	(conjugated)	or	not.

Figure	14.15	Analog	spectrum	divided	into	Nyquist	zones	(After:	Kester	[70]).

A	 design	 goal	 is	 to	 place	 the	 signal	 to	 be	 sampled	 in	 the	 center	 of	 a	 Nyquist	 zone.
According	to	Walt	Kester	at	Analog	Devices,	the	sampling	rate	associated	with	Nyquist	zone
centers	is	given	by	[70,	p.	81]

where	NZ	 is	 an	 integer	corresponding	 to	Nyquist	 zone.	The	 largest	Nyquist	 zone	 satisfying
(14.55)	is	generally	preferable,	since	it	produces	the	lowest	sample	rate	[70].

For	example,	let	us	again	consider	sampling	a	40-MHz	IF,	with	a	4-MHz	chirp	waveform.
The	minimum	 required	 sampling	 frequency	 according	 to	 (14.57)	 is	 8	MHz.	 Increasing	 the
sample	 rate	 increases	 the	potential	distance	between	 images,	 allowing	 for	more	margin	 for
the	AAF.	Let	our	ADC	operate	at	60	MSPS	(megasamples	per	second).	The	resultant	Nyquist
zone	is



which	is	not	an	integer.

To	place	the	40-MHz	IF	in	the	second	IF	zone,	we	would	need	fs	to	be	53.33	MHz.	If	a	NZ	is
not	 an	 integer,	 this	 indicates	 that	 our	 spectrum	 is	 not	 exactly	 centered	 on	 a	 Nyquist	 zone.
Depending	 upon	 the	 available	 clock	 frequencies,	 this	 may	 be	 unavoidable,	 or	 at	 least	 an
acceptable	compromise,	with	the	exciter	design	(e.g.,	all	clocks	are	a	multiple	of	10	MHz).	So
long	as	the	AAF	provides	sufficient	rejection	of	the	aliased	image,	this	is	tolerable.	For	this
reason,	we	will	continue	this	example	using	a	sampling	rate	of	60	MSPS.

The	 digital	 downconverter	 (DDC)	 shown	 in	 Figure	 14.14	 is	 typical	 of	 the	 type	 used	 for
direct	 IF	 sampling.	 The	 operation	 of	 a	 DDC	 is	 analogous	 to	 the	 operation	 of	 the	 I/Q
demodulator	 of	 Figure	 14.5	 described	 in	 Section	 14.3.	 A	 DDC	 is	 used	 to	 shift	 the	 analog
spectrum	of	interest	from	its	IF	to	baseband.	A	DDC	often	includes	a	decimation	stage	at	the
output	to	reduce	the	data	rate	of	subsequent	processing.

Continuing	our	example	of	a	digital	receiver	with	a	second	IF	of	40	MHz	sampled	at	a	rate
of	60	MSPS	in	a	radar	using	a	4-MHz	chirp	waveform,	let	us	look	at	the	spectra	of	the	signals
produced	in	the	DDC.	This	places	our	analog	waveform	in	the	second	Nyquist	zone	(bands	of
frequency	 fs/2	wide	explained	above)	which	 is	 from	30	MHz	 to	60	MHz.	Using	 (14.58),	 the
aliased	digital	IF	is	rem(60,	40)	=	20	MHz,	as	depicted	in	the	top	graph	of	Figure	14.16.

Figure	14.16	DDC	spectra.



The	next	step	in	the	digital	downconversion	process	is	to	translate	either	the	upper	image
(centered	on	20	MHz)	or	the	lower	image	(centered	on	–20	MHz)	to	baseband	(centered	on	0
Hz)	 using	 a	 numerically	 controlled	 oscillator	 (NCO).	 The	 NCO	 generates	 two	 digital
reference	 frequencies	 with	 quadrature	 phase.	 For	 this	 example,	 we	 choose	 20	MHz	 as	 the
NCO	 frequency.	 The	 lower	 image	 is	 translated	 up	 20	MHz	 to	 baseband	 as	 depicted	 in	 the
middle	graph	of	Figure	14.16.	The	upper	image	is	translated	up	to	40	MHz,	but	aliases	(wraps
in	 frequency)	 to	 –20	MHz.	 Recall	 that	 the	 spectrum	 generated	 by	 the	 Fourier	 transform	 is
periodic.

After	translating	the	signal	to	baseband,	we	want	to	remove	the	image	centered	at	–20	MHz.
To	do	this,	we	use	digital	LPFs	in	the	I	and	Q	channels	to	reject	the	unwanted	image,	which
are	analogous	to	the	LPFs	used	in	the	I/Q	detector	of	Figure	14.5.	The	digitally	filtered	output
results	in	the	I	and	Q	terms	we	are	after.	The	spectrum	at	the	output	of	the	LPFs	is	depicted	in
the	bottom	graph	of	Figure	14.16.	At	this	point	in	our	example,	we	have	a	complex	baseband
representation	of	our	waveform,	suitable	for	digital	signal	processing.

We	 now	 have	 a	 4-MHz	 baseband	 signal	 that	 is	 sampled	 at	 60	 MSPS.	 Since	 the	 sample
frequency	is	15	times	larger	than	the	signal	bandwidth,	the	signal	is	greatly	oversampled.	To
reduce	 the	 amount	 of	 processing	 necessary,	 the	 signal	 is	 decimated,	 or	 downsampled
according	to	the	modulation	bandwidth.	A	slightly	higher	sampling	rate	(~1.5xB)	is	sometime
used	to	avoid	affecting	the	sidelobe	levels	of	LFM	waveforms.	Matching	the	chirp	bandwidth
exactly	can	potentially	elevate	the	sidelobe	levels	in	the	compressed	waveform	due	to	aliasing
caused	by	insufficient	rejection	of	the	aliased	image.	Higher	sample	rates	also	result	in	lower
straddle	loss.

Thus,	relative	to	the	sample	rate	we	need	for	our	example,	we	are	oversampled	by	a	factor
of	60/(1.5×4)	=	10.	This	means	we	can	decimate	the	signal	by	a	factor	of	10	and	still	have	a
sample	rate	that	is	adequate	for	subsequent	processing.	For	this	reason,	most	DDCs	include	a
stage	of	decimation.

Since	the	heart	of	a	digital	receiver	is	the	ADC	and	DDC,	the	choice	of	the	2nd	IF,	sampling
frequency,	 and	ADC	 properties	 are	 critical.	 The	 2nd	 IF	 is	 generally	 low	 (<50	MHz	 or	 so),
depending	upon	the	ADC	used	and	sampling	rate	used.

A	single-ended	 input	 to	differential	output	amplifier	 is	 shown	driving	 the	ADC	in	Figure
14.14	to	make	note	of	the	fact	that	many	high	performance	(high	sample	rate,	high	dynamic
range)	ADCs	are	now	being	designed	with	differential	inputs	[67].	An	RF	transformer,	such	as
the	ADT4-1WT	from	Mini-Circuits,	can	also	be	used	to	couple	into	a	differential	input	ADC
[67].	 Using	 differential	 inputs	 offers	 benefits	 such	 as	 better	 distortion	 performance,
cancellation	of	even	harmonics	and	common	mode	rejection	of	noise	[70].

14.8.1	Analog-to-Digital	Converter

Incorporating	an	ADC	into	a	radar	receiver	primarily	affects	dynamic	range	and	sensitivity.
Because	 of	 this,	 we	 will	 examine	 some	 key	 ADC	 parameters	 and	 how	 they	 factor	 into	 a
receiver	design.	It	 is	also	important	to	understand	the	effects	of	noise	present	at	 the	input	to



the	ADC	(usually	called	dither),	quantization	noise	generated	as	a	result	of	quantizing	an	input
signal,	and	noise	generated	internally	by	the	ADC	due	to	circuit	noise	and	timing	instabilities.

An	ADC,	 depicted	 functionally	 in	 Figure	 14.17,	 performs	 the	 operations	 of	 sampling	 in
time	 and	 quantizing	 in	 amplitude.	 Specifically,	 it	 samples	 and	 quantizes	 a	 continuous	 time
signal,	x(t),	to	produce	a	digitized	output,	xq(n),	that	is	a	discrete	time	number	sequence.	This
many	 to	one	mapping	occurs	because	 an	ADC	 represents	 each	 signal	 sample	using	 a	 finite
number	of	Binary	digITs	or	bits,	b.24

Figure	14.17	Block	diagram	of	A/D	converter.	(After:	Rabiner	&	Gold,	1975	[79].)

ADCs	are	designed	to	operate	on	either	unipolar	or	bipolar	inputs.	For	our	application,	we
will	discuss	bipolar	converters,	which	are	 typical	of	ADCs	used	 in	digital	downconversion.
Representative	input	ranges	for	bipolar	converters	include	±1,	±2,	±2.5,	±5,	and	±10	V,25	with
faster	converters	generally	having	smaller	input	ranges.

14.8.1.1	Quantization

The	difference	between	the	maximum,	Vmax,	and	the	minimum,	Vmin,	input	values	to	an	ADC
is	referred	to	as	the	full-scale	range	(FSR)

For	example,	the	full-scale	range	of	a	bipolar	ADC	with	a	specified	analog	input	range	of	±1
V	is

Given	an	output	word	length	of	b	bits,	we	may	represent	L	=	2b	unique	discrete	levels,	which
are	mapped	 to	particular	 voltage	 levels,	 depending	upon	 the	 full-scale	voltage	of	 the	ADC.
Each	level	at	the	ADC	output	is	separated	by

which	is	known	synonymously	as	the	quantization	interval,	a	quanta,	or	the	least	significant	bit
(lsb)	of	the	ADC	[59].	As	an	example,	for	a	word	length	of	b	=	4	bits,	we	can	represent	L	=	24
=	16	discrete	levels.	For	a	full-scale	range	of	2	V	(±1	V),	the	lsb	size	of	the	ADC	becomes



The	 mapping	 from	 analog	 input	 to	 digital	 output	 (a	 nonlinear	 mapping)	 is	 typically
performed	via	truncation	or	rounding.	We	will	consider	quantization	via	rounding,	or	[80,	p.
11]

which	 is	 typical	 for	 digital	 signal	 processing	 applications.	 Quantization	 via	 rounding	 also
results	 in	 a	 quantization	 error	 that	 is	 symmetrical	 about	 zero,	 which	 is	 mathematically
convenient.26	 For	 illustration,	 a	 full-scale	 sinusoidal	 input	quantized	by	 a	4	bit	ADC	with	 a
full-scale	range	of	2	V	is	depicted	in	Figure	14.18.

Note	that	using	(14.66)	results	 in	17	levels	 instead	of	16.	For	quantizers	with	greater	 than
about	L	=	32	levels	(5	bits)	or	so,	the	effect	of	this	extra	level	is	negligible.	In	practical	ADCs,
the	encoded	range	is	usually	–L/2	to	L/2	–1.	We	will	choose	to	ignore	this	extra	level,	which
simplifies	simulation	of	ADC	quantization.

14.8.1.2	Quantization	Error

The	 difference	 in	 amplitude	 between	 the	 analog	 input	 to	 an	ADC	 and	 the	 quantized	 digital
output	 is	 referred	 to	 as	 the	 quantization	 error.	 The	 quantization	 error	 for	 the	 quantized
sinusoid	given	in	Figure	14.18	is	shown	in	Figure	14.19.

Figure	14.18	Quantized	sinusoid,	4	bits,	±1	V	analog	input	range,	2V	FSR.



Figure	14.19	Quantization	error	for	quantized	sinusoid,	4	bits,	±1	V	analog	input	range,	2V	FSR.

Figure	14.20	Ideal	ADC	transfer	function	and	ideal	quantization	error.

The	ideal	transfer	function	for	our	example	4	bit,	±1	V,	bipolar	ADC	example	is	presented
in	Figure	14.20.	For	this	example,	the	ideal	quantization	error	shown	in	Figure	14.20	has	an
extent	of	±	∆/2.	Quantization	errors	in	excess	of	±	∆/2	indicate	overload	of	the	ADC.

Let	 us	now	quantify	 the	mean-square	value	 for	 the	 sawtooth	quantization	 error	 shown	 in



Figure	14.20.	We	will	follow	the	derivation	by	Walt	Kester	presented	in	[67].The	equation	for
a	sawtooth	can	be	expressed	by

The	mean-square	value	of	the	sawtooth	error	voltage	may	be	derived	as

and	the	root-mean-square	(rms)	value	of	the	quantization	error	is	then	given	by

where	∆	is	the	lsb	(volts).27

We	could	next	quantify	the	mean-square	value	for	the	quantization	error	associated	with	a
sinusoid,	shown	in	Figure	14.19.	However,	for	a	sinusoidal	signal	 that	spans	several	quanta,
(14.69)	can	serve	as	an	approximation	for	the	rms	quantization	error	[70,	p.	83].

Let	us	now	compare	the	rms	value	of	the	quantization	error	to	the	rms	value	of	a	full-scale
sinusoidal	input	signal.	The	full-scale	rms	voltage	for	a	sinusoidal	input	is	given	by	[67]

The	 ideal	 rms	 “signal-to-noise	 ratio”28	 in	 (W/W)	with	 respect	 to	 quantization	 error	 for	 an
ideal	ADC	is	then

over	the	Nyquist	bandwidth	from	dc	to	fs/2	where	fs	is	the	sampling	frequency	in	Hz	[81].	 In
decibel	form,	(14.71)	becomes	[82]



Equation	(14.72)	 represents	 the	 ideal	 signal-to-quantization	 error	 ratio	 of	 an	ADC	 given
sinusoidal	 inputs	often	quoted	 in	 literature	 [38,	39,	54,	70,	83,	84].	 It	 should	be	 emphasized
that	the	achieved	SNR	for	a	practical	ADC	is	always	less	than	the	theoretical	SNRq	calculated
from	the	number	of	bits.	The	theoretical	performance	of	an	ADC	is	however	a	useful	gauge
for	comparison.

In	 keeping	with	 relating	parameters	 in	 the	 receiver	 to	 absolute	 levels,	 let	 us	 put	 the	 full-
scale	input	and	rms	quantization	voltage	in	terms	of	dBm.	The	full-scale	signal	power	into	an
ADC	in	dBm	is	given	by	[70,	p.	133]

where	we	recall	the	addition	of	30	results	in	dBm	instead	of	dBW.	For	±1	V	input	range	to	the
ADC	matched	to	a	system	impedance	of	50	Ω,	results	 in	a	full-scale	power	of	10	dBm.	The
rms	quantization	error	level	becomes

Equation	(14.72)	is	just	one	of	several	SNRq	equations	associated	with	ADCs	[38,	53].29	The
level	of	quantization	error	can	also	be	estimated	via	FFT	[70,	82].

It	 should	 be	 noted	 that	 for	 these	 classical	 examples	 of	 quantization	 error,	 the	 error	 is
completely	 deterministic.	 We	 have	 not	 yet	 approached	 quantization	 error	 analysis	 using	 a
stochastic	interpretation,	which	we	will	do	shortly.

Even	 though	we	 have	 not	 performed	 any	 stochastic	 analysis,	 eq	 of	 (14.69)	 is	 frequently
referred	to	synonymously	as	the	rms	quantization	noise	[59,	70].	Likewise,	SNRq	of	(14.72)	is
usually	 referred	 to	 synonymously	 as	 the	 signal	 to	 quantization	 noise	 ratio	 [59].	 This	 is
because,	when	approached	from	a	stochastic	point	of	view,	the	results	are	the	same	as	(14.69)
and	(14.72)	[84].	This	is	explored	in	Exercise	22.

14.8.1.3	Quantization	Noise

While	we	can	perform	deterministic	quantization	error	analysis,	we	usually	treat	quantization



error	 as	 a	 random	 process	 and	 label	 it	 “quantization	 noise.”	 We	 use	 this	 stochastic
interpretation	 because	 we	 have	 the	 tools	 to	 handle	 random	 quantization	 error	 (i.e.,
quantization	noise)	but	we	do	not	have	the	tools	needed	to	analyze	deterministic	quantization
error	in	terms	of	its	effect	on	signal	processing.

The	general	assumptions	used	for	quantization	noise	are	[85,	86]:

1. The	quantization	noise	is	additive	and	white.
2. The	quantization	noise	is	uncorrelated	with	the	signal	being	quantized.
3. The	quantization	noise	is	uniformly	distributed	between	±	∆/2,	resulting	in	zero	mean

and	variance	of	∆	2/12	[see	(14.68)].

The	three	assumptions	listed	above	allow	our	treatment	of	quantization	error	as	noise	to	be
closer	 to	 being	 “theoretically”	 valid.	 The	 three	 assumptions	 are	 true	 if	 some	 amount	 of
receiver	noise	 is	presented	 to	 the	 input	of	 the	ADC.	The	amount	of	noise	 required	 is	set	by
making	the	expected	standard	deviation	of	the	noise	greater	than	the	quantization	level	∆.

Without	 noise	 present	 at	 the	 input	 of	 the	 ADC,	 the	 resulting	 quantization	 error	 can	 be
deterministic	 and	 harmonic,	 which	 produces	 spurs.	 As	 ADC	 bit	 lengths	 grow,	 however,
internal	 instabilities	 in	 the	 ADC	 become	more	 dominant,	 reducing	 the	 chance	 of	 spurious
quantization	noise.	The	additive	noise	present	at	 the	 input	 to	an	ADC	is	often	referred	 to	as
dither	(Section	14.8.1.5).

Despite	 the	 third	 assumption	 listed	 above,	 Bennet	 notes	 that	 quantization	 noise	 is
approximately	Gaussian	and	essentially	spread	uniformly	over	the	Nyquist	bandwidth	of	dc	to
fs/2	 [81].	 Interestingly,	 Widrow	 and	 Kollar	 refer	 to	 the	 general	 assumptions	 used	 for
quantization	 noise	 listed	 above	 as	 more	 rumor	 than	 fact,	 but	 they	 do	 concede	 that	 these
rumors	are	 true	under	most	 circumstances,	or	 are	at	 least	 a	very	good	approximation	 [80].
One	 important	 motivation	 for	 these	 assumptions	 is	 that	 they	 result	 in	 greatly	 simplified
mathematical	analysis	since	a	nonlinear	system	now	behaves	like	a	linear	system	(the	system
has	been	linearized)	[88–90].

Since	we	 treat	quantization	noise	at	 the	output	of	 the	ADC	as	being	uniformly	distributed
across	the	Nyquist	bandwidth,	we	need	to	account	for	 times	when	we	filter	 the	output	of	 the
ADC	because	 the	 signal	 bandwidth	 in	 our	 receiver	 is	 less	 than	 the	Nyquist	 bandwidth.	This
filtering	eliminates	quantization	noise	outside	 the	signal	bandwidth.	To	account	 for	 this,	we
modify	(14.72)	by	including	a	processing	gain,	(fs/2)/B,	which	results	in	[70]

where	B	 is	 the	 signal	 bandwidth,	 or	 technically	 the	 filter	 bandwidth	 if	 it	 is	 wider	 than	 the
modulation	bandwidth.30

14.8.1.4	ADC	Noise	Figure

Having	derived	the	ideal	SNR	performance	for	an	ideal	ADC,	we	would	like	to	quantify	how



this	compares	to	a	practical	ADC,	which	never	achieves	the	ideal	SNR.	More	importantly,	we
would	 like	 to	 incorporate	 the	 performance	 of	 a	 practical	 ADC	 into	 our	 receiver	 cascade
analysis.	The	SNR	of	a	practical	ADC	is	difficult	to	predict	analytically.	The	actual	SNR	of	an
ADC	is	generally	provided	by	ADC	manufacturers	though.

ADC	manufacturers	 usually	measure	 SNRADC	 using	 a	 sinusoidal	 test	 signal	 at	 the	 ADC
input.	The	test	signal	is	usually	full	scale,	or	0.5	to	1	dB	below	full	scale	(dBFS).	Staying	just
under	full	scale	at	the	input	to	the	ADC	is	sometimes	done	because	it	results	in	better	spurious
behavior	than	a	full-scale	input.

Walt	 Kester	 at	 Analog	 Devices	 and	 James	 Karki	 at	 Texas	 Instruments	 both	 present	 a
technique	we	can	use	to	incorporate	an	ADC	into	a	cascade	analysis	using	an	equivalent	noise
figure	for	the	ADC,	which	is	derived	using	the	measured	ADC	SNRADC	[70,	91,	92].	We	will
follow	their	example	here.	Specifically,	an	ADC	can	be	thought	of	as	a	unity	gain	amplifier,
with	a	given	noise	figure,	and	included	in	a	cascade	analysis	(see	Section	14.7).	An	equivalent
ADC	noise	figure	in	excess	of	30	dB	is	not	unusual.

To	 derive	 the	 noise	 figure	 of	 an	 ADC,	 we	 first	 need	 to	 think	 about	 the	 power	 spectral
density	of	the	ADC	noise,	which	includes	quantization	noise	and	noise	internally	generated	by
the	ADC	circuitry.	Given	SNRADC	by	the	manufacturer,	the	ADC	noise	power	can	be	expressed
as

where	PFS	 is	 the	full-scale	power	into	the	ADC	given	by	(14.73).	The	factor	of	1	subtracted
from	the	full-scale	input	power	in	(14.76)	is	indicative	of	the	manufacturer	using	a	–1	dBFS
test	signal	to	measure	SNRADC.

To	 express	 (14.76)	 in	 terms	 of	 power	 spectral	 density,	 we	 note	 SNRADC	 is	 specified	 for
noise	 evenly	 distributed	 across	 the	Nyquist	 bandwidth	 from	dc	 to	 fs/2.	Adding	 a	 bandwidth
term	to	relate	(14.76)	to	a	1-Hz	bandwidth,	we	get	the	ADC	noise	power	spectral	density	given
by	James	Karki	in	his	derivation,	which	is	[92]

Equation	 (14.77)	 represents	 the	 power	 spectral	 density	 of	 quantization	 noise	 and	 noise
internally	generated	by	the	ADC	combined.

In	 formulating	 noise	 figure,	we	 also	 need	 the	 noise	 into	 the	ADC.	 The	 reference	 power
spectral	density	into	the	ADC	from	thermal	noise,	is	given	by

Recall	that	noise	figure	can	be	expressed	as



Noting	that	the	ideal	gain	through	the	ADC	is	1,	for	example,	SI	=	SO,	and	substituting	(14.77)
and	(14.78)	into	(14.79),	we	get

We	can	approximate	(14.80)	as	given	by	Walt	Kester	(see	Exercise	13)	as	[70,	p.	102;	93]

As	 an	 example,	 let	 the	 full-scale	 power	 into	 the	ADC	be	 +10	 dBm,	 corresponding	 to	 an
analog	input	range	of	±1	V	and	let	the	input	resistance	of	the	ADC	be	50	Ω	[see	(14.73)].	We
assume	 a	 14-bit	 converter,	 operating	 at	 fs=	 60	 MSPS,	 with	 a	 specified	 SNR	 of	 74.8	 dB.
Substitution	into	(14.81)	yields

We	have	made	the	tacit	assumption	of	matched	impedances,	which	are	typically	50	Ω.	The
input	impedance	of	an	ADC	is	not	always	50	Ω.	ADC	input	impedances	of	200	Ω	and	1	KΩ	are
not	 unusual.	 To	 avoid	 impedance	mismatch,	 one	 practice	 is	 to	 use	 an	 impedance	matching
transformer	to	match	the	system	impedance	to	the	ADC	impedance	[70,	92].

James	Karki	uses	the	example	of	an	ADC	with	an	input	impedance	of	200	Ω.	Matching	the
50	Ω	 system	output	 impedance	 to	 a	 200	Ω	ADC	 input	 impedance	 requires	 a	 1:4	 impedance
ratio	(1:2	turns	ratio)	transformer	[92].	Compared	to	(14.81),	the	ADC	noise	figure	is	reduced
by	the	4:1	impedance	ratio	of	the	system	and	the	ADC	impedance,	which	can	be	expressed	as

For	this	example,	the	ADC	noise	figure	is	reduced	by

Gain	Prior	to	ADC



An	important	design	consideration	is	to	establish	the	right	amount	of	amplified	receiver	noise
to	act	as	dither	at	the	input	to	the	ADC	(see	Section	14.8.1.5)	[53].	We	can	use	the	ADC	noise
figure	of	(14.81)	to	determine	how	much	gain	(and	analog	noise	figure)	is	necessary	prior	to
the	ADC	in	order	to	minimize	its	impact	on	overall	system	noise	figure,	while	still	dithering
the	input.	The	receiver	gain	in	combination	with	the	full-scale	level	of	the	ADC,	determines
the	maximum	signal	 input	 to	 the	receiver.	As	such,	 there	 is	a	 tradeoff	between	system	noise
figure	and	maximum	input	signal	or	dynamic	range.

For	illustration,	we	will	consider	a	two-stage	cascade	of	the	RF	front	end	followed	by	an
ADC,	depicted	in	Figure	14.21.	The	gain	and	noise	figure	of	 the	analog	portion	of	a	digital
receiver	 are	 encompassed	 in	GRF	 and	FRF,	 respectively.	 For	 the	ADC	 stage,	GADC	 =	 1,	 and
FADC	is	the	NF	of	the	ADC.

Let	 ∆F	 represent	 the	 amount	 of	 acceptable	 noise	 figure	 degradation.	 By	 comparing	 the
noise	 figure	of	 the	 receiver	 front	 end	 and	ADC	cascade	 to	 the	noise	 figure	of	 the	 receiver
front	end,	we	can	write	(see	Exercise	22)	[94]

A	general	rule	of	thumb	for	∆F	is	to	allow	a	few	tenths	of	dB	increase	in	noise	figure	due
to	the	ADC.	This	offers	a	reasonable	compromise	between	gain	and	sensitivity.	For	example,
let	 the	noise	figure	of	 the	RF	front	end	be	5	dB	with	an	ADC	noise	figure	of	30	dB.	In	our
design,	let	the	acceptable	amount	of	degradation	be	0.4	dB	[93].	The	necessary	amount	of	RF
front	end	gain	up	to	the	ADC	becomes

Determining	how	much	dither	noise	is	applied	to	the	ADC	input	by	using	this	technique	is	left
as	an	exercise.	We	note	that	35.2	dB	is	fairly	high	compared	to	the	20	to	25	dB	RF	LNA	gain
generally	required	by	an	analog	design	to	establish	noise	figure.	This	is	due	to	the	very	high
noise	figure	of	the	ADC.

Figure	14.21	ADC	cascade.

In	addition	to	performing	a	cascade	analysis	using	an	equivalent	noise	figure	for	the	ADC,
there	 are	 a	 number	 of	 other	 approaches	 and	 guidelines	 used	 for	 establishing	 the	 correct
amount	 of	 dither	 into	 the	 ADC.	 One	 general	 rule	 is	 to	 use	 1	 to	 1.5	 bits	 of	 dither.	 Lyons
suggests	an	rms	level	of	1/3	to	1	lsb	voltage	level	for	wideband	dither	and	4	to	6	lsb	voltage



levels	for	out-of-band	dither	[95,	p.	708].

Barton	characterizes	the	quantizing	noise	voltage	added	by	the	ADC	as

which	is	a	combination	of	(14.64)	and	(14.69)	[63,	p.	220].

Similarly	 to	 the	 ADC	 noise	 figure	 approach	 discussed	 earlier,	 Barton	 recommends
adjusting	the	gain	prior	to	the	ADC	such	that	the	rms	noise	voltage	at	the	output	of	the	ADC,
resulting	from	thermal	noise	and	quantization,	is

where	Barton	suggests	q	≈	1.5,	which	is	a	constant	chosen	to	provide	a	practical	compromise
between	the	conflicting	needs	of	dynamic	range	and	small	quantizing	noise	(e.g.,	sensitivity).
This	results	in	a	thermal	noise	power	at	the	input	to	the	ADC	that	is	12q2	time	the	quantizing
noise	power	[63].	It	is	left	as	an	exercise	to	see	how	this	approach	compares	to	the	ADC	noise
figure	approach	[91,	92].

14.8.1.5	Dither

Dithering	 is	 the	 deliberate	 use	 of	 a	 small	 amount	 of	 noise	 at	 the	 input	 to	 an	 ADC	 that	 is
uncorrelated	with	the	signal	to	be	digitized.	This	noise	is	usually	referred	to	as	“dither	noise”
or	 simply	“dither.”	One	purpose	of	dither	 is	 to	 counter	 the	effects	of	quantization	noise	by
controlling	 the	 statistical	 properties	 of	 quantization	 error.	 Another	 is	 to	 linearize	 the
characteristics	of	the	ADC,	thus	improving	the	effective	resolution	of	the	ADC.

Dithering	is	imperative	in	radar	receivers	for	a	number	of	reasons.	For	instance,	digitizing
sinusoidal	 signals	 can	 result	 in	 quantization	 noise	 that	 is	 highly	 correlated,	 resulting	 in
spurious	 signals	 at	 harmonics	 of	 the	 input.	 Dithering	 randomizes	 the	 quantization	 error,
reducing	spurious	levels.

Dithering	is	also	very	important	when	considering	weak,	or	subquanta,	signals	[96].	A	weak
signal	 that	 exercises	 only	 a	 single	 quanta	 results	 in	 clipping,	 causing	 numerous	 spectral
harmonics.	Subquanta	signals,	which	would	not	exercise	even	a	single	quanta,	are	irrevocably
lost	 due	 to	 the	 ADC.	 Dithering	 preserves	 the	 information	 from	 weak	 or	 subquanta	 inputs
(including	 their	 power	 ratios)	 by	whitening	 the	 signal	 and	 clutter	 components	 of	 the	ADC
input.	Dithering	 causes	 these	 signals	 to	 exercise	 at	 least	 a	 few	 quanta,	 allowing	 signal	 and
clutter	components	to	be	recovered	by	via	coherent	integration.31

Some	 of	 the	 earliest	 work	 on	 the	 ability	 of	 dither	 to	 extend	 ADC	 dynamic	 range	 via
coherent	integration	was	published	in	1963	by	G.	G.	Furman	in	two	RAND	Corp	reports	[88,
89].	Furman	considered	sinusoidal	and	sawtooth	dither	signals,	asserting	that	dither	improves
quantizer	 performance	 by	 enabling	 coarse	 quantizers	 to	 emulate	 ultrafine	 ones	 [90].
Vanderkooy	and	Lipshitz,	showed	that,	by	the	use	of	dither,	the	resolution	of	an	ADC	can	be



improved	to	well	below	the	least	significant	bit	[97].	Oppenheim	emphasizes	that	to	preserve
dynamic	range,	at	least	the	lowest	level	of	the	ADC	must	be	dithered	by	noise	[98,	p.	309].

Dither	 noise	 can	 be	 generated	 in	 a	 number	 of	ways.	 One	 common	method	 employed	 in
radar	 is	 to	 use	 amplified	 thermal	 noise	 from	 the	 receiver	 front	 end	 (see	 Section	 14.8.1.4),
where	the	receiver	gain	is	designed	to	establish	the	desired	level	of	noise	into	the	ADC	(see
Section	14.8.1.5).	This	type	of	dither	is	bandlimited	according	to	the	RF-IF	bandwidth,	which
is	 typically	 less	 than	 the	Nyquist	 frequency.	 Similarly,	 we	 can	 inject	 random	 noise	 from	 a
calibrated	external	noise	source	[95].	The	downside	of	these	approaches	is	that	the	dither	falls
within	the	passband	of	the	receiver,	resulting	in	a	loss	in	sensitivity.

There	are	techniques	aimed	at	avoiding	this	loss	of	sensitivity	by	removing	the	dither	after
it	 has	 served	 its	 purpose.	 One	 approach	 is	 referred	 to	 as	 subtractive	 dither,	 which	 uses
digitally	generated	pseudorandom	noise.	The	pseudorandom	noise	is	converted	to	analog	and
added	 to	 the	 signal	 into	 the	ADC.	 It	 is	 then	 removed	via	 subtraction	after	 conversion.32	 An
analog	variation	of	this,	referred	to	as	out-of-band	dither,	is	to	use	band	limited	dither,	usually
low	frequency	noise,	which	is	designed	to	be	rejected	by	subsequent	digital	filtering	[95,	99].

14.9 RECEIVER	CONFIGURATIONS

We	 close	 this	 chapter	with	 a	 brief	 discussion	 of	 some	 receiver	 configurations	 and	 discuss
some	 of	 their	 balance,	 alignment,	 and	 calibration	 requirements.	 Figure	 14.22	 contains	 a
simplified	block	diagram	of	 a	 three-channel,	monopulse	 receiver.	A	monopulse	 receiver	 is
used	on	radars	where	there	is	a	requirement	to	provide	a	three	dimensional	measurement	of
target	 position.	 These	 radars	 typically	 measure	 a	 range-related	 quantity,	 ∆r,	 and	 two
orthogonal,	angle-related	quantities,	∆u	and	∆v.	∆r	is	usually	measured	relative	to	an	expected
target	range,	such	as	the	output	of	a	range	tracker.	∆u	and	∆v	are	angle	quantities	relative	to
boresight,	which	is	the	direction	the	radar	beam	is	pointing.	∆r,	∆u,	and	∆v	can	be	combined
with	 other	 range	 and	 angle	 parameters	 to	 determine	 the	 target	 location	 relative	 to	 some
coordinate	system	such	as	a	Cartesian	coordinate	system	centered	at	the	radar.



Figure	14.22	Three-channel	monopulse	receiver	and	processor.

The	term	“monopulse”	derives	from	the	fact	that	the	radar,	ideally,	measures	∆r,	∆u,	and	∆v
based	 on	 the	 return	 from	 a	 single	 (mono)	 pulse,	 or	 a	 burst	 of	 pulses	 if	 the	 radar	 is	 using
coherent	 processing.	 The	 modifier	 “three-channel”	 derives	 from	 the	 use	 of	 separate
receivers,	or	channels,	for	each	parameter:	∆r,	∆u,	and	∆v.

The	three	signals	processed	by	the	receiver	channels	are	formed	in	the	feed/array,	indicated
notionally,	on	the	left	of	 the	diagram.	In	a	radar	that	uses	a	reflector	antenna	or	a	space-fed
phased	array	(see	Chapter	12),	the	device	is	the	antenna	feed	and	in	a	constrained-feed	phased
array,	the	device	is	the	array	itself.	In	one	of	the	simplest	forms,	the	feed	consists	of	four	horn
antennas	 spaced	 close	 together.	 In	 practice,	 the	 feed	 can	 consist	 of	 several	 horn	 antennas
where	some	of	the	horn	antennas	are	multimode	[38,	100–104].	Multihorn,	multimode	feeds
are	used	when	there	is	a	desire	or	requirement	to	simultaneously	provide	sidelobe	control	of
both	 sum	 and	 difference	 antenna	 patterns.	 In	 a	 constrained-feed	 phased	 array,	 again	 in	 the
simplest	form,	the	array	is	divided	into	four	quadrants	to	provide	the	necessary	signals.

The	outputs	of	the	four	ports	of	the	feed,	or	the	four	quadrants	of	the	array,	are	combined
in	the	monopulse	combiner	to	create	the	three	signals	used	by	the	monopulse	receiver	and	the
subsequent	monopulse	processor.	In	one	case,	the	four	outputs	are	summed	to	form	the	sum,
or	Σ,	signal.	One	of	the	orthogonal	angle	channel	signals	(e.g.,	∆v)	is	formed	by	summing	the
signals	from	ports	1	and	2,	summing	the	signals	from	ports	3	and	4,	and	subtracting	the	two
sums.	This	 is	 termed	 the	∆v	difference	 channel	 signal.	 The	 other	 orthogonal	 angle	 channel
signal,	∆u,	is	formed	by	summing	the	signals	from	ports	1	and	3,	summing	the	signals	from
ports	2	and	4,	and	subtracting	the	two	sums.	In	equation	form



We	note	that	we	are	forming	the	sums	of	voltages,	with	the	sums	being	performed	at	the	RF.
The	implication	of	this	is	that	the	relative	phases	and	amplitudes	of	v1(t)	through	v4(t)	must	be
preserved	in	the	monopulse	combiner	for	all	RFs	of	interest.	This	places	restrictions	on	the
combiner.	Also,	as	discussed	in	Section	14.7.4,	the	combiner	must	be	a	low	loss	device	since
its	loss	contributes	directly	to	receiver	noise	figure.

If	we	plot	normalized	versions	of	vΣ(t1),	v∆u(t1),	and	v∆v(t1)	as	we	vary	the	target	location
relative	 to	 boresight,	 we	 have	 a	 normalized	 sum	 and	 two	 normalized	 difference	 voltage
patterns.	 In	 these	expressions,	 t1	 is	 time	 the	 target	 return	 is	present.	Examples	of	a	sum	and
one	of	the	difference	patterns	are	contained	in	Figure	14.23	[normalized	to	the	peak	of	vΣ(t1)].
The	difference	voltage	plot	has	 two	“main	beams”	and,	more	 importantly,	 is	zero	when	 the
target	is	at	boresight.	Also,	the	sign	and	magnitude	of	the	difference	voltage	is	directly	related
to	the	location	of	the	target	relative	to	boresight.	This	is	the	information	we	use	to	determine
∆u	and	∆v,	the	target	angles	relative	to	boresight.

After	the	monopulse	combiner,	the	vΣ(t),	v∆u(t),	and	v∆v(t)	signals	are	sent	to	three	identical
receiver	channels.	A	key	term	here	is	“identical.”	The	receivers	must	have	identical	gain	and
phase	 characteristics	 over	 their	 entire	 operating	 frequency	 range.	Also,	 the	 gain	 and	 phase
characteristics	should	be	independent	of	signal	amplitudes.	This	is	important	because	the	vΣ(t)
and	v∆(t)	 signals	 have	much	 different	 amplitudes.	 If	 the	 target	 is	 at,	 or	 close	 to,	 boresight,
vΣ(t)	will	be	large	and	v∆(t)	will	be	small.	If	the	receivers	do	not	provide	the	same	gain	and
phase	shifts	to	vΣ(t)	and	v∆(t),	the	subsequent	processing	used	to	determine	∆u	and	∆v	will	not
give	the	expected	result.

Figure	14.23	Sum	and	difference	patterns.



Since	 the	 three	 channels	 are	 not	 generally	 identical,	 the	 receivers	 and	 the	 ∆u	 and	 ∆v
formation	circuits/algorithms	must	be	calibrated,	which	is	usually	accomplished	by	creating
discriminator	curves.	This	can	be	done	by	radiating	a	test	signal	from	a	test	tower	in	the	far
field	of	the	antenna	and	moving	the	antenna	boresight	while	measuring	∆u	and	∆v.	The	plots
of	 ∆u	 and	 ∆v	 versus	 the	 angle	 between	 the	 test	 signal	 and	 boresight	 are	 the	 discriminator
curves.	 The	 ∆u	 discriminator	 curve	 is	 generated	 for	 ∆v	 =	 0,	 and	 vice	 versa.	 As	 a	 note,
calibration	 is	 especially	 important	 in	 digital	 receivers	 where	 the	 ADC	 can	 introduce
significant	nonlinearities	at	small	signal	levels	(see	Section	14.8).

The	 calibration	 and	 alignment	 must	 be	 performed	 at	 several	 frequencies	 within	 the
operating	band	of	the	radar	since	phase	errors	can	be	caused	by	path	length	differences	in	the
combiner	 and	 other	 plumbing	 between	 the	 feed	 outputs	 (outputs	 of	 the	 four	 horns	 or	 four
array	quadrants)	and	the	first	mixer	(see	Figure	5.12).	Also,	gain	and	phase	characteristics	of
the	 three	RF	amplifiers	will	most	 likely	be	different	over	 the	RF	operating	range.	Since	 the
characteristics	of	 the	various	receiver	components	can	change	over	 relatively	short	periods
of	 time,	 it	 is	 often	 necessary	 that	 calibration	 be	 performed	 regularly.	 This	 is	 most	 often
accomplished	by	injecting	a	test	signal,	termed	a	pilot	pulse,	 into	 the	receiver	 front	end	and
determining	 the	 amount	 of	 phase	 and	gain	 imbalance	between	 channels.	Channel	 balance	 is
then	 maintained	 by	 controlling	 attenuators	 and	 phase	 shifters	 in	 each	 receiver	 channel
accordingly	 (or	 in	 the	 calculating	 of	 the	 monopulse	 output	 if	 implemented	 via	 computer)
[105,	p.	69].

As	 indicated	 earlier,	 the	 ∆u	 and	 ∆v	 signals	 are	 formed	 in	 the	 angle	 discriminators.	 The
angle	discriminators	of	Figure	14.22	would	apply	to	a	reflector	antenna	or	a	space-fed	phased
array	antenna	because	the	form	of	∆	(∆u	or	∆v)	is

For	 a	 constrained-feed	phased	array,	 the	 real	operator	would	be	 replaced	by	 the	 imaginary
operator	since	the	angle	information	in	this	type	of	an	array	is	contained	in	the	imaginary	part
of	v∆o/vΣo	[105].

In	(14.90),	vΣo	=	GΣvΣ(t1)	and	v∆o	=	G∆v∆(t1)	where	∆	could	be	∆u	or	∆v	and	t1	is	the	time	at
which	the	matched	filter	output	is	sampled	(hopefully	at	the	target	range	delay).	G∆	and	GΣ	are
the	total,	complex	voltage	gains	of	the	sum	and	difference	receivers,	from	the	feed	output	to
the	inputs	of	the	discriminators.	K∆	is	a	scale	factor	that	converts	the	ratio	to	an	angle.	Figure
14.24	contains	a	plot	of	∆	versus	u	for	the	sum	and	difference	pattern	plots	of	Figure	14.23.
The	angle,	u,	is	the	angle	between	the	antenna	boresight	and	the	LOS	to	the	target,	and	has	the
units	of	sines	(see	Chapter	12).	K∆	was	chosen	so	that	the	slope	of	the	curve	is	unity.



Figure	14.24	Angle	discriminator—amplitude	imbalance.

The	 solid	 curve	 corresponds	 to	 the	 balanced	 case	where	G∆	 =	GΣ	 and	 the	 dashed	 curve
corresponds	to	the	case	where	G∆	=	(21/2)GΣ,	a	3-dB	gain	imbalance.	As	can	be	seen,	the	slope
of	the	discriminator	curve	is	no	longer	unity	for	the	imbalance	case.	This	can	have	an	impact
on	 track	 loop	 performance	 in	 that	 the	 slope	 of	 the	 discriminator	 curve	 directly	 affects	 the
closed-loop	bandwidth	of	the	track	loop,	and	thus	the	track	accuracy.

Figure	14.25	contains	a	plot	for	 the	case	where	 |G∆|	=	|GΣ|	but	where	 the	phases	differ	by
30°.	 As	 with	 the	 gain	 imbalance,	 the	 phase	 imbalance	 caused	 a	 change	 in	 the	 slope	 of	 the
discriminator	curve.

Receiver	calibration	can	also	affect	the	output	of	the	range	discriminator,	but	not	as	much
as	for	angle.	This	is	because	of	the	way	the	∆r	signal	is	usually	formed.	Specifically,	 the	∆r
signal	is	formed	by	some	variation	of	the	equation33

where	|VL|	and	|VE|	are	termed	the	late	and	early	gate	signals	and	are	defined	by



where	τtrk	is	the	expected	target	range	delay	from	the	range	tracker	and	∆τ	is	an	offset	about
τtrk.	Typically,	∆τ	is	one-half	of	the	compressed	pulsewidth	[106].	This	is	illustrated	in	Figure
14.26	for	the	case	of	an	ideal,	unmodulated	pulse.	Kr	is	chosen	so	that	∆r	has	the	desired	units
(e.g.,	m).

Figure	14.25	Angle	discriminator—phase	imbalance.

Figure	14.26	Illustration	of	range	samples.

The	forms	of	(14.91)	and	(14.92)	mean	that	receiver	calibration	and	channel	balance	are	not
an	issue	in	range	tracking	because	GΣ	cancels	in	the	numerator	and	denominator	of	(14.91).	A



calibration	factor	that	must	be	considered	is	pulse	shape	at	the	output	of	the	matched	filter,	or
imbalances	 in	 the	 signal	 processing	 between	 the	matched	 filter	 output	 and	 the	 input	 to	 the
range	 discriminator.	 As	 with	 the	 angle	 discriminator,	 these	 can	 be	 accounted	 for	 by
calibration.

Early	radars	tried	to	conserve	hardware	by	using	two	receiver	channels	instead	of	three.	An
example	of	one	such	implementation	is	shown	in	Figure	14.27.	In	this	diagram,	the	∆	signal	is
switched	between	the	∆u	and	∆v	signals	from	the	combiner	and	the	difference	signal	is	added
to	 and	 subtracted	 from	 the	 sum	 signal	 to	 form	 vΣ(t)	 +	 v∆(t)	 and	 vΣ(t)	 –v∆(t).	 While	 this
implementation	saves	hardware,	it	also	doubles	the	amount	of	time	required	to	determine	all
three	of	the	∆r,	∆u,	and	∆v	parameters.

The	use	of	vΣ(t)	+	v∆(t)	and	vΣ(t)	–v∆(t)	relieves	some	of	the	gain	and	phase	linearity	issues
in	that	both	vΣ(t)	+	v∆(t)	and	vΣ(t)	–v∆(t)	are	about	the	same	size	when	the	radar	is	tracking	the
target.	 However,	 gain	 and	 phase	 imbalance	 becomes	 more	 of	 an	 issue.	 In	 the	 example	 of
Figure	14.27,	the	∆	signal	is	formed	as

If	|GΔ+Σ|	=	|GΔ–Σ|	and	|vΔ	(t1)|	≪	|vΣ(t1)|,	(14.93)	reduces	to	[105,	p.	167]

Figure	14.27	Two-channel	monopulse	receiver.

If	 |G∆+Σ|	 ≠	 |G∆–Σ|,	 ∆	 can	 vary	 significantly	 from	 this	 ideal	 value	 and	 can	 even	 lead	 to	 bias
errors	in	the	angle	tracker.

To	 mitigate	 the	 problems	 caused	 by	 channel	 imbalance	 in	 two-channel	 receivers,	 some
early	radars	also	reversed	the	signals	into	the	receiver	on	alternate	dwells	(pulses	or	coherent



processing	 intervals).	 One	 example	 of	 this	 is	 illustrated	 in	 Figure	 14.28.	 In	 this	 case,	 the
receiver	 channels	 alternately	 carry	vΣ(t)	 –/+	v∆(t)	 and	vΣ(t)	+/–v∆(t).	 This	will	 cause	 errors
due	 to	channel	 imbalance	 to	average	out	over	 time.	However,	now	 the	update	 rate	has	been
decreased	by	a	factor	of	four	relative	to	full	monopulse.

Instead	 of	 reducing	 the	 number	 of	 receiver	 channels,	 we	 can	 increase	 them	 to	 four	 and
eliminate	the	monopulse	combiner.	This	is	illustrated	in	Figure	14.29.	With	this	configuration,
we	process	v1(t)	through	v4(t)	in	separate	receivers	and	form	the	sum	and	difference	signals
at	the	output	of	the	signal	processors.	If	we	use	a	digital	receiver	or	a	digital	signal	processor,
we	would	 have	 an	 implementation	 of	 digital	 beam	 forming.	 This	 technique	 would	 enhance
flexibility	 in	 that	 we	 could	 form	 (tightly	 spaced)	 multiple	 simultaneous	 beams,	 or
simultaneously	 implement	 amplitude	 and	 phase	 comparison	monopulse	 (for	 a	 constrained-
feed	phased	array	or	an	active	array)	or	perform	some	other	angle	functions	such	as	sidelobe
cancellation.	 The	 price	 paid	 for	 this	 flexibility	 is	 that	 receiver	 balance,	 calibration	 and
alignment,	 over	 the	 operational	 RFs	 of	 the	 radar,	 become	 much	 more	 important.	 If	 the
receivers	are	not	properly	balanced,	we	would	likely	introduce	significant	angle	bias	errors
and	could	significantly	degrade	 the	monopulse	discriminator.	Depending	on	how	 the	signal
processor	 outputs	 are	 combined	 to	 determine	 range	 error,	 this	 could	 also	 be	 seriously
degraded	by	channel	imbalance.

Figure	14.28	Two-channel	receiver	with	Δ	sign	switching.

Figure	14.29	Four-channel	receiver.

An	extension	to	the	four-channel	receiver	that	is	being	implemented	in	some	modern	radars
[107,	108]	 is	 to	divide	 the	array	 (usually	an	active	array)	 into	a	 large	number	of	 subarrays
with	 a	 separate	 receiver,	 and	 possibly	 signal	 processor,	 for	 each	 subarray.	 With	 this,	 the
concept	 of	 digital	 beamforming	 can	 be	 expanded	 to	 include	multiple	 simultaneous	 beams,
adaptive	nulling,	difference	pattern	 sidelobe	control,	 and/or	 some	 form	of	 super-resolution



technique	 (e.g.,	 MUltiple	 SIgnal	 Classification,	 or	 MUSIC	 [109],	 that	 has	 been	 only
theoretically	considered	in	the	past.	However,	as	implied	by	the	above	discussions,	this	added
capability	comes	at	the	cost	of	a	more	stringent	balance	requirements.	A	counter	to	this	would
be	to	move	the	ADCs	closer	 to	 the	LNA	output	of	 the	T/R	modules	and	have	a	 true	“digital
radar,”	wherein	calibration	and	alignment	can	be	performed	digitally.

14.10 EXERCISES

1. Given	an	RF	of	10	GHz,	a	1st	IF	of	60	MHz,	and	assuming	a	low	side	LO,	what	does	the
LO	frequency	need	to	be?	What	is	the	image	frequency?	If	we	use	a	4th	order	Butterworth
filter	with	an	8-MHz	passband	as	preselector,	how	much	image	rejection	is	provided?

2. Repeat	Exercise	1	using	a	1st	IF	of	540	MHz	and	assuming	a	high	side	LO.

3. Calculate	 the	noise	bandwidth	of	a	Butterworth	filter	 for	orders	1	 through	5.	How	does
the	noise	bandwidth	compare	to	the	3-dB	bandwidth?	Noise	bandwidth	is	given	by	[63,	p.
198]

where	H(f)	is	the	frequency	response	and	f0	is	the	center	of	the	frequency	response.

4. Show	that	the	units	in	(14.10)	are	correct.

5. Simulate	 Gaussian	 noise	 passed	 through	 a	 4th	 order	 Butterworth	 filter	 with	 a	 3-dB
bandwidth	of	10	MHz	at	a	sample	rate	of	100	MHz.	Use	a	noise	figure	of	5	dB	and	a	gain
of	 0	 dB.	Look	 at	 the	 ensemble	 average	 of	 the	 output	 for	 100	 runs	 in	 the	 time	 domain.
Does	the	result	correlate	to	(14.8)?	Hint:	to	generate	the	input	noise	power,	use	B	=	100
MHz.

6. For	the	RF	chain	shown	in	Figure	14.6,	calculate	the	gain,	noise	figure,	and	noise	power
at	each	device	output.

7. Simulate	noise	and	signal	plus	noise	for	a	10-µs	pulse	 in	additive	white	Gaussian	noise
passed	 through	a	4th	order	Butterworth	 filter	with	a	3-dB	bandwidth	of	8	MHz.	Run	 the
simulation	as	a	sample	rate	of	100	MHz.	Use	a	noise	figure	of	5	dB	and	a	gain	of	0	dB	to
generate	the	input	noise.	Look	at	the	time	domain	output	and	adjust	the	SNR	until	the	TSS
requirement	is	met.	Is	the	SNR	as	expected?

8. Complete	 the	 cascade	 analysis	 for	 the	 receiver	 chain	 shown	 in	 Figure	 14.10.	 Do	 your
results	match	those	indicated	in	Figures	14.11,	14.12,	and	14.13?

9. We	 want	 to	 choose	 a	 sample	 rate	 to	 center	 our	 signal	 in	 a	 Nyquist	 zone	 so	 that	 we
maximize	the	amount	of	transition	we	have.	For	a	5-MHz	chirp	waveform	on	a	30	MHz
IF,	what	is	the	required	ADC	rate	to	center	the	signal	in	the	second	Nyquist	zone?	What	is



the	aliased	digital	IF?	What	is	the	spacing	between	images?

10. Using	the	parameters	from	Exercise	9,	generate	a	figure	like	Figure	14.16.

11. Generate	 a	baseband	3-MHz	chirp	waveform	with	a	100-µs	pulsewidth.	Using	a	 sample
rate	of	3	MHz,	digitally	match	filter	the	waveform.	Repeat	for	sample	rates	of	4.5	MHz,	6
MHz,	 and	 7.5	 MHz.	 Compare	 the	 sidelobe	 levels	 of	 the	 compressed	 pulse.	 Is	 there	 a
benefit	to	oversampling	slightly?

12. Why	is	the	noise	figure	expression	of	an	(14.81)	approximation?	Hint:	derive	in	terms	of
the	linear	definition	for	noise	figure.

13. Given	an	RF	of	8	GHz	and	a	first	IF	of	30	MHz,	what	is	the	LO	for	highside	injection?
What	 is	 the	 image	 frequency?	 If	we	 use	 a	 2nd	 order	Butterworth	 as	 a	 preselector,	 how
much	 image	 rejection	 do	 we	 get?	 If	 we	 need	 60	 dB	 of	 image	 rejection,	 what	 is	 the
minimum	filter	order?

14. Using	the	parameters	of	Exercise	13,	calculate	all	of	the	spurious	frequencies	generated
by	mixing	up	 to	 the	 eighth	 order.	What	 is	 the	 nearest	 frequency	 to	 the	 passband	of	 the
preselector?	Are	there	any	spurious	responses	in	the	passband	of	the	preselector?

15. Consider,	 for	 example,	 two	 tones	 at	 f1	 =	 60	 MHz	 and	 f2	 =	 63	 MHz.	 What	 are	 the
frequencies	of	the	2nd-	and	3rd-order	intermodulation	products?	Which	tones	are	nearest
the	desired	signals	 in	frequency?	Which	tones	are	farthest	away?	Is	 it	practical	 to	reject
some	or	all	of	the	intermodulation	products	by	filtering?

16. A	receiver	has	a	3rd	order	input	intercept	point	of	–10	dBm	and	a	noise	figure	of	7	dB	and
a	bandwidth	of	4	MHz.	What	is	the	spurious-free	dynamic	range?

17. Considering	a	radar	transmitting	a	1-MHz	chirp	with	a	40	µs	pulsewidth	with	a	maximum
instrumented	range	of	120	km.	This	radar	is	to	accommodate	target	RCSs	between	σmin	=
0.01	m2	(–20	dBsm)	and	σmax	=	1,000	m2	(30	dBsm).	What	is	the	minimum	dynamic	range
we	need	to	design	the	radar	for?

18. Consider	a	16-bit	ADC	with	a	bipolar	input	of	±10	V,	what	is	the	full	scale	range	in	dBm
given	a	50	Ω	system	impedance?	What	is	the	LSB?	If	the	manufacturers	specified	SNR	is
78	dB,	what	is	the	effective	noise	figure	of	the	ADC?

19. The	ADC	described	in	Exercise	18	has	a	1	kΩ	impedance	instead	of	the	50	Ω	impedance
of	the	rest	of	the	receiver	chain.	If	we	use	an	inductive	impedance	transformer,	what	is	the
effect	on	the	noise	figure	of	the	ADC?

20. Consider	the	cascade	shown	in	Figure	4.21.	If	the	receiver	and	ADC	have	noise	figures	of
7	dB	and	30	dB,	respectively,	if	we	allow	∆F	=	0.3	dB	of	noise	figure	degradation,	how
much	gain	to	I	need	in	the	receiver	front	end	to	use	amplified	thermal	noise	from	the	RF
front	end	as	dither?	Determine	the	thermal	noise	power	into	the	ADC	and	the	total	noise
power	at	the	output	of	the	ADC.

21. Treat	 the	quantization	 error	 voltage	 as	 a	 random	variable	 ε	with	 a	 uniform	probability
density	function	spanning	±q/2	with	an	amplitude	of	1/q.	Calculate	 the	mean-square	and



root	mean-square	values.	How	do	they	compare	to	the	results	of	(14.69)	and	(14.72).

22. Derive	(14.85).	Hint:	start	with	the	cascade	noise	figure	of	the	receiver	front	end	and	the
ADC	and	compare	to	the	noise	figure	of	the	receiver	front	end.

23. For	the	example	associated	with	Figure	4.21,	determine	how	much	dither	noise	is	applied
to	the	ADC	input.

24. Using	the	parameters	from	Exercise	20,	determine	the	gain	necessary	prior	to	the	ADC,
the	 thermal	 noise	 into	 the	 ADC,	 and	 the	 total	 noise	 at	 the	 output	 of	 the	 ADC	 using
Barton’s	approach	given	by	(14.87)	and	(14.88).	How	does	this	compare	to	the	results	of
Exercise	20?	If	the	results	differ,	what	∆F	would	I	need	to	match	the	results?
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1	Sometimes	shortened	to	superhet	receiver.
2	Walter	Hermann	Schottky,	working	in	Germany,	conceived	of	the	superheterodyne	receiver	independently	[6].
3	When	stating	filter	order,	we	are	using	the	lowpass	equivalent.	The	passband	order	is	double.
4	Some	radars	use	a	default	track	gate	location,	such	as	the	middle	of	the	PRI,	when	not	in	track,	to	drive	the	AGC	circuitry.	In
this	case,	a	noise	AGC	(NAGC)	is	usually	run	in	parallel	and	combined	with	the	signal	AGC.	As	a	result,	 the	noise	 level	or
signal	level	requiring	the	larger	attenuation	dominates	control	of	the	overall	AGC.
5	Development	of	devices	based	on	electron	beam	cyclotron	waves	has	been	carried	out	largely	in	Russia	by	ISTOK	and	the
Moscow	State	University.	Early	experiments	were	performed	in	the	United	States,	but	work	was	dropped	in	favor	of	solid	state
amplifiers	[20–22].
6	 Former	 Soviet	 Union,	 Joint	 Stock	 Company,	 State	 Research	&	 Production	 Corporation	 ISTOK,	 named	 after	 A.	 I.	 Shokin
(www.istokmw.ru).	ISTOK	is	the	oldest	Russian	microwave	organization.
7	The	term	high	side	mixer	or	high	side	 injection	is	used	when	the	 fLO	>	 fRF.	The	 term	low	side	mixer	or	 low	side	 injection	 is
used	when	the	fLO	<	fRF	[31].
8	Strictly	speaking,	we	do	not	need	the	absolute	value	since	the	cosine	is	an	even	function.
9	Double-balanced	mixers	can	be	match	sensitive.
10	 Predicting	 spur	 levels	 can	 be	 fairly	 complicated.	 Mixer	 spur	 levels	 are	 usually	 measured	 directly,	 or	 more	 often,
manufacturer-supplied	mixer	spur	tables	provide	the	spurs	levels	for	a	particular	mixer	[32].
11	Named	for	British	physicist	Stephen	Butterworth	[33].
12	The	examples	 in	 this	chapter	presume	matched	filtering	post	ADC.	Some	radar	systems	implement	 the	matched	filter	at	 IF
and	then	I/Q	detect	for	signal	processing.
13	When	phase	coherency	is	required,	the	moniker	Stable	Local	Oscillator	(STALO)	is	sometimes	used	to	describe	the	first	LO.
14	 Terms	 such	 as	 I	 and	 Q	 detector,	 synchronous	 detector,	 quadrature	 detector,	 and	 coherent	 demodulator	 are	 used
synonymously	with	quadrature	demodulator.
15	Based	upon	Chebyshev	polynomials,	which	are	named	for	Russian	mathematician	Pafnuty	Lvovich	Chebyshev	(Πaфнýтий
Львόвич	ЧебьIшëв).	Also	transliterated	as	Chebychev,	Chebysheff,	Tchebychev.
16	For	Butterworth	and	Bessel	filters	above	2nd	order,	the	difference	between	3-dB	bandwidth	and	equivalent	noise	bandwidth
is	negligible.
17	 Technically	 a	 signal	 needs	 to	 be	 about	 5	 to	 8	 dB	 below	 the	 noise	 floor	 for	 it	 not	 to	 make	 discernable	 “bump”	 in	 an
averaged	detected	output.
18	The	SNR	is	often	determined	at	the	output	of	the	signal	processor	instead.
19	In	the	third	edition	of	Skolnik’s	handbook,	SNR	=	0	is	no	longer	stipulated	with	the	term	minimum	signal	of	interest.	Skolnik
points	 out	 that	 digital	 signal	 processing	 techniques	 allow	detection	well	 below	 the	 receiver	 noise	 floor,	 depending	upon	 the
processing	performed	[46].
20	This	convention	is	usually	within	0.5	to	1	dB	of	a	passive	mixer’s	actual	noise	figure.
21	Skolnik	observes	there	is	no	unique	definition	for	digital	receiver	[17,	p.	742].	Yuanbin	Wu	and	Jinwen	Li	suggest	the	use	of
direct	IF	sampling	and	direct	digital	synthesis	(DDS)	to	generate	the	LO	earns	the	moniker	[60].
22	Direct	IF	sampling	requires	a	higher	sampling	rate	compared	to	baseband	sampling	the	output	of	an	I/Q	demodulator.
23	The	term	used	for	lower	frequency	radars	where	the	RF	is	sampled	is	direct	RF	sampling.
24	The	number	of	bits	in	an	ADC	is	also	referred	to	as	the	resolution	of	the	ADC.
25	Unipolar	 converters	 can	be	used	 to	 convert	 bipolar	 signals	 by	using	 a	 proper	 input	 driver	 to	 convert	 bipolar	 signals	 into
unipolar	signals.
26	We	 have	made	 the	 tacit	 assumption	 that	 inputs	 are	 confined	 to	 the	 linear	 range	 of	 the	 ADC.	We	will	 not	 consider	 input
overload.
27	Note	that	an	impedance	of	R0	=	1	Ω	is	implied.
28	We	are	calling	this	a	signal	to	noise	ratio	although,	strictly	speaking	it	is	not.	More	accurately,	it	is	a	signal-to-quantization
error	ratio.
29	Noise	generated	internally	by	ADCs	is	usually	characterized	as	input	referenced	noise	and	expressed	in	terms	of	LSBs	rms,
corresponding	to	an	rms	voltage	referenced	to	the	ADC	full-scale	input	range	[70,	87].
30	 Sampling	 in	 excess	 of	 Nyquist	 can	 be	 used	 to	 take	 advantage	 of	 the	 processing	 gain	 resulting	 from	 a	 fixed	 amount	 of
quantization	noise	being	spread	over	a	larger	bandwidth	is	referred	to,	as	might	be	expected,	as	oversampling.
31	Integration	time	(and	its	attendant	bandwidth)	predicates	the	level	to	which	very	small	signals	may	be	recovered.
32	This	type	of	dither	is	incorporated	into	some	ADCs	and	controlled	by	an	enable	bit.

http://www.istokmw.ru


33	The	form	of	(14.91)	assumes	digital	signal	processing.	In	analog	processing,	this	ratio	is	sometimes	formed	differently,	and
in	a	fashion	where	channel	balance	can	affect	the	output	of	the	range	discriminator	[106].



Chapter	15

Introduction	to	Synthetic	Aperture	Radar	Signal	Processing

15.1 INTRODUCTION

The	term	synthetic	aperture	radar	(SAR)	derives	from	the	fact	that	the	motion	of	an	aircraft
(airplane,	 satellite,	or	UAV,	 for	example)	 is	used	 to	artificially	create,	or	synthesize,	 a	 very
long,	linear	array,	or	aperture.	The	reason	for	creating	a	long	array	is	to	provide	the	ability	to
resolve	 targets	 that	 are	 closely	 spaced	 in	 angle,	 or	 cross	 range	 (usually	 azimuth).	 This,	 in
turn,	is	driven	by	one	of	the	main	uses	of	SAR:	to	image	the	ground	or	targets.	In	both	cases,
the	radar	needs	to	be	able	to	resolve	very	closely	spaced	scatterers.	Specifically,	resolutions
in	the	order	of	less	than	a	meter	to	a	few	meters	are	needed.	To	realize	such	resolutions	in	the
range	coordinate,	 the	 radar	uses	wide	bandwidth	waveforms.	To	 realize	such	 resolutions	 in
cross	range,	very	long	antennas	are	required.

To	get	an	idea	of	what	we	mean	by	“long”	antenna,	we	consider	an	example.	Suppose	we
are	 trying	 to	 image	 a	 ground	patch	 at	 a	 range	of	 20	km.	To	do	 so,	we	want	 a	 cross-range
resolution	 of	 1	 m.	 We	 can	 approximately	 relate	 cross-range	 distance,	 δy,	 to	 antenna
beamwidth,	θB,	and	range,	R,	by

as	 shown	 in	Figure	15.1.	For	δy	=	1	m	and	R	 =	 20	km,	we	get	θB	 =	 5	×	10−5	 rad	 or	 about
0.003°!

Figure	15.1	Relation	of	cross-range	distance	to	beamwidth.

The	beamwidth	of	a	linear	array	with	uniform	illumination	can	be	approximately	related	to
antenna	length	by	[1,	2]

If	we	assume	the	radar	of	the	above	example	operates	at	X-band	and	λ	=	0.03	m,	we	get



Clearly,	 it	would	not	be	practical	 to	use	a	 real	antenna	 that	 is	as	 long	as	 six	 football	 fields.
Instead,	a	SAR	synthesizes	such	antenna	by	using	aircraft	motion	and	signal	processing.	An
interesting	 property	 illustrated	 by	 (15.1)	 and	 (15.3)	 is	 that	 the	 resolution	 and	 SAR	 antenna
length	depends	upon	wavelength.	This	means	that	if	a	certain	resolution	is	desired,	and	there
are	limits	on	how	long	the	synthetic	array	can	be	made,	we	are	driven	to	shorter	wavelength
or	higher	frequency	radars.	This	will	also	affect	down-range	resolution	since	it	is	related	to
waveform	bandwidth,	and	large	waveform	bandwidths	are	easier	to	obtain	at	higher	operating
frequencies.

15.2 BACKGROUND

According	to	a	paper	by	H.	D.	Griffiths	[3],	the	concept	of	aperture	synthesis	was	introduced
by	 Ryle	 and	 Hawkins	 in	 the	 1940s	 or	 1950s	 in	 relation	 to	 their	 work	 in	 radio	 astronomy.
However,	the	recognized	father	of	SAR,	as	it	is	known	today,	is	Carl	A.	Wiley,	who	conceived
of	 the	 concept	 in	 1951	 and	 termed	 it	Doppler	 beam	 sharpening	 [4–6].	 Shortly	 after	 that,	 in
1952,	scientists	at	the	University	of	Illinois	experimentally	demonstrated	the	concept	[2].	Since
that	time,	SAR	has	found	wide	use	in	both	commercial	and	military	applications	[7–12].

15.2.1 Linear	Array	Theory

Before	we	 discuss	 SAR	 processing,	we	 consider	 some	 properties	 of	 SAR.	We	 start	 with	 a
review	of	 linear	 arrays	 since	 a	SAR	 synthesizes	 a	 linear	 array.	 Suppose	we	 have	 a	 2N	 +	 1
element	 linear	 array1	 as	 shown	 in	Figure	15.2.	We	 have	 a	 target,	 located	 at	 some	 xi,yi,	 that
emits	an	E-field	Eoej2πfot	that	eventually	reaches	each	antenna	element.	We	can	write	the	E-field
at	the	nth	element	as

where	we	included	the	function	of	ri,n	to	indicate	that	the	magnitude	of	the	E-field	intensity	at
the	nth	element	depends	on	the	range	from	the	target	to	that	element.	In	general,	Eo(ri,n)	will,
for	all	practical	purposes,	be	the	same	at	each	element.

The	resulting	voltage	at	the	output	of	the	nth	element	is

In	 general,	 the	 Vo(ri,n)	 is	 a	 function	 of	 the	 range	 from	 the	 scatterer	 to	 the	 nth	 element.
However,	since	ro	 is	assumed	large	relative	to	 the	array	dimensions	(even	for	SAR	arrays),
we	 can	 assume	 Vo(ri,n)	 is	 the	 same	 at	 all	 elements	 and	 replace	 Vo(ri,n)	 with	 Vo.	 Vo	 is	 the
magnitude	of	the	voltage	out	of	each	element.



We	can	write	ri,n	as

where	we	used	yi	=	r0	sin	θ	(see	Figure	15.2).

Figure	15.2	2N	+	1	element	linear	array.

Consistent	with	the	linear	array	theory	of	Chapter	12,	we	claim	r0	≫	nd	and	approximate
ri,n	as2

We	next	substitute	(15.7)	into	the	exponent	of	vn(t)	(15.5)	to	get



To	form	the	total	output	of	the	array,	we	sum	the	vn(t)	to	get

We	next	form	a	scaled	antenna	radiation	pattern	(see	Chapter	12)	as3

where	PS	is	the	normalized	power	returned	from	the	target.

Figure	15.3	Normalized	radiation	pattern	vs.	target	angle.

When	we	formulated	the	antenna	radiation	pattern	as	above,	we	were	interested	in	how	R(θ)
varied	with	target	angle,	θ.	As	given	in	(15.10),	the	peak	of	R(θ)	occurs	at	a	target	angle	of	θ	=
0	as	shown	in	Figure	15.3,	which	is	a	plot	of	R(θ)	for	PS	=	1	W.

As	 an	 extension	 to	 the	 above,	we	 steer	 the	 beam	 to	 an	 angle	 of	θS	 by	 including	 a	 linear
phase	shift	across	the	array	elements	as	shown	in	Figure	15.4.	In	Chapter	12,	we	found	we	can
do	this	by	multiplying	the	vn(t)	by	an	and	letting	an	=	exp(–j2π(d/λ)	sin	θS).	With	this	we	get

which	leads	to	a	more	general	R(θ)	of



In	standard	array	theory,	we	are	interested	in	how	R(θ)	varies	with	θ	for	a	fixed	θS.	In	this	case
the	peak	of	R(θ)	would	occur	at	θ	=	θS,	as	shown	in	the	example	of	Figure	15.5.

Figure	15.4	Linear	array	with	phase	shifters.

Figure	15.5	Normalized	radiation	pattern	vs.	target	angle—beam	steered	to	0.01°,	Ps	=	1	W.



15.2.2 Transition	to	SAR	Theory

In	SAR	theory,	we	need	to	reorient	ourselves	by	thinking	of	the	target	angle,	θ,	as	being	fixed
and	examining	how	R(θ)	varies	with	θS.	In	other	words,	we	consider	a	fixed,	θ,	and	plot	R(θS).
An	example	plot	of	R(θS)	for	θ	=	0.01°	(i.e.,	the	target	location	is	fixed	at	0.01°)	is	shown	in
Figure	15.6.	In	this	plot,	R(θS)	peaks	when	the	beam	is	steered	to	an	angle	of	0.01°.

Figure	15.7	contains	a	plot	of	R(θS)	for	the	case	where	there	is	a	target	at	0.01°	and	a	second
target	at	−0.02°.	Further,	 the	second	target	has	 twice	 the	RCS	(radar	cross	section),	and	thus
twice	the	power,	of	the	first	target.	Here	we	note	that	the	plot	of	R(θS)	tells	us	the	location	of
the	 two	 targets	 and	 their	 relative	powers.	This	 is	 the	 type	of	 information	we	want	when	we
form	SAR	images.

Figure	15.6	Normalized	radiation	pattern	vs.	beam	steering	angle—target	located	at	0.01°,	Ps	=	1	W.

Figure	15.7	Normalized	radiation	pattern	vs.	beam	steering	angle—two	targets	located	at	−0.02	and	0.01°.

R(θS)	gives	us	information	in	one	dimension.	To	form	an	image,	the	other	information	we
use	is	P(r),	the	power	out	of	the	matched	filter	for	a	target	range	of	r.	We	compute	R(θS)	and
P(r)	for	various	values	of	θS	and	r	and	then	plot	|R(θS)P(r)|1/2	as	intensities	on	a	rectangular



grid.	The	 discrete	 values	 of	θS	 and	 r	will	 be	 separated	 by	 the	 angle	 resolution	 of	 the	 SAR
array	and	the	range	resolution	of	the	waveform.	The	resulting	image	is	a	SAR	image.

15.3 DEVELOPMENT	OF	SAR-SPECIFIC	EQUATIONS

With	the	above	background,	we	now	address	issues	associated	with	forming	R(θS)	in	practical
SAR	situations.	We	begin	by	modifying	the	above	array	theory	so	that	it	more	directly	applies
to	the	SAR	problem.

In	 standard	 array	 theory,	we	 generate	 a	one-way	 antenna	 pattern	 because	we	 consider	 an
antenna	radiating	toward	a	 target	(the	 transmit	antenna	case)	or	a	 target	radiating	toward	an
array	 (the	 receive	 antenna	 case).	 In	 SAR	 theory,	we	 consider	 a	 two-way	 problem	 since	we
transmit	and	receive	from	each	element	of	the	synthetic	array.	If	we	refer	to	Figure	15.2,	we
can	 think	 of	 each	 element	 as	 the	 position	 of	 the	 SAR	 aircraft	 as	 it	 transmits	 and	 receives
successive	pulses.	When	the	aircraft	is	located	at	y	=	nd,	the	normalized	transmit	“voltage”	is4

The	resultant	received	signal	(voltage)	from	a	scatterer	5	at	xi,yi	is

where	PSi	is	the	return	signal	power	and	is	determined	from	the	radar	range	equation.	ri,n	 is
the	range	to	the	ith	scatterer	when	the	aircraft	is	at	y	=	nd.

We	note	that	the	difference	between	(15.5)	and	(15.14)	is	that	the	latter	has	twice	the	phase
shift	as	the	former.

Modifying	(15.7)	as

and	repeating	the	math	of	Section	15.2.1,	we	get	the	equation	for	the	scaled	radiation	pattern
of	a	SAR	antenna	as

Figure	15.8	contains	plots	of	R(θS)	for	the	standard	linear	array	(15.12)	and	the	SAR	array



(15.16).	In	both	cases,	we	used	PSi	=	1	W.	The	notable	difference	between	the	two	plots	is	that
the	width	of	 the	main	beam	of	 the	SAR	array	 is	 half	 that	 of	 the	 standard	 linear	 array.	This
leads	 to	 one	 of	 the	 standard	 statements	 in	 SAR	 books	 that	 a	 SAR	 has	 twice	 the	 resolution
capability	of	a	standard	linear	array	[13].	In	fact,	this	is	not	quite	true.	If	we	were	to	consider
the	two-way	antenna	pattern	of	a	standard	linear	array,	we	would	find	that	its	beamwidth	lies
between	the	one-way	beamwidth	of	a	standard	linear	array	and	the	beamwidth	of	a	SAR	array.
The	 reason	 that	 the	 two-way	 beamwidth	 of	 a	 standard	 linear	 array	 is	 not	 equal	 to	 the
beamwidth	of	a	SAR	array	has	to	do	with	the	interaction	between	“elements”	in	the	two	arrays.
In	a	standard	linear	array,	each	receive	element	receives	returns	from	all	of	the	elements	of
the	transmit	array.	However,	 in	the	SAR	array,	each	receive	“element”	receives	returns	only
from	itself.

Adapting	(15.2),	we	have,	for	the	SAR	array,

If	we	 combine	 this	with	 the	 equation	 for	 cross-range	 distance	 (15.1),	we	 get,	 again	 for	 the
SAR	array,

Figure	15.8	Normalized	radiation	patterns	for	a	standard	linear	array	(top	plot)	and	a	SAR	array	(bottom	plot).

which	is	termed	the	cross-range	resolution	of	the	SAR.	This	equation	indicates	that	the	cross-
range	resolution	of	a	SAR	can	be	made	arbitrarily	small	(fine)	by	increasing	the	length	of	the
SAR	array.	In	theory,	this	is	true	for	a	spotlight	SAR	[14,	15].	In	the	case	of	strip	map	SAR,	the



size	 of	 the	 actual	 antenna	 on	 the	 SAR	 aircraft	 (the	 “element”	 of	 the	 SAR	 array)	 is	 the
theoretical	limiting	factor	on	resolution.	In	either	case,	there	are	several	other	factors	related
to	phase	coherency	that	place	further	limits	on	the	cross-range	resolution.

15.4 TYPES	OF	SAR

Figures	15.9	 and	 15.10	 contain	 illustrations	 of	 the	 geometry	 associated	with	 strip	map	 and
spotlight	 SAR,	 respectively.	With	 strip	map	 SAR,	 the	 actual	 antenna	 remains	 pointed	 at	 the
same	angle,	while	the	aircraft	flies	past	the	area	being	imaged.	This	angle	is	shown	as	90°	in
Figure	15.9	but	can	be	almost	any	angle.	For	spotlight	SAR,	 the	actual	antenna	 is	steered	 to
constantly	point	 towards	 the	area	being	imaged.	The	term	“strip	map”	derives	from	the	fact
that	this	type	of	SAR	can	continually	map	strips	of	the	ground	as	the	aircraft	flies	by.	The	term
“spotlight”	derives	from	the	fact	that	the	actual	antenna	constantly	illuminates,	or	spotlights,
the	region	being	imaged.	A	spotlight	SAR	must	map	a	strip	of	ground	in	segments.

Figure	15.9	Strip	map	SAR	geometry.

As	might	be	deduced	from	Figure	15.9,	a	limitation	of	the	strip	map	SAR	geometry	is	that
the	region	imaged	during	any	one	processing	interval	must	remain	in	the	actual	antenna	beam
during	 that	 processing	 interval.	This	 does	not	 limit	 the	 total	 area	 imaged	 since	 a	 strip	map
SAR	can	 perform	 imaging	 continuously,	 dropping	 off	 data	 as	 it	 picks	 up	 new	data.	 It	 only
limits	the	size	of	the	area	in	any	one	processing	interval.

For	the	case	of	spotlight	SAR,	the	antenna	is	always	pointed	at	the	region	being	imaged	so
that	 the	 length	 of	 the	 synthetic	 array	 can,	 in	 theory,	 be	 as	 large	 as	 desired.	 In	 practice,	 the
length	 of	 the	 synthetic	 array	 for	 the	 spotlight	 SAR	 is	 limited	 by	 other	 factors	 such	 as



coherency	 and	 signal	 processing	 limitations.	 Since	 the	 cross-range	 resolution	 of	 a	 SAR	 is
related	to	the	length	of	the	synthetic	array,	spotlight	SARs	can	usually	attain	finer	cross-range
resolution	than	strip	map	SARs.

Figure	15.10	Spotlight	SAR	geometry.

15.4.1 Theoretical	Limits	for	Strip	Map	SAR

The	theoretical	limit	on	cross-range	resolution	for	a	strip	map	SAR	can	be	deduced	with	the
help	of	Figure	15.11.	As	 illustrated	 in	 this	 figure	 and	 discussed	 previously,	 the	 point	 to	 be
imaged	 must	 be	 in	 the	 actual	 antenna	 beam	 over	 the	 processing	 interval	 [the	 coherent
processing	interval	(CPI)].	The	cross-range	span	of	the	main	beam	of	the	actual	antenna	is

where	ri	is	the	perpendicular	range	from	the	aircraft	flight	path	to	the	point	being	imaged.	In
the	 geometry	 of	 Figure	 15.11,	 note	 that	 the	 point	 being	 imaged	 will	 remain	 in	 the	 actual
antenna	beam	as	the	aircraft	traverses	a	distance	of	L.	Thus	the	 length	of	 the	synthetic	array
applicable	to	any	CPI	is	L.

Using	(15.2),	we	can	write	the	beamwidth	of	the	actual	antenna	as

where	LANT	is	the	horizontal	width	of	the	actual	antenna.	If	we	substitute	(15.20)	into	(15.19),
we	get

which	we	can	combine	with	(15.18)	to	get



Figure	15.11	Resolution	limit	for	strip	map	SAR.

Thus,	the	finest	cross-range	resolution	a	strip	map	SAR	can	achieve	is	half	of	the	horizontal
width	of	the	actual	antenna.	This	cross-range	resolution	applies	only	to	the	case	where	a	point
is	being	imaged.	The	resolution	for	a	finite-sized	area	will	be	slightly	worse,	as	shown	in	the
next	subsection.

15.4.2 Effects	of	Imaged	Area	Width	on	Strip	Map	SAR	Resolution

Figure	 15.12	 illustrates	 a	 case	 where	 the	 width	 of	 the	 region	 to	 be	 imaged	 is	w.	 It	 can	 be
observed	 from	 this	 figure	 that	L′	 =	L	 –	w.	 From	 this	we	 conclude	 that	 the	modified	 cross-
range	resolution	is

In	practice,	the	term	w/L	will	be	small	so	that	δy′	≈	δy.	As	an	example	of	this,	we	consider	the
earlier	example	where	the	SAR	processed	returns	over	L	=	600	m.	From	(15.18),	the	resulting
resolution	 for	a	point	 target	 is,	 in	 theory,	δy	=	0.5	m.	Suppose	we	wanted	 to	 image	an	area
with	 a	width	 of	 50	m.	For	 this	 case,	we	would	 need	 to	 shorten	 the	 distance	 over	which	we
process	returns	to	L′	=	L	–	w	=	550	m.	As	a	result,	from	(15.23),	the	resolution	would	be	0.546
m	instead	of	0.5	m.

These	 discussions	 of	 the	 relation	 between	 distance	 over	 which	 we	 process	 returns	 (the
length	of	the	synthetic	array	during	the	CPI)	and	resolution	are	based	on	the	assumption	that
the	antenna	directivity	is	constant	over	θS	and	zero	elsewhere.	This	will	clearly	not	be	the	case
in	an	actual	SAR.	Therefore,	the	relation	between	resolution	and	LANT	should	be	considered
as	an	approximate	limitation,	rather	than	a	hard	constraint.



Figure	15.12	Effect	of	finite	area	width	on	strip	map	SAR	resolution.

15.5 SAR	SIGNAL	CHARACTERIZATION

To	formulate	a	SAR	processor,	we	need	to	characterize	the	signal	that	the	SAR	processor	will
operate	 upon.	 Although	 our	 previous	 discussions	 treated	 SAR	 crossrange	 imaging	 as	 an
antenna	 problem,	 for	 the	 rest	 of	 the	 development	we	will	 cast	 the	 problem	 in	 the	Doppler
domain.	We	make	 this	 change	because	 experience	 indicates	 that	 the	Doppler	 formulation	 is
easier	to	understand	than	the	antenna	formulation.	Also,	the	Doppler	formulation	is	consistent
with	other	texts	and	articles	that	discuss	SAR	processing	[16–24].

15.5.1 Derivation	of	the	SAR	Signal

As	we	have	done	 thus	 far,	we	will	 initially	consider	only	 the	cross-range	problem.	We	will
later	 extend	 the	 discussions	 to	 the	 down-range	 and	 cross-range	 problem.	 Since	 we	 are
considering	 the	 cross-range	 problem,	 we	 start	 by	 considering	 a	 normalized	 CW	 transmit
signal	of	the	form

From	the	geometry	of	Figure	15.13,	the	appropriately	normalized	signal	returned	from	the
“ith”	scatterer	located	at	xi,yi	is

where

and	d(t)	 is	 the	y	 position	of	 the	 aircraft	 at	 some	 time	 t.	 For	 now,	we	 are	 assuming	 that	 the



aircraft	 (platform)	 is	 at	 an	 altitude	 of	 zero.	 The	 extension	 to	 nonzero	 altitude	 is
straightforward.
If	we	assume	the	aircraft	is	flying	at	a	constant	velocity	of	V	and	t	=	0	occurs	at	y	=	0	of

Figure	15.13,	we	get

We	assume	the	total	time	for	the	aircraft	to	travel	a	distance	of	L	is	TL	and	that	the	aircraft
starts	at	–L/2	when	t	=	–TL/2.	With	this	we	get

Figure	15.13	Geometry	used	to	develop	signal	representation—cross-range	imaging.

The	area	to	be	imaged	has	a	cross-range	width	of	w	and	a	down-range	length	of	l.	The	region
is	centered	in	cross	range	at	y	=	0	and	in	down	range	at	x	=	r0.

In	(15.25),	PSi	is	the	normalized	signal	power	associated	with	the	ith	scatterer.	It	is	related	to
scatterer	RCS	through	the	radar	range	equation.	Thus,	PSi	characterizes	 the	relative	sizes	of
the	 scatterers	 in	 the	 imaged	 area.	 is	 analogous	 to	 brightness	 or	 contrast	 in	 a
photographic	image.

We	can	rewrite	(15.25)	as



Since	 the	 information	 needed	 to	 form	 the	 image	 is	 in	 the	 second	 exponential	 term,	 we
eliminate	 the	 first	 exponential	 term	 by	 heterodyning	 (which	 is	 done	 in	 the	 actual	 radar)	 to
yield	the	baseband	signal

If	we	have	Ns	scatterers	in	the	image	region,	the	resulting	composite	baseband	signal	would
be

15.5.2 Examination	of	the	Phase	of	the	SAR	Signal

Since	the	information	we	seek	is	in	the	phase	of	vi(t),	we	examine	it.	To	proceed,	we	examine
ri(t),	which	we	can	write	as

We	note	that	ri,	≈	r0,	yi	≪	r0	and	Vt	≪	r0	∀	Vt	∈	[−L/2,	L/2].	This	means	the	second	and	third
terms	of	the	last	square	root	are	small	relative	to	1.	This,	in	turn,	allows	us	to	write

Substituting	this	into	(15.30)	yields

15.5.2.1	Linear	Phase,	or	Constant	Frequency,	Term

The	first	exponential	is	a	phase	caused	by	range	delay	to	the	scatterer.	For	a	single	scatterer,
the	exponential	is	of	no	concern	because	it	will	disappear	when	we	form	the	magnitude	of	the
processed	 version	 of	 vi(t).	 For	 multiple	 scatterers,	 however,	 the	 exponential	 can	 cause
constructive	 and	 destructive	 interference,	 which	 leads	 to	 speckle	 in	 SAR	 images	 [13,	 18].
Speckle	is	usually	mitigated	by	image	processing	techniques	[13,	25].

The	 second	 term	 of	 (15.34)	 is	 a	 linear	 phase	 term	 or	 a	 term	 that	 we	 associate	 with



frequency,	which	is

This	tells	us	vi(t)	has	a	frequency	component	that	depends	upon	scatterer	cross-range	position,
yi.	fyi	also	depends	upon	the	aircraft	velocity,	V,	and	the	radar	wavelength,	λ.	However,	both	of
these	are	known	(and	fixed).	Finally,	fyi	also	depends	upon	ri.	If	we	assume	all	of	the	scatterers
are	at	the	same	xi	=	r0	(which	we	can	do	here	because	we	are	concerned	only	with	the	cross-
range	problem),	and	we	note	that	yi	≪	r0,	we	get	the	previous	assertion	that

From	 this	 discussion,	 we	 conclude	 that	 we	 can	 determine	 yi	 if	 we	 can	 measure	 ƒyi.
Specifically,

15.5.2.2	Quadratic	Phase,	or	LFM,	Term

The	 third	exponential	of	 (15.34)	 is	 a	quadratic	phase,	or	 linear	 frequency	modulation,	 term
that	causes	problems.	We	can	write	the	quadratic	phase	as

With	the	previous	assumption	of	ri	≈	r0,	ϕQ(t)	is	approximately	the	same	for	all	scatterers.
This	means	we	can	remove	it	by	a	mixing	or	heterodyning	process.6	If	we	do	this,	we	will	be
left	with	only	the	magnitude,	constant	phase	term,	and	the	yi-dependent	frequency	term.	This	is
what	we	want.

15.5.3 Extracting	the	Cross-Range	Information

Once	we	remove	the	quadratic	phase,	we	have

for	a	single	scatterer.	For	the	more	general	case	of	Ns	scatterers,	we	have



The	forms	of	(15.39)	and	(15.40)	tell	us	we	can	extract	the	information	we	want	by	taking	the
Fourier	 transform	 of	 vIi(t)	 or,	 more	 generally,	 vI(t).	 From	 our	 experience	 with	 Fourier
transforms,	this	will	give	us	a	response	that	has	peaks	at	the	frequencies	ƒyi.	The	heights	of	the
peaks	will	 be	 proportional	 to	 (PSi)1/2.	 If	 we	 use	 (15.37)	 to	 plot	 this	 as	 amplitude	 [(PSi)1/2]
versus	yi,	we	have	a	one-dimensional	image.7

We	compute	the	Fourier	transform	of	vIi(t)	using

We	 recognize	 that	 vi(t),	 and	 thus	 vIi(t),	 is	measured	 only	 over	 t∈[–TL/2,	TL/2].	 Thus,	we
assume	vIi(t)	is	zero	outside	of	these	limits	and	write

where,	as	a	reminder,

Figure	15.14	contains	a	plot	|VIi(ƒ)|	versus	(ƒ	–	ƒyi)TL.	Note	that	the	response	has	a	peak	at	ƒ	–
ƒyi	=	0,	or	at	ƒ	=	ƒyi,	and	that	the	peak	has	a	height	of|VIi(ƒ)|	=	(PSi)1/2.	The	width	of	the	peak	is
1/TL,	which	means	that	the	SAR	image	will	have	a	resolution	of



Figure	15.14	Plot	of	|VIi|(PSi)
1/2	vs.	(ƒ	–	ƒyi)TL.

Figure	15.15	Plot	of	VIi|(PSi)
1/2	vs.	(y	–	yi)/δy.

If	we	change	the	horizontal	axis	to	y	using	the	relation	[see	(15.37)]

we	get	the	plot	of	|VIi(y)|	versus	(y	–	yi)	of	Figure	15.15.	This	plot	has	a	peak	at	y	=	yi	with	a
height	of	(PSi)1/2.

From	(15.44),	if	the	resolution	of	Figure	15.14	is	δƒ	=	1/TL,	the	resolution	of	Figure	15.15
is



since	L	=	TLV.	This	is	the	same	as	the	resolution	we	obtained	from	the	linear	array	approach
[see	(15.18)].

15.6 PRACTICAL	IMPLEMENTATION

In	the	previous	section,	we	established	that	the	processing	methodology	we	must	use	to	form
an	image	is	to	form	a	Fourier	transform	of	vI(t)	[or	vIi(t)].	However,	this	approach	makes	the
tacit	assumption	 that	vI(t)	 is	a	continuous	 function	of	 time.	Thinking	ahead	 to	when	we	will
consider	 both	 cross-range	 and	 down-range	 imaging,	 we	 realize	 the	 SAR	 will	 transmit	 a
pulsed	signal	 rather	 than	a	CW	signal.	Because	of	 this,	we	recognize	 that	vI(t)	will	not	be	a
continuous-time	 signal	 but	 a	 discrete-time	 signal	with	 samples	 spaced	 by	 the	 radar	 PRI.	 In
recognition	of	this,	we	replace	vI(t)	with	vI(kT)	or	vI(k)	where	we	are	using	k	to	represent	the
kth	PRI,	or	pulse	when	we	consider	pulsed	signals.

15.6.1 A	Discrete-Time	Model

For	a	single	scatterer	[i.e.,	vIi(t)],	we	get	[from	(15.34)]

After	we	(digitally)	remove	the	quadratic	phase	term,	the	signal	we	process	to	form	the	image
is

Since	vIi(k)	 (and	vI(k)	 for	multiple	 scatterers)	 is	 a	 discrete-time	 signal,	we	use	 the	 discrete-
time	Fourier	transform	(DFT).	Specifically,	we	find

As	 with	 the	 continuous-time	 Fourier	 transform,	 we	 limit	 the	 sum	 by	 considering	 that	 we
gather	data	only	from	–L/2	to	L/2	or	for	|t|	≤	TL/2.	If	we	use	t	=	kT,	the	limits	on	k	become

where	it	is	understood	that	we	round,	or	truncate,	TL/2T	to	the	nearest	integer.

Combining	(15.50)	with	(15.49),	(15.48),	and	(15.35),	we	get



We	note	that	this	is	similar	to	(15.42).

Figure	15.16	contains	a	normalized	plot	of	|VIi(f)|	versus	(ƒ	–	ƒyi)TL.	As	can	be	seen,	it	has	a
peak	at	ƒ	–	ƒyi	=	0,	as	did	Figure	15.14.	However,	it	also	has	peaks	at	ƒ	–	ƒyi	=	±1/T.	In	fact,	if
we	 recall	 the	 theory	 associated	 with	 discrete-time	 signals	 and	 the	 DFT,	 we	 recognize	 that
|vIi(ƒ)|	will	have	peaks	at	ƒ	–	ƒyi	=	±npeak/T,	where	npeak	is	an	integer.	All	peaks	except	the	one
corresponding	to	npeak	=	0	are	ambiguities	and	are	undesirable.	In	terms	of	SAR,	they	result
in	what	 are	 termed	ghost	 images.	T	 and	 the	 characteristics	 of	 the	 SAR	 antenna	 are	 usually
chosen	 to	 avoid	 these	 ghosts	 since	 they	 can	 result	 in	 misleading	 SAR	 images.	 The	 SAR
antenna	was	mentioned	because	it	acts	as	a	spatial	antialiasing	filter	[13,	17,	18].

Figure	15.16	Plot	of	VIi|(PSi)
1/2	vs.	(ƒ	–	ƒyi)TL	using	a	discrete-time	signal	with	T	=	0.1TL.

15.6.2 Other	Considerations

As	 we	 did	 before,	 we	 want	 to	 change	 the	 horizontal	 axis	 of	 Figure	 15.16	 to	 crossrange
distance	 rather	 than	 frequency.	 To	 do	 so,	we	 use	 (15.45).	 This	 results	 in	 the	 plot	 of	 |vIi(y)|
shown	in	Figure	15.17.	The	ambiguities	(ghosts)	are	shown	in	this	figure	and	are	located	at



Figure	15.17	Plot	of	VIi|(PSi)1/2	vs.	(y-yi)/δy	using	a	discrete-time	signal	with	T	=	0.1TL.

Equation	(15.52)	tells	us	that	we	want	to	choose	the	PRI	such	that	all	scatterers	lie	within	±1/2
ambiguity.	That	is,	we	want	to	choose	the	PRI	such	that	all	yi	satisfy

All	scatterers	of	interest	lie	within	the	imaged	area;	therefore,	we	want	to	choose	the	PRI	such
that

In	fact	the	PRI	is	usually	chosen	such	that

to	be	sure	 the	SAR	antenna	beam	(of	 the	physical	antenna	on	 the	SAR	platform)	adequately
attenuates	targets	outside	of	the	imaged	region.	Because	of	the	constraint	of	(15.53),	the	SAR
processor	will	form	an	image	of	an	area	wider	than	w.	The	desired	image	is	determined	by
truncating	the	generated	image	to	the	desired	width.

We	can	turn	(15.54)	around	and	use	it	to	find	an	upper	bound	on	PRI.	Specifically,	we	solve
(15.54)	for	T	to	yield

or	from	(15.55)



If	we	consider	an	earlier	example	where	r0	=	20	km,	λ	=	0.03	m,	and	w	=	50	m,	and	consider
an	aircraft	velocity	of	V	=	50	m/s,	we	get

which	is	an	easy	constraint	to	satisfy.	When	we	consider	down-range	imaging,	we	impose	a
lower	 limit	 on	 T	 to	 satisfy	 unambiguous	 range	 operation.	 However,	 that	 lower	 limit	 is
generally	well	below	the	upper	limit	of	(15.58).

We	now	want	to	summarize	the	above	as	an	algorithm	we	can	implement	to	form	a	cross-
range	image.

15.7 AN	ALGORITHM	FOR	CREATING	A	CROSS-RANGE	IMAGE

• Assume	a	baseband,	CW	signal	[see	(15.30)	and	(15.31)]
• Sample	this	signal	at	intervals	of	T	and	generate	2KL+1	samples	where

• 	(15.57)

• KL	=	TL/2T	(15.50)
• TL	=	L/V	(15.28)
• L	=	r0	λ/2δy	(15.46)

In	these	equations,	λ,	r0,	V,	w,	and	δy	are	desired,	known	parameters.	The	samples	are	taken
for	kT	between	–TL/2	and	TL/2	or	for	k	between	–KL	and	KL.

• Remove	the	quadratic	phase	by	multiplying	the	sampled	signal	by

This	gives	vIi(k)	for	a	single	scatterer	and	vI(k)	for	several	scatterers.

• Compute	the	DFT	of	vIi(k)	or	vI(k),	as	appropriate.	This	is	most	easily	done	using	an	FFT.
The	minimum	FFT	length	is	2KL	+	1,	although	we	usually	choose	the	FFT	length	to	be	a
power	 of	 2	 greater	 than	 2KL	 +	 1.	 In	 “real”	 applications,	 we	 often	 adjust	 various	 SAR
parameters	so	that	2KL	+	1	is	close	to	a	power	of	2.	For	purposes	of	problems	discussed
herein,	we	choose	 an	FFT	 length	much	greater	 (4	 to	16	 times)	 than	2KL	+	1	 so	 that	 the
resulting	frequency	plot	is	smooth.

• If	LFFT	is	the	length	of	the	FFT,	the	frequency	spacing	between	output	FFT	taps	is



After	 the	 front	 and	 rear	 halves	 of	 the	 FFT	 outputs	 are	 swapped	 (to	 place	 the	 zero-
frequency	tap	in	the	center	of	the	FFT	output),	the	frequencies	of	the	taps	are

Transform	the	frequency	scale	to	cross	range	using	(15.45)	and	plot	the	magnitude	of	the
FFT	output	versus	y.	This	does	not	produce	an	image,	but	instead	produces	a	linear	plot	as
shown	in	Figure	15.16.

• To	generate	a	pseudo	image,	create	an	array	of	zeros	where	the	number	of	columns,	Ncol,
is	equal	to	the	number	of	samples	needed	to	cover	the	width,	w,	of	the	image	area.	Set	the
number	 of	 rows,	Nrow,	 equal	 to	Ncol.	 (This	 is	 a	 somewhat	 arbitrary	 choice	 and	 can	 be
changed.)	 Finally,	 replace	 row	Nrow/2	with	 the	 FFT	 outputs	 that	 cover	w.	 The	 resulting
array	is	then	used	to	create	the	pseudo	image.

15.8 EXAMPLE	1

To	illustrate	the	above,	we	consider	a	specific	example.	The	parameters	of	this	example	are
given	in	Table	15.1.

Given	 these,	 we	 can	 compute	 some	 of	 the	 SAR	 parameters	 indicated	 in	 the	 algorithm
description.	Specifically:

and

Table	15.1
Parameters	Used	in	SAR	Example	1

Parameter Value

Width	of	image	area,	w 50	m

Depth	of	image	area,	l 50	m

Range	to	image	area	center,	r0 20	km

SAR	wavelength,	λ 0.03	m

Aircraft	velocity,	V 50	m/s

Synthetic	array	length,	L 600	m

Number	of	scatterers,	NS 3



Scatterer	locations,	(xi,yi) (r0,0),	(r0,20),	(r0,−15)	m

Scatterer	powers,	PSi 1,	0.25,	0.09	W

We	will	choose	a	PRI	of	50	ms.	That	is,	we	choose

This	gives

With	this,	the	SAR	starts	sampling	at	t	=	–6s	and	samples	until	t	=	6	s.	The	samples	are	taken
every	T	=	50	ms	and	a	total	of	2KL	+	1	=	241	samples	are	used.	This	means	that	we	need,	as	a
minimum,	a	256-point	FFT.	However,	to	produce	a	smooth	plot,	we	use	a	2,048-point	FFT.

We	note	that,	since	we	chose	T	=	50	ms,	the	actual	width	of	the	area	included	in	the	image	is

To	 form	 the	 image,	 we	 discard	 the	 FFT	 outputs	 outside	 of	 the	 range	 of	 ±25	 m	 (after	 the
conversion	from	frequency	to	y	position).

The	resolution	of	the	SAR	image	is

This	means	we	should	be	able	to	distinguish	scatterers	separated	by	about	1	m	or	greater,	and
maybe	down	to	0.5-m	separation	if	their	relative	powers	and	phases	allow	this.

Before	 processing	 the	 SAR	 signal	 using	 the	 previously	 discussed	 algorithm,	we	 need	 to
generate	the	SAR	signal.	To	do	so,	we	use	(15.31)	with	NS	=	3.	We	generate	241	samples	of
v(t)	starting	at	t	=	–6	s	and	ending	at	t	=	6	s	in	steps	of	T	=	0.05	s.	Specifically,	we	generate
ri(t),	i	=	1,	2,	3,	using	(15.26)	and	(15.27).	We	then	combine	these	with	the	PSi	values	in	(15.30)
to	compute	the	three	vi(t).	Finally,	we	sum	the	three	vi(t)	to	form	v(t).

Figure	15.18	 is	 a	 linear	 plot	 of	 the	 |VI(y)|	 for	 –25	m	≤	 y	 ≤	 25	m,	 and	 Figure	 15.19	 is	 a
pseudo	image.	The	pseudo	image	was	created	by	starting	with	an	array	of	zeros	that	had	101
rows	(which	is	l/δy	+	1)	and	a	number	of	columns	equal	to	the	number	of	y	values	in	the	linear
plot.	The	|VI(y)|	values	from	the	linear	plot	were	loaded	into	the	51st	row	of	the	array,	and	the
pseudo	image	was	generated	using	image	plotting	software.	The	image	of	Figure	15.19	 is	a
negative	image.	That	is,	large	amplitudes	are	black	and	zero	is	white.	This	was	done	to	make
the	experimental	images	look	better,	while	also	conserving	printer	ink.



In	 examining	 Figure	 15.18,	 we	 note	 that	 |VI(y)|	 has	 three	 peaks	 at	 the	 y	 positions	 of	 the
scatterers.	Further,	the	heights	of	the	peaks	are	(PSi)1/2.	The	image	(Figure	15.19)	shows	three
dots	 at	 the	 given	 scatterer	 positions,	 and	 the	 dots	 are	 different	 shades	 of	 gray,	 indicating
different	amplitudes.

Figure	15.18	Linear	plot	of	|VI(y)|—three	scatterers	at	–15	m,	0	m,	20	m.

Figure	15.19	Image	of	|VI(y)|—three	scatterers	at	–15	m,	0	m,	20	m.

To	check	the	aforementioned	resolution	statement,	the	simulation	was	rerun	with	scatterer	y
positions	of	–1,	0,	and	1	m.	The	results	are	shown	in	Figures	15.20	and	15.21.	The	linear	plot
clearly	 shows	 three	 peaks,	 but	 the	 relative	 amplitudes	 are	 somewhat	 different	 than	 those	 of



Figure	15.18.	This	is	due	to	the	sidelobes	of	the	Fourier	transform	response	function	and	the
way	 the	 responses	 to	 the	 three	 scatterers	 constructively	 and	 destructively	 combine.	 The
presence	of	the	three	scatterers	can	also	be	seen	in	the	image	of	Figure	15.21.

Figure	15.20	Linear	plot	of	|VI(y)|—three	scatterers	at	–1	m,	0	m,	1	m.

Figure	15.21	Image	of	|VI(y)|—three	scatterers	at	−1	m,	0	m,	1	m.

As	another	interesting	experiment,	the	quadratic	phase	removal	step	of	the	SAR	processing
algorithm	was	 eliminated.	The	 results	 are	 shown	 in	Figures	15.22	 and	15.23.	 (The	 original
scatterer	locations	of	−15,	0,	and	20	m	were	used.)	As	can	be	seen,	the	peaks	are	spread	and
the	image	is	blurred	in	the	y	direction.	In	SAR	terminology,	we	say	the	image	is	not	focused.
In	fact,	the	process	of	removing	the	quadratic	phase	is	sometimes	termed	focusing	of	the	SAR



image.

Figure	15.22	Linear	plot	of	|VI(y)|—three	scatterers	at	−15	m,	0	m,	20	m,	without	quadratic	phase	removal.

Figure	15.23	Image	of	|VI(y)|—three	scatterers	at	−15	m,	0	m,	20	m,	without	quadratic	phase	removal.

15.9 DOWN-RANGE	AND	CROSS-RANGE	IMAGING

We	now	extend	the	previous	work	to	both	down-range	and	cross-range	imaging.	We	will	also
extend	the	problem	to	include	a	more	general	case	of	squinted	SAR	[2,	13,	15,	20].	Squinted
SAR	 is	 normally	 associated	with	 strip	map	 SAR,	 but	 the	 development	 here	 also	 applies	 to
spotlight	SAR.	As	before,	we	will	 start	 by	defining	 the	 signal	 that	 the	SAR	processor	must
work	with,	since	this	will	give	insight	into	how	to	process	the	signal.



15.9.1 Signal	Definition

The	geometry	of	interest	is	a	modification	of	the	geometry	of	Figure	15.13	and	is	contained
in	Figure	15.24.	The	main	difference	between	Figure	15.13	and	Figure	15.24	is	that	in	Figure
15.13,	 the	 center	 of	 the	 imaged	 area	 lies	 on	 the	 x-axis	 of	 the	 coordinate	 system,	 while	 in
Figure	 15.24	 it	 does	 not.	 This	 offset	 of	 the	 imaged	 area	 center	 will	 result	 in	 additional
Doppler	considerations	plus	a	phenomenon	termed	range	cell	migration	(RCM)	[13],	both	of
which	 complicate	 SAR	 processing.	Another	minor	 difference	 is	 that	 the	 coordinates	 of	 the
scatterer	are	relative	to	the	center	of	the	imaged	area.	We	did	this	as	a	convenience.

Since	 we	 are	 considering	 both	 down-range	 and	 cross-range	 imaging,	 the	 transmit
waveform	will	be	pulsed	instead	of	CW.	In	practical	SAR,	the	pulses	are	phase	coded,	usually
with	LFM,	to	achieve	the	dual	requirements	of	large	bandwidth	for	fine	range	resolution	and
long	duration	to	provide	sufficient	energy.	In	this	development,	we	will	use	narrow,	uncoded
(unmodulated)	 pulses	 to	 avoid	 complicating	 the	 development	 with	 pulse	 coding	 and	 the
associated	matched	 filter	 or	 stretch	 processing.	 The	 extension	 to	 coded	 pulses	 is	 relatively
straightforward.	The	use	 of	 narrow,	 uncoded	pulses	 also	 helps	 clarify	 the	 concept	 of	RCM
correction	(RCMC).

Given	the	above,	we	write	the	transmit	signal	as

where,	as	a	reminder,

and	τp	is	the	pulsewidth.	The	sum	notation	means	a	sum	over	all	k	and	is	used	to	indicate	that
the	waveform	is,	in	theory,	infinite	duration.	We	will	later	make	it	finite	duration.



Figure	15.24	Geometry	for	down-	and	cross-range	imaging.

The	signal	from	a	single	scatterer	at	(xi,yi)	(see	Figure	15.24)	is

where

15.9.1.1	Removal	of	the	Carrier	and	Gross	Doppler

As	before,	the	first	operation	we	perform	is	removal	of	the	carrier.	However,	in	addition,	we
will	also	remove	what	we	term	gross	Doppler	[13].	Removal	of	gross	Doppler	is	necessary	in
some	 applications	 in	 that	 this	Doppler	 is	 large	 relative	 to	 the	 PRF	 and	 has	 the	 potential	 of
causing	problems	with	aliasing	and	Doppler	ambiguities	(ghosts).

To	determine	the	gross	Doppler,	we	examine	the	phase	of	the	returned	(RF)	signal.	From
(15.70),	this	phase	is



We	can	find	the	frequency	as

The	first	term	is	the	carrier	frequency	and	the	second	is	the	Doppler	frequency.	We	define	the
gross	Doppler,	ƒdg,	as	the	Doppler	frequency	at	xi	=	0,	yi	=	0	and	t	=	0.	That	is,

In	(15.74),	θsquint	is	the	squint	angle	[2,	13,	15,	20].	For	the	unsquinted	SAR	we	considered	in
the	CW	development,	θsquint	was	zero	because	y0	was	zero.

Given	the	above,	we	remove	ƒo	and	ƒdg	from	the	received	signal	by	multiplying	vnRF(t)	by
the	heterodyne	signal,

With	this,	we	get	the	baseband	signal,

15.9.1.2	Single-Pulse	Matched	Filter

The	next	step	in	processing	is	to	send	vi′(t)	through	a	matched	filter	matched	to	the	transmit
pulse.	The	(normalized)	output	of	the	matched	filter	is

where

15.9.1.3	Generation	of	the	Sampled	Signal



Recall	 that	for	 the	CW	case,	we	sampled	vi(t)	at	 intervals	of	T.	We	will	do	 the	same	for	 the
pulsed	case.	However,	for	each	pulse	(each	T)	we	will	also	subsample	vi(t)	at	intervals	of	τp,
the	pulsewidth.	We	start	sampling,	relative	to	each	transmit	pulse,	at	some

This	is	the	minimum	range	delay	between	the	front	edge	of	the	imaged	region	and	the	SAR
platform.

We	continue	sampling	to

where

rmax	is	the	maximum	range	between	the	SAR	platform	and	the	back	of	the	imaged	region.

Between	τmin	and	τmax,	we	obtain	approximately

range	samples.	We	do	this	2KL	+	1	times	to	form	M	×	(2KL	+	1)	samples,	which	we	will	collect
into	an	M	by	2KL+1	element	array	for	further	processing.

Mathematically,	we	sample	vi(t)	at

where	m	is	the	range	cell	number.	This	gives

Equation	 (15.84)	 is	 the	 equation	 that	 generates	 the	 samples	 we	 use	 in	 the	 SAR	 processor
simulations	discussed	in	the	upcoming	sections,	and	in	the	exercises.	A	separate	vi(k,m)	array
is	generated	for	each	simulated	scatterer,	and	the	composite	return	is	created	by	summing	the



vi(k,m)	across	i.	m	varies	from	0	to	M	−	1	and	k	varies	from	–2KL	to	KL.

We	previously	defined	an	upper	bound	on	T	[see	(15.56)	and	(15.57)]	based	on	the	width	of
the	imaged	area.	A	lower	bound	on	T	is	that	it	must	be	such	that	T	>	τmax	–	τmin.	Since	τmax	–
τmin	is	usually	on	the	order	of	µs	and	the	upper	bound	on	T	is	on	the	order	of	ms,	both	of	these
bounds	on	T	are	easy	to	satisfy	unless	the	imaged	area	becomes	very	wide	and	deep.

Figure	15.25	contains	a	simplified	block	diagram	of	the	operations	that	have	been	discussed
thus	far.	The	diagram	is	a	functional	representation	of	the	operations	that	would	be	performed
in	an	actual	SAR	receiver.	The	voltage	symbols	above	the	line	would	apply	when	one	thinks
of	 processing	 returns	 from	 a	 single	 scatterer.	 The	 symbols	 below	 the	 line,	 without	 the	 i
subscript,	would	apply	when	one	thinks	of	processing	returns	from	more	than	one	scatterer.
The	 actual	 SAR	 receiver	 will	 need	 to	 perform	 many	 other	 functions	 such	 as	 mixing	 and
amplification	 to	 convert	 the	 RF	 signal	 to	 the	 digital,	 baseband	 signal	 sent	 to	 the	 SAR
processor.	As	a	note,	the	mixing	operation	does	not	always	remove	all	of	the	gross	Doppler.
This	sometimes	needs	to	be	removed	as	part	of	the	subsequent	processing	[13].

15.9.2 Preliminary	Processing	Considerations

If	we	were	to	directly	extend	our	CW	processing	methodology,	we	would,	for	each	m,	remove
a	 quadratic	 phase	 term	 and	 then	 perform	 a	 DFT	 across	 k.	 Unfortunately,	 the	 situation	 is
complicated	 by	 the	 range	 sampling	 so	 that	 this	 straightforward	 approach	 is	 not	 directly
applicable.	We	will	need	to	first	perform	an	interim	step	of	RCMC.

Figure	15.25	Preliminary	SAR	processing	block	diagram.

15.9.2.1	Range	Cell	Migration	Correction

Figure	15.26	contains	a	plot	of	|vi(k,m)|.	The	axes	are	range	cell	number,	m,	and	cross-range
sample	 number,	 k.	 White	 corresponds	 to	 a	 level	 of	 zero	 and	 black	 corresponds	 to	 the
maximum	value	of	|vi(k,m)|.	The	plot	is	not	an	image	of	the	form	of	Figures	15.19,	15.20,	or
15.23.	 It	 is	a	means	of	 representing	 the	magnitude	of	 the	analog	 to	digital	converter	 (ADC)
output	as	a	function	of	two	variables,	m	and	k.	The	plot	was	generated	for	a	single	scatterer	at
(xi,	 yi)	 =	 (0,0)	 m,	 the	 center	 of	 the	 imaged	 region.	 |vi(k,m)|	 was	 generated	 using	 the	 basic
parameters	of	EXAMPLE	1	(Section	15.8,	Table	15.1)	with	the	added	parameters	of	(x0,y0)	=
(20000,200)	m,	which	defines	 the	center	of	 the	 imaged	area.	With	 this	 specification,	we	are
considering	a	squinted	SAR	with	a	squint	angle	of	θsquint	=	sin−1(200/20000)	=	0.0573°	 [see
(15.74)].	We	assume	a	pulse	with	a	width	of	τp	=	3.33	ns,	which	translates	to	a	range	resolution
of	0.5	m.	As	indicated	earlier,	this	is	an	unrealistic	pulse	for	an	actual	SAR.	We	use	it	only	to



avoid	having	to	complicate	the	development	by	considering	long,	modulated	pulses.

For	each	pulse,	we	start	sampling	in	range	at	τmin	=	133.1667	µs	and	stop	at	τmax	=	133.5459
µs.	We	used	(15.79),	(15.80),	and	(15.81)	to	compute	τmin	and	τmax.	With	this	τmin	and	τmax,	and
the	pulsewidth	of	3.33	ns,	we	will	have	M	=	114	range	samples	[see	(15.82)].	Since	we	want
sample	0	to	correspond	to	r0,	we	let	m	vary	from	−50	to	63.	From	EXAMPLE	1,	k	varies	from
−120	to	120	for	a	total	of	241	cross-range	samples.

Since	we	 are	 considering	 a	 single	 scatterer	 in	 the	 center	 of	 the	 imaged	 area,	 our	 initial
expectation	 is	 that	 the	 return	 should	 be	 located	 at	 range	 cell	 zero	 (m	 =	 0)	 on	 all	 pulses.
However,	this	is	not	correct	because	range	cell	location	of	the	return	depends	on	the	range	to
the	scatterer,	not	its	x	location.	The	range	to	the	scatterer	on	the	kth	pulse	is

which	means	it	will	vary	with	k.	This	is	why	the	line	in	Figure	15.26	is	curved.	The	curving	of
the	 line	 is	 the	aforementioned	RCM.	This	name	derives	from	the	fact	 that	 the	return	from	a
single	scatterer	migrates	across	several	range	cells.

Range	 cell	migration	 becomes	 a	 problem	when	we	 apply	 the	 quadratic	 phase	 correction
then	take	the	Fourier	transform	to	form	the	image.	To	form	the	image,	we	want	to	adapt	the
procedure	we	developed	for	 the	CW	case	and	perform	these	operations	for	each	range	cell
(for	each	row	of	the	M	by	2KL	+	1	array	of	|vi(k,m)|).	However,	because	of	RCM	we	cannot	do
this.	Instead	we	should	apply	the	quadratic	phase	removal	and	Fourier	transform	procedures
to	the	range	and	cross-range	samples	along	the	curved	line.	Since	this	is	difficult,	we	take	the
approach	of	“straightening”	 the	curved	 line	of	Figure	15.26	[13].	Said	another	way,	we	will
remove	the	effect	of	RCM	through	the	process	of	RCMC.

There	 are	 several	 methods	 of	 applying	 RCMC	 [13].	 All	 of	 them	 involve	 some	 type	 of
interpolation,	and	some	are	more	effective	 than	others.	 In	 this	book,	we	discuss	a	 technique
based	on	the	Fourier	transform.	It	derives	from	a	property	of	Fourier	transforms	that	a	linear
phase	gradient	applied	in	the	frequency	domain	will	result	is	a	time	shift	in	the	time	domain.

A	characteristic	of	the	Fourier	transform	technique	is	that	it	moves	all	range	cells	the	same
amount	 for	 a	 particular	 k.	 This	 is	 adequate	 for	 small	 squint	 angles.	 However,	 for	 a	 squint
angle	more	than	a	few	degrees,	 it	 is	a	questionable	approach	because,	 in	 that	case,	different
range	cells	must	be	moved	different	amounts.	This	is	discussed	further	in	[13].

15.9.2.2	RCMC	Algorithm

As	indicated	above,	the	Fourier	transform	RCMC	algorithm	takes	advantage	of	the	time	shift
property	of	the	Fourier	transform.	We	consider	a	time	function	v(t)	with	a	Fourier	transform



We	next	consider	a	shifted	version	of	v(t),	vS(t)	=	v(t	-	τ).	The	Fourier	transform	of	vS(t)	is

Equation	(15.87)	says	that	if	we	want	to	shift	some	v(t)	by	some	τ	we

• Find	the	Fourier	transform	of	v(t),	V(ƒ).
• Multiply	V(ƒ)	by	e–j2πƒτ	[apply	a	linear	phase	gradient	to	V(ƒ)].
•	Find	the	inverse	Fourier	transform	of	the	result.

This	is	the	essence	of	the	RCMC	algorithm.	We	develop	the	algorithm	for	a	single	scatterer	at
(xi,	yi)	=	(0,0)	m	and	apply	it	to	all	scatterer	locations.

A	suggested	algorithm	is	as	follows:	from	(15.85),	the	minimum	value	of	ri(kT),	for	xi	=	yi
=	 0,	 occurs	 when	 y0	 –	 kVT	 =	 0	 and	 is	 equal	 to	 x0.	 We	 decide	 that	 we	 want	 this	 range	 to
correspond	to	a	down-range	delay	of	τ	=	0.	For	each	k	we	compute

This	Δτ(k)	then	becomes	the	range	correction	based	on	the	assumption	that	τ	=	0	when	y0	−
kVT	=	0.	We	use	 this	with	 the	Fourier	 transform	method	to	move	the	samples	 in	range.	The
specific	algorithm	is

• For	each	k	compute	Δτ(k)	from	(15.88).
• Compute	the	Fourier	transform	(discrete-time	Fourier	transform)	of	vi(k,m).
• Multiply	the	Fourier	transform	by	e−j2πfΔτ(k).
•	Compute	the	inverse	Fourier	transform.

The	FFT	can	be	used	 to	approximate	 the	Fourier	 transform	and	 inverse	Fourier	 transform.
The	 length	of	 the	FFT	should	be	 the	next	power	of	2	 that	 is	equal	or	greater	 than	M.	 In	 the
example	 used	 here,	 a	 128-point	 FFT	 was	 used	 since	M	 =	 114.	 When	 the	 inverse	 FFT	 is
computed,	 the	 last	 14	 samples	 (of	 the	 128)	 are	 discarded.	 The	 frequency	 values	 would	 be
computed	from	ƒ	=	s/(NFFTτp)	s∈[−NFFT/2,NFFT/2	–	1].	Be	sure	that	the	FFT	algorithm	you	use
places	the	zero	frequency	tap	in	the	center	of	the	FFT	output.



Figure	15.26	Plot	of	|	vi(k,m)	|	for	a	single	scatterer	at	(xi,	yi)=(0,0)	m.

Figure	15.27	Plot	of	|	vi(k,m)	|	for	a	single	scatterer	at	(xi	yi)	=	(0,0)	m	with	RCMC.

The	 result	 of	 applying	 the	 above	 methodology	 to	 the	 plot	 of	 Figure	 15.26	 is	 shown	 in
Figure	 15.27.	 As	 can	 be	 seen,	 the	 curved	 line	 of	 Figure	 15.26	 is	 now	 a	 straight	 line,	 but
somewhat	blurred.	The	blurring	is	caused	by	the	fact	that	the	output	of	our	matched	filter	is
not	 matched	 to	 the	 type	 of	 interpolation	 the	 Fourier	 transform	 performs.	 The	 Fourier
transform	uses	a	sinc(x)	interpolation	but	our	matched	filter	output	is	a	triangle	function.	If	we
had	modeled	our	matched	filter	output	as	a	sinc(x)	function,	the	line	of	Figure	15.27	would	be
a	straight	line	with	no	blurring.

The	RCMC	methodology	discussed	above	was	derived	 for	a	scatterer	at	 the	center	of	 the
imaged	region.	There	is	a	question	of	whether	it	will	perform	RCMC	for	all	other	scatterers
in	 the	 imaged	 region.	 To	 address	 this	 question,	we	 consider	 two	 examples.	 In	 the	 first,	we
place	 three	 scatterers	 at	 yi	 =	 0	m	 and	 xi	 =	 −23	m,	 0	m,	 and	 23	m	 (range	 sample,	 or	 cell,
numbers	of	−46,	0,	and	46).	The	resulting	uncorrected	plot	of	v(k,m)	is	shown	in	Figure	15.28
and	the	RCM-corrected	image	is	shown	in	Figure	15.29.	 It	will	be	noted	 that	 there	are	 three
straight	lines	located	at	m	=	–46,	0,	and	46	in	the	RCMCed	image.



Figure	15.28	Plot	of	│v(k,m)│for	a	three	scatterers	at	(xi,	yi)	=	(−23,0),	(0,0),	(23,0)	m.

Figure	15.29	Plot	of	│v(k,m)│	for	a	three	scatterers	at	(xi,	yi)	=	(−23,0),	(0,0),	(23,0)	m	after	RCMC.

As	 another	 example,	we	 place	 the	 three	 scatterers	 at	 (xi,yi)	 =	 (–23,23),	 (0,0),	 (23,–23)	m.
That	is,	at	diagonal	corners	and	the	center	of	the	imaged	area.	The	resulting	uncorrected	and
corrected	plots	of	v(k,m)	are	shown	in	Figures	15.30	and	15.31.	Careful	examination	of	Figure
15.30	 shows	 that	 the	 three	 curved	 lines	 are	 not	 exactly	 the	 same.	Also,	 the	 top	 and	 bottom
straight	lines	of	Figure	15.31	are	not	exactly	horizontal.	In	some	applications,	this	can	cause
problems	and	an	interim	processing	step	must	be	used	to	eliminate	the	problem.

15.9.3 Quadratic	Phase	Removal	and	Image	Formation

Now	that	we	have	an	algorithm	that	performs	RCMC,	we	need	 to	develop	an	algorithm	for
removing	the	quadratic	phase.	We	will	want	to	remove	the	quadratic	phase	from	the	RCMCed
signal.	The	information	we	need	is	 in	the	phase	of	vi(k,m)	 (for	a	single	scatterer,	v(k,m)	 for
multiple	 scatterers)	 (15.84)	 at	 the	 peak	 of	 the	 tri(x)	 function	 (i.e.,	 along	 the	 curved	 ridge
before	RCMC).



Figure	15.30	Plot	of	|	v(k,m)	|	for	a	three	scatterers	at	(xi,	yi)=(−23,23),	(0,0),	(23,−23)	m.

Figure	15.31	Plot	of	|	v(k,m)	|	for	a	three	scatterers	at	(xi,	yi)=(−23,23),	(0,0),	(23,−23)	m	after	RCMC.

If	we	refer	to	vi(t)	of	(15.77),	we	find	we	want	to	examine	the	information	in	the	phase	of
vi(t)	at

A	problem	with	 this	equation	 is	 that	 t	appears	on	both	sides	and	 is	embedded	 in	ri(t)	on	 the
right	side.	As	a	result,	solving	for	t	will	involve	the	solution	of	a	rather	complicated	equation.
To	avoid	this,	we	seek	a	simpler	approach.	Specifically,	we	ask	the	question:	Does	the	phase
of	vi(t)	vary	slowly	enough	to	allow	the	use	of	an	approximate	value	of	t?

We	write	the	phase	of	vi(t),	from	(15.77),	as

From	calculus,	we	know	that	we	can	relate	variations	of	ϕ(t)	to	variations	of	t	by



Computing	the	partial	derivative,	we	get

We	 are	 interested	 in	 the	 variation	 of	 ϕ(t)	 over	 the	 times	 we	 are	 taking	 measurements.
Specifically,	from	t	=	kT	+	τmin	to	t	=	kT	+	τmax.	We	use	t0	=	kT	+	τmin.	and	let	Δt	=	τmax	–	τmin	=
Δτ.	With	this	we	have

Figure	15.32	contains	a	plot	of	∆ϕ(kT	+	τmin)	versus	k	as	the	top	plot.	For	reference,	the	bottom
curve	 is	 a	 plot	 of	 pulse-to-pulse	 phase	 change	 versus	 k.	 Note	 that	 the	 pulse-to-pulse	 phase
change	ranges	between	about	−1,000°	and	+1,000°	while	the	phase	variation,	or	phase	error,
over	∆τ	 is	 between	−0.006°	 and	+0.006°.	This	 indicates	 that	ϕ(t)	 varies	 slowly	over	∆τ,	 and
thus,	 it	will	be	reasonable	 to	compute	ϕ(t)	at	kT	+	τmin,	or	even	kT,	 rather	 than	via	 the	more
accurate	form	of	(15.90).



Figure	15.32	Phase	change	and	phase	error	vs.	pulse	number.

Given	 this,	we	now	examine	ϕ(kT)	 to	 formulate	a	quadratic	phase	correction	scheme.	We
write

where	we	made	use	of	(15.33)	to	approximate	the	square	root.

The	first	 term	of	the	last	equality	of	(15.95)	 is	a	constant	phase	 that	we	do	nothing	about.
The	 second	 term	 is	 zero,	 since,	 by	 (15.74),	 ƒdg	 =	 2Vy0/(λr0).	 Finally,	 the	 third	 term	 is	 the
quadratic	 phase	 that	we	want	 to	 eliminate.	 It	will	 be	 noted	 that	 this	 quadratic	 phase	 term	 is
exactly	 the	 same	 as	 the	 quadratic	 phase	 term	 in	 the	 CW	 problem.	 Thus,	 to	 perform	 the
quadratic	phase	correction,	we	multiply	each	row	of	the	RCMCed	signal	array	by

We	 are	 now	 in	 a	 position	 to	 formulate	 an	 algorithm	 for	 creating	 a	 cross-/down-range
image.

15.10 ALGORITHM	FOR	CREATING	A	CROSS-	AND	DOWN-RANGE
IMAGE

An	algorithm	for	creating	a	cross-	and	down-range	image	is:

• Assume	a	sampled	baseband	signal	of	the	form	given	by	(15.84)	(for	a	single	scatterer—
for	 multiple	 scatterers,	 we	 would	 sum	 across	 i).	 Note:	 this	 signal	 has	 had	 the	 gross
Doppler,	ƒdg,	removed,	even	though	the	term	appears	in	the	equation.

• Perform	RCMC.	The	RCMC	is	applied	to	all	range	cells	for	each	k.
• Perform	the	quadratic	phase	correction	by	multiplying	the	returns	for	each	range	cell	by
the	vq(k)	of	(15.95).

• Take	the	FFT	across	pulses,	for	each	range	cell.	As	before,	be	sure	that	the	FFT	algorithm
you	use	places	the	zero	frequency	tap	in	the	center	of	the	FFT	output.



•	Transform	the	frequency	and	range	delay	axes	of	the	output	of	the	FFTs	to	cross-range
and	down-range	and	plot	the	image.

Figure	15.33	contains	an	update	to	the	block	diagram	of	Figure	15.25	that	includes	the	image
generation	algorithm	discussed	above.

Figure	15.33	SAR	processor	block	diagram.

15.11 EXAMPLE	2

We	extend	Example	1	of	Section	15.8	to	include	cross-	and	down-range	imaging.	Table	15.2	is
a	repeat	of	Table	15.1	with	additions	and	modifications	consistent	with	the	cross-	and	down-
range	image	generation	methodology.

Table	15.2
Parameters	Used	in	SAR	Example	2

Parameter Value

Width	of	image	area,	w 50	m

Depth	of	image	area,	l 50	m

SAR	wavelength,	λ 0.03	m

Aircraft	velocity,	V 50	m/s

Synthetic	array	length,	L 600	m

Number	of	scatterers,	Ns 3

Waveform	PRI,	T 50	ms

Down-range	resolution,	δx 0.5	m

Center	of	imaged	area	(x0,y0) (20000,	200)	m

Scatterer	locations,	(xi,yi) (−23,	0),	(0,	0),	(23,	0)	m

Scatterer	powers,	PSi 1,	1,	1	W

As	with	Example	1,	we	have	KL	=	120	so	that	k	goes	from	−120	to	120,	and	we	transmit	241
pulses	 over	 a	 time	 period	 of	 −6	 to	 6	 seconds.	We	 use	 the	 3.33	 ns,	 unmodulated	 pulse	 we
considered	 in	 the	RCMC	discussions.	 Recall	 that	 since	 our	T	 is	 smaller	 than	 the	minimum
dictated	by	 the	width	of	 the	 imaged	area,	our	SAR	 image	will	need	 to	be	 trimmed	 in	cross
range	before	we	plot	the	image.



We	 start	 the	 range	 sampling	 at	 τmin	 and	 let	m	 vary	 from	 −50	 to	 63	 as	 we	 did	 when	 we
performed	RCMC.	As	 a	 result,	 the	 down-range	 extent	 of	 the	 image	will	 be	−25	m	 to	 32	m
relative	to	scene	center.	Since	we	are	interested	only	in	a	downrange	extent	of	−25	m	to	25	m,
we	will	also	trim	the	down-range	coordinate	of	the	image.

In	Example	1,	we	used	an	FFT	length	that	was	longer	than	the	number	of	samples	because
we	wanted	a	smooth	linear	plot.	Since	we	are	forming	only	an	image	for	this	example,	we	can
limit	the	FFT	length	to	the	nearest	power	of	two	greater	than	2KL	+	1.	Since	2KL	+	1	is	241,	a
256-point	FFT	will	suffice.

Figure	15.34	contains	the	image	for	this	example.	Note	that	the	three	dots	are	approximately
where	they	should	be.	The	center	dot	is	at	(0,0)	m	and	is	fairly	sharp.	This	is	expected	since
the	RCMC	and	quadratic	phase	correction	is	based	on	a	scatterer	at	the	center	of	the	imaged
area.	 The	 other	 two	 dots	 are	 somewhat	 smeared	 and	 are	 offset	 slightly	 in	 the	 cross-range
direction.	 The	 offset	 is	 due	 to	 a	 residual	 Doppler,	 and	 the	 smearing	 is	 due	 to	 a	 residual
quadratic	phase.

Figure	15.34	Image	for	Example	2.



Figure	15.35	Image	for	scatterers	at	(−23,23),	(0,0),	and	(23,−23)	m.

Figure	 15.35	 contains	 an	 image	 that	 resulted	 when	 the	 three	 scatterers	 were	 placed	 at
(−23,23),	(0,0),	and	(23,−23)	m.	Again,	 the	center	dot	 is	reasonably	sharp,	but	 the	other	 two
dots	are	offset	in	the	cross-range	dimension	and	smeared	in	both	the	cross-	and	down-range
dimensions.	 The	 cross-range	 offset	 is	 due	 to	 the	 aforementioned	 residual	Doppler,	 and	 the
smearing	 is	 due	 to	 the	 residual	 quadratic	 phase.	 The	 down-range	 smearing	 is	 due	 to	 the
imperfect	RCMC	discussed	in	association	with	Figures	15.30	and	15.31.

15.12 AN	IMAGE-SHARPENING	REFINEMENT

We	noted	in	the	generation	of	Figure	15.34	that	 there	was	a	slight	skewing	of	 the	upper	and
lower	 dots.	 Given	 that	 the	 skewing	 was	 in	 opposite	 directions	 at	 the	 top	 and	 bottom,	 we
surmise	 that	 it	 is	 due	 to	 a	 frequency	 shift,	 and	 possibly	 FM	 slope	 variation	 (cross	 range
residual	quadratic	phase),	 that	 is	dependent	upon	the	downrange	 location	of	 the	scatterer,	xi.
We	now	examine	this	further.

For	a	scatterer	at	(x0	+	xi,	y0)	we	have

where	we	are	temporarily	using	kT	=	t	for	convenience.	We	manipulate	this	as



where	 	is	the	range	to	the	scatterer	at	t	=	0.

With	this,	the	phase	of	vi(t)	is	[see	(15.90)]

During	the	quadratic	phase	removal	step,	we	essentially	add

to	the	above	phase	to	get	a	corrected	phase	of

We	first	examine	the	linear	phase,	or	frequency,	term.	We	write	it	as

Recalling	that	ƒdg	=	2y0V/λr0,	we	have

Now,

where	we	made	use	of	ro2≫	2xix0	+	xi2,	2xi	x	0≫	xi2,	and	r0	≈	x0,	since	x02	≫	y02.	With	this	we



have

where	we	used	r0	ri	≈	r02.

From	(15.104),	we	see	that	we	have	a	residual	frequency	of

When	the	scatterer	is	at	scene	center,	xi	=	0	and	thus	Δf	=	0.	That	is,	there	is	no	frequency
offset.	When	xi	≠	0,	there	will	be	a	residual	frequency	offset,	which	will	lead	to	a	cross-range
offset.

To	see	if	the	frequency	offset	could	be	the	cause	of	the	skewing	in	Figure	15.34,	we	recall
that	cross-range	position	is	related	to	frequency	by	[see	(15.45)]

With	this	we	can	write

In	our	case,	r0	=	20	km,	y0	=	200	m,	xi	=	25	m,	and

or	half	of	a	cross-range	resolution	cell,	which	is	about	the	shift	noted	in	Figure	15.34.	This
leads	us	to	conclude	that	it	might	be	a	good	idea	to	include	a	range-cell-dependent	frequency
correction	to	the	quadratic	phase	correction.	When	such	a	correction	was	included,	the	image
of	Figure	15.36	was	obtained.	As	the	figure	shows,	the	skewing	is	no	longer	present.



Figure	15.36	Case	of	Figure	15.34	with	additional	Doppler	correction.

Very	 careful	 examination	 of	 Figure	 15.36	 reveals	 a	 slight	 cross-range	 smearing	 of	 the
upper	and	lower	dots	relative	to	the	center	dot.	From	our	experience	with	stretch	processing,
we	postulate	that	this	could	be	due	to	the	residual	quadratic	phase	term	of	(15.101).

From	(15.101)	we	can	write	the	residual	quadratic	phase	term	as

With	approximations	similar	to	the	previous	development,	we	obtain

which	 is	 a	 residual	 quadratic	 phase	 that	 depends	 on	 the	 x	 location	 of	 the	 scatterer.	 This
indicates	 that	we	should	apply	a	residual	quadratic	phase	correction	that	 is	range	dependent.
The	result	of	applying	this	correction	is	contained	in	Figure	15.37.	Very	careful	examination
of	this	figure	reveals	that	all	three	dots	are	equally	sharp	in	the	cross	range	direction.



Figure	15.37	Case	of	Figure	15.32	with	added	residual	quadratic	phase	correction.

Figure	15.38	Case	of	Figure	15.35	with	additional	Doppler	and	quadratic	phase	correction.

Figure	15.38	contains	an	image	equivalent	to	Figure	15.35	with	the	aforementioned	residual
frequency	and	quadratic	phase	corrections	included.	As	can	be	seen,	the	dots	of	Figure	15.38



seem	to	be	slightly	more	focused	than	those	of	Figure	15.35.	However,	 the	upper	and	lower
dots	 are	 still	 smeared	 in	 the	 downrange	 direction.	 As	 discussed	 earlier,	 this	 down-range
smearing	 is	 caused	by	 the	 fact	 that	 the	RCM	is	due	 to	cross-range	position	of	 the	 scatterer,
whereas	 the	RCMC	 is	 based	 on	 a	 scatterer	 at	 zero	 cross	 range.	Cummings	 and	Wong	 [13]
present	an	alternate	RCMC	algorithm	that	corrects	this	problem.	We	will	not	discuss	it	here.
The	reader	is	referred	to	[13].

Note	that	the	images	in	Figures	15.34	through	15.38	exhibit	some	smearing	in	cross	range.
This	 is	 due	 to	 sidelobes	 of	 the	 Fourier	 transform	 operation	 used	 to	 create	 the	 cross-range
dimension	 of	 the	 image.	 The	 smearing	 can	 be	 reduced	 by	 applying	 sidelobe	 reduction
weighting	to	the	input	to	the	FFT.	However,	such	weighting	will	slightly	degrade	cross-range
resolution.

15.13 CLOSING	REMARKS

The	discussions	presented	in	this	chapter	are	very	preliminary	when	compared	to	the	body	of
literature	 on	 SAR	 processing.	 The	 technique	 presented	 is	 a	 bare,	 basic	 image	 formation
method,	with	 the	 exception	 of	 the	 image	 refinement	 technique	 of	 Section	 15.12.	 There	 are
several	texts	that	discuss	other	image	formation	and	sharpening	techniques	[13,	17,	18].	Many
of	these	provide	sharper	images	but	are	also	more	difficult	to	implement	and	run	slowly	when
compared	to	the	technique	discussed	herein.

The	 technique	discussed	herein	 is	applicable	 to	both	 strip	map	and	spotlight	SAR	for	 the
case	where	the	SAR	platform	is	moving	in	a	straight	line.	There	is	another	class	of	spotlight
SAR	 termed	 circular	 SAR.	 In	 this	 type	 of	 SAR,	 the	 SAR	 platform	 follows	 a	 circular	 path
relative	 to	 some	point	 in	 the	 imaged	area.	The	 techniques	developed	 in	 this	 chapter	 are	not
applicable	 to	 this	 type	 of	 SAR	 because	 the	 RCMC	 technique	 developed	 herein	 cannot	 be
directly	 extended	 to	 the	 circular	 SAR	 case.	 The	 most	 common	 techniques	 applicable	 to
circular	SAR	appear	to	be	a	matched	filter	technique	and	a	technique	termed	back	projection
[23,	 24],	 both	 of	 which	 require	 a	 large	 amount	 of	 computation	 and	 computer	 time.	 These
techniques	are	also	applicable	to	the	type	of	SAR	considered	in	this	chapter.

In	 the	derivations	of	 this	chapter,	 it	was	 (somewhat	unrealistically)	assumed	 that	 the	SAR
platform	was	flying	in	the	x-y	plane	(i.e.,	at	an	altitude	of	zero).	The	extension	to	a	nonzero,
but	 constant,	 altitude	 is	 straightforward.	 In	 essence,	 when	 the	 nonzero	 altitude	 case	 is
considered,	 the	image	that	results	 is	 in	slanted	plane.	The	points	 in	 this	slanted	plane	can	be
mapped	to	the	ground	by	a	coordinate	transformation.

The	 assumption	 that	 the	 SAR	 platform	 was	 flying	 at	 a	 constant	 altitude,	 crossrange
position,	and	velocity	 is	 reasonable	for	satellite-based	SAR	because	satellite	 trajectories	are
very	 stable	 and,	 over	 L,	 reasonably	 straight	 relative	 to	 the	 imaged	 area,	 which	 is	 also
reasonably	flat	over	w.	For	aircraft-based	SAR,	 this	 is	not	 the	case.	 In	 this	 type	of	SAR,	an
interim	step	of	“straightening”	the	aircraft	trajectory	must	be	performed	[2,	16].

The	discussions	herein	make	the	assumption	that	synthetic	antenna	length	(distance	the	SAR
platform	travels)	and	the	dimensions	of	the	imaged	area	are	small	compared	to	the	slant	range
to	the	imaged	area.	If	this	is	not	the	case,	a	somewhat	more	complicated	method	of	accounting



for	SAR	platform	motion	must	be	used	[7,	15,	16].	Also,	RCM	and	RCMC	become	more	of	an
issue.

The	developments	of	this	chapter	were	based	on	the	assumption	that	the	transmit	signal	was
a	narrow,	unmodulated	pulse.	As	was	indicated,	such	a	pulse	is	unrealistic	in	practical	SARs
because	it	would	dictate	high	peak	power	to	get	a	reasonable	SNR	at	the	matched	filter	output.
Most	practical	SARs	use	LFM	pulses	of	reasonable	length.	The	only	impact	of	this	as	it	relates
to	the	processing	presented	herein,	is	that	the	matched	filter	of	Figures	15.25	and	15.33	must
be	 matched	 to	 an	 LFM	 pulse	 rather	 than	 an	 unmodulated	 pulse.	 In	 some	 instances	 where
extremely	 high	 bandwidth	 pulses	 are	 used	 (to	 get	 fine	 down-range	 resolution),	 stretch
processing	may	be	necessary.

Finally,	one	of	 the	assumptions	 is	 that	 the	phase	and	 frequency	of	 the	 transmit	 signal	are
fixed	 over	 the	 processing	 interval.	 In	 other	 words,	 the	 signal	 remains	 coherent	 over	 the
processing	 interval.	 This	 could	 become	 questionable	 for	 long	 processing	 intervals.	 In	 any
event,	 it	 is	 something	 that	 must	 be	 considered	 when	 designing	 the	 SAR	 sensor	 and
determining	the	size	of	the	image	area	and	the	attainable	cross-range	resolution.

15.14 EXERCISES

1. Derive	(15.10)	starting	from	(15.9).

2. Recreate	the	plot	of	Figure	15.7	using	an	appropriately	modified	version	of	(15.11).

3. Generate	 the	 plots	 of	 Figure	 15.8	 but	 add	 a	 third	 plot	 that	 is	 the	 two-way,	 normalized,
radiation	pattern	 for	 a	 linear	 array.	Discuss	 the	 relation	between	 the	beamwidths	of	 the
three	plots.

4. Recreate	Figures	15.14	and	15.15.

5. Implement	 SAR	 signal	 generation	 and	 processing	 routines	 using	 the	 methodology	 of
Section	 15.7.	 Test	 your	 routines	 by	 duplicating	 Figures	 15.18	 through	 15.21.	 Use	 the
parameters	 in	 Table	 15.1.	 When	 you	 set	 up	 your	 signal	 generation	 routine,	 make	 it
general	 enough	 to	 accommodate	 any	 number	 of	 scatterers	 located	 at	 any	 position	 and
with	 any	 powers.	Make	 it	 general	 enough	 to	 accommodate	 any	 sample	 period	 and	 any
SAR	array	length.

6. In	the	signal	generation	code	from	Exercise	5,	decrease	 the	number	of	scatterers	 to	one
centered	 at	 y1	 =	 0	 with	 an	 amplitude	 of	 unity.	 In	 your	 SAR	 processing	 code,	 do	 not
perform	the	quadratic	phase	correction.	Finally,	decrease	the	sample	period	to	T	=	10	ms
and	form	the	pseudo	image.	Is	this	what	you	expected?	Explain.

As	an	 interesting	experiment,	 try	a	 few	different	values	of	T	 to	see	what	happens	 to	 the
pseudo	image.	Discuss	your	results.

7. In	the	signal	generation	code	from	Exercise	5,	place	scatterers	at	y	=	20	and	y	=	30	and
give	 them	amplitudes	of	unity.	Process	 the	 signal	 from	 the	 two	scatterers	 through	your
SAR	processor	and	produce	the	pseudo	image.	Is	 the	pseudo	image	what	you	expected?



Explain.

8. Change	T	to	its	maximum	value	of	120	ms	and	repeat	Exercise	7.

9. Implement	a	SAR	signal	generation	algorithm	as	described	in	Section	15.9	and	generate
the	plot	of	Figure	15.26.

10. Implement	 a	 RCMC	 algorithm	 and	 reproduce	 the	 image	 of	 Figure	 15.27.	 Generate	 the
images	of	Figures	15.28	through	15.31.

11. In	the	discussion	of	Figure	15.27,	it	was	indicated	that	the	blurring	was	caused	by	the	fact
that	an	unmodulated	pulse	was	used	in	the	signal	generation	routine.	This	type	of	pulse	is
not	ideally	compatible	with	the	use	of	the	Fourier	transform	to	perform	interpolation.	If
the	signal	generation	routine	had	used	an	LFM	pulse,	the	resulting	matched	filter	output
would	have	been	more	compatible	with	Fourier	transform	interpolation,	and	the	blurring
to	the	line	would	not	be	present.	The	output	of	a	matched	filter	for	an	LFM	pulse	can,	for
the	purposes	of	this	exercise,	be	approximated	by

where	 τp	 is	 the	 compressed	 pulsewidth	 and	 τu	 is	 the	 width	 of	 the	 uncompressed	 LFM
pulse.	 For	 this	 exercise,	 use	 the	 compressed	 pulsewidth	 of	 Exercise	 9	 and	 use	 an
uncompressed	pulsewidth	of	50	µs.	Use	 this	equation	 in	 the	signal	generation	code	you
developed	for	Exercise	9	and	generate	plots	like	Figures	15.26	through	15.31.	You	should
note	that	the	blurring	in	Figure	15.37	is	now	significantly	reduced.

12. Extend	the	RCMC	algorithm	of	Exercise	10	to	include	the	image	formation	algorithm	of
Sections	15.6.6	and	15.6.7.	Reproduce	the	figures	of	Example	2	(Figures	15.34	and	15.35).
Place	 five	scatterers	 in	 the	 imaged	area	and	generate	 the	 resulting	 image.	Use	 the	same
amplitude	 for	 the	 five	 scatterers.	 Are	 the	 scatterers	 where	 you	 expected	 them	 to	 be?
Explain.

Try	 this	 exercise	 with	 the	 unmodulated	 pulse	 discussed	 in	 the	 text,	 and	 with	 the	 LFM
pulsed	introduced	in	Exercise	11.

13. Implement	 the	 image	 sharpening	 algorithms	 discussed	 in	 Section	 15.12	 and	 reproduce
images	like	those	of	Figures	15.36	through	15.38.	Repeat	this	with	the	five	scatterers	you
used	in	Exercise	12.

14. Use	the	SAR	processor	you	developed	in	the	previous	exercises	to	create	an	image	from



the	data	in	either	the	file	named	Trinity.txt	or	the	file	named	Trinity.mat.	The	file	named
Trinity.mat	is	a	Matlab	mat	file	which	you	can	read	with	the	command	“load	Trinity.”	This
will	cause	v(k,m)	[see	(15.84)	and	(15.85)]	to	be	loaded	into	the	114	by	241	complex	array
with	the	name	RD.	The	Trinity.txt	file	is	a	text	file	that	contain	241	columns	of	data	with
228	entries	in	each	column.	The	first	114	rows	of	the	file	are	the	real	part	of	v(k,m),	and
the	 last	 114	 rows	 are	 the	 imaginary	 part	 of	 v(k,m).	 The	 image	 generated	 by	 the	 SAR
processor	will	 be	 a	 photo	 since	 v(k,m)	 was	 generated	 from	 a	 photo	 using	 (15.84)	 and
(15.85).	The	photo	can	be	found	in	the	file	Trinity.jpg.	The	various	parameters	that	were
used	 to	 generate	 the	 signal	 are	 those	 of	 Table	 15.2.	 Thus,	 your	 processing	 algorithm
should	 use	 the	 same	 parameters.	When	 you	 form	 the	 image,	 do	 not	 use	 a	 negative	 as
discussed	 in	 the	 text	 (unless	 you	want	 to	 see	 a	 negative	 of	 the	 photo).	Also,	when	 you
form	 the	 image,	 turn	 the	 axis	 labels	 off	 so	 the	 image	 will	 look	 like	 a	 photo.	 Try	 the
processor	with	and	without	the	image	refinement	algorithms	of	Section	15.12.

15. For	 this	exercise,	you	will	use	 some	actual	SAR	data	 to	 form	and	 image.	The	data	was
obtained	from	the	RADARSAT1	spaced-based	SAR	platform.	The	data	is	a	subset	of	the
SAR	data	found	on	a	compact	disc	that	accompanies	[13].	The	files	were	preprocessed	to
put	 them	 in	 a	 form	 that	 is	 compatible	 with	 the	 signals	 discussed	 in	 this	 chapter.
Specifically,	 the	 signals	 were	 preprocessed	 to	 create	 v(k,m).	 The	 preprocessed	 data	 is
contained	in	the	text	file	labeled	SARData.mat.	This	file	contains	1,536	columns	of	ASCII
data	where	each	column	contains	2,048	rows.	The	first	1,024	rows	of	the	file	contain	the
real	 part	 of	 v(k,m)	 and	 the	 last	 1,024	 rows	 contain	 the	 imaginary	 part	 of	 v(k,m).	 In
MATLAB,	 the	 data	 can	 be	 loaded	 by	 using	 the	 command	 “s=load(‘SATData,txt’);”
followed	by	the	command	“v=s(1:1024,:)+j*s(1025:end,:);”

16. For	 this	exercise,	you	will	use	 some	actual	SAR	data	 to	 form	and	 image.	The	data	was
obtained	from	the	RADARSAT1	spaced-based	SAR	platform.	The	data	is	a	subset	of	the
SAR	data	found	on	a	compact	disc	that	accompanies	[13].	The	files	were	preprocessed	to
put	 them	 in	 a	 form	 that	 is	 compatible	 with	 the	 signals	 discussed	 in	 this	 chapter.
Specifically,	 the	 signals	 were	 preprocessed	 to	 create	 v(k,m).	 The	 preprocessed	 data	 is
contained	in	the	text	file	labeled	SARdata.txt.	The	file	contains	two	columns	of	data.	The
first	 column	 is	 the	 real	 part	 of	 v(k,m)	 and	 the	 second	 column	 is	 the	 imaginary	 part	 of
v(k,m)	[see	(15.84)	and	(15.85)].	The	file	has	1,024	×	1,536	=	1,572,864	rows.	After	you
load	 the	 data	 file,	 reshape	 it	 into	 a	 1,024-by-1,536	 array	 of	 complex	 numbers.
Specifically,	the	array	should	contain	v(k,m)	for	k	=	1	to	1,024	and	m	=	1	to	1,536.

A	photo	of	the	imaged	region	of	the	RADAR	SAT	1	data	is	in	the	lower	left	part	Figure
15.39.	The	dark	area	is	water	and	the	gray	area	is	land.	The	two	projections	into	the	water
are	 docks.	 The	 data	 supplied	 is	 for	 an	 image	 of	 the	 larger	 dock	 and	 the	 edge	 of	 the
smaller	dock.	The	image	you	create	will	also	show	a	ship	or	two	that	is	not	in	the	photo.

The	geometry	for	this	case	is	somewhat	different	than	the	one	indicated	in	Figure	15.24.
Specifically,	 the	 squint	 angle,	θ,	 is	negative	 for	 this	data.	Also,	 the	 imaged	area	 is	well
behind	 the	satellite.	Because	of	 these	 factors,	 the	Δτ(k)	 (15.86)	used	 for	RCMC	must	be
changed	to



where

The	 reason	 for	 this	 change	 is	 that	 the	 minimum	 range,	 for	 RCMC	 purposes,	 is	 the
distance	between	 the	position	of	 the	 satellite	at	y	=	L/2	 and	 the	upper	 left	 corner	of	 the
imaged	area.	x0	was	also	redefined,	as	shown	in	Figure	15.40.

The	various	SAR	parameters	you	need	are	contained	in	Table	15.3.	You	should	be	able	to
compute	the	other	parameters	from	those	given	in	the	table.

Since	there	are	1,536	down-range	samples	for	each	cross-range	position	of	the	SAR,	use
a	1,536-point	FFT	 in	your	RCMC	algorithm.	While	 this	 is	not	an	exact	power	of	2,	 the
FFT	should	also	be	fast	since	1,536	=	210	+	29

Table	15.3
SAR	Parameters	for	Exercise	15

Parameter Value

L 8,624	m

x0 993.4627	km

y0 −27.466	km

fdg −6,750	Hz

V 7,062	m/s

T 1/PRF

PRF 1,256.98	Hz

λ 0.05657	m

τρ (1/32.317)	µs

As	with	Exercise	14,	create	a	positive	image.	It	may	be	necessary	to	adjust	the	contrast	of	the
final	image.	If	you	use	MATLAB,	this	can	be	done	through	the	clim	parameter	of	the	imagesc
image	generation	routine.	A	value	of	clim	that	seems	to	work	is	clim	=	[3,000	15,000].



Figure	15.39	 Photo	 of	 the	 region	 for	which	RADARSAT1	SAR	data	was	 provided	 in	 this	 exercise.	 (RADARSAT	Data	©
Canadian	Space	Agency/Agence	Spatiela	Canadienne	2002—All	Rights	Reserved.)



Figure	15.40	SAR	geometry	applicable	to	Exercise	15.
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1We	chose	an	odd	number	of	elements	to	simplify	some	of	the	notation	to	follow.
2	As	we	develop	the	detail	of	SAR	processing,	we	will	find	we	need	to	abandon	this	approximation.	For	now	we	take	note	of
this	and	proceed.
3	We	scaled	the	radiation	pattern	of	Chapter	12	by	Ps	and	(2N	+	1)	to	normalize	it	to	the	units	of	power.
4	 In	 our	 initial	 discussions,	 we	 will	 be	 concerned	 only	 with	 cross-range	 imaging	 and	 can	 thus	 use	 a	 CW	 signal.	 We	 will
consider	a	pulsed	signal	when	we	add	the	second	dimension.
5	We	are	changing	terminology	from	“target”	to	“scatterer”	since	the	latter	is	common	in	SAR	theory.
6	Note	that	this	is	similar	to	stretch	processing,	wherein	we	remove	the	quadratic	phase	in	the	mixer.
7Again,	note	the	similarity	to	stretch	processing.



Chapter	16

Introduction	to	Space-Time	Adaptive	Processing

16.1 INTRODUCTION

In	 this	 chapter,	 we	 provide	 an	 introduction	 to	 Space-Time	Adaptive	 Processing,	 or	 STAP.
When	 we	 discuss	 radars,	 we	 normally	 consider	 the	 processes	 of	 beam	 forming,	 matched
filtering,	 and	 Doppler	 processing	 separately.	 By	 doing	 this,	 we	 are	 forcing	 the	 radar	 to
operate	in	only	one	domain	at	a	time:	space	for	beam	forming,	fast	time	for	matched	filtering,
and	 slow	 time	 for	 Doppler	 processing.	 This	 separation	 of	 functions	 sacrifices	 capabilities
because	the	radar	does	not	make	use	of	all	available	information,	or	degrees	of	freedom.

Suppose	we	have	a	linear	phased	array	that	has	N	elements.	In	terms	of	beam	forming,	to
maximize	the	target	return	and	minimize	returns	from	interference	(e.g.,	clutter,	jammers,	and
noise),	we	say	that	we	have	2N	degrees	of	freedom.	If	we	also	process	K	pulses	in	a	Doppler
processor,	 we	 say	we	 have	 an	 additional	 2K	 degrees	 of	 freedom.	With	 normal	 processing
methods,	whereby	we	separate	beam	forming	and	Doppler	processing,	we	have	a	total	of	2K	+
2N	degrees	of	freedom.	If	we	were	to	consider	that	we	could	simultaneously	perform	beam
forming	 and	 Doppler	 processing,	 we	 would	 have	 2KN	 degrees	 of	 freedom.	 This	 is	 the
premise	of	the	“ST”	part	of	STAP.

Figure	16.1	might	provide	further	help	in	visualizing	this.	It	contains	a	depiction	of	angle-
Doppler	space.	Each	of	the	squares	corresponds	to	a	particular	angle	and	Doppler.	There	are
N	beam	positions	and	K	Doppler	cells.	The	dark	square	indicates	a	beam	position	and	Doppler
cell	 that	 contains	 interference.	With	 standard	 processing	 techniques,	we	would	 suppress	 the
interference	by	independently	placing	a	null	at	the	beam	position	and	Doppler	cell	containing
the	interference.	The	beam	null	is	denoted	by	the	crosshatched	squares,	and	the	Doppler	null	is
denoted	by	the	dotted	squares.	With	this	approach,	the	process	of	suppressing	the	interference
will	also	cause	any	signals	in	the	cross-hatched	and	dotted	regions	to	be	suppressed,	including
target	signals.	This	happens	because	we	separately	process	in	angle	and	Doppler	space.



Figure	16.1	Clutter	nulling	using	conventional	methods.

With	STAP,	we	would,	 ideally,	 simultaneously	 process	 in	 angle	 and	Doppler	 space.	With
this	simultaneous	processing,	the	processor	can	be	made	to	place	a	null	at	only	the	angle	and
Doppler	 of	 the	 interference	 (at	 the	 location	 of	 the	 dark	 square	 of	 Figure	 16.1).	 Thus,	 it	 is
possible	to	suppress	only	interference,	and	not	suppress	other	signals	that	might	be	located	at
the	same	angle	or	Doppler	of	the	interference.

According	to	[1],	it	appears	that	the	concept	of	STAP	was	first	introduced	in	a	1973	paper
by	Brennan	and	Reed	[2].	STAP	has	been,	and	still	is,	extensively	studied	in	applications	such
as	 SAR,	 GMTI,	MIMO	 radar,	 array	 antennas,	 tracking	 radar,	 SONAR,	 early	 warning,	 and
jamming	 suppression	 [3–7].	 Despite	 the	 relatively	 high	 processing	 burden,	 there	 are	many
implemented	and	fielded	STAP	platforms	[8–10].

We	begin	the	discussion	of	STAP	by	first	discussing	spatial	processing	(the	“S”)	and	then
temporal	processing	 (the	 “T”).	We	next	discuss	how	 these	 are	 combined	 to	perform	space-
time	 processing.	 Following	 that,	 we	 briefly	 discuss	 some	 topics	 related	 to	 the	 “A,”	 or
adaptive,	part	of	STAP.

The	 general	 approach	 used	 in	 STAP	 is	 to	 design	 the	 processor	 to	 maximize	 signal-to-
interference-plus-noise	 ratio	 (SINR)	 [11–13].	 This	 is	 the	 same	 as	 the	 approach	 used	 in	 the
matched	filter	development	of	Chapter	7.	In	fact,	for	the	case	where	the	interference	is	“white”
in	the	space-time	domain,	the	space-time	processor	is	equal	to	the	space-time	representation
of	 the	 signal.	 That	 is,	 the	 space-time	 processor	 is	 matched	 to	 the	 signal.	 As	 a	 further
illustration	 of	 the	 relation	 between	 the	 matched	 filter	 and	 STAP,	 we	 note	 that	 one	 of	 the
Cauchy-Schwarz	inequalities	is	used	to	design	the	space-time	processor	[14,	15].

16.2 SPATIAL	PROCESSING

As	indicated,	we	begin	the	STAP	development	by	first	considering	spatial	processing,	or	beam
forming.	We	start	by	considering	the	signal	and	receiver	noise	and	then	address	a	combination
of	signal,	receiver	noise	and	interference,	such	as	jamming	or	clutter.



16.2.1 Signal	Plus	Noise

We	start	with	the	N	element	 linear	array	shown	in	Figure	16.2.1	 In	 that	 figure,	 it	 is	assumed
that	the	target	is	located	at	an	angle	of	θs	relative	to	broadside.	From	linear	array	theory	(see
Chapter	12)	we	can	write	the	output	of	the	array	as2

where	PS	 is	 the	 signal	 power	 from	 the	 target	 at	 each	 of	 the	 array	 elements.	 It	 is	 the	 signal
power	term	of	the	radar	range	equation,	without	the	receive	directivity	term	(see	Chapter	2).

Figure	16.2	Linear	phased	array.

We	define

and

WH	 is	 the	weight	vector	from	Chapter	123	and	S(θs)	 is	 the	 target,	or	signal,	steering	vector.
The	superscript	H	denotes	the	Hermitian,	or	conjugate-transpose	operation	[16]	(this	notation



will	come	 into	play	shortly).	WH	 is	also	sometimes	 thought	of	as	weights	 in	a	spatial	 filter.
Using	(16.2)	and	(16.3),	we	can	write	V(θs)	as

We	assume	there	is	a	separate	receiver	connected	to	each	element.	This	makes	the	noise	at
each	of	the	antenna	elements	of	Figure	16.2	uncorrelated.	This	is	depicted	in	Figure	16.3	by
the	separate	nn	in	each	block.	The	nn	are	complex	random	variables	that	we	assume	are	zero-
mean	and	uncorrelated.	That	is

We	further	stipulate

where	PN	is	the	noise	power	at	the	input	to	each	of	the	an	of	Figures	16.2	and	16.3.	Equation
(16.6)	implies	the	noise	power	is	the	same	at	the	output	of	each	receiver.	Strictly	speaking,	this
is	not	necessary.	We	included	it	here	as	a	convenience.

The	noise	voltage	at	the	output	of	the	summer	of	Figure	16.3	can	be	written	as

where

Figure	16.3	Array	with	only	noise.

As	a	point	of	clarification,	the	signal	and	noise	in	the	above	equations	are	at	the	output	of
the	matched	filter	of	each	receiver.	That	is,	the	weights	an	are	applied	to	the	signal	and	noise



at	 the	 outputs	 of	 the	 matched	 filters.	 More	 specifically,	 the	 signal-plus-noise	 (plus
interference)	 is	 sampled	 at	 the	 output	 of	 the	matched	 filters	 and	 then	 sent	 to	 the	 processor.
Ideally,	 the	samples	are	 taken	at	a	 time	corresponding	 to	 the	 range	delay	 to	 the	 target	 to	be
sure	 that	 the	 signal	 is	 present	 in	 the	 matched	 filter	 output.	 If	 the	 target	 range	 delay	 is	 not
known,	several	range	(time)	samples	and	processors	will	be	needed.
Receivers	are	needed	at	each	element	to	implement	STAP	in	its	pure	form.	If	we	are	willing

to	give	up	spatial	degrees	of	freedom,	receivers	could	be	applied	to	groups	of	elements,	or
subarrays.	 However,	 with	 this	 approach,	we	 limit	 where	 the	 STAP	 can	 place	 nulls.	 Further
discussion	of	subarraying	and	STAP	can	be	found	in	STAP	literature	[3,	7,	12].

The	STAP	design	criterion	is	maximization	of	SINR	(SNR	for	 the	noise-only	case)	at	 the
processor	output.	Therefore	we	need	to	develop	equations	for	the	signal	and	noise	power	at
the	processor	output.	From	(16.4),	the	signal	power	at	the	processor	output	is

Since	the	noise	is	a	random	process,	we	write	the	noise	power	at	the	output	of	the	summer
as

In	(16.10)

and	 is	 termed	 the	receiver	noise	 covariance	matrix.	 In	 (16.11),	 I	 is	 the	 identity	matrix.	With
(16.11),	the	output	noise	power	becomes

The	SNR	at	the	output	of	the	summer	is

At	this	point	we	invoke	one	of	the	Cauchy-Schwarz	inequalities	[14,	15].	 In	particular,	we
use



with	equality	when

where	κ	is	an	arbitrary,	complex	constant,	which	we	will	set	to	unity.	With	this,	we	get

where	we	made	use	of

Equation	(16.16)	 tells	us	 that	 the	SNR	at	 the	array	output	has	an	upper	bound	equal	 to	 the
sum	 of	 the	 SNRs	 at	 (the	 outputs	 of	 the	 matched	 filters	 of	 the	 receivers	 attached	 to)	 each
element.	Further,	the	actual	SNR	at	the	array	output	will	equal	the	upper	bound	if	W	is	chosen
according	to	(16.15),	that	is	W	is	matched	to	S(θs).

16.2.2	Signal	Plus	Noise	and	Interference

We	now	consider	a	case	where	we	have	interference	that	is	correlated	across	the	array.	This
interference	 could	 be	 clutter	 and/or	 jammers.	 The	 appropriate	 model	 for	 this	 situation	 is
given	 in	Figure	16.4.	 In	 this	 figure,	nIi	 represents	 the	 interference	 “voltage”	 and	 is	 a	 zero-
mean,	 complex,	 random	 variable.	 The	 subscript	 i	 is	 used	 to	 represent	 the	 ith	 interference
source	(which	we	will	need	shortly	when	we	consider	multiple	interference	sources).	The	fact
that	the	same	random	variable	is	applied	to	each	of	the	antenna	elements	makes	the	outputs	of
the	elements	random	variables	that	are	correlated.	We	write	VIi(ϕi)	as

where

and



Figure	16.4	Array	with	interference.

D(ϕi)	is	the	steering	vector	for	the	ith	interference	source.

We	 accommodate	multiple	 interference	 sources	 by	 simply	 summing	 the	 voltages	 for	 the
multiple	sources.	Specifically,

We	further	assume	the	Ni	interference	sources	are	independent	so	that

The	interference	power	(from	the	Ni	interference	sources)	is

In	(16.23)



where	we	made	use	of	(16.22).

Combining	(16.10)	with	(16.23),	we	get	the	total	noise	plus	interference	power	as

and	write	the	signal-to-interference-plus-noise	ratio	(SINR)	at	the	output	of	the	summer	as

As	before,	we	want	 to	choose	 the	spatial	 filter	 that	maximizes	SINR.	To	do	this	using	the
Cauchy-Schwarz	inequality,	we	need	to	manipulate	(16.27).	We	start	by	noting	that,	because	of
the	receiver	noise,	R	will	be	positive	definite	 [14].	Because	of	 this,	we	can	define	a	matrix,
R1/2,	 such	 that	R	 =	R1/2R1/2.	 Further,	R1/2	 is	 Hermitian	 and	 its	 inverse,	R–1/2,	 exists,	 and	 is
Hermitian	[11,	14].	We	use	this	to	write

where	WR	=	R1/2W	and	SR(θs)	=	R–1/2S(θs).

Equation	 (16.28)	 has	 the	 same	 form	 as	 (16.13).	 Thus,	 we	 conclude	 that	 the	 SINR	 is
maximized	when

If	we	let	κ	=	1	and	substitute	for	WR	and	SR	(θs)	we	get	the	solution

The	net	effect	of	the	above	equation	is	that	the	weight,	W,	are,	ideally,	selected	to	place	the
main	beam	on	the	target	and	simultaneously	attempt	to	place	nulls	at	the	angular	locations	of
the	 interference	 sources.	 We	 used	 the	 qualifier	 “ideally”	 because	 it	 is	 possible	 that	 the
algorithm	will	not	place	the	main	beam	at	the	target	angle	or	a	null	at	the	interference	angle.
This	might	happen	if	the	target	and	interference	angles	were	close	to	each	other	(see	Exercise
7).



A	critical	 part	 of	 this	 development	 is	 that	 the	 total	 interference	 consists	 of	 both	 receiver
noise	 and	 other	 interference	 sources.	 The	 inclusion	 of	 receiver	 noise	 is	what	makes	 the	R
matrix	positive	definite	and	thus	nonsingular.	If	R	was	singular,	R–1	would	not	exist,	and	we
would	 need	 to	 use	 another	 approach	 for	 finding	 W.	 On	 occasion,	 R	 will	 become	 ill
conditioned	 because	 the	 jammer-to-noise	 ratio	 (JNR)	 is	 large.	 If	 this	 happens,	 alternate
methods	of	finding	W	may	be	needed.	One	of	these	is	to	use	a	mean-square	criterion	such	as
least-mean-square	estimation	or	pseudo	inverse	[17–21].	Another	is	termed	diagonal	loading,
which	is	discussed	later.

16.2.3 Example	1

As	an	example,	we	consider	a	16-element	linear	array	with	½	wavelength	element	spacing	(d/
λ	 =	½).	We	 assume	 that	we	 have	 a	 per-element	 SNR	of	 0	 dB	 (at	 the	 output	 of	 the	matched
filters	of	the	receivers	associated	with	each	of	the	elements).	That	is,	PS/PN	=	1	W/W.	We	have
two	 noise	 jammers	 with	 per-element	 JNRs	 of	 40	 dB	 (again,	 at	 the	 outputs	 of	 the	matched
filters).	The	 target	 is	 located	 at	 an	 angle	of	 zero,	 and	 the	 jammers	 are	 located	 at	 angles	of
+18º	 and	 −34º.	 The	 selected	 jammer	 angles	 place	 the	 jammers	 on	 the	 second	 and	 fourth
sidelobes	 of	 the	 antenna	 pattern	 that	 results	 from	 using	 uniform	 illumination	 (see	 Figure
16.5).	The	above	specifications	lead	to	the	following	parameters	PS	=	1,	PN	=	1,	PI1	=	104,	PI2
=	104,	6S=	0,	ϕ1	=	18°,	and	ϕ2	=	–	34°.

For	the	first	case,	we	consider	only	receiver	noise	(no	jammers).	From	(16.15)	with	κ	=	1,
we	have

and	SNRmax	=	16PS/PS	=	16	W/W	or	12.4	dB.	The	weight	vector,	W,	results	in	an	array	with
uniform	 weighting,	 or	 uniform	 illumination	 (see	 Chapter	 12).	 A	 plot	 of	 the	 normalized
radiation	pattern	 for	 this	 case	 is	 shown	as	 the	dotted	 curve	 in	Figure	16.5,	which	 is	mostly
obscured	by	the	solid	curve.	As	a	note,	the	patterns	of	Figure	16.5	were	generated	using

where	θ	was	varied	from	–90°	to	90°.4



Figure	16.5	Normalized	radiation	pattern	with	and	without	optimization—16-element	linear	array.

If	we	use	the	W	given	by	(16.31)	and	include	the	two	interference	sources,	the	SINR,	at	the
processor	output,	is	about	–24	dB.	If	we	include	the	interference	properties	in	the	calculation
of	W	by	using	(16.30),	the	SINR	increases	to	12	dB,	which	is	close	to	the	noise-only	case	of
about	12.4	dB	(10log16).	To	accomplish	this,	the	algorithm	chose	the	weights	to	place	nulls	in
the	antenna	pattern	at	the	locations	of	the	interference	sources.	This	is	illustrated	by	the	solid
curve	of	Figure	16.5,	which	is	a	plot	of	the	radiation	pattern	when	the	new	weights	are	used.

16.3 TEMPORAL	PROCESSING

The	 temporal	 processing	 part	 of	 STAP	 is	most	 often	 thought	 of	 as	Doppler	 processing.	 In
particular,	we	consider	the	returns	(signal	and	interference)	from	several	pulses	and,	similar
to	spatial	processing,	weight	and	sum	them.	As	with	spatial	processing,	we	choose	the	weights
to	maximize	SINR	at	 the	output	of	 the	processor.	The	 input	 to	 the	Doppler	processor	 is	 the
output	of	the	matched	filter.	Thus,	we	need	to	characterize	the	signal,	noise,	and	interference
at	the	matched	filter	output.

16.3.1 Signal

We	consider	a	transmit	waveform	that	consists	of	a	string	of	K	pulses	and	write	it	as

where	p(t)	is	a	general	representation	of	a	pulse	and	T	is	the	spacing	between	pulses,	or	pulse
repetition	interval,	PRI	(see	Chapter	1).	As	examples,	for	an	unmodulated	pulse



and	for	an	LFM	pulse

where	 τp	 is	 the	 (uncompressed)	 pulsewidth	 and	 α	 is	 the	 LFM	 slope	 (see	 Chapter	 7).	 The
exponential	term	in	(16.33)	represents	the	carrier	part	of	the	transmit	signal	(see	Chapter	1).

The	normalized	return	signal,	from	a	point	target,	is	a	delayed	and	scaled	version	of	vT(t).
We	define	it	as

where	PS	is	the	signal	power	at	the	matched	filter	output	and	r(t)	is	the	range	to	the	target.

If	the	target	is	moving	at	a	constant	range	rate,	we	can	write	r(t)	as

where	r0	is	the	target	range	at	t	=	0	and	 	is	the	range	rate	(see	Chapter	1).	We	usually	set	t	=	0
at	the	beginning	of	the	train	of	K	pulses.

With	(16.37)	vr(t)	becomes

In	(16.38),	fd	=	−2 /λ,	τr	=	2r0/c	and	λ	=	c/fo	is	the	wavelength	of	the	transmit	signal.	If	we
assume	that	the	phase	across	the	pulse	is	constant,	we	can	write

In	the	receiver,	we	heterodyne	to	remove	the	carrier,	normalize	away	the	first	exponential,
and	process	the	signal	through	the	matched	filter	to	obtain



where	m(t)	 is	 the	 response	of	 the	matched	 filter	 to	p(t).	We	assume	m(t)	 is	 normalized	 to	 a
peak	value	of	m(0)	=	1.

For	the	next	step,	we	sample	vM	(t)	at	times	τ	=	τRC	+	kT.	That	is,	we	sample	the	output	of	the
matched	filter	once	per	PRI	at	a	time	τRC	relative	to	the	leading	edge	of	each	transmit	pulse.5

The	result	is	a	sequence	of	samples	we	denote	as

where	mRC	is	the	(generally	complex)	value	of	m(t	–	τr	–	kT)	evaluated	at	t	=	τRC	+	kT.	 If	we
sample	the	matched	filter	output	at	its	peak,	we	will	have	τRC	=	τr	and	mRC	=	1.

16.3.2 Noise

The	noise	at	the	matched	filter	output	is	also	sampled	at	t	=	τRC	+	kT.	This	produces	a	sequence
of	K,	 uncorrelated,	 zero-mean,	 random	 variables	 with	 equal	 variances	 (and	 mean-square
values,	or	powers)	of	PN.	We	denote	these	as

As	 a	 note,	 it	 is	 not	 necessary	 that	 the	 noise	 samples	 be	 uncorrelated	 and	 have	 equal
variances.	However,	this	is	the	standard	assumption	when	discussing	STAP	[11].

Assuming	we	sample	 the	matched	filter	output	at	 its	peak	when	only	signal	and	noise	are
present,	 the	 signal	power	 in	 each	 sample	 is	PS	 and	 the	 noise	 power	 for	 each	 sample	 is	PN.
Thus,	the	SNR	at	the	sampler	output,	and	the	input	to	the	processor,	is	SNR	=	PS/PN.

16.3.3 Interference

We	assume	the	interference	bandwidth	is	narrow	relative	to	the	transmit	waveform	PRF	(PRF
=	1/T).	More	specifically,	we	assume	the	interference	signal	at	the	sampler	output	is	a	wide-
sense	stationary,	zero-mean	random	process	with	an	autocorrelation	given	by

where	vI(k)	 is	 the	 interference	voltage	 at	 the	 sampler	output.	 It	 is	 equal	 to	 the	output	 of	 the
matched	 filter,	 sampled	 at	 t	 =	 τRC	 +	 kT,	 when	 the	 input	 is	 the	 signal	 returned	 from	 the
interference.

In	general,	RI(k)	is	a	complicated	function	of	k.	For	the	special	case	where	the	interference
is	a	 tone	with	a	Doppler	 frequency	of	 fI	 and	a	 random	amplitude	with	a	mean-square	value
(power)	of	PI,	RI	(k),	becomes



16.3.4	Doppler	Processor

We	 assume	 the	 Doppler	 processor	 is	 a	K-length	 finite	 impulse	 response	 (FIR)	 filter	 with
coefficients	of	ωk.	If	the	input	to	the	processor	is	vin(k),	the	output,	after	K	samples	have	been
processed,	is

where

and

When	the	input	is	the	signal,	we	have,	from	(16.41)

If	we	further	assume	the	sampler	samples	the	matched	filter	output	at	t	=	τR	+	kT,	we	have
mRC	=	1.	Using	(16.47)	we	have

The	signal	voltage	at	the	Doppler	processor	output	is

For	the	noise,	we	write

and	the	output	of	the	Doppler	processor	is

We	write	the	interference	input	to	the	Doppler	processor	as



and	the	processor	output	as

As	with	the	spatial	processing	case,	we	choose	the	Ω	that	maximizes	SINR	at	the	Doppler
processor	 output.	 Thus,	we	 need	 an	 equation	 for	 the	 peak	 signal	 power,	PSo,	 and	 the	 total,
average	interference	power,	PNo	+	PIo,	at	the	processor	output.	By	using	the	sum	of	the	noise
and	 interference	 powers,	 we	 are	 assuming	 the	 receiver	 noise	 and	 the	 interference	 are
uncorrelated.	This	is	a	standard	assumption.

The	peak	signal	power	is

and	the	average	noise	power	is

Since	we	assumed	the	noise	samples	were	uncorrelated	and	had	equal	power,

and

The	interference	power	at	the	processor	output	is

where



where	RI(k)	is	defined	in	(16.43).

For	the	case	where	the	interference	is	a	tone,

where

For	multiple	interference	sources

where	the	sum	is	taken	over	the	total	number	of	interference	sources.

The	SINR	at	the	Doppler	processor	output	is

This	is	the	same	form	as	in	the	spatial	processing	case.	Applying	those	results	here	gives

16.3.5	Example	2

As	an	example,	we	consider	a	Doppler	processor	with	K	=	16.	We	assume	an	input	SNR	of	0
dB	(at	the	output	of	the	matched	filter).	That	is,	PS/PN	=	1W/W.	We	also	assume	we	sample	the
matched	filter	output	at	t	=	τR	+	kT.	We	have	two	tone	interferences	with	JNRs	of	40	dB	(again,



at	 the	output	of	the	matched	filter).	We	assume	a	PRF	of	1,000	Hz,	which	gives	T	=	0.001	s.
The	 target	 is	 located	 at	 a	 Doppler	 frequency	 of	 zero,	 and	 the	 interferences	 are	 located	 at
Doppler	 frequencies	 of	 217	 Hz	 and	 –280	 Hz.	 These	 Doppler	 frequencies	 place	 the
interferences	 on	 the	 second	 and	 fourth	 sidelobes	 of	 the	 Doppler	 processor	 frequency
response	 that	 results	 from	 using	 uniform	 weighting.	 The	 above	 specifications	 lead	 to	 the
following	parameters:	PS	=	1,	PN	=	1,	PIl	=	104,	PI2	=	104,	fd	=	0,	fIl	=	217	Hz,	and	fI2	=	–280
Hz.

For	the	first	case,	we	consider	only	receiver	noise.	From	(16.65)	with	R	=	PNI	we	have

And	SNRmax	 =	 16	PS/PN	 =	 16	W/W	or	 12.4	 dB.	The	weight	 vector,	Ω	 results	 in	 a	Doppler
processor	 with	 uniform	 weighting.	 A	 plot	 of	 the	 normalized	 frequency	 response	 of	 the
Doppler	processor	is	shown	as	the	dotted	curve	in	Figure	16.6,	which	is	mostly	obscured	by
the	solid	curve.	As	a	note,	the	frequency	responses	of	Figure	16.6	were	generated	using

where	f	was	varied	from	–PRF/2	to	PRF/2,	or	–500	Hz	to	500	Hz.

If	 we	 use	 the	 Ω	 given	 by	 (16.66)	 and	 include	 the	 two	 interferences,	 the	 SINR,	 at	 the
processor	output,	 is	 about	–22	dB.	 If	we	 include	 the	 interference	 in	 the	calculation	of	Ω	by
using	(16.65),	the	SINR	increases	to	12	dB,	which	is	close	to	the	noise-only	case	of	about	12.4
dB	 (10log16).	 To	 accomplish	 this,	 the	 algorithm	 chose	 the	 weights	 to	 place	 nulls	 in	 the
frequency	response	of	the	Doppler	processor	at	the	Doppler	frequencies	of	the	interferences.
This	is	illustrated	by	the	solid	curve	of	Figure	16.6,	which	is	a	plot	of	the	frequency	response
when	the	new	weights	are	used.



Figure	16.6	Normalized	frequency	response	with	and	without	optimization—16	tap	Doppler	processor.

16.4 ADAPTIVITY	ISSUES

We	have	discussed	both	the	space	and	time	parts	of	STAP.	However,	we	have	not	addressed	the
adaptive	part.	Since	the	target	and	interference	angles	and	Dopplers	could	change	every	dwell
(sequence	of	K	pulses),	the	target	steering	vector	and	the	R	matrices	must	be	recomputed	on
each	dwell.	This	means	 that	new	weights	would	be	computed	on	each	dwell	 to	adapt	 to	 the
target	 and	 interference	 environment—	 thus	 the	 adaptive	 part.	 In	 Section	 16.6,	 we	 discuss
another	aspect	of	adaptivity	that	involves	measuring	the	environment	to	estimate	the	R	matrix.

16.5 SPACE-TIME	PROCESSING

We	now	address	the	issue	of	combined	space	and	time	processing.	In	space-time	processing,
rather	 than	 form	 a	 function	 of	 angle	 or	 a	 function	 of	 Doppler,	 we	 combine	 spatial	 and
temporal	equations	for	the	signal	[(16.1)	and	(16.50)]	to	form	a	combined	function	of	angle
and	Doppler	at	the	output	of	the	space-time	processor.	In	equation	form,	we	write

We	recognize	the	above	as	a	sum	of	KN	terms.	Generalizing	the	product	of	the	weights	to
KN	distinct	weights	we	get



We	 next	 organize	 the	 weights	 into	 a	 general	 weight	 vector,	w,	 and	 the	 e−j2πndsinθ/λ	 ej2k/ft
terms	into	a	generalized	steering	vector,	S,	and	write	V	(θs,fd)	in	matrix	form	as

Extending	 the	 interference	 representation	 of	 Sections	 16.2	 and	 16.3,	 we	 can	 write	 the
interference	at	the	space-time	processor	output	as

where

In	(16.72),	N	 is	 the	receiver	noise	and	D(ϕr,fr)	 is	 the	steering	vector	 to	 the	 interference	in
angle-Doppler	 space.	With	 this	 representation	 of	 interference,	we	 are	 limiting	 ourselves	 to
tone	interferences.

We	 use	 the	 techniques	 discussed	 in	 Sections	 16.2	 and	 16.3	 to	 place	 the	 “main	 beam”	 in
angle-Doppler	 space	 on	 the	 target	 and	 to	 place	 nulls	 at	 the	 angle-Doppler	 locations	 of	 the
interferences.	Specifically,	we	find	that	the	optimum	weight	vector	is	given	by

where

and	K	is	an	arbitrary,	complex	constant	that	we	normally	set	to	unity.

At	this	point,	we	need	to	further	discuss	the	signal	and	interference	steering	vectors,	S(θs,fd)
and	D(θr,fr),	and	how	to	compute	R.	We	note	that	the	exponential	terms	of	(16.68)	and	(16.69)
contain	 all	 possible	 KN	 combinations	 of	 e−j2πndsinθ/λ	 and	 ej2klfr.	 We	 organize	 the	 N
exponentials	containing	θS	into	a	vector

and	the	K	exponentials	containing	fd	in	to	a	vector



We	next	use	these	vectors	to	form	a	matrix

that	contains	all	KN	combinations	of	the	elements	of	S(θs)	and	S(fd).	To	form	the	KN	element
vector,	 S(θs,fd),	 we	 concatenate	 the	 columns	 of	 S(θs,fd).	 The	 D(θr,fr)	 vector	 for	 each
interference	source	is	formed	in	a	similar	fashion.

From	(16.72)	and	(16.74),	we	can	form	R	as

where	we	made	use	of	the	standard	assumption	that	the	receiver	noise,	N,	and	interference,	nI,
are	independent.

There	are	N	receivers	and	matched	filters,	and	each	receiver	processes	K	pulses	though	the
matched	filter	and	sampler.	Thus,	we	will	have	KN	 receiver	noise	samples.	We	assume	they
are	all	zero-mean,	uncorrelated,	and	have	equal	powers	of	PN.	Thus,

where	I	is	an	KN	by	KN	identity	matrix.

For	each	interference	we	have

where	PIi	is	the	power	associated	with	the	ith	interference.	With	this	we	get

where	the	sum	is	taken	over	the	total	number	of	interference	sources.

With	 some	 thought,	 it	 should	 be	 clear	 that	 the	 dimensionality	 of	 the	 STAP	 problem	 has
increased	substantially,	when	compared	to	only	spatial	or	temporal	processing.	If	we	perform
STAP	 separately	 in	 angle	 and	 Doppler,	 we	 would	 need	 to	 compute	K	 +	N	 weights.	 If	 we
simultaneously	perform	STAP	in	angle	and	Doppler	space,	we	must	compute	KN	weights.	To
complicate	the	problem	further,	remember	that	we	need	to	compute	a	separate	set	of	weights



for	each	range	cell	that	is	processed.	This	represents	a	considerable	computational	burden.	To
minimize	 the	 burden,	 much	 of	 today’s	 research	 in	 STAP	 is	 concerned	 with	 avoiding	 the
computation	of	KN	weights,	while	still	trying	to	maintain	acceptable	performance	[11].

16.5.1 Example	3

As	an	illustration	of	the	space-time	processing,	we	extend	Examples	1	and	2	to	a	full	space-
time	processor.	We	again	 assume	a	16-element	 array	 and	 a	Doppler	processor	 that	 uses	16
pulses.	We	use	the	classical	STAP	approach	and	process	all	16	×	16	=	256	signal-plus-noise-
plus-interference	samples	in	one	processor	with	256	weights.	(Recall	that	we	do	this	for	each
range	 cell	 of	 interest.)	We	 assume	 the	 target	 is	 located	 at	 an	 angle	 of	 zero	 and	 a	Doppler
frequency	of	zero.	The	element	spacing	is	½	wavelength	and	the	PRF	is	1,000	Hz.	The	single-
pulse,	per-element	SNR	is	0	dB	(at	the	outputs	of	the	matched	filters).	We	consider	two	tone
interference	sources.	They	are	 located	at	angles	of	+18º	and	−34º.	Their	Doppler	 locations,
corresponding	to	the	above	angles,	are	217	Hz	and	−280	Hz	respectively.	The	JNRs	of	the	two
interference	sources	are	50	dB.	With	these	specifications,	we	get	the	following	parameters:	PS
=	1,	θs,	=	0,	fd	=	0,	PN	=	1,	P	I1	=	105,	PI2	=	105,	ϕ1	=	18°,	ϕ2	=	−34°,	f1	=	217	Hz	and	f2	=	−280
Hz.

We	compute	R	using	(16.79)	through	(16.81).	Since	θS	=	0	and	fd	=	0

or	a	vector	of	256	ones.	Finally,	we	compute	w	using	(16.73)	with	k	=	1.

In	 an	 actual	 STAP	 implementation,	we	would	 compute	 the	 output	 of	 the	 STAP	 processor
using

where	Vin	is	a	vector	that	contains	the	KN	outputs	from	the	samplers	in	each	receiver.	The	first
N	elements	of	Vin	are	the	outputs	from	the	N	receivers	on	the	first	pulse.	The	next	N	elements
are	the	outputs	from	the	N	receivers	on	the	second	pulse,	and	so	forth.

For	this	example	problem,	we	want	to	generate	a	three-dimensional	plot	of	 the	processor
output	as	a	function	of	angle	and	frequency.	We	can	do	this	in	several	ways.	One	would	be	to
use	(16.70)	and	compute

for	θ	and	f	of	interest.	An	alternate	method	would	be	to	use	the	FFT	to	implement	[see	(16.69)]



and	use

This	was	the	method	used	to	generate	the	plots	of	Figures	16.7	and	16.8.	The	weight	vector
is	formed	into	a	two-dimensional	weight	matrix,	W,	by	reversing	the	algorithm	used	to	form
S(θs,fd)	and	D(ϕr,fr).	That	 is,	we	 let	 the	 first	 column	of	W	 be	 the	 first	N	 elements	 of	w,	 the
second	column	be	the	second	N	elements,	and	so	forth.	We	next	compute	V(θ,f)	by	computing
the	Fourier	transform	of	W	using	a	two-dimensional	(2-D)	FFT.	Finally,	G(θ,f)	 is	computed
using	(16.86).

The	 results	 of	 this	 process	 are	 shown	 in	Figures	16.7	 and	 16.8.	 The	 figures	 are	 contour
plots	where	shading	is	used	to	indicate	power	in	dB.	The	bar	to	the	right	provides	the	relation
between	power	level	and	shading.	The	y-axis	is	sin(θ)	and	has	the	units	of	sines	(see	Chapter
12).	This	vertical	axis	scaling	was	chosen	because	it	was	compatible	with	the	routine	used	to
generate	 the	 plots.	A	 512	 by	 512,	 2-D	FFT	 (rather	 than	 a	 16	 by	 16,	 2-D	FFT)	was	 used	 to
generate	the	plots.	This	was	done	to	provide	a	plot	that	showed	the	gradations	in	power	level.

Figure	16.7	is	a	plot	of	G(θ,f)	for	the	case	where	the	interference	consisted	of	only	receiver
noise.	Since	the	target	was	located	at	(θs,fd)	=	(0,0),	the	resulting	weight,	w,	was	a	vector	of
256	 ones.	 As	 expected,	 the	 peak	 of	G(θ,f)	 occurs	 at	 (0,0).	 Note	 that	 the	 two	 interference
sources	are	located	on	the	peaks	of	two	angle-Doppler	sidelobes	G(θ,f).	Because	of	this,	 the
only	 rejection	 of	 these	 sources	 offered	 by	 the	 processor	 is	 due	 to	 the	 amplitudes	 of	 the
sidelobes	 relative	 to	 the	 response	 at	 (0,0).	 The	SINR	 for	 this	 case	was	 –13.4	 dB.	When	 the
interference	 sources	 were	 omitted,	 the	 SNR	 was	 the	 expected,	 noise-limited	 value	 of
10log(256)	=	24.1	dB.



Figure	16.7	Angle-Doppler	map—weights	based	on	only	receiver	noise.

Figure	16.8	Angle-Doppler	map—	two	interference	sources	included	in	weight	computation.



Figure	16.8	is	a	plot	of	G(θ,f)	for	the	case	where	the	interference	sources	were	included	in
the	weight	computation.	The	two	nulls	at	the	locations	of	the	interferences	are	clearly	visible,
as	is	the	main	beam	at	(0,0).	With	this	set	of	weights,	the	SINR	was	24.1	dB,	which	is	the	noise-
limited	value.

As	an	experiment,	the	optimization	was	extended	to	include	two	desired	targets:	one	at	(0,0)
and	another	at	(θs2,fd2)	=	(39°,	217	Hz).	Both	targets	had	the	same	normalized	power	of	PS1	=
PS2	=	1.	The	second	target	was	also	placed	so	that	its	Doppler	frequency	was	the	same	as	one
of	the	interference	sources.	However,	it	was	separated	in	angle	from	the	interference	source.
The	other	interference	source	was	left	at	location	shown	in	Figures	16.7	and	16.8.

Figure	16.9	contains	G(θ,f)	 for	 the	case	where	 the	weight	computation	was	based	on	only
receiver	noise.	As	can	be	seen,	the	calculated	weights	are	such	that	there	are	two	main	lobes	at
the	 locations	 of	 the	 two	 targets.	 The	 distortion	 in	 the	 angle-Doppler	 map	 is	 due	 to	 the
interaction	of	the	two	targets.	Specifically,	the	targets	were	placed	so	that	one	was	on	the	peak
of	a	 sidelobe	of	 the	other.	When	 the	 interference	 sources	were	omitted,	 the	SNR	was	about
21.1	dB	 for	 each	of	 the	 targets.	However,	when	 the	 interference	 sources	were	 included,	 the
SINR	 for	 each	 of	 the	 targets	was	 –31.1.	 The	 noise-only	 SNR	 of	 21.1	 is	 3	 dB	 less	 than	 the
single	target	case	because	of	the	presence	of	two	targets	rather	than	one.

Figure	16.10	corresponds	to	the	case	where	the	two	interference	sources	were	included	in
the	computation	of	w.	As	would	be	expected,	the	peaks	at	the	locations	of	the	targets	are	still
present.	However,	 the	weights	 have	 altered	 the	 angle-Doppler	 sidelobe	 structure	 to	 place	 a
null	at	the	angle	location	of	the	interference	sources	that	was	at	the	same	Doppler	frequency
as	 one	 of	 the	 targets.	 For	 this	 case,	 the	 combined	 SINR	 at	 the	 output	 of	 the	 processor	was
about	21.2	dB	for	target	1	[the	target	at	(0,0)]	and	21	dB	for	the	other	target,	which	is	about	the
same	 as	 the	 noise	 only	 case.	 This	 indicates	 that	 the	weight	 calculation	 algorithm	 chose	 the
weights	so	that	both	interference	sources	were	greatly	attenuated.

We	 note	 that	 the	 examples	 of	 this	 section	 are	 “academic.”	 In	 practice,	 it	 is	 unlikely	 that
interference	would	be	at	only	two	specific	angle-Doppler	locations	(or	that	we	would	want	to
place	beams	on	 two	 targets	at	 the	 same	 time).	More	 likely,	 the	 interference	would	be	a	 line
through	 angle-Doppler	 space.	This	might	 be	 the	 situation	 encountered	 in	 an	 airborne	 radar
application	 where	 STAP	 was	 used	 to	 mitigate	 ground	 clutter.	We	 consider	 this	 in	 the	 next
example.



Figure	16.9	Angle-Doppler	map—weights	based	on	only	receiver	noise—two	targets.



Figure	16.10	Angle-Doppler	map—two	interference	sources	included	in	weight	computation—two	targets.

16.5.2	Example	4

As	another	 example	of	STAP,	we	consider	 the	 simplified	airborne	 radar	problem	shown	 in
Figure	16.11.	The	aircraft	in	the	center	of	the	concentric	circles	contains	a	search	radar	(e.g.,
AWACS—airborne	warning	and	control	 system)	 that	 is	 flying	at	 an	altitude	of	3	km,	 in	 the
direction	of	the	arrow,	at	a	velocity	of	100	m/s.	The	target	is	also	at	an	altitude	of	3	km	and	is
flying	in	the	direction	shown	at	a	velocity	of	50	m/s.	At	the	time	of	interest,	the	angle	to	the
target	is	αT	=	−30°.	The	range	to	the	target,	rT	=	10	km.

To	 simplify	 the	 example,	 we	 (unrealistically)	 assume	 the	 antenna	 consists	 of	 16
omnidirectional	(isotropic)	radiators	that	are	located	on	the	bottom	of	the	aircraft.	The	array
is	oriented	along	the	length	of	the	aircraft	and	the	element	spacing	is	½	wavelength.	The	radar
transmits	16	pulses.	Thus,	the	antenna	and	waveform	are	consistent	with	Example	3.	We	will
use	STAP	to	form	a	beam	and	nulls	in	azimuth-Doppler	space.	We	assume	the	radar	is	using
an	operating	frequency	of	3	GHz	and	a	PRI	of	T	=	200	µs.	Since	we	do	not	need	it,	we	will
leave	the	pulsewidth	unspecified.

The	ring	of	Figure	16.11	represents	the	ground	region	illuminated	by	the	radar	at	the	range
to	 the	 target	(10	km).	The	radar	will	also	 illuminate	clutter	at	 ranges	of	10	km,	plus	ranges
corresponding	to	multiples	of	the	PRI.	That	is,	at	ranges	of	rT	+	ncT/2,	where	n	 is	an	integer
and	c	is	the	speed	of	light.	For	this	example,	we	ignore	those	clutter	returns.

Figure	16.11	Geometry	for	Example	4.

We	assume	the	per-pulse	and	per-element	SNR	and	SCR	are	0	dB	and	−50	dB,	respectively.



Assuming	a	normalized	noise	power	of	PN	=	1	W,	the	normalized	signal	power	is	PS	=	1	W,
and	a	normalized	 interference	 (clutter)	power	 is	PI	=	105	W.	The	powers	are	defined	at	 the
output	of	the	single-pulse	matched	filter.
Given	that	the	aircraft	altitude	is	hA	=	3	km	and	the	range	to	the	ground	clutter	 is	rg	=	10

km,	the	ground	range	to	the	clutter	annulus	is

We	can	use	this,	along	with	VT,	to	compute	the	Doppler	frequency	of	the	ground	clutter	as

where	we	note	that	ug	varies	from	−1	to	1	as	θg	varies	from	0	to	2π.

Since	the	aircraft	and	the	target	are	at	the	same	altitude,	we	can	write	the	equation	for	the
target	Doppler	frequency,	at	the	radar,	as

The	target	is	located	at	(θT,	fdT)	=	(−π/6,	−0.5	kHz)	in	angle-Doppler	space.

Rather	 than	 being	 concentrated	 at	 point	 in	 angle-Doppler	 space,	 the	 clutter	 is	 distributed
along	a	line	defined	by	(16.96).	This	is	illustrated	in	Figure	16.12,	which	is	a	plot	like	Figure
16.7	with	the	“beam”	in	angle-Doppler	space	steered	to	(θT,	fdT),	the	target	location.	The	white
line	is	a	plot	of	(16.96)	and	the	black	circle	indicates	the	target	location.	The	brightest	square
is	the	main	beam	and	the	other	squares	are	sidelobes.	The	vertical	axis	is	u	=	sin(θ)	and	 the
horizontal	 is	 frequency,	 f,	 in	 kilohertz	 (kHz).	 For	 this	 example,	 we	 assumed	 the	 clutter
spectrum	width	was	zero.	In	practice,	the	width	will	be	not	be	zero	because	of	internal	clutter
spectral	 spread	 (see	Chapter	13)	 and	 the	 aircraft	motion.	As	 can	 be	 seen,	 the	 clutter	 “line”
skirts	the	main	beam	and	passes	close	to	the	target.	We	did	this	intentionally	to	stress	the	STAP
algorithm.

In	its	basic	form,	the	STAP	algorithm	developed	in	this	chapter	is	designed	to	accommodate
only	point	 sources	of	 interference	 in	angle	and	Doppler.	However,	we	can	approximate	 the
continuous	 line	of	Figure	16.12	by	a	 series	of	 closely	 spaced	point	 sources.	We	choose	 the
point	 sources	 so	 that	 the	 spacing	 between	 them	 is	 much	 less	 than	 the	 angle	 and	 Doppler
resolution	of	the	waveform	and	linear	array.



Figure	 16.12	 Illustration	 of	 angle-Doppler	 plot	 for	 interference	 (white	 line)	 and	 target	 (black	 circle),	 overlaid	 on	 the
unoptimized	angle-Doppler	contour	plot.

As	 a	 reminder,	 the	Doppler	 resolution	 of	 the	waveform	 is	 equal	 to	 the	 reciprocal	 of	 its
duration,	or	1/16T	in	this	case.	The	angle	resolution	of	the	linear	array	is	equal	to	its	length,
which	is	16(λ/2)	in	this	case.	To	satisfy	the	point	source	spacing	requirement,	we	represented
the	line	by	40	point	sources.	We	set	the	angle	spacing	between	the	point	sources	to	the	length
of	the	line	(2	sines)	divided	by	40.	We	computed	the	corresponding	fdg	from	(16.96).

To	compute	the	R	matrix,	we	need	to	form	40	interference,	angle-Doppler	steering	vectors.
The	i	th	angle-Doppler	steering	vector,	D(iΔu,	iΔf),	is	a	16	×	16	=	256	element	vector	whose
elements	are	given	by

with	Δu	=	2/40	and	Δf	=	1,900Δu.

With	this,	we	use	(16.81)	to	form	the	R	matrix	as

Finally,	we	use	(16.73),	with	κ	=	1,	to	find	the	optimum	weight.	We	use	(16.75),	 (16.76),	and
(16.77),	with	θs	=	θT	and	 fs	=	 fdT,	 to	 find	S(θT,fdT).	The	 result	of	 computing	 the	weights	 and



applying	them	in	the	STAP	processor	is	shown	in	Figure	16.13.	Note	that	there	is	now	a	deep
notch	where	 the	white	 line	of	Figure	16.12	was	 located.	The	SINR	before	optimization	was
−31	dB.	After	optimization,	it	was	23.5	dB,	which	is	close	to	the	noise	limited	case	of	24.1	dB.
This	means	the	STAP	processor	has	effectively	attenuated	the	clutter.	As	with	Figure	16.12,	the
black	circle	is	the	target	location	and	the	white	square	is	the	main	beam.
In	this	example,	we	knew	location	of	the	target	in	range,	angle,	and	Doppler	and	we	knew

the	angle-Doppler	distribution	of	 the	ground	clutter.	We	also	knew	 the	SNR	and	SCR	at	 the
matched	filter	output	for	each	antenna	element	and	pulse.	In	practice,	we	may	not	know	all	of
this.	 If	 the	 radar	 was	 conducting	 search,	 we	 would	 effectively	 know	 the	 range,	 angle,	 and
Doppler	 of	 interest	 for	 each	 search	 interrogation.	Thus,	we	would	know	where	we	want	 to
steer	the	angle-Doppler	main	beam,	which	means	we	can	compute	S(θT,fdT).	However,	we	may
not	know	the	angle-Doppler	distribution	or	power	of	the	clutter.	Without	this	information,	we
could	not	compute	R,	and	would	need	to	determine	it	from	measurements.

As	 a	note,	 since	we	assumed	a	 linear	 array	of	omnidirectional	 elements,	when	 the	STAP
algorithm	formed	an	angle-Doppler	beam	at	 (θT,	 fdT)	=	 (−π/6,	−0.5	kHz),	 it	 formed	another
one	at	(θT,	fdT)	=	(π	+	π/6,	−0.5	kHz).	We	ignored	this	second	beam.

Figure	16.13	Angle-Doppler	contour	plot	with	the	optimum	weights.	The	black	circle	is	the	target	location.

16.6	ADAPTIVITY	AGAIN

In	 our	 work	 so	 far,	 we	 assumed	 we	 knew	 the	 various	 parameters	 needed	 to	 compute	 the



optimum	weights.	 In	 particular,	we	 assumed	we	 had	 enough	 information	 to	 compute	 the	R
matrix.	 In	 most	 applications,	 this	 is	 not	 the	 case,	 and	 we	 must	 estimate	 R	 through
measurements.	This	is	part	of	the	adaptive	part	of	STAP:	that	the	environment	is	probed	and
the	results	are	used	to	experimentally	formulate	the	R	matrix.	A	potential	procedure	for	doing
this	follows.
For	 each	 antenna	 element	 (T/R	 module)	 and	 pulse,	 we	 sample	 the	 combined	 noise	 and

interference	in	range	cells	we	believe	contain	the	interference	but	not	the	target.6	We	then	use
the	 samples	 to	 estimate	 R.	 Specifically,	 if	 we	 write	 the	 combined	 noise	 and	 interference
voltage	on	a	particular	sample	as	VlN	+	I,	we	can	form	an	estimate	of	R	as

where	L	is	the	number	of	samples	taken.	As	a	point	of	clarification,	it	should	be	noted	that	Vln
+	I	is	a	KN	element	vector.

A	question	that	arises	is:	how	large	does	L	need	to	be?	If	L	=	1,	we	will	be	multiplying	a	KN
element	vector	by	its	Hermitian	to	produce	an	KN	by	KN	matrix.	This	matrix	will	have	a	rank
of	1	since	it	was	formed	as	the	outer	product	of	two	vectors	and	thus	has	only	one	independent
column.	This	means	that	 	has	only	one	nonzero	eigenvalue,	is	thus	singular,	and	 	does
not	exist.	Because	of	this,	solving	for	w	by	the	previous	method	will	not	work.

Given	VlN	+	I	consists	of	random	variables,	there	is	a	chance	that	 	will	have	a	rank	equal
to	L	(for	L	≤	KN).	Thus,	to	have	any	chance	of	obtaining	a	 	that	is	nonsingular,	at	least	KN
samples	 of	 VlN	 +	 I	 must	 be	 taken.	 As	 L	 becomes	 larger,	 R	 will	 converge	 to	 reasonable
approximation	of	R,	and	will	be	nonsingular.	A	relation	that	gives	an	idea	of	how	large	L	must
be	is	[11]

In	this	equation,	ρ	is	the	ratio	of	achievable	SINR	with	 	to	the	SINR	improvement	when	the
actual	R	is	used.	For	L	=	KN

which	 says	 that	 the	 SINR	 improvement	 actually	 achieved	will	 be	 significantly	 less	 than	 the
theoretical	SINR	improvement	possible	with	the	actual	R.	As	a	specific	example,	in	Examples
3	and	4,	KN	=	256.	Thus,	the	expected	SINR	based	on	256	samples	of	VlN+I	will	be	2/257	or
about	21	dB	below	the	optimum	SINR	improvement.	If	we	increase	L	to	2KN	or	512	samples
we	would	get



Thus,	the	expected	SINR	improvement	based	on	 	would	be	about	3	dB	below	the	optimum
SINR	improvement.	However,	we	note	that	this	represents	a	large	number	of	samples,	which
will	require	extensive	time	and	radar	resources.	Also,	for	the	aircraft	case	of	Example	4,	 the
environment	would	change	before	the	STAP	algorithm	could	gather	enough	samples	to	form
the	 	matrix.	We	will	briefly	address	this	in	the	next	section.

16.7 PRACTICAL	CONSIDERATIONS

In	practice,	it	may	be	possible	to	use	fewer	samples	of	VlN	+	I	if	we	have	a	reasonable	estimate
of	 the	 receiver	 noise	 power.	We	would	 use	 the	 aforementioned	 approximation	 to	 form	 an
estimate	of	RI,	the	interference	covariance	matrix.	If	we	term	this	estimate	 ,	we	would	form	
	from

where	PN	is	the	receiver	noise	power	estimate	(per	antenna	element	and	pulse).	This	approach
is	termed	diagonal	loading	[11,	22,	23].	Adding	the	term	PN	I	ensures	that	 	will	be	positive
definite	and	that	 	exists.

With	this	method,	the	number	of	samples,	L,	can	theoretically	be	as	small	as	the	anticipated
number	of	interference	sources	[11].	Note	that	this	will	generally	be	much	smaller	than	KN.

This	 method	 can	 have	 problems	 in	 that	 sometimes	 	 can	 become	 ill-conditioned	 [14],
which	 can	 cause	 the	 optimization	 to	 put	 nulls	 in	 the	 wrong	 locations.	 To	 circumvent	 this
problem,	it	may	be	necessary	to	use	more	samples	in	the	computation	of	 	and/or	artificially
increase	PN.	Taking	more	samples	is	problematic	because	this	requires	an	extra	expenditure
of	 time	 and	 radar	 resources.	However,	 increasing	PN	 will	 cause	 the	 SINR	 improvement	 to
degrade,	potentially	to	unacceptable	levels.

For	 the	 aircraft	 clutter	 problem,	 it	 may	 be	 possible	 to	 use	 aircraft	 information	 such	 as
altitude	or	velocity	to	form	somewhat	of	an	analytical	estimate	of	the	clutter	distribution	over
angle-Doppler	space.	Still	another	approach	suggested	in	[24]	is	somewhat	of	an	extension	of
the	method	used	in	sidelobe	cancellation.	Specifically,	a	portion	of	the	array	would	be	used	to
gather	 data	 and	 another	 portion	 would	 be	 used	 in	 the	 actual	 STAP	 algorithm.	 This	 would
reduce	the	degrees	of	freedom	available	to	the	STAP	algorithm,	but	it	may	make	it	possible	to
afford	clutter	rejection	that	could	be	obtained	by	other	means.

More	 information	 about	 these	 and	 other	 practical	 aspects	 of	 STAP	 can	 be	 found	 in	 [3,
11–13,	24].

16.8 EXERCISES



1. Show	that	(16.1)	follows	from	(16.4).

2. Derive	the	form	of	(16.11).	Specifically,	show	that	Rn	is	a	diagonal	matrix.

3. Derive	(16.17).

4. Derive	(16.24).	Specifically,	explain	why	the	double	sum	reduces	to	a	single	sum.

5. Derive	(16.28)	starting	with	(16.27).

6. Implement	a	spatial	optimization	algorithm	and	generate	the	plot	of	Example	1.

7. Repeat	 Exercise	 6	 with	 interference	 1	 located	 at	 4°	 instead	 of	 18°.	 This	 places	 the
interference	 slightly	 more	 than	 ½	 beamwidth	 from	 the	 target.	 You	 will	 note	 that	 the
algorithm	places	a	null	 in	 the	main	beam	and	moves	 the	peak	of	 the	mainbeam	slightly
off	of	the	target.

8. Derive	(16.38)	using	(16.36)	and	(16.37).

9. Implement	a	temporal	optimization	algorithm	and	generate	the	plot	of	Example	2.

10. Implement	a	space-time	optimization	algorithm	and	generate	the	four	plots	of	Example	3.

11. Repeat	Exercise	10	with	 the	second	 target	 located	at	 (θs2,fd2)	=	(34°,	–217	Hz).	Note	 the
difference	in	the	angle-Doppler	maps	when	compared	to	Figures	16.9	and	16.10.
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1	 We	 will	 restrict	 the	 development	 to	 linear	 arrays	 as	 a	 convenience.	 The	 extension	 to	 a	 planar	 array	 is	 reasonably
straightforward.
2	Consistent	with	other	developments	in	this	book,	we	are	using	complex	signal	notation	as	a	convenient	means	of	representing
the	amplitude	and	phase	of	RF	or	IF	signals.
3	In	Chapter	12,	we	used	W	instead	of	WH.	We	made	the	switch	here	to	be	more	consistent	with	the	notation	used	in	STAP.
4	As	a	caution	R(θ)	is	the	radiation	pattern,	which	is	not	to	be	confused	with	the	covariance	matrix,	R	[without	(θ)].
5This	carries	the	assumption	that	the	radar	is	operating	unambiguously	in	range.
6	In	practice,	we	can	allow	the	range	cells	to	contain	the	target	return	if	the	overall	SNR	and	SIR	(signal-to-interference	ratio)
is	very	small	for	each	antenna	element	and	pulse.



Chapter	17

Sidelobe	Cancellation

17.1 INTRODUCTION

Sidelobe	 cancellation	 (SLC)	 is	 similar	 to	 STAP,	 or	 more	 accurately	 SAP	 (spatial	 adaptive
processing),	 in	 that	 it	 is	 aimed	 at	 removing	 interference.	 With	 SAP,	 also	 called	 adaptive
nulling	and	adaptive	beam	forming,	the	antenna	properties	are	changed	to	place	a	null	in	the
radiation	 pattern	 at	 the	 angular	 location	 of	 the	 interference.	 A	 sidelobe	 canceller	 does	 not
modify	 the	 main	 antenna.	 Instead,	 it	 attempts	 to	 subtract	 the	 interference	 from	 the	 main
antenna	 output	 by	 using	 signals	 from	 auxiliary	 antennas.	 Since	 SAP	 modifies	 the	 antenna
radiation	 pattern,	 it	 can	 only	 be	 implemented,	 in	 its	 pure	 form,	 for	 phased	 array	 antennas
where	the	output	of	each	element,	or	a	reasonably	large	number	of	subarrays,	is	available	for
manipulation.	As	a	result,	SAP	will	not	work	on	reflector	antennas	or	space-fed	phased	array
antennas.	Since	SLC	does	not	modify	the	radiation	pattern	of	the	antenna,	it	can	be	used	with
all	types	of	antennas.

The	 design	 criteria	 for	 SAP	 and	 SLC	 are	 also	 different.	 The	 SAP	 criterion	 is	 based	 on
maximizing	SINR,	while	SLC	is	based	on	minimizing	the	interference	at	the	SLC	output.	The
basic	SLC	design	methodology	is	an	application	of	Wiener	filtering,	which	is	the	theory	used
in	communication	systems	for	mitigation	of	multipath	and	other	types	of	interference	signals
[1–4].

SLC	is	designed	to	operate	against	active	electronic	attack	(EA)	devices	(jammers)	and	not
against	 clutter	 or	 passive	 interference	 such	 as	 chaff.	 It	 is	 usually	 assumed	 the	EA	 signal	 is
noise-like	with	a	bandwidth	that	exceeds	the	IF	bandwidth	of	the	radar	receiver.	However,	this
is	 not	 a	 requirement,	 and	 an	SLC	can	 cancel	 narrowband	noise.	We	note,	 however,	 that	 the
time	required	for	the	SLC	to	gather	sufficient	noise	data	is	inversely	proportional	to	the	noise
bandwidth	 at	 the	point	where	 the	noise	data	 is	 obtained.	This	 creates	 the	possibility	 that	 the
SLC	may	not	be	able	to	gather	the	noise	data	needed	to	cancel	it.	It	is	also	usually	assumed	the
EA	 signal	 is	 entering	 the	 radar	 antenna	 through	 one	 of	 the	 sidelobes	 of	 the	 main	 antenna
radiation	pattern.	The	fact	that	SLC	cancels	interference	entering	the	radar	through	the	main
antenna	sidelobes	is	believed	to	be	the	origin	of	the	term	sidelobe	cancellation.

Paul	W.	Howells	invented	the	sidelobe	canceller	in	the	1960s	and	was	awarded	a	patent	for
it	 on	 August	 24,	 1965	 [5].	 Shortly	 thereafter,	 Sydney	 P.	 Applebaum	 published	 a	 classified
report	on	his	analysis	of	Howells’	SLC	[6].	Since	that	time,	the	SLC	implementation	invented
by	Howells	has	usually	been	called	the	Howells-Applebaum	SLC.

The	 original	 Howells-Applebaum	 SLC	 was	 an	 analog,	 closed-loop,	 servomechanism
device,	which	was	later	implemented	as	digital	loops.	With	the	advent	of	high-speed	analog-
to-digital	converters	and	high-speed	digital	signal	processors,	SLCs	have	evolved	into	open-
loop,	digital	implementations.	Both	types	are	discussed	in	this	chapter.	We	begin	by	discussing



interference	cancellation,	which	is	the	theory	upon	which	SLC	is	based.	We	then	describe	the
open-loop	 implementation	 of	 the	 SLC.	 We	 next	 discuss	 SLC	 weight	 computation	 via	 the
gradient	technique	and	use	it	to	derive	the	Howells-Applebaum	form	of	the	SLC.	Finally,	we
close	the	chapter	with	a	brief	discussion	of	sidelobe	blanking	 (SLB).	While	SLC	attempts	 to
cancel	interference,	the	sidelobe	blanker	simply	turns	off	the	receiver	when	it	determines	that
interference	is	obscuring	the	desired	return.

17.2 INTERFERENCE	CANCELLER

Figure	 17.1	 contains	 a	 functional	 block	 diagram	 of	 the	 interference	 canceller	 we	 will
consider.	The	top	antenna	represents	the	main	antenna	of	the	radar	and	the	bottom	antenna	is
an	auxiliary	antenna	used	to	gather	information	on	the	interference	signal.	The	block	with	w*
(t)	is	a	gain,	or	weight.	The	arrow	through	the	box	indicates	that	the	weight	is	adjusted	based
on	the	error	voltage,	ve(t).	The	error	voltage	is	formed	by	subtracting	a	weighted	version	of
the	auxiliary	channel	signal,	va(t),	from	the	main	channel	signal,	vm(t).	In	equation	form1

where	 *	 denotes	 the	 complex	 conjugate.	 The	 error	 signal	 is	 sent	 to	 the	 rest	 of	 the	 radar
receiver	and	signal	processor.

If	 the	 interference	canceller	 is	working	correctly,	ve(t)	will	 contain	only	 echoes	 received
through	 the	main	 beam	 of	 the	main	 antenna,	 which	we	will	 consider	 to	 be	 the	 desired,	 or
target,	echoes.2	 Indeed,	suppose	vm(t)	consists	of	a	desired	signal,	vs(t),	 and	an	 interference
signal,	vI(t).	That	is,

Figure	17.1	Interference	canceller	block	diagram.

The	auxiliary	channel	signal,	va(t),	also	consists	of	vs(t)	and	vI(t)	but	in	different	proportions.
That	is



Suppose	we	are	able	to	choose	the	weight,	w*(t),	as

With	this	we	get

Thus,	 as	 hoped,	 the	 error	 signal	 consists	 of	 a	 scaled	 version	 of	 the	 desired	 signal	 and	 no
interference	 signal.	 This	 tells	 us	 the	 configuration	 of	 Figure	 17.1	 has	 the	 potential	 of
accomplishing	 the	 desired	 objective	 and	 gives	 us	 incentive	 to	 develop	 a	 more	 practical
algorithm.

17.3 INTERFERENCE	CANCELLATION	ALGORITHM

We	first	derive	an	algorithm	for	cancellation	of	a	single	interference	signal	and	then	extend	it
to	the	case	where	there	are	multiple	interference	signals.

17.3.1 Single	Interference	Signal

We	assume	both	the	desired	and	the	interference	signals,	vs(t)	and	vI(t),	are	complex	random
processes.	We	need	this	assumption	because	the	interference	signals	of	interest	are	noise-like,
and	we	have	established	 that	we	 should	 treat	 target	 return	 signals	 as	 random	processes.	We
consider	 them	 as	 complex	 because	 they	 have	 random	 amplitudes	 and	 phases.	 We	 further
assume	vI(t)	 is	 zero-mean	 and	wide-sense	 stationary	 (WSS).	We	assume	vs(t)	 is	 zero-mean,
but	we	cannot	assume	it	is	WSS	because,	in	general,	it	is	a	pulsed	signal.	Since	vs(t)	and	vI(t)
are	complex,	zero-mean	random	processes,	so	are	vm(t)	and	va(t).	We	assume	vs(t)	and	vI(t)
are	independent.	As	a	note,	vm(t)	and	va(t)	will	also	contain	components	due	to	receiver	noise.
We	 will	 ignore	 the	 receiver	 noise	 for	 now,	 but	 will	 consider	 it	 in	 the	 more	 general
development	of	Section	17.3.3.

Since	vs(t),	vI(t),	vm(t),	and	va(t)	are	zero-mean,	complex	random	processes,	for	some	t	=
t1,	vs(t1),	vI(t1),	vm(t1),	and	va(t1)	are	zero-mean,	complex	random	variables.	We	will	denote
these	as	vs,	vI,	vm,	and	va.	Also,	because	of	 the	WSS	assumption,	 the	mean-square	value,	or
power,	of	vI(t1)	is	independent	of	t1.

We	define	the	error	voltage	at	t	=	t1	as



We	note	that	ve	is	zero-mean.

We	now	define	a	criterion	for	determining	w.	In	STAP	(Chapter	16),	we	used	maximization
of	SINR	as	the	design	criterion.	For	the	SLC,	we	use	minimization	of	the	mean-square	value
of	ve	as	the	criterion.	In	equation	form,	we	choose	w	according	to

We	use	the	magnitude	of	ve	because	it	is	complex;	we	use	the	expected	value,	E{x},	because	ve
is	 a	 random	 variable;	 and	 we	 use	 the	 square	 because	 it	 is	 reasonably	 easy	 to	 work	 with.
Equation	(17.7)	 is	 termed	a	 least	mean-square	 (LMS)	criterion	 that	 appears	 in	Wiener	 filter
theory	[1,	3,	7].

From	Wiener	 filter	 theory,	 a	 necessary	 and	 sufficient	 condition	 for	w	 to	 minimize	 the
mean-square	error	is	to	choose	it	so	that

The	symbol	∇	denotes	the	gradient	operator.
It	is	easily	shown	that	(17.8)	(see	Exercise	1)	reduces	to

Equations	(17.8)	 and	 (17.9)	 are	 also	 known	 as	 the	orthogonality	 condition.	 They	 tell	 us	 the
optimum	weight,	wopt,	 is	 chosen	 so	 that	 the	 error	 signal,	 ve,	 is	 orthogonal,	 in	 a	 statistical
sense,	to	the	auxiliary	channel	signal,	va.

Solving	(17.9)	for	wopt	gives

which	is	one	form	of	the	Wiener-Hopf	equation	[1–3,	8].

17.3.2 Example	1

To	 illustrate	 the	procedure	of	Section	17.3.1,	we	 consider	 an	 example	using	 (17.1)	 through
(17.3).	Using	(17.2)	and	(17.3),	we	get



where	we	made	use	of	the	assumption	that	vs(t)	and	vI(t)	are	independent.	In	(17.11),	Ps(t1)	 is
the	power	(or	energy)	of	 the	desired	signal	at	 t	=	 t1	and	PI	 is	 the	power	 (or	energy)	of	 the
interference	signal.3	 The	 powers	 are	measured	 at	 the	 point	where	 the	 SLC	 is	 implemented.
This	could	be	before	or	after	the	matched	filter.	We	left	the	time	parameter	on	vs	because	we
will	discuss	this	time	dependency	later	in	this	example.

The	denominator	of	(17.10)	is

Combining	(17.10)	through	(17.12)	gives

If	we	assume	PI	≫	Ps(t1)	(the	interference	signal	is	much	larger	than	the	desired	signal,	at	the
faces	of	the	main	and	auxiliary	antennas),	(17.13)	reduces	to

which	is	the	solution	we	postulated	in	Section	17.2.

If	Ps(t1)	≫	PI,	(17.13)	reduces	to

Substituting	this	into	(17.1)	gives	the	disturbing	result



Equation	 (17.16)	 says	 that	 if	 we	 compute	 the	 weight	 based	 on	 data	 at	 the	 time	 the	 desired
signal	is	present,	and	if	the	desired	signal	is	much	larger	than	the	interference	signal,	the	SLC
will	cancel	the	desired	signal	and	pass	the	interference.

This	result	 leads	to	the	observation	that,	 if	possible,	 the	weight,	wopt,	should	be	based	on
measurements	obtained	when	 the	 input	 to	 the	main	and	auxiliary	antennas	contains	only	 the
interference	 signal.	 This	 may	 be	 possible	 if	 the	 samples	 are	 obtained	 shortly	 before	 the
transmit	pulse	since	it	is	it	is	unlikely	that	any	desired	echo	signals	will	be	present	at	this	time.

As	another	extension	of	this	example,	we	examine	the	case	where	there	are	two	independent
interference	sources,	vI1(t)	and	vI2(t),	with	powers	PI1	and	PI2.	We	assume	PI1	≫	Ps	and	PI2	≫
Ps.	For	this	example,	we	have

and

With	this,	we	get

and

The	optimum	weight	is



or	with	the	assumptions	PI1	≫	Ps	and	PI2	≫	Ps

We	note	that	wopt(t1)	is	a	function	of	not	just	K2	and	K4	as	in	(17.14),	but	also	K5,	K6,	PI1,
and	PI2.	If	we	substitute	this	into	(17.6),	we	get

It	is	not	clear	if	either	vI1(t)	or	vI2(t)	will	be	canceled	or	even	reduced.	Also,	the	impact	of
the	 SLC	 on	 both	 the	 signal	 and	 interferences	will	 depend	 on	 the	 interference	 powers.	 This
leads	 to	 the	 observation	made	by	Applebaum	 in	 his	 original	 SLC	analysis	 [6]	 that	 the	 SLC
may	not	be	able	to	cancel	all	interference	signals	if	the	number	of	interferences	exceeds	the
number	of	auxiliary	channels.

Before	we	discuss	SLC	performance	further,	we	will	extend	the	development	to	the	case	of
multiple	 interferences	 and	multiple	 auxiliary	 channels.	We	will	 also	 add	 noise	 to	 va(t)	 and
vm(t).

17.3.3 Multiple	Interference	Sources

Figure	17.2	contains	a	functional	block	diagram	configuration	for	multiple	interferences	and
multiple	 auxiliary	 channels.	 We	 assume	 one	 main	 channel,	 N	 auxiliary	 channels,	 and	 K
interference	sources.	The	output	of	each	auxiliary	channel,	van(t),	 is	multiplied	by	a	weight,
wn*.	The	results	are	summed	and	subtracted	from	the	main	channel	signal,	vm(t),	to	form	the
error	signal,	ve(t).	The	equation	for	ve(t)	is

where

and



Figure	17.2	Multiple	channel,	multiple	interference	SLC	problem.

The	 superscripts	 H	 and	 T	 denote	 the	 conjugate-transpose	 (Hermitian)	 and	 transpose,
respectively.

As	before,	the	design	criterion	is	minimization	of	the	mean-square	error.	That	is,

where,	 as	before,	ve	 =	ve(t1),	vm	 =	vm(t1),	 and	 so	 forth.	 Extending	 (17.8)	 to	 the	 vector	 case
results	in

The	gradient,	∇J,	is

Using	(17.29)	in	(17.28),	with	(17.27),	results	in



which	we	can	solve	to	give

where

and

R	is	a	covariance	matrix	much	like	the	one	discussed	in	Chapter	16.

17.4 IMPLEMENTATION	CONSIDERATIONS

Now	that	we	have	a	general	formulation	of	the	SLC	equations,	we	consider	topics	we	need	to
analyze	and	model	an	SLC.

17.4.1 Form	of	vm(t)	and	va(t)

From	Figure	17.2,	we	note	that	the	signal	in	the	main	channel,	vm(t),	and	each	of	the	auxiliary
channels,	van(t),	are	functions	of	the	desired	signal,	vs(t),	and	all	of	 the	interference	signals,
vIk(t).	As	indicated	earlier,	they	will	also	include	a	noise	component.	With	this	we	can	write

where	Am(utgt,vtgt)	is	the	(complex)	“voltage	directivity”	of	the	main	antenna	in	the	direction
of	the	desired	signal	and

is	a	vector	of	voltage	directivities	of	the	main	antenna	in	the	directions	of	the	K	 interference
sources.	The	A(u,v)	are	given	by

for	 an	 array	with	 rectangular	 packing	 (see	Chapter	12).	 (u,v)	 is	 the	 location	 of	 the	 desired
signal	source	or	interference,	as	appropriate,	and	(u0,v0)	is	the	direction	to	which	the	beam	is



steered.	These	were	the	functions	used	to	compute	the	radiation	pattern	[i.e.,	R(u,v)	=	|A(u,v)|2]
in	Chapter	12.

vI(t)	is	a	vector	of	interference	signals	represented	by

and	nm(t)	is	the	noise	in	the	main	channel.

va(t)	is	a	vector	of	auxiliary	channel	signals	and	is	given	by	(17.19).	Each	of	the	auxiliary
channel	signals	is	of	the	form

In	 (17.38),	 nan(t)	 is	 the	 noise	 in	 the	 nth	 auxiliary	 channel	 and	 Aan(utgt,vtgt)	 is	 the	 voltage
directivity	nth	auxiliary	channel	antenna	in	the	direction	of	the	desired	signal	source.	Aan	is	a
vector	 of	 voltage	 directivities	 in	 the	 directions	 of	 the	 interference	 sources.	 It	 has	 the	 same
form	as	Am.	That	is,

The	 Aan(u,v)	 contain	 a	 phase	 that	 depends	 on	 the	 pointing	 angle	 to	 the	 kth	 interference
source,	(uk,vk),	and	the	location	of	the	nth	auxiliary	antenna	relative	to	the	main	antenna.	If	the
location	of	the	center	(phase	center)	of	the	nth	auxiliary	antenna	relative	to	the	center	(phase
center)	of	the	main	antenna	is	(xn,	yn,	zn),	this	phase	is	(see	Appendix	17A)

The	Aan(u,v)	also	contain	a	phase	that	accounts	for	any	inherent	phase	shifts	of	the	main	and
auxiliary	channels.	This	carries	the	tacit	assumption	that	the	main	and	auxiliary	channels	are
calibrated	 so	 that	 the	 phase	 can	 be	 determined.	 If	 the	 SLC	 determines	 R	 and	 η	 from
measurements,	all	of	the	phases	of	the	Aan(u,v),	and	the	Am(u,v)	will	be	accounted	for	by	the
measurement	process	and	thus	do	not	need	to	be	known.

The	va(t)	vector	is	given	by

where



and	vI(t)	is	given	by	(7.37).

17.4.2 Properties	of	vs(t),	vI(t),	nm(t),	and	nan(t)

The	standard	assumption	is	that	the	interference	sources	are	independent	and	generate	noise-
like	signals.	Thus,	we	assume	the	elements	of	vI(t)	are	independent,	zero-mean,	WSS,	random
processes.	We	also	assume	 the	 receiver	noises	are	zero-mean,	WSS,	 random	processes	and
the	 elements	 of	 vI(t)	 and	 the	 receiver	 noises	 are	 mutually	 independent.	 With	 this,	 the
covariance	matrix	of	vI(t)	is

That	is,	RI	is	a	diagonal	matrix	of	the	interference	powers.	Also	Pnm	=	E{|nm(t)|2}	and	Pnan	=
E{|nan(t)|2}	 are	 the	 receiver	 noise	 powers.	 The	 fact	 that	 these	 powers	 are	 represented	 by
constant	values	 is	due	 to	 the	WSS	assumption.	We	collect	 the	noise	powers	of	 the	auxiliary
channels	into	an	auxiliary	channel	noise	covariance	matrix	that	we	write	as



The	power	 in	 the	desired	 signal	voltage	 is	Ps(t)	=	E{|vs(t)|2}.	This	 power	 is	 not	 constant
because	vs(t)	may	or	may	not	be	present	at	the	time	of	interest	(the	time	when	the	weights	are
computed).	vs(t)	is	independent	of	vI(t),	nm(t),	and	nan(t).

17.4.3 Scaling	of	Powers

To	be	 able	 to	 simulate	 and	 analyze	 an	SLC,	 the	 various	 powers	 indicated	 in	 Section	 17.4.2
must	be	specified.	To	avoid	the	difficulty	of	directly	specifying	the	various	powers,	we	will
work	 with	 SNR	 and	 interference-to-noise	 ratio,	 JNR.4	 We	 suggest	 the	 procedure	 outlined
below.	 This	 procedure	 is	 based	 on	 the	 assumption	 that	 the	 main	 and	 auxiliary	 channel
receivers	use	a	matched	filter	and	that	the	SLC	is	implemented	after	the	matched	filter.

• Compute	the	SNR	from	the	radar	range	equation.
• Compute	the	JNR	of	each	interference	source	at	the	radar	main	antenna	from

where	(Pik/Bik)	is	the	effective	radiated	energy	of	the	kth	interference	source,	and	Rk	is	the
range	 to	 the	kth	 interference	source.	GR	 is	 the	 receive	directivity	of	 the	main	antenna,	LI
captures	the	receive	losses	in	the	main	channel	associated	with	the	interference,	and	Fn	 is
the	noise	figure	of	the	main	channel	receiver.5

• Normalize	Am	so	its	magnitude	at	(u0,v0)	is	unity.
• Scale	the	Aan	so	 their	magnitudes	at	some	(u0an,v0an)	are	at	some	 level	 relative	 to	unity,
and	account	for	any	difference	in	receive	losses	between	the	main	and	auxiliary	channel.
This	is	a	somewhat	standard	way	of	specifying	the	directivities	of	the	auxiliary	antennas.
That	 is,	 their	directivities	are	often	specified	as	being	a	certain	number	of	dB	below	the
main	 antenna	 directivity.	 The	 directivity	 of	 the	 auxiliary	 antennas	 should	 be	 above	 the
sidelobe	levels	of	the	main	antenna	to	prevent	the	SLC	from	significantly	raising	the	noise
floor	of	the	main	channel.

• Set	Pnm	=	1	W.	This,	along	with	the	use	of	SNR	and	JNR,	means	that	all	of	the	powers	are
normalized	relative	to	a	main	channel	noise	power	of	1	W	at	the	matched	filter	output.

• Compute	the	auxiliary	channel	noise	powers	from	Pnan	=	(Fan/Fn)	where	the	Fan	are	 the
system	noise	figures	of	the	auxiliary	channels.	This	allows	for	different	noise	powers	in
the	various	receivers.

• Compute	the	signal	and	interference	powers	using	Ps	=	SNR	and	PIk	=	JNRk.

17.4.4 Example	2

To	illustrate	the	previously	discussed	procedure,	we	consider	an	example	where	we	have	two
interference	sources	and	two	auxiliary	channels.	For	the	example,	we	consider	a	16-element



linear	array	with	uniform	weighting.	The	element	spacing	is	d	=	λ/2,	making	the	total	length
of	the	array	15λ/2.	We	assume	the	beam	is	steered	to	u	=	0.	We	assume	the	center	of	the	array
is	located	at	x	=	0.

The	two	auxiliary	antennas	are	located	at	x1	=	−10λ	and	x2	=	12λ.	We	assume	both	auxiliary
antennas	are	isotropic	radiators	with	a	normalized	directivity	of	−15	dB	relative	to	the	peak
directivity	 of	 the	 main	 channel	 antenna.	 The	 noise	 figures	 of	 the	 two	 auxiliary	 channel
receivers	 are	 the	 same	 as	 the	 noise	 figure	 of	 the	 main	 channel	 receiver.	 The	 main	 and
auxiliary	channels	use	matched	filters,	and	the	SLC	is	implemented	after	the	matched	filter.

The	two	interference	sources	are	located	at	u1	=	sin(18°)	and	u2	=	sin(−34°),	and	their	JNRs
are	JNR1	=	40	dB	and	JNR2	=	50	dB.	The	desired	signal	source	(the	target)	is	located	at	utgt	=	0
and	the	SNR	is	20	dB.

Figure	17.3	contains	a	depiction	of	 the	antenna	geometry,	and	 the	various	parameters	are
listed	in	Table	17.1.

Figure	17.3	Antenna	geometry	for	Example	2.

Table	17.1
Parameters	for	Example	2

u1	=	sin(18°),	JNR1	=	40	dB

u2	=	sin(−34°),	JNR2	=	50	dB

utgt	=	0,	SNR	=	20	dB

Pnm	=	Pna1	=	Pna2	=	1	W

Ps	=	10
2	W,	PI1	=	10

4	W,	PI2	=	10
5	W



φ1,tgt	=	4π(−10λ/λ)(0)	rad,	φ11	=	4π(−10λ/λ)u1	rad,	φ12	=	4π(−10λ/λ)u2	rad

φ2,tgt	=	4π(12λ/λ)(0)	rad,	φ21	=	4π(12λ/λ)u1	rad,	φ22	=	4π(12λ/λ)u2	rad

Am	=	1,	Am	=	[0.1334	0.0809]

Aa1	=	Aa11	=	Aa12	=	10
−15/20,	Aa2	=	Aa21	=	Aa22	=	10

−15/20	(Constant	gain	aux	antennas)

We	 assume	 the	 weight,	wopt,	 is	 calculated	 before	 the	 transmit	 pulse	 and	 that	 there	 is	 no
desired	signal	present.	With	this,	we	get	(see	Exercise	2)

where,	from	(17.44),

from	(17.46),	(17.47),	and	(17.35)

and	Am	is	given	in	Table	17.1.

The	resulting	weight	vector	is,	from	(17.31)

A	standard	measure	of	the	performance	of	an	SLC	is	the	cancellation	ratio	(CR),	which	is
defined	as	the	total	interference	power	in	ve	if	the	SLC	was	not	present	(w	=	0)	divided	by	the
total	interference	power	when	the	SLC	is	active	[6,	7,	9].	By	total	interference	power,	we	mean
the	combined	power	of	the	interference	sources	and	the	receiver	noise.	In	equation	form



With	the	terms	delineated	earlier,	this	reduces	to

Another	measure	of	performance	is	a	comparison	of	the	SINR	without	the	SLC	(i.e.,	w	=	0)
and	the	SINR	with	the	SLC.	We	can	compute	the	SINR	without	the	SLC	as	(see	Exercise	2)

This	low	value	of	SINR	is	due	mainly	to	the	interference	source	at	−34°.	It	has	a	JNR	of	50	dB
that	is	attenuated	by	the	−22	dB	sidelobe	(see	Figure	17.3).	This	alone	would	result	in	an	SINR
of	−8	dB	(SNR	−	JNR	−	SLL	=	20	−	50	+	22).	The	remaining	−1.2-dB	degradation	is	due	to	the
other	interference	source	and	the	main	channel	noise.

With	the	SLC,	the	SINR	is

The	SINR	at	 the	output	of	 the	SLC	is	close	to	the	SNR	of	20	dB	specified	in	the	problem
definition.	 The	 SLC	 resulted	 in	 a	 signal	 power	 increase	 of	 about	 2	 dB	 and	 a	 noise	 power
increase	 of	 about	 3.3	 dB.	 This	 interesting	 coincidence	 meant	 the	 SNR	 (exclusive	 of	 the
interference	sources)	went	down	by	about	1.3	dB,	which	means	the	SLC	was	quite	effective	at
removing	almost	all	of	the	interference	due	to	the	interference	sources.

The	 increase	 in	 noise	 power	 is	 due	 to	 the	 last	 two	 terms	 in	 the	 denominator	 of	 (17.58).
These	 terms	 tell	us	 the	overall	noise	 level	will	be	equal	 to	 the	main	channel	 receiver	noise
plus	 some	portion	due	 to	 the	noise	 in	 the	auxiliary	channels.	 In	 this	particular	example,	 the
magnitude	 of	 the	 weight	 vector	 was	 such	 that	 the	 auxiliary	 channels	 added	 a	 noise	 power
slightly	 different	 than	 the	 noise	 power	 of	 the	 main	 channel	 (about	 1.2	W	 versus	 the	 main
channel	noise	of	1	W).



The	reason	the	auxiliary	channel	noises	did	not	add	much	to	the	overall	receiver	noise	was
because	the	directivity	of	the	auxiliary	channel	receivers	was	greater	than	the	directivity	of	the
main	antenna	sidelobes	containing	the	interferences	(see	Figure	17.3).	Had	the	directivities	of
the	 auxiliary	 antennas	 been	 below	 the	 sidelobe	 levels,	 the	 SLC	 weights	 would	 have	 had	 a
magnitude	greater	than	unity.	This	would	have	amplified	the	noises	in	the	auxiliary	channels
and	caused	 the	overall	 receiver	noise	 to	 increase	substantially.	This	 is	considered	further	 in
Exercise	7.

17.4.5 Practical	Implementation	Considerations

While	 the	 methods	 discussed	 in	 Sections	 17.4.1	 through	 17.4.4	 are	 suitable	 for	 analyzing
sidelobe	cancellers,	they	cannot	be	directly	used	in	an	actual	SLC	implementation	because	the
various	parameters	(e.g.,	Table	17.1)	are	not	known	a	priori.	As	a	result,	the	various	expected
values	 must	 be	 estimated	 based	 on	 measurements	 of	 vm(t)	 and	 va(t).	 Strictly	 speaking,	 the
expected	values	are	ensemble	averages	and	cannot	be	evaluated	from	a	single	set	of	vm(t)	and
va(t)	measurements.	To	obtain	 a	valid	 ensemble	 average,	we	would	need	 to	 average	 across
many	radars,	desired	signals,	environments	and	interference	sources	(all	of	the	same	type	and
in	the	same	location)	to	obtain	a	true	ensemble	average.	Clearly	this	is	not	possible	since	we
have	only	one	radar,	etc.	To	get	around	this	problem,	we	invoke	the	concept	of	ergodicity	[10,
11].	 This	 concept	 states	 that,	 if	 a	 random	 process	 is	 ergodic,	 ensemble	 averages	 can	 be
replaced	 by	 time	 averages.	 Proving	 that	 a	 process	 is	 ergodic	 is	 very	 difficult,	 if	 not
impossible.	However,	it	is	a	standard	assumption	as	long	as	one	is	confident	that	the	processes
are	at	least	WSS.

We	 will	 assume	 the	 measurements	 are	 made	 right	 before	 the	 transmitted	 pulse.	 This	 is
necessary	to	ensure	the	interference	and	receiver	noises	will	satisfy	the	WSS	restriction.	For
phased	array	antennas,	we	 impose	 the	additional	constraint	 that	 the	measurements	are	made
after	the	main	and	auxiliary	beams	have	been	steered	to	their	new	location	and	after	any	local
oscillators	and	such	have	been	retuned.

Figure	17.4	contains	a	possible	timing	diagram	illustrating	how	the	SLC	power	estimation
and	weight	computation	would	fit	into	the	overall	radar	timeline.	As	shown,	time	is	allotted	at
the	end	of	a	PRI	for	(1)	frequency	retuning,	(2)	beam	steering,	(3)	SLC	power	estimation,	(4)
SLC	 weight	 computation,	 and	 (5)	 receiver	 noise	 measurement	 (for	 AGC	 or	 detection
threshold	 determination,	 not	 SLC).	 For	 a	 high-PRF	 burst	 waveform,	 there	 is	 not	 sufficient
time	before	every	pulse	to	compute	SLC	weights,	so	they	are	computed	before	the	burst	and
held	throughout	the	burst.

Actually,	 if	 the	 radar	 performs	 coherent	 processing	 (MTI,	 pulsed	 Doppler,	 coherent
integration)	the	weights	are	usually	computed	and	held	constant	for	the	coherent	processing
interval	(CPI).	If	the	weights	were	computed	before	each	pulse,	they	could	affect	the	pulse-to-
pulse	phase	characteristics	of	the	main	channel	target	and	clutter	signals,	which	could	degrade
the	clutter	rejection	and/or	SNR	improvement	of	the	signal	processor.



Figure	17.4	SLC	timing	diagram.

The	 frequency	 retuning	 and	 beam	 steering	 operations	 could	 be	 reversed;	 however,	 both
must	be	performed	before	the	SLC	weight	computation.	The	frequency	retuning	must	precede
the	 SLC	 weight	 computation	 because	 it	 affects	 the	 phase	 shifts	 in	 the	 main	 and	 auxiliary
channels.	The	beam	steering	must	precede	the	SLC	weight	computation	because	it	establishes
the	main	antenna	sidelobe	levels	and	the	directivities	of	the	auxiliary	antennas	(both	amplitude
and	 phase).	 The	 noise	measurement	 is	made	 after	 the	 SLC	 because	 the	 SLC	will	 affect	 the
noise	floor	in	the	main	receiver.

We	further	assume	there	is	no	desired	return	signal,	only	interference	and	receiver	noise.
We	assume	the	interference	and	receiver	noise	samples	are	mean	and	autocorrelation	ergodic
[10,	11].	If	we	assume	a	digital	implementation	of	the	SLC	and	use	samples	of	va(t)	and	vm(t),
ergodicity	tells	us	we	can	estimate	R	and	η	using

and

where	va(l)	and	vm(l)	are	samples	of	the	auxiliary	and	main	channel	signals.	We	then	use	these
to	form	the	weight	estimate	as

We	 use	 this	 weight	 estimate	 throughout	 the	 PRI,	 or	 CPI	 if	 the	 radar	 performs	 coherent
processing	of	the	desired	return	signals.	That	is,	for	all	range	cells	in	the	PRI	or	CPI,	we	use



where	m	is	the	range	cell	index.

The	idea	that	we	can	use	the	same	weight	throughout	the	PRI	or	CPI	is	a	consequence	of	the
WSS	assumption.6	This	means	that	 	and	 ,	and	thus	ŵ,	are	constant.

The	method	of	 determining	 the	SLC	weight	 based	on	 estimates	of	R	 and	η	 is	 termed	 the
sample	matrix	 inversion	 (SMI)	 technique	 [9,	12–15].	 Its	 name	 derives	 from	 the	 fact	 that	 the
weights	are	found	using	(17.61),	which	involves	the	inversion	of	a	matrix	based	on	samples
of	va(l).

As	with	 STAP,	 there	 is	 a	 question	 of	 how	many	 samples	 are	 needed	 to	 obtain	 a	 reliable
estimate	of	R	and	η.	If	the	SLC	has	N	auxiliary	channels,	va(l)	will	have	N	elements	and	 	will
be	an	N-by-N	matrix.	Thus,	the	minimum	number	of	samples	needed	is	N.	Otherwise,	 	will
be	singular.	As	indicated	in	Chapter	16,	Nitzburg	and	Reed	[4]	and	Mallet	and	Brennan	[13]
developed	 an	 efficiency	 parameter	 for	 STAP.	 That	 parameter	 indicated	 how	 the	 SINR
improvement	 using	 a	 SMI	 approach	 would	 deviate	 from	 some	 theoretical	 SINR	 based	 on
complete	 knowledge	 of	 the	 system,	 desired	 signal,	 interference,	 and	 noise.	 If	we	 adapt	 that
parameter	to	the	SLC	case,	we	would	have

As	an	example,	if	we	had	N	=	3	auxiliary	channels	and	used	Lsamp	=	3,	we	would	get

and	 would	 expect	 an	 improvement	 that	 is	 about	 3	 dB	 less	 than	 theoretical.	 Doubling	 the
number	 of	 samples	would	 increase	 this	 to	 about	 1.5	 dB	 less	 than	 theoretical.	 This	 assumes
there	will	 be	 inaccuracies	 only	 in	 .	 There	will	 also	 be	 inaccuracies	 in	 	 because	 of	 the
limited	number	of	samples.	Because	of	this,	additional	samples	will	be	needed	to	account	for
the	measurement	of	vm(l).

The	 spacing	 between	 samples	 should	 be	 equal	 to,	 or	 greater	 than,	 the	 inverse	 of	 the
bandwidth	of	the	interference	signal(s)	at	the	point	where	the	interference	power	is	computed.
For	 interference	whose	bandwidth	 is	greater	 than	 the	bandwidth	of	 the	receiver	components
up	to	where	the	interference	power	is	measured,	the	sample	spacing	should	be	the	inverse	of
that	bandwidth.	 If	 the	 interference	 (and	noise)	powers	are	measured	after	 the	matched	filter,
the	 spacing	 between	 the	 samples	 should	 be	 the	 larger	 of	 the	 inverse	 of	 the	 waveform
modulation	 bandwidth	 or	 the	 inverse	 of	 the	 interference	 bandwidth.	 This	 will	 ensure	 the
samples	are	uncorrelated	and	thus	that	the	estimate	will	not	have	a	bias.

This	 bandwidth	 requirement	 can	 have	 an	 impact	 on	 how	 much	 of	 the	 radar	 timeline	 is



allocated	 to	SLC.	 If	 the	SLC	 is	 to	be	able	 to	counter	narrowband	 interference,	 a	 significant
amount	 of	 time	 needs	 to	 be	 allotted	 to	 the	 power	 estimation	 phase	 of	 the	 SLC	 weight
computation.	With	modern	hardware,	the	weight	computation	should	be	fairly	quick,	possibly
in	the	order	of	microseconds.

17.4.6 Example	3

To	investigate	the	relation	between	Lsamp	and	expected	SLC	performance,	the	SMI	technique
of	Section	17.4.5	was	implemented	for	the	system	of	Example	2.	Lsamp	was	varied	from	2	to
40.	Lsamp	samples	of	va(l)	and	vm(l)	were	used	to	compute	R	and	 	using	(17.59)	and	(17.60).
These	were	then	used	in	(17.61)	to	compute	ŵ.	Next,	one	more	sample	of	va(l)	and	vm(l)	was
chosen	to	compute	ve(l)	from	(17.62).	These	were	used	to	compute	the	powers	indicated	in	the
numerator	and	denominator	of	(17.55)	(in	all	cases	vs(l)	was	set	 to	zero	since	we	wanted	 to
compute	 the	 cancellation	 ratio).	 Finally,	 these	 powers	 were	 averaged	 over	 100,000	Monte
Carlo	runs	and	used	to	compute	CR	from	(17.55).

Figure	17.5	contains	a	plot	of	CR	versus	Lsamp.	According	to	(17.63),	it	was	expected	that	ρ
would	be	(2	−	2	+	2)/(2	+	1)	=	2/3	for	Lsamp	=	2.	With	this,	the	CR	should	have	been	about	1.8
dB	below	the	theoretical	value	of	26	dB	[see	(17.56)].	Clearly	this	did	not	happen.	However,	as
Lsamp	 increased,	 the	 SMI	 method	 did	 give	 an	 ultimate	 cancellation	 ratio	 very	 close	 to	 the
theoretical	value.	Based	on	this	one	example,	it	would	seem	that	(17.63)	should	be	considered
only	as	a	guide	to	how	large	Lsamp	should	be.	To	reiterate	a	previous	statement,	(17.63)	was
derived	for	a	STAP	application	and	not	for	a	SLC	application.

Figure	17.5	 indicates	 the	CR	 is	within	1	dB	of	 its	 theoretical	value	with	Lsamp	=	10.	 If	 the
SLC	was	designed	to	handle	a	broadband	jammer	and	had	the	samples	been	taken	at	the	output
of	a	matched	filter	matched	to	a	1-µs	pulse,	10	µs	would	be	needed	to	gather	the	interference
samples	needed	to	compute	 	and	 .	However,	if	the	SLC	were	to	have	the	requirement	that	it
cancel	interference	with	a	bandwidth	of	100	kHz	(and	the	samples	were	taken	at	the	matched
filter	output),	a	100-µs	data	gathering	period	would	be	needed	since	the	samples	would	need
to	be	spaced	1/(100	kHz)	=	10	μs	apart.



Figure	17.5	Cancellation	ratio	versus	Lsamp.

17.5 HOWELLS-APPLEBAUM	SIDELOBE	CANCELLER

The	 SMI	 methodology	 discussed	 in	 Section	 17.4	 requires	 the	 use	 of	 high-speed	 digital
processors	 to	compute	 	and	 	 and	 solve	 for	ŵ.	 Such	processors	 are	 available	 to	modern
radar	designers	but	were	not	available	to	radar	designers	in	earlier	years	of	SLC.	Designers
of	 those	 radars	 had	 to	 use	 an	 analog	 SLC.	 Most	 used	 the	 Howells-Applebaum	 SLC	 or	 a
modification	thereof.

17.5.1 Howells-Applebaum	Implementation

The	weight	calculation	technique	upon	which	the	Howells-Applebaum	SLC	is	based	is	termed
a	 gradient	 search	 technique	 [1,	 3,	 7,	 16].	 The	 gradient	 search	 technique	 is	 also	 sometimes
termed	 the	 LMS	 technique.	 It	 is	 used	 extensively	 for	 interference	 mitigation	 in
communications	equipment	and	in	other	applications	such	as	noise	canceling	headphones.	The
gradient	 search	 technique	 iteratively	 computes	 weights	 to	 eventually	 minimize	 the	 mean-
square	error

In	 the	 implementation	 of	 the	 technique,	 the	 expected	 value	 is	 approximated	 by	 the	 simple
square	error,	or

The	gradient	algorithm	is	given	by	the	equation



In	(17.67),	∇e	is	the	gradient	of	the	error	evaluated	at	wk	and	is	given	by

Basically,	 the	 gradient	 is	 used	 to	 update	 the	 latest	 estimate	 by	 adding	 a	 correction	 that	 is
proportional	 to	 the	 negative	 of	 the	 slope,	 or	 gradient,	 of	 the	 error	 evaluated	 at	 the	 latest
estimate.	This	 is	 illustrated	in	Figure	17.6.	 In	 this	 figure,	wk	>	wopt	and	we	note	 the	slope	 is
positive.	We	also	note	we	want	wk+1	to	be	less	than	wk	if	we	are	to	move	toward	wopt.	Thus,	we
see	 that	we	want	 to	move	 in	a	direction	 that	 is	opposite	 to	 the	sign	of	 the	slope.	With	some
thought,	we	also	note	that	if	wk	is	far	away	from	wopt,	we	would	like	to	change	wk	by	a	large
amount,	whereas	 if	wk	 is	 close	 to	wopt,	we	want	 to	change	wk	 by	 a	 small	 amount.	Thus,	 the
amount	 of	 change	 is	 related	 to	 the	 magnitude	 of	 the	 slope.	 This	 is	 what	 the	 algorithm	 of
(17.67)	does.

The	parameter	μ	controls	 the	rate	at	which	 the	estimate	approaches	wopt.	 If	μ	 is	 small,	wk
will	approach	wopt	in	small	steps;	if	μ	is	large,	wk	will	approach	wopt	in	large	steps.	If	μ	is	too
small,	convergence	will	be	very	slow.	However,	if	μ	is	too	large,	the	solution	could	diverge.
Thus,	choosing	μ	is	one	of	the	important	aspects	of	implementing	a	Howells-Applebaum	SLC.

Equation	(17.67)	is	a	difference	equation.	However,	early	Howells-Applebaum	SLCs	were
implemented	in	the	continuous	time	domain.	We	can	convert	(17.67)	to	a	differential	equation
of	the	form

where	we	have	made	use	of	(17.68).	We	changed	the	parameter	μ	to	μc	to	denote	it	is	different
for	discrete-time	and	continuous-time	implementations.

Figure	17.6	Illustration	of	gradient	technique.



Figure	17.7	Functional	block	diagram	of	a	Howells-Applebaum	SLC.

Equation	 (17.69)	 also	 contains	 another	 subtle	 change	 relative	 to	 (17.67).	 Specifically,	 in
(17.69),	we	 allow	 the	 error	 signal	 and	 auxiliary	 channel	 signal	 to	 change	with	 time	 as	 the
weight	 is	 being	 updated.	 In	 (17.67),	 we	 used	 one	 sample	 of	 the	 error	 signal	 and	 auxiliary
channel	signal	to	iterate	on	the	weight.	Allowing	the	signals	to	change	incorporates	averaging
into	the	SLC	loop.

If	we	 represent	 (17.69)	 as	 a	block	diagram,	we	have	 the	 functional	block	diagram	of	 the
Howells-Applebaum	SLC	shown	in	Figure	17.7.

17.5.2 IF	Implementation

The	 Howells-Applebaum	 loop	 is	 sometimes	 implemented	 at	 some	 IF.	 As	 such,	 the	 lower
multiply	of	Figure	17.7	 is	generally	performed	by	a	mixer,	whereas	 the	upper	multiply	 is	a
variable	 gain	 amplifier.	The	vm(t),	va(t),	 and	ve(t)	 are	 IF	 signals,	while	w*(t)	 is	 a	 baseband
signal.	The	conjugation	on	the	right	side	(the	block	with	*	in	it)	is	implemented	as	a	90º	phase
shift.	 The	 block	 diagram	 of	 Figure	 17.7	 uses	 complex	 signal	 notation.	 In	 an	 actual
implementation,	quadrature	signals	are	used	to	capture	the	operations	implied	by	the	complex
signal	notation.

An	 example	 block	 diagram	 for	 an	 IF	 implementation	 is	 contained	 in	Figure	17.8.	 In	 this
figure,	 the	 circles	 with	 crosses	 are	 mixers	 and	 the	 squares	 with	 crosses	 are	 variable	 gain
amplifiers.	The	gain	is	bipolar.	That	is,	the	weight	can	vary	the	amplifier	gain	and	the	sign	of
the	product	depending	upon	the	signs	of	the	weight	components.



Figure	17.8	IF	implementation	of	an	SLC.

The	 blocks	 with	 integral	 signs	 in	 them	 are	 typically	 implemented	 using	 lowpass	 filters,
where	 the	 bandwidth	 of	 the	 lowpass	 filter	 is	 set	 somewhat	 lower	 than	 the	 reciprocal	 of	 the
integration	time	of	the	SLC.

The	 block	 diagrams	 of	 Figures	 17.7	 and	 17.8	 leave	 the	 impression	 that	 the	 SLC	 is
continually	updating	the	weights.	This	is	not	necessary,	or	even	desirable.	The	loop	could	be
allowed	 to	 update	 the	weights	 during	 some	 time	 period	 before	 the	 transmit	 pulse	 and	 then
hold	the	weights	for	the	rest	of	the	PRI,	or	CPI	for	the	case	where	the	radar	performs	coherent
processing	(see	Figure	17.4).

17.5.3 Example	4

As	 an	 example,	 a	 digital	 version	 of	 the	 Howells-Applebaum	 SLC	 of	 Figure	 17.7	 was
implemented.	We	chose	to	use	a	digital	implementation	because	it	was	easier	to	program.	In
the	digital	version,	the	integrator	of	Figure	17.7	is	replaced	by	a	summer.	Another	variation
that	 was	 needed	 was	 to	 normalize	 the	 value	 of	 va(k)	 by	 dividing	 by	 |va(k)|.	 We	 found	 this
necessary	 because,	 without	 it,	 the	 convergence	 time	 and	 stability	 of	 the	 SLC	 were	 very
dependent	 on	 the	 interference	 power.	 In	 an	 actual	 SLC,	 this	 normalization	 would	 be
performed	by	some	type	of	instantaneous	AGC,	such	as	an	IF	limiter	[4;	17,	p.	119].

Figure	 17.9	 contains	 a	 block	 diagram	 of	 the	 Howells-Applebaum	 SLC	 that	 was
implemented.	The	vm(k)	 and	va(k)	 signals	were	 created	using	 the	parameters	 of	Example	 2.
Specifically,	 we	 used	 the	 parameters	 corresponding	 to	 interference	 source	 1	 and	 auxiliary
channel	1.	As	before,	vs(k)	was	set	to	zero	since	we	were	concerned	with	only	the	calculation
of	the	weights.	The	particular	area	of	interest	in	this	example	was	the	variation	of	the	weight



and	the	cancellation	ratio	as	a	function	of	stage,	k	(time),	for	different	values	of	interference
power.	The	output	of	the	simulation	for	JNRs	(interference	power	levels;	see	Example	2)	of
40,	50,	and	60	dB	are	contained	in	Figure	17.10.	The	left	graph	contains	plots	of	|w(k)|	versus
k	 and	 the	 right	 graph	 contains	 plots	 of	CR(k)	 versus	k.	 As	with	 Example	 3,	 the	 curves	 are
based	on	10,000	Monte	Carlo	runs.	The	value	of	μ	used	in	the	simulation	was	0.005	and	was
somewhat	arbitrarily	chosen.

Figure	17.9	SLC	simulation	block	diagram.

Figure	17.10	SLC	simulation	results.

As	expected,	the	time	it	takes	the	SLC	to	reach	steady	state	increases	as	the	jammer	power
decreases.	However,	in	all	three	cases,	the	SLC	reached	steady	state	by	about	70	samples.	If	we
were	to	assume	that	the	radar	uses	a	waveform	with	a	compressed	pulse	width	of	1	µs,	and	if



we	assume	the	samples	are	spaced	1	µs	apart	to	satisfy	the	independence	requirement,	the	SLC
would	 settle	 in	 about	 70	 µs.	 This	means	 that	 about	 70	 µs	would	 be	 needed	 for	 the	 SLC	 to
stabilize	 (see	Figure	17.4)	before	 the	weight	was	held	and	used.	This	example	demonstrates
that	the	JNR	affects	both	convergence	time	and	CR.	This	is	because	the	effective	loop	gain	is
proportional	 to	 the	 JNR.	 This	 proportionality	 is	 sometimes	 described	 as	 a	 potential
disadvantage	of	the	Howells-Applebaum	SLC	[17,	pp.	119–120].

17.6 SIDELOBE	BLANKER

Rather	than	trying	to	cancel	interference,	the	SLB	gates	the	receiver	off	for	those	range	cells
where	 the	 signal	 in	 the	 auxiliary	 channel	 is	 larger	 than	 the	 main	 channel	 signal	 by	 some
specified	amount.	A	functional	block	diagram	of	the	circuity	that	accomplishes	this	is	shown
in	Figure	17.11.	As	with	the	SLC,	the	SLB	operates	on	signals	from	the	main	channel	and	an
auxiliary	channel.	In	fact,	the	auxiliary	channel	receiver	used	for	the	SLC	could	also	be	used
for	 the	 SLB.	 One	 arrangement	 would	 be	 to	 process	 the	 signals	 through	 the	 SLC	 to	 try	 to
cancel	 interference	 and	 then	 use	 the	 SLB	 to	 turn	 the	 main	 channel	 receiver	 off	 for	 any
interferences	that	were	not	rejected	by	the	SLC.	An	example	of	such	an	interference	would	be
random	pulses	 from	some	source	 (another	 radar,	 for	example).	Such	 random	pulses	would
not	 be	 rejected	 by	 the	 SLC.	 However,	 the	 SLB	 would	 detect	 their	 presence	 and	 gate	 the
receiver	off	during	the	time	the	interference	was	present	[9;	18,	p.	368;	19;	20].

Referring	 to	Figure	17.11,	 the	 log	 detectors	 contain	 a	 square	 law	detector	 and	 logarithm
circuits.	The	subtraction	of	the	two	log	detector	outputs	effectively	forms	the	logarithm	of	the
ratio	of	 the	auxiliary	and	main	channel	powers.	 If	 this	 ratio	exceeds	 some	 threshold,	T,	 the
gate,	which	is	effectively	a	switch,	opens	and	blocks	the	main	channel	signal	from	passing	to
the	rest	of	the	radar	receiver.	The	block	diagram	shows	that	the	log	output	of	the	receiver	is
sent	to	the	gate.	In	fact,	vm(t)	could	be	sent	to	the	gate	and	on	to	the	rest	of	the	receiver.

Figure	17.11	Functional	diagram	of	a	sidelobe	blanker.

The	normal	design	criterion	for	the	SLB	is	that	the	directivity	of	the	auxiliary	antenna	will
be	 larger	 than	 the	 sidelobe	 levels	of	 the	main	antenna,	but	well	below	 the	directivity	of	 the
main	antenna.	Thus,	if	the	interference	is	entering	through	the	sidelobes	of	the	main	antenna,
and	 is	 large	 enough,	 log(|va|2/|vm|2)	 would	 be	 greater	 than	 T	 and	 the	 main	 channel	 signal
would	not	be	allowed	to	pass	to	the	rest	of	the	receiver.



For	 a	 signal	 entering	 through	 the	 main	 lobe	 of	 the	 main	 antenna,	 |vm|2	 would	 be	 much
larger	than	|va|2.	This	means	log(|va|2/|vm|2)	would	be	less	than	T	and	the	gate	would	allow	the
signal	to	pass	to	the	rest	of	the	receiver.	If	the	interference	was	entering	through	the	main	lobe
of	the	main	antenna,	 log(|va|2/|vm|2)	would	also	be	less	 than	T	and	 the	 interference	would	be
allowed	to	pass	to	the	rest	of	the	receiver.	Thus,	the	SLB	would	not	be	helpful	in	mitigating
main	lobe	interference.

In	a	1968	paper,	Louis	Maisel	 showed	 that,	as	might	be	expected,	an	SLB	can	affect	both
false	alarm	and	detection	probability	[19].	In	that	paper,	he	discussed	how	these	probabilities
were	 affected	 by	 the	 interaction	 between	 T	 and	 the	 relation	 between	 the	 auxiliary	 channel
directivity	and	 the	 sidelobe	 levels	of	 the	main	antenna.	An	 interesting	observation	 from	his
paper	is	that	the	auxiliary	channel	directivity	should	be	well	above	the	sidelobe	levels	of	the
main	antenna,	but	well	below	the	maximum	directivity	of	the	main	antenna.	Maisel’s	analysis,
where	the	detection	was	limited	to	the	case	of	a	single	radar	pulse	with	a	Marcum	or	Swerling
0	target	fluctuation,	was	later	expanded	to	account	for	arbitrary	numbers	of	pulses	integrated
and	additional	target	fluctuation	models	based	on	the	gamma	distribution.	[21,	22].

17.7 EXERCISES

1. Derive	(17.9)	from	(17.8).	As	a	hint,	if	w	=	a	+	jb,	and	J	=	|e|2,

2. Derive	(17.49),	(17.53),	(17.56),	and	(17.57).

3. Rewrite	(17.57)	and	(17.58)	in	terms	of	Ps,	RI,	Pnm,	Ran,	Aa,	Am,	and	Aa,	without	wopt.

4. Repeat	Example	2.

5. Repeat	Example	3.

6. Repeat	Example	4.

7. Extend	Exercise	4	to	generate	a	plot	of	SINR	versus	auxiliary	antenna	directivity	relative
to	the	main	antenna	directivity.	Let	the	relative	auxiliary	antenna	directivity	vary	from	–10
to	–30	dB	relative	to	the	peak	directivity	of	the	main	antenna.	Plot	the	ratio	of	the	noise
powers	 with	 and	 without	 the	 SLC	 [i.e.,	 (Pnm	 +	wHoptRanwopt)/Pnm].	 The	 results	 of	 this
exercise	will	 demonstrate	why	 the	 rule	 of	 thumb	 is	 that	 the	 directivity	 of	 the	 auxiliary
antenna	should	be	well	above	the	sidelobes	of	the	main	antenna.

8. Move	 the	 first	 interference	 source	 of	Example	2	 from	 the	 second	 sidelobe	 to	 the	 third
sidelobe	of	the	main	antenna	directivity	pattern	and	repeat	the	example.	As	a	note,	the	sign
of	Am(u,v)	is	negative	on	the	third	sidelobe.

9. Decrease	the	number	of	interference	sources	to	one	and	repeat	Example	2.	Does	the	SLC



still	work?

10. Increase	 the	 number	 of	 interferences	 sources	 of	 Example	 2	 to	 three	 by	 adding	 a	 third
interference	source	at	u3	=	sin(–18°).	Assign	it	a	JNR	of	40	dB.	Does	the	SLC	still	work?

11. Extend	Example	2	to	accommodate	three	auxiliary	channels	and	see	if	it	rejects	the	three
interferences	of	Exercise	10.	Place	the	third	auxiliary	antenna	at	6λ.	Assume	its	directivity
is	the	same	as	the	other	two	auxiliary	antennas.
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APPENDIX	17A:	DERIVATION	OF	ϕ	(17.40)



Figure	 17A.1	 contains	 a	 depiction	 of	 the	 geometry	 used	 to	 derive	 φ,	 the	 phase	 difference
caused	 by	 the	 path	 length	 difference	 between	 the	 interference	 and	 the	 main	 and	 auxiliary
antennas.	r,	is	the	range	from	the	center	of	the	main	antenna	to	the	interference	and	ra	 is	 the
range	 from	 the	 center	 of	 the	 auxiliary	 antenna	 to	 the	 interference.	 The	 center	 of	 the	main
array	is	located	at	the	origin	of	a	coordinate	system	and	the	center	of	the	auxiliary	antenna	is
located	at	(xa,	ya,	za).	We	want	to	find	ra	−	r	as	r	approaches	infinity	(the	far	field	condition).
We	can	write

and

Manipulating	(17A.2)	gives

recognizing	that	r2	is	much	larger	than	the	rest	of	the	terms	and	using

results	in

or,	since	r	is	large	relative	to	the	numerator	of	the	term	after	the	plus	sign,	we	can	drop	that
term	and	write

With	this	we	get

We	recognize	that	uI	=	xI/r	and	vI	=	yI/r.	Also



Thus,

The	phases	due	to	range	delay	from	the	interference	to	the	centers	of	the	main	and	auxiliary
antennas	are

and

Thus,	the	difference	of	the	two	phases	is

Figure	17A.1	Geometry	for	calculating	φ.

1	Throughout	 this	 chapter,	we	are	using	complex	 signal	notation.	We	also	assume	 the	various	 signals	 are	 scaled	 to	properly
account	for	their	relative	power	levels.
2	 The	 signal	 entering	 through	 the	 main	 beam	 could	 also	 contain	 returns	 from	 clutter	 or	 repeater	 jammers.	 From	 the	 SLC
perspective,	 they	 are	 also	 “desired”	 signals	 that	 the	 SLC	 is	 not	 designed	 to	 cancel.	 That	 job	 falls	 to	 the	 signal	 and	 data
processors.
3	The	parenthetical	 term	“(or	energy)”	is	included	to	indicate	that	 these	quantities	could	be	interpreted	as	either.	In	the	future,
we	will	use	the	term	power,	but	the	reader	should	keep	in	mind	that	they	could	refer	to	either	power	or	energy.
4	We	will	use	the	acronym	JNR	for	interference-to-noise	ratio.	JNR	is	the	acronym	for	jammer-to-noise	ratio.



5	In	(17.48)	we	are	using	kT0Fn	as	the	noise	energy.	An	alternate	would	be	to	use	kTs	where	Ts	is	the	system	noise	temperature
(see	Chapter	4).
6	As	a	note,	the	assumption	of	ergodicity	implies	that	the	interferences	and	noises	are	WSS.



Chapter	18

Advances	in	Radar

18.1 INTRODUCTION

As	with	many	areas	of	 science	 and	engineering,	 the	 field	of	 radar	 is	 advancing	at	 an	 ever-
increasing	rate.	This	includes	advances	in	both	theory	and	hardware.	Two	of	the	newer	theory
areas	 are	multiple-input,	multiple-output	 (MIMO)	 radar	 [1,	2]	 and	 cognitive	 radar	 [1,	 3–5].
However,	 other	 areas	 of	 theory	 being	 studied	 include	 advanced	 phased	 array	 system
techniques	[6,	7],	 advanced	waveforms	 [4,	8],	 and	 advanced	 tracking	algorithms	 [9–11].	On
the	hardware	side,	there	have	been	significant	advances	in	virtually	all	subsystems.	Examples
of	these	include	direct	digital	synthesizers	(DDSs),	extremely	quiet	local	oscillators,	advances
in	transmit/receive	(T/R)	module	technology,	very	low	noise	RF	amplifiers,	highspeed	ADCs
with	large	dynamic	range,	high-speed	digital	signal	processors,	and	incredibly	fast	computers
with	massive	memory.

18.2 MIMO	RADAR

The	 concept	 of	MIMO	 has	 been	 used	 in	 the	 wireless	 and	 cell	 phone	 industry	 for	 the	 past
several	 years	 [12].	 It	 provides	 a	means	 of	 having	 several	 cell	 phones	 operate	 on	 the	 same
frequency	 and	 uses	 orthogonal,	 or	 almost	 orthogonal,	 waveforms	 to	 separate	 the	 signals.
Radar	engineers	are	currently	analyzing	the	application	of	this	methodology	to	radars	[1,	2,
13,	14].

Probably	the	simplest	example	of	where	MIMO	might	be	applied	to	radars	is	in	multistatic
radar.	 As	 one	 example,	 suppose	 we	 have	 N	 widely	 spaced	 radars	 operating	 on	 the	 same
frequency.	We	want	to	use	the	radars	to	perform	tracking	by	the	method	of	trilateration.	This
is	illustrated	in	Figure	18.1	for	the	case	of	N	=	3.	Each	radar	can	transmit	a	single	beam	and
can	form	multiple	receive	beams	over	an	angular	sector.	If	Radar	2	illuminates	a	target	and
the	return	signal	is	in	one	of	the	multiple	beams	of	the	other	two	radars,	all	three	radars	will
receive	the	signal	from	the	target.	If	the	control	center	knows	the	locations	of	the	three	radars,
and	knows	which	receive	beam	contains	the	target	return,	it	can	use	this	information	to	refine
the	estimate	of	target	position	via	trilateration.



Figure	18.1	Tracking	by	trilateration.

If	only	one	radar	is	transmitting,	this	is	a	fairly	straightforward	problem.	However,	if	more
than	one	radar	illuminates	the	target,	the	receive	parts	of	the	radars	need	a	means	of	knowing
which	radar	transmitted	the	signal	they	received.	This	is	where	the	concept	of	MIMO	enters.	If
the	three	radars	transmit	orthogonal,	or	nearly	orthogonal,	waveforms,	such	as	different	PRN
coded	pulses	(see	Chapter	10),	the	sources	of	the	received	signals	would	be	known.	With	that
knowledge,	 the	 control	 center	 can	 more	 precisely	 determine	 the	 target	 location	 through
trilateration.	This	is	but	one	example	of	a	MIMO	radar	application.	Others	can	be	found	in	[2].

18.3 COGNITIVE	RADAR

The	 general	 idea	 of	 a	 cognitive	 radar	 is	 that	 it	 can	 sense	 and	 adapt	 to	 its	 environment	 to
improve	its	operation.	In	the	limit,	researchers	talk	about	giving	the	radar	“human”	qualities,
a	laudable	but	questionable	end	objective.

Different	 authors	 view	cognitive	 radar	 from	different	 perspectives.	For	 example,	Haykin
[5]	approaches	it	from	an	adaptive	tracking	perspective,	Guerci	[3,	15]	approaches	it	from	a
STAP	perspective,	 and	Pillai	 and	his	 colleagues	 [4]	 approach	 it	 from	a	waveform	 selection
perspective.

“Cognition”	 in	 radar	has	been	around	 for	 a	 long	 time.	A	 simple	 example	 is	 the	 sidelobe
canceller.	 It	 senses	 the	 radar	 environment	 and	 adapts	 to	 it	 by	 adjusting	 the	 weights	 of	 the
canceller	algorithm	to	minimize	the	interference	(see	Chapter	17).

Another	 example	 is	 a	 frequency	 agile	 radar	 that	 performs	 clear	 channel	 search.



Specifically,	 it	 interrogates	 its	 environment	 seeking	 frequency	 bands	 that	 contain	 the
minimum	 interference.	 It	 then	 chooses	 its	 operating	 frequency	 to	 use	 one	 of	 the	 clear
channels.	An	example	of	this	would	be	in	a	sky	wave,	over-the-horizon	radar	that	depends	on
clear	channel	search	to	find	operating	frequencies	free	of	interference	from	other	sources.

Other	examples	include:

• Clutter	maps	 that	 the	 radar	 uses	 to	 avoid	 clutter,	 or	 change	 processor	 characteristics	 to
better	 mitigate	 the	 clutter	 based	 on	 intensity,	 Doppler	 characteristics,	 and/or	 spatial
characteristics.

• Maneuver	 detectors	 that	 adjust	 track	 loop	 characteristics	 to	 accommodate	 target
maneuvers.

• Interacting	multiple	model	(IMM)	trackers	that	change	track	filters	depending	upon	target
types	and/or	kinematic	characteristics.

• Constant	false	alarm	rate	(CFAR)	algorithms	that	change	detection	thresholds	based	on	the
sensed	noise	or	jamming	environment.

These	are	but	a	few	examples	of	“cognitive”	radar	techniques	that	have	been	in	use	for	many
years.

18.4 OTHER	ADVANCEMENTS	IN	RADAR	THEORY

Although	MIMO	 and	 cognitive	 radar	 are	 the	 current	 “hot”	 radar	 research	 topics,	 there	 are
other	radar	theory	advancements	that	are	being	studied.	Three	examples	of	these	are:

• Advanced	Phased	Array	Techniques—There	 has	 been	 a	 good	 deal	 of	 research	 aimed	 at
taking	advantage	of	the	ability	to	do	digital	beam	forming	in	modern,	active	phased	array
radars.	 One	 example	 of	 this	 includes	 the	 adaptive	 nulling	 discussed	 Chapter	 16.	 Other
examples	 include	 advanced	 angle	 super-resolution	 techniques	 such	 as	MUSIC	 (MUltiple
SIgnal	Classification)	or	 the	examples	mentioned	 in	 [7],	 such	as	adaptive-adaptive	array
processing	or	principal	components	processing.

• Advanced	Waveforms—Analysts	 are	 constantly	 developing	 new	 waveforms	 or	 adapting
waveforms	from	other	 fields	such	as	communications	[16].	Examples	of	 the	 former	are
recent	 finds	 in	minimum	peak	 sidelobe	 codes	 [17–20]	 and	 polyphase	Barker	 codes	 [21,
22].	Examples	of	adaptations	of	communications	waveforms	are	Costas	coding,	Huffman
codes,	 and	 codes	 based	 on	 pseudo-random	 noise	 sequences	 [8].	 Actually,	 the	 theories
behind	 advanced	waveforms	 have	 been	 studied	 for	 a	 long	 time	 [23–26].	 However,	 it	 is
because	of	the	invention	of	the	DDS	and	high-speed	digital	signal	processors	that	they	can
now	be	more	widely	and	easily	used	in	radars.	In	fact,	“advanced”	waveforms	have	been
used	 in	 radars	 in	 the	past,	although	not	 to	 the	 extent	now	possible	with	DDSs	and	high-
speed	digital	signal	processing.

• Advanced	Tracking	Algorithms—Up	until	fairly	recently,	digital	track	algorithms	consisted
of	g-h	(α-β),	g-h-k	(α-β-γ)	and	low	order,	or	partitioned	[27,	28],	Kalman	filters.	The	main
reason	for	this	was	speed	and	memory	limitations	of	digital	computers.

With	 the	 development	 of	 high-speed	 computers	 and	 advanced	 programming	 languages,



researchers	 are	 investigating	 more	 advanced	 filters	 such	 as	 high	 order	 Kalman	 filters,
unscented	Kalman	filters,	IMM	filters,	and	particle	filters	[9–11,	29,	30].	The	 latter	offer	 the
potential	of	 improved	tracking	performance	and	also	 improved	target	detection	 through	the
use	of	a	technique	termed	“track	before	detect”	[31].

18.5 HARDWARE	ADVANCEMENTS

Some	of	the	more	interesting	advancements	have	taken	place,	and	are	still	taking	place,	in	the
area	of	hardware.	One	of	these	is	the	DDS,	or	Direct	Digital	Synthesizer.	This	device	is	used
to	 digitally	 generate	waveforms	 and	 has	 almost	 unlimited	waveform	 generation	 capability.
This	means	that	waveforms	we	could	previously	consider	only	in	theoretical	and	simulation
studies	 can	 now	 be	 easily	 generated	 in	 radar	 hardware.	 This	 includes	 waveforms	 such	 as
nonlinear	FM,	PRN-coded	pulses,	minimum	peak	sidelobe	waveforms,	and	the	other	types	of
waveforms	discussed	in	Chapter	10	and	elsewhere	[4,	8].	The	DDS,	along	with	modern	digital
signal	processing,	will	allow	changing	waveforms	“on	the	fly”	to	contend	with	changes	in	the
environment	 and/or	 to	 counter	 jamming.	 The	 DDS	 will	 also	 be	 an	 enabler	 of	MIMO	 and
cognitive	radars.

DDSs	are	advancing	to	the	point	where	they	are	suitable	for	Agile	LO	frequency	synthesis
and	 can	 generate	 high	 bandwidth,	 high-BT	 product	 waveforms.	 An	 example	 would	 be	 the
AD9858,	 which	 is	 a	 1	 gigasample	 per	 second	 (GSPS)	 DDS	 [32].	 This	 DDS	 is	 capable	 of
generating	 a	 frequency-agile	 analog	output	 sine	wave	 at	 up	 to	 400	MHz.	The	AD9858	 also
includes	an	automatic	 frequency	sweeping	 feature,	 simplifying	LFM	generation	 for	chirped
radar.	Another	notable	example	is	the	AD9914,	which	is	a	3.5	GSPS	DDS	with	12-bit	digital-
to-analog	converter	(DAC),	which	can	generate	frequencies	up	to	1.4	GHz	and	includes	12bit
amplitude	scaling	for	fast	amplitude	hopping	[33].

Another	significant	hardware	advancement	is	the	solid-state	T/R	module	[34,	35].	From	an
operational	 perspective,	 T/R	 modules	 will	 improve	 radar	 reliability	 because	 they	 allow
elimination	of	the	single	point	of	failure	that	exists	with	transmitters	that	use	a	single,	high-
power	 transmit	 tube.	 Also,	 since	 they	 are	 solid-state,	 they	 do	 not	 use	 high-voltage	 power
supplies,	which	should	enhance	safety.

The	newer	generation	of	T/R	modules	that	are	based	on	gallium	nitride	(GaN)	transistors
have	five	times	the	power	density	compared	to	gallium	arsinide	(GaAs)	transistors	[36].	This
increased	power	density	requires	fewer	GaN	transistors	in	parallel	for	a	given	output	power,
which	lends	itself	to	wideband	operation.	This	is	because	the	matching	networks	tend	to	be	the
limiting	 factor	 for	 bandwidth.	 Needing	 fewer	 GaNs	 requires	 simpler	 matching	 networks,
which	 exhibit	 wider	 frequency	 response	 in	 general	 [36].	 GaN	 transistors	 also	 offer	 the
promise	of	allowing	variable	output	power.	This	will	allow	transmit	amplitude	weighting	to
reduce	antenna	sidelobes.	It	may	also	lead	to	the	ability	to	use	amplitude	weighting	(in	time)
across	 the	 transmit	waveform.	Neither	of	 these	capabilities	can	be	easily	obtained	with	 tube
transmitters	or	T/R	modules	that	use	older	technology	such	as	GaAs	or	silicon.	To	operate	at
maximum	efficiency,	these	types	of	transmitters	must	be	operated	at	full	power	output	(class
C).



The	ability	to	time	weight	could	lead	to	the	development	of	a	new	class	of	waveforms	that
take	advantage	of	the	ability	to	amplitude	weight	on	transmit	[25,	26].	It	will	be	interesting	to
see	where	research	in	this	area	leads.

T/R	modules	will	be	a	key	element	of	MIMO	and	cognitive	radar	designs	that	are	currently
being	analyzed.	They	will	also	be	key	elements	in	radars	that	use	advanced	beam	forming	or
STAP	algorithms.	The	reason	for	this	is	that	radars	that	use	STAP,	MIMO,	or	cognitive	ideas
will	 need	 access	 to,	 and	 control	 of,	 individual	 antenna	 elements	 or,	 at	 a	minimum,	 a	 fairly
large	number	of	subarrays.

Another	transmitter	(and	receiver)	component	that	has	advanced	significantly	over	the	past
few	years	 is	 the	 local	oscillator	of	 the	exciter.	Only	a	few	years	ago,	oscillators	with	phase
noise	sidebands	of	about	-150	dBc/Hz	were	difficult	to	find.	Today,	it	is	not	uncommon	to	see
oscillators	with	phase	noise	sideband	levels	of	-170	dBc/Hz	[37–41].

A	 key	 hardware	 element	 on	 the	 receive	 side	 is	 the	 ADC.	 Recent	 technology	 has	 pushed
ADCs	to	sample	rates	in	the	hundreds	of	MHz	to	low	GHz	and	dynamic	ranges	in	the	16-	to
20-bit	 range	 [42–46].	 For	 example,	 the	 AD9680	 from	 Analog	 Devices	 is	 a	 14-bit	 ADC
operating	at	1	GSPS	[47].	As	another	example,	Texas	Instruments	offers	ADCs	for	direct	RF
sampling	that	are	12	bit	and	operate	at	rates	up	to	3.6	GSPS	(ADC12Dxx00RF	family)	[48–50].
Pushing	sampling	 rates	 further	 (at	 the	expense	of	ADC	bits),	ApisSys	produces	a	10-bit,	10
GSPS	ADC	on	a	3U	VPX	board	[51].	Because	of	this,	digital	receivers	(see	Chapter	14)	are
being	 studied	 and	 implemented	 in	 radars,	 taking	 advantage	 of	 direct	 IF	 or	 RF	 sampling.
Further,	 the	ADC	 is	 being	moved	 closer	 to	 the	 RF	 front	 end	 of	 the	 radar.	 It	 would	 not	 be
unreasonable	 to	 expect	 that,	 in	 the	 near	 future,	 radars	 could	 use	 direct	 RF	 sampling	 and	 a
completely	digital	receiver.

A	major	 limitation	 of	moving	 the	ADC	 closer	 to	 the	 antenna	will	 be	 the	 effective	 noise
figure	of	ADCs,	which	currently	are	on	 the	order	of	20	dB	 to	40	dB.	 If	 such	an	ADC	were
placed	 directly	 at	 the	 antenna,	 the	 receiver	 noise	 figure	will	 be	 in	 this	 20-	 to	 40-dB	 range
because	it	will	set	the	noise	figure	of	the	ADC	(see	Chapter	4).	Even	if	the	ADC	were	moved
to	 immediately	 after	 the	LNA,	 the	 large	 noise	 figure	 of	 the	ADC	would	 have	 a	 significant
impact	on	the	overall	receiver	noise	figure.	For	example,	suppose	we	consider	an	LNA	with	a
noise	figure	of	2	dB	and	a	gain	of	25	dB.	If	the	noise	figure	of	the	ADC	is	30	dB,	the	overall
noise	figure	of	the	combined	LNA	and	ADC	will	be

which	is	significantly	larger	than	the	2-dB	noise	figure	of	the	LNA.	Until	ADC	noise	figure
values	are	reduced	to	more	reasonable	values,	the	ADC	will	need	to	reside	further	down	the
receiver	chain	so	as	to	minimize	its	impact	on	overall	receiver	noise	figure.

This	ability	 to	digitize	 the	received	signal	early	 in	 the	receiver	chain,	coupled	with	high-
speed	 and	 small	 footprint	 digital	 signal	 processors,	 will	 be	 instrumental	 in	 MIMO	 and
cognitive	radars	currently	being	considered.	The	reason	for	this	is	that	such	radars	will	need
to	 process	 data	 from	 a	 very	 large	 number	 of	 T/R	modules	 (or	 subarrays)	 [36].	 This	 will



require	a	very	large	number	of	receivers,	something	that	will	be	difficult	to	achieve	without
small,	 digital	 devices	 that,	 individually,	 consume	 small	 amounts	 of	 power.	 Also,	 the
advantages	of	digitizing	at	the	module	level,	rather	than	at	the	subarray	level,	may	not,	at	least
in	 the	 near	 term,	 be	 sufficient	 to	 justify	 the	 cost.	 It	 will	 be	 interesting	 to	 see	 how	 the
technology	and	techniques	progress	in	this	area.

Two	other	key	hardware	advancements	are	small,	high-speed	digital	signal	processors	and
computers.	 These	 are	 currently	 key	 elements	 in	 advanced	 radar	 signal	 processors	 and	will
become	more	important	enablers	in	future	radar	concepts.

18.6 CONCLUSION

Even	though	this	book	focuses	on	basic	radar	analysis,	when	we	wrote	it,	we	had	in	mind	the
future	 theory	 and	 hardware	 advances	 mentioned	 in	 this	 chapter.	 This	 was	 part	 of	 our
motivation	for	including	the	detailed	mathematics	and	some	of	the	advanced	topics	discussed
in	the	various	chapters.	It	is	our	belief	that	a	thorough	understanding	of	the	basic	radar	theory
presented	in	this	book	is	critical	to	implementing	advanced	theories	and	making	use	of	state-
of-the	art	hardware.
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Appendix	A

Suboptimal	Filtering

A.1 INTRODUCTION

While	 analog	 filter	 implementations	 can	 provide	 very	 good	 approximations	 to	 matched
filters,	 if	a	small	amount	of	 loss	 is	acceptable,	 suboptimal	 filters	are	often	simpler	 to	build
and	 are	 more	 economical.	 To	 quantify	 the	 performance	 degradation	 (SNR	 loss)	 of	 a
suboptimal	 filter	 implementation	 (mismatched	 filter,	 matched	 filter	 approximation),	 we
compare	the	performance	of	the	matched	filter	approximation	to	the	performance	of	an	ideal
matched	filter.

For	 this	analysis,	 consider	 the	 linear	 time	 invariant	 (LTI)	 system,	depicted	 in	Figure	A.1.
The	specified	waveform	is	s(t),	the	filter	impulse	response	is	h(t)	(mismatched	filter),	and	n(t)
is	the	noise	present	at	the	input	to	the	filter.

The	instantaneous	SNR	at	the	output	of	a	LTI	system	can	be	shown	to	be	[1]

where

Figure	A.1	LTI	system	block	diagram.

	denotes	the	Fourier	transform	of	f(x).	N(f)	is	the	power	spectral	density	of	the	input
noise.	 If	we	 stipulate	 that	 the	 input	noise	 to	 the	LTI	 system	 is	 stationary	zero-mean	additive
white	noise	with	power	spectral	density	of1



and	that	we	observe	the	peak	signal	power	at	the	output	of	the	filter	at	(arbitrarily)	time	t0,	we
get

Recall,	the	peak	SNR	out	of	an	MF	given	AWGN,	is	(see	Chapter	7)

where	we	note	the	energy	in	the	signal	(according	to	Parseval’s	theorem)	is	[1]

Taking	the	ratio	of	the	peak	SNR	out	of	the	suboptimal	filter	and	the	peak	SNR	out	of	the
matched	filter	results	in

Equation	(A.9)	 is	 the	 efficiency	of	 a	matched	 filter	 approximation,	which	 is	 the	 criterion
used	to	populate	Table	5.9.	The	reciprocal	of	(A.9)	is	matching	loss	[2,	p.	376]



A.1.1 Example:	Rectangular	Pulse—Ideal	Lowpass	(Rectangular)	Filter

Consider	a	rectangular	pulse	given	by2

where	V	 is	the	pulse	amplitude	and	T	 is	the	pulsewidth.	The	frequency	response	for	an	ideal
lowpass	filter	can	be	expressed	as	[3,	p.	270]

Taking	the	Fourier	 transform	of	(A.11),	we	get	 the	spectrum	S(f)	of	 the	rectangular	 input
signal	s(t)

where	sinc(x)	=	sin(πx)/(πx)	[4].3	Alternatively,	we	could	apply	the	Fourier	transform	pair4



Substitution	of	(A.12)	and	(A.13)	into	the	SNR	ratio	given	by	(A.9)	yields

Noting	 the	 noted	 that	 |ejx|	 =	 e0	 =	 1,	 and	 carrying	 out	 the	 corresponding	 integral,	 (A.14)
simplifies	to

We	observe	that	sinc(x)	is	an	even	function,	so	for	f	and	T	positive,	we	get

Using	(A.15)	in	the	denominator	of	(A.14),	we	get



To	evaluate	the	(A.14),	we	make	use	of	the	indefinite	integrals

where	Si(x)	is	the	sine	integral	given	by

which	results	in

Noting	again	that	B	and	T	are	positive	and	real,	which	results	in

we	arrive	at	the	expression

which	is	plotted	in	Figure	A.2.



Figure	A.2	SNR	for	ideal	lowpass	filter	with	respect	to	the	matched	filter	for	rectangular	input.

The	peak	relative	SNR	for	an	ideal	LPF	is	0.825	(–0.838	dB),	which	occurs	at	BT	=	0.686.
This	is	the	basis	for	the	rule-of-thumb	0.8	to	1.0	dB	match	filter	loss	[5–7].

The	 question	 that	 arises	 is	 why	 does	 this	 disagree	 with	 the	 BT	 product	 in	 Table	 5.9	 in
Chapter	5.	The	answer	 lies	 in	 the	 fact	 that	 the	BT	product	values	 listed	 in	Table	5.9	 are	 for
bandpass	filters.	While	we	performed	a	lowpass	equivalent	analysis	for	simplicity,	recall	that
the	bandpass	bandwidth	is	twice	that	of	the	lowpass	equivalent,	or	BT	=	1.371.5	The	resultant
equation	for	an	ideal	BPF,	becomes

A.1.2	Example:	Rectangular	Pulse—One-Stage	Single-Tuned	RLC	Resonant	Circuit

The	description	1-stage	single-tuned	refers	 to	a	 tuned	amplifier	with	a	single	RLC	resonant
circuit	(tank	circuit)	providing	frequency	selectivity.	We	will	analyze	a	 lowpass	RLC	circuit
equivalent,	which	is	a	single-pole	RC	LPF	for	simplicity	(remember	the	factor	of	2	difference
in	bandwidth).	Instead	of	using	the	SNR	ratio	equation	as	we	did	with	the	earlier	example,	we
will	take	an	alternative	approach	suggested	in	[3,	8].	For	this	example,	consider	the	RC	LPF
(RC	integrator)	with	gain	G	depicted	in	Figure	A.3.

Recall	for	an	RC	integrator	the	step	response	is	[3]

where	α	=	1/RC	is	the	time	constant	of	the	RC	LPF.	Taking	the	derivative	of	the	step	response
gives	the	impulse	response



Figure	A.3	RC	lowpass	filter.

The	output	to	a	single	rectangular	pulse	s(t)	represented	by

can	be	expressed	as

Evaluating	(A.29)	results	in

which	is	depicted	in	Figure	A.4.

The	frequency	response	of	an	RC	LPF	with	gain	G	is

where	fc	=	B	is	the	3-dB	cutoff	frequency	given	by



Figure	A.4	RC	LPF	output	to	a	pulse	input.

The	amplitude	is	given	by

The	power	transfer	function	is

The	maximum	 output	 signal	 occurs	 at	 t	 =	T,6	 where	we	 note	 for	 τ	 <	T,	 the	 output	 so(t)	 is
increasing	and	for	τ	>	T,	so(t)	decreases.	Substitution	into	(A.30)	results	in	a	peak	magnitude
of

Noise	power	is

where	we	made	use	of

The	output	SNR	is	then



Recall	the	output	SNR	for	MF	is

compared	to	ideal	matched	filter

which	is	plotted	in	Figure	A.5.

Figure	A.5	SNR	for	single-pole	lowpass	filter	with	respect	to	the	matched	filter	for	rectangular	input.



The	peak	relative	SNR	for	a	 lowpass	RC	filter	 is	0.815	(0.891	dB),	which	occurs	at	BT	=
0.200.	For	a	bandpass	RLC	filter,	the	BT	product	is	0.400.	The	bandpass	RLC	filter	equation
becomes

This	BT	product	provides	 the	optimum	single-stage	filter	approximation	 to	an	MF.	Carlock
investigates	 the	 two-stage	 RC	 lowpass	 filter	 incorporating	 unity	 gain	 isolation	 amplifiers
between	the	filter	stages	[9].	Fine’s	thesis	contains	an	analysis	for	higher	order	RC	filters	as
well	as	experimental	verification	[10].

A.1.3	Example:	Gaussian	Pulse—Gaussian	Filter

The	Gaussian	pulse	in	the	time	domain	(impulse	response	for	an	ideal	Gaussian	filter)	can	be
formulated	in	a	number	of	ways.	For	this	analysis,	we	chose	to	express	the	Gaussian	pulse	and
Gaussian	spectrum	as	[11,	12]

and

respectively.	 The	 scale	 factor	 α	 is	 chosen	 based	 upon	 how	 pulsewidth	 and	 bandwidth	 are
defined.	Here	we	choose

which	results	in	τ	representing	the	half-power	pulsewidth	and	B	 representing	 the	half-power
bandwidth.	The	associated	BT	product	is	0.44	[13].	Substitution	into	(A.9)	yields

The	equation	above	simplifies	to	1,	since	the	waveform	and	filter	are	matched.

A.1.4	Example:	Rectangular	Pulse—Gaussian	Filter	or	Gaussian	Filter—	Rectangular



Pulse

Substitution	of	(A.14)	and	(A.43)	into	(A.9)	yields

Equation	(A.46)	is	plotted	below	in	Figure	A.6.

Figure	A.6	SNR	for	Gaussian	filter	with	respect	to	the	matched	filter	for	rectangular	input.

A.2	SUMMARY

The	 results	 of	 the	 various	 examples	 are	 summarized	 in	 Table	A.1.	A	 comparison	 graph	 is
provided	in	Figure	A.7.

Table	A.1
Matched	Filter	Approximations



Figure	A.7	Relative	SNR	with	respect	to	the	time	bandwidth	product	BT.

A.3	EXERCISES

1. Derive	(A.1),	the	SNR	at	the	output	of	an	LTI	system.

2. Calculate	peak	magnitude	and	BT	of	(A.25).	Hint:	equate	derivative	to	zero.

3. Derive	(A.30).

4. From	[3],	the	transfer	function	of	a	filter	composed	of	RC	filters	in	cascade	can	be	given
by	the	approximate	expression	[14]



which	 is	 a	variation	on	 the	Gaussian	 filter	definition	given	earlier.	What	 is	 the	 relative
efficiency	of	such	a	 filter	 for	 the	detection	of	a	 rectangular	pulse	with	amplitude	A	and
duration	T?	What	should	be	the	value	of	the	optimal	sampling	instant	t0?
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1	The	factor	of	2	accounts	for	a	two-sided	power	spectral	density.
2	Since	delay	is	arbitrary,	a	noncausal	signal	is	chosen	for	notational	simplicity.
3	 In	1952,	Philip	M.	Woodward	coined	 the	 term	sinc	function	defined	by	sin(πx)/πx	 in	his	classic	work	on	radar	waveforms.
While	sinc	is	a	contraction	of	sine	cardinal,	the	sinc	function	differs	slightly	from	the	sine	cardinal	function	defined	by	sin(x)/x.
Woodward	states	he	normalized	the	sinc	function	by	absorbing	the	π	term	into	the	definition	for	a	cleaner	notation.
4	This	result	can	be	derived	by	considering	the	rect[x]	function	and	applying	the	superposition,	 time-delay,	and	scale-change
Fourier	transform	theorems.
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difference	in	SNR	efficiency	is	minimal,	so	we	will	follow	the	common	convention	of	using,	t	=	T.



Appendix	B

Data	Windowing	Functions

Table	B.1	contains	continuous	and	discrete	 time	 forms	of	 some	common	window	functions
whose	uses	include	range,	Doppler,	and	antenna	sidelobe	reduction	[1–19].	The	discrete	time
window	functions	are	in	causal	symmetric	form	(identical	endpoints),	which	is	generally	used
for	 FIR	 filter	 design.	 Periodic	 forms,	 characterized	 by	 a	 missing	 (implied)	 endpoint	 to
accommodate	 periodic	 extension,	 are	 generally	 used	 for	 spectral	 estimation	 (divide	 by	N
versus	N	–	1).

Table	B.1

Window	Functions1





a	The	parameter	α	is	inversely	proportional	to	sidelobe	level.	Values	for	α	of	2.5	to	3.5	are	typical.
b	I0	is	the	zero-order	modified	Bessel	function	of	the	first	kind.	Sometimes	β	=	πα	is	used	in	the	expression.	The	parameter	β	is
inversely	proportional	to	sidelobe	level.	Values	for	β	of	2.0π	to	3.5π	are	representative.
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Acronyms	and	Abbreviations

°C Degrees	Celsius

°F Degrees	Fahrenheit

3-D Three-Dimensional

AAF Anti-Aliasing	Filter

AC Alternating	Current

ADC Analog-to-Digital	Converter

AESS Aerospace	and	Electronic	Systems	Society

AGC Automatic	Gain	Control

AIEE American	Institute	of	Electrical	Engineers

ARSR Air	Route	Surveillance	Radar

AWGN Additive	White	Gaussian	Noise

BJT Bipolar	Junction	Transistor

BPF Bandpass	Filter

BT Time-Bandwidth

BWA Backward	Wave	Amplifier

CA Cell	Averaging

CFAR Constant	False	Alarm	Rate

CL Conversion	Loss

CNR Clutter-to-Noise	Ratio

COHO COHerent	Oscillator



CPD Cyclotron	Protective	Device

CPI Coherent	Processing	Interval

CR Cancellation	Ratio

CRPL Central	Radio	Propagation	Laboratory

CW Continuous	Wave

CWESA Cyclotron	Wave	Electrostatic	Amplifier

dB Decibel

dB(m) Decibel	Relative	to	1	Meter

dB(W-s) Decibel	Relative	to	1	Watt-Second

dB/km Decibels	Per	Kilometer

dB/m Decibels	Per	Meter

dBFS Decibel	Below	Full	Scale

dBi Antenna	Directivity	(Gain)	Relative	to	the	Directivity	of	an	Isotropic	Antenna

dBm Power	Level	Relative	to	1	Milliwatt

dBsm Area	in	Square	Meters	Relative	to	1	m2

dBV Voltage	Level	Relative	to	1	Volt	Root	Mean	Square

dBW Power	Level	Relative	to	1	Watt

DC Direct	Current

DDC Digital	Downconverter

DDS Direct	Digital	Synthesis	(or	Synthesizer)

deg Degree

DFT Discrete-time	Fourier	Transform



DOF Degrees	of	Freedom

EA Electronic	Attack

ECM Electronic	Countermeasure

E-field Electric	Field

EIA Electronic	Industries	Association

ERP Effective	Radiated	Power

ESA Electrostatic	Amplifier

ESCA Electrostatics	Combined	Amplifier

FFT Fast	Fourier	Transformer

FIR Finite	Impulse	Response

FM Frequency	Modulation

FMCW Frequency	Modulated	Continuous	Wave

FSR Full-Scale	Range

ft Foot

GaAs Gallium	Arsenide

GaN Gallium	Nitride

GHz Gigahertz

GMTI Ground	Moving	Target	Indication

GO Greatest	Of

GPS Global	Positioning	System

GSPS Giga	Sample	Per	Second

HF High	Frequency



HPF Highpass	Filter

Hz Hertz

IEEE Institute	of	Electrical	and	Electronics	Engineers

IF Intermediate	Frequency

IFFT Inverse	FFT

IIR Infinite	Impulse	Response

IL Insertion	Loss

IMD Intermodulation	Distortion

IMM Interacting	Multiple	Model

IRE Institute	of	Radio	Engineers

IRF Image	Reject	Filter

J/J Joules	per	Joule

JAN Joint	Army	Navy

JNR Jammer-to-Noise	Ratio

K Degrees	Kelvin

kft Kilofoot

kHz Kilohertz

km Kilometer

kW Kilowatt

LFM Linear	Frequency	Modulation

LMS Least	Mean-Square



LNA Low	Noise	Amplifier

LO Local	Oscillator

LOS Line	of	Sight

LPF Lowpass	Filter

lsb Least	Significant	Bit

LSR Linear	Shift	Register

LTI Linear	Time	Invariant

m Meter

m/s Meter	Per	Second

m/μs Meter	Per	Microsecond

m2 Square	Meter

MDS Minimum	Detectable	Signal

MDS Minimum	Discernable	Signal

MF Matched	Filter

MHz Megahertz

mi Mile

MIMO Multiple-Input,	Multiple-Output

MIT Massachusetts	Institute	of	Technology

MKS Meter,	Kilogram,	Second

mm Millimeter	Wave

mm Millimeter

mm/hr Millimeter	Per	Hour



mph Mile	Per	Hour

MSPS Mega	Samples	Per	Second

MTD Moving	Target	Detector

MTI Moving	Target	Indicator

MUSIC Multiple	Signal	Classification

NAGC Noise	Automatic	Gain	Control

Number	of	Constant	Level	Sidelobes

NCO Numerically	Controlled	Oscillator

NLFM Nonlinear	FM

nmi Nautical	Mile

Np/m Neper	per	meter

ns Nanosecond

PPI Plan	Position	Indicator

PRF Pulse	Repetition	Frequency

PRI Pulse	Repetition	Interval

PRN Pseudo	Random	Noise

rad2 Steradian

Radar RAdio	Detection	And	Ranging

RC Resistor	Capacitor

RCM Range	Cell	Migration

RCMC RCM	Correction



RCS Radar	Cross	Section

RF Radio	Frequency

RGPO Range-Gate	Pull	Off

RLC Resistor	Inductor	Capacitor

rms Root	Mean	Square

rpm Revolutions	Per	Minute

RRE Radar	Range	Equation

Rx Receive

s Second

SALT Strategic	Arms	Limitation	Talk

SAP Spatial	Adaptive	Processing

SAR Synthetic	Aperture	Radar

SAW Surface	Acoustic	Wave

SCR Signal-to-Clutter	Ratio

SINR Signal-to-Interference-Plus-Noise	Ratio

SIR Signal-to-Interference	Power	Ratio

SLB Sidelobe	Blanking

SLC Sidelobe	Cancellation

SMI Sample	Matrix	Inversion

SNR Signal-to-Noise	Ratio

SO Smallest	Of

SONAR SOund	Navigation	And	Ranging



STALO STAble	Local	Oscillator

STAP Space-Time	Adaptive	Processing

STC Sensitivity	Time	Control

T/R	and	TR Transmit/Receive

TNR Threshold-to	Noise	Ratio

TSS Tangential	Sensitivity

TWT Traveling	Wave	Tube

Tx Transmit

UAV Unmanned	Aerial	Vehicle

UHF Ultra	High	Frequency

USAAF United	States	Army	Air	Forces

VHF Very	High	Frequency

W Watt

w.r.t. With	Respect	To

W/Hz Watt	Per	Hertz

W/m2 Watt	Per	Square	Meter

W/W Watt	Per	Watt

WG Waveguide

W-m2 Watt-Meter-Square

W-s Watt-Second

WSCS Wide-Sense	Cyclostationary



WSS Wide-Sense	Stationary

ZOH Zero-Order	Hold

Μs Microsecond

℧/m Mho	Per	Meter

Ω ohm
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AGC	(See	automatic	gain	control)
Airborne	STAP,	646
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cross,	251
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Woodward,	251
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least	significant	bit,	540
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Coherent
demodulator	(See	I/Q	demodulator)
integration,	201,	202,	212
oscillator,	508
processing	interval,	576

COHO	(See	coherent	oscillator)
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theory,	139
threshold,	39

Diagonal	loading,	653
Dickey,	Robert	H.
waveforms,	268

Difference
channel,	552
pattern,	552

Digital
beam	forming,	557
downconverter,	537
receiver,	532
signal	processor,	443

Diode	limiter,	97,	501
Dirac,	Paul,	316
Direct	IF	sampling,	533
Direct	RF	sampling,	535
Directive	gain,	22,	25,	342
pattern,	340

Directivity,	22,	25,	27
Discriminator
angle,	554
curve,	553
range,	555

Dither,	549
noise,	549

Doppler,	319
beam	sharpening,	566



frequency,	8,	11,	319
processing
STAP,	631

processor
STAP,	634

Double-balanced	mixer,	503
Down	chirp,	192
Downconversion,	502
Downrange,	579
Dual-threshold	detection,	202,	211
Duty	cycle,	40
Dynamic	range,	512
required,	519

Edge	taper,	357
Effective
aperture,	30,	45
area,	30
noise	temperature,	83,	89
radiated	power,	26,	27,	45

EIA	designation,	123
Electronic	Industries	Association,	123
Electrostatic
amplifier,	500
combined	amplifier,	501

Element
packing,	356
pattern,	350

Elliptical,	374
Emslie,	Alfred	G.,	384
Environmental	noise,	509
Equivalent	noise	temperature,	83,	89
ERP,	27	(See	effective	radiated	power)
Error	function,	complementary,	216
Euler	identity,	14

False	alarm
probability,	140,	161,	162,	164,	170
time,	170

Fast	time,	621
Feed,	356



constrained,	356
parallel,	100
series,	100
space,	356
stripline,	100

Feedback	shift	register,	286,	287
Feedback	tap	configurations,	287
Ferrite	limiter,	97
Fessenden,	Reginald	Aubrey,	497
FFT,	202,	203,	210,	263
Field	point,	337
Filter	order,	498
FM	waveforms,	269
Four-channel	receiver,	557
Fourier	transform,	262
Fowle
nonlinear	FM	synthesis,	272,	277
examples,	274,	275

Frank
code,	279,	280
matrix,	279
polyphase
ambiguity	function,	280
code,	279,	280

Frequency
agility,	71,	504
bands,	2
coding,	268
hop	waveforms,	268,	293,	(See	step	frequency	waveforms)
response
optimized,	638

Fresnel	integral,	308
Friis	formula,	510
cascade	noise	figure,	524
cascade	noise	temperature,	524

Gamma	function
incomplete,	212,	213

Gaussian,	204,	207
pulse,	707
spectrum,	707



Generalized	Barker	codes,	285
Golomb,	S.	W.
PRN	codes,	286

Goodchild,	William,	384
Grating	lobes,	333
Gross	Doppler,	595
Ground	clutter
airborne	STAP,	647

Ground	clutter	spectrum,	391
Gaussian	model,	391

Ground	range,	4

Harald	Trap	Friis,	84
Harmonics,	503
Hermitian,	624,	629	(See	conjugatetranspose)
Heterodyne,	497,	501
Horizontally	polarized,	374
Howells,	Paul	W.,	656
Hülsmeyer,	Christian,	1

I	and	Q	detector	(See	I/Q	demodulator)
I/Q	demodulator,	506,	507
IF	representation,	141
Image
frequency,	502
noise,	502
reject	filter,	502

Incomplete	gamma	function,	212,	213
Independent,	227,	236
Insertion	loss,	524
Instrumented	range,	7,	8
Integration
binary,	202
coherent,	201,	202,	203,	206,	210
noncoherent,	201,	210,	212,	217,	218

Interference,	621
canceller,	656
multiple,	628
plus	noise,	629
signal,	656



steering	vector,	628
Intermodulation	distortion,	516
Interpolation,	600
Isotropic,	330
radiator,	26,	330

ISTOK,	501

Johnson	noise,	32,	79
Johnson,	John	Bertrand,	79
Joint	density,	143,	144,	157

Karki,	James,	546
Kester,	Walt,	546
Kotel’nikov,	Vladimir
Aleksandrovich,	263

Kotel’nikov	sampling	theorem,	534

Least	mean-square,	658
Least	significant	bit,	540
Leeson,	D.	B.,	450
Left-circular,	374
LFM,	307
and	the	sinc	function,	306
bandwidth,	193,	259,	308
frequency	response	high	BT	product,	307
frequency	response,	low	BT	produce,	307
pulse,	192,	258,	267,	307
slope,	192,	259,	307
spectrum	of,	309
with	amplitude	weighting,	269

Linear	array,	336
Linear	frequency	modulation,	192,	307
Linearly	polarized,	374
LNA,	97	(See	low	noise	amplifier)
Local	oscillator,	501
Losses,	22,	31
atmospheric,	105
beamshape,	102
CFAR,	111,	116
circulator,	96
directional	coupler,	96



Doppler	straddle	loss,	110
duplexer,	96
examples,	99,	105,	108,	109,	117
feed,	96
isolator,	96
matched	filter,	110
mismatch,	100,	102
mode	adapter,	96
phase	shifter,	100
power	divider,	96
preselector,	96
propagation,	105
radar,	95
radome,	100
range	straddle	loss,	110
receiver	protection,	96
RF,	95
rotary	joint,	96
scan,	103
T/R	switch,	96
transmit,	95
waveguide,	96,	97,	98
waveguide	attenuator,	96
waveguide	switch,	96

Low	noise	amplifier,	97,	500

Main	beam,	334
Main	beam	clutter	region,	386
Maisel,	Louis,	681
Marconi,	Guglielmo,	330
Marcum,	J.	I.,	139
Marcum	Q	function,	165,	208
Marginal	density,	144,	154
Matched
Doppler,	254
range,	254

Matched	filter,	32,	181,	186,	201,	242,	309
FFT-based,	270,	271
approximations,	709
response
LFM,	270
NLFM,	276



Maximal	length	sequences,	286
Maximize	SINR,	622,	626
Middleton,	David,	181
Mie,	Gustave,	55
MIMO,	687	(See	multiple-input,	multiple-output)
radar,	687

Minimum	detectable	signal,	514,	516
Minimum	discernable	signal,	514,	516
Minimum	peak	sidelobe	codes,	284	table	of,	285
Minimum	signal	of	interest,	515
Mismatched
Doppler,	253
filter,	268
PRN	Processing,	289
range,	253

Mixer
conversion	loss,	522,	524
double	balanced,	503
harmonics,	503
ideal,	501
image	reject,	502
practical,	503
spur,	503

Modulation
amplitude,	267
frequency,	267
linear	frequency,	267
non-linear	frequency,	267
phase,	267
quadratic	phase,	267

m-of-n
detection,	201,	202,	229

Monopulse,	551
calibration,	553
combiner,	551
gain	imbalance,	554
phase	imbalance,	554
three-channel,	551
two-channel,	556
sign	switching,	557

Monostatic,	2



Moving	target	indicator,	410
MTI,	410
clutter	performance,	413
improvement	factor,	413
response	normalization,	412
transients,	433
velocity	response,	431

Muehe,	Charles	E.,	384
Multiple	PRIs,	6
Multiple	signal	classification,	558
Multiple	simultaneous	beams,	557
Multiple-input,	multiple-output,	687
MUSIC	(See	multiple	signal	classification)

Nepers,	127
NLFM,	268,	272
frequency	and	phase	plots,	276

Noise
cosmic,	509
dither,	549
energy,	22,	31
environmental,	509
factor,	22
figure,	22,	32
floor,	509
power,	35
power	spectral	density,	32
receiver,	508
temperature,	22,	32
thermal,	32,	508

Noise	covariance	matrix,	626
Noise	figure,	84,	85,	90
analog-to-digital	converter,	545
attenuator,	85

Noncoherent	integration,	201,	210,	212,	217,	218
Nonlinear	FM,	267,	272
synthesis,	272

North,	D.	O.,	181,	201
Norton,	Kenneth	A.,	21
Number	of	samples,	652
Nyquist



criterion,	534
for	FFT	matched	filter,	271

frequency,	534
Nyquist,	Harry	Theodor,	79
rate,	534
sampling	theorem,	533
zones,	535

Omberg,	Arthur	C.	21
Optimum	weight
airborne	STAP,	650
temporal,	637
vector
space-time,	640

Orthogonal	waveforms,	687
Orthogonality	condition,	659

Packing
factor,	40
rectangular,	356
triangular,	356

Parabolic	reflector,	376
Parseval’s	theorem,	187,	273
Passive	component,	92
Pattern
difference,	552
sum,	552

Pattern	propagation	factor,	389
Peak	transmit	power,	22,	24
Permeability	of	free	space,	126
Permittivity	of	free	space,	126
Phase	code
Barker,	282
Frank	polyphase,	279
generalized	Barker,	285
minimum	peak	sidelobe,	284
polyphase	Barker,	285
PRN,	286
pseudo-random	noise,	286

Phase-coded	pulse
general	equation	for,	278

Phase	detectors,	507



Phase	modulation,	267
Phase	noise,	400,	422,	447
clutter	gain,	445

Phase	steering,	346,	349
Phased	array
element	packing,	356
linear,	336
N-element,	336
radiation	pattern,	354
shape,	356
sidelobes,	360
two	element,	330
weighting,	360

Pilot	pulse,	553
Planar	arrays,	352
Planck’s	law,	80
Planck	constant,	80

Polarization,	373
circular,	374
elliptical,	374
linear,	374
slant,	374

Polyphase	Barker	codes,	285
Post-detection	integration,	210
Power	gain,	26
Practical	considerations
STAP,	653

Preselector,	498,	505
PRF,	6	(See	pulse	repetition	frequency)
PRI,	6	(See	pulse	repetition	interval)
PRN	(See	pseudo-random	noise)
ambiguity	function,	289
for	mismatched	waveform,	293

code	generator,	287
coded	waveforms,	286
feedback	tap	configurations,	287
maximal	length	sequences,	286
mismatched	processing,	289
optimum	phase	shift,	292
sequence,	286

Probability



cumulative,	201,	238
cumulative	detection,	227,	248
detection,	38,	209,	212,	227
false	alarm,	227,	228,	235
m-of-n,	230

Processing	interval,	575,	576
Processing	window,	8
Pulse
compression,	45,	268
constant	amplitude,	267
LMF,	267
phase-coded,	267
repetition
frequency,	6
interval,	6

Pulsed	Doppler
clutter,	435
processor,	433
signal	processor,	441

Pulsed	radar,	1,	5
Pulsewidth,	9

Q	function,	208
Quadratic	phase,	581
coding,	267

Quadrature	demodulator	(See	I/Q	demodulator)
Quadrature	detector	(See	I/Q	demodulator)
Quanta,	540
Quantization,	539
interval,	540
noise,	544
asumptions,	544

rounding,	540

Radar
block	diagram,	16
cognitive,	687
cross	section,	22,	29,	51
frequency	bands,	2,	3
losses,	95
multiple-input,	multiple-output,	687
origin	of	term,	1



range	equation,	21,	45
basic,	21
search,	39
summary,	45

receiver,	80
types,	1
continuous	wave,	1
pulsed,	1

RADARSAT,	620
Radiated	power
effective,	26,	27
ERP,	27

Radiation	pattern,	333,	336,	338
optimized,	631

Radiator
isotropic,	330

Radius	of	the	earth,	131,	390
Rain	attenuation,	107,	129
Rain	clutter
spectral	model,	397

Rain	clutter	RCS,	393
Random	variables,	142
Range
cell	migration,	594
correction,	599

correlation,	448
effect,	449

cut
ambiguity	function	of,	267
matched	Doppler,	267

delay,	4,	5,	311
detection,	38
slant,	22
discriminator,	555
gate	walk,	210
measurement,	3,	4
rate,	8
range-rate	measurement,	3

resolve,	6
sidelobes,	268

Rank,	652
Rayleigh,	3rd	Baron,	51	(See	Strutt,	John	William)



Rayleigh	density,	150
Rayleigh’s	energy	theorem,	187
RC	integrator,	703
RCM	(See	range	cell	migration)
RCMC	(See	range	cell	migration	correction)
RCS,	22,	29,	51
AT-11	Kansan,	57
flat	plate,	55
perfectly	conducting	sphere,	52,	54
simple	shapes,	52

Real	signal	notation,	14
Receive	elements,	334
Receiver,	90,	497
chain,	498
configurations,	550
digital,	532
four-channel,	557
function,	497
noise	floor,	509
sensitivity,	514
three-channel,	551
two-channel,	556

Receiver	noise,	508
Reciprocity,	334
Rect(x),	10
Rectangular
envelope,	267
packing,	356,	361
pulse,	189

Reference	temperature,	508,	509
Reflectivity,	387
RF	amplifier,	90,	91
RF	front	end,	498
Rice,	Stephen	Oswald,	139
Rice	model,	57,	139
Right-circular,	374
Room	temperature,	32

SALT	I,	42
Sample	matrix	inversion,	673



Sampling	theorem
bandpass,	534
Kotel’nikov,	534
Nyquist,	533
Shannon,	534

SAR,	307
image,	572,	592
image	focusing,	592
platform,	579
processing	interval,	575
processor,	578,	598
signal	characterization,	578
spotlight,	574
strip	map,	574

Scan	loss,	225
Scan	period,	401
Scanning
1-D,	103
2-D,	103

Scatterer,	579
Schottky,	Walter	Hermann,	497
SCR	improvement,	417,	459
Sea	clutter,	392
Search
radar,	39
range	equation,	45

sector,	39
solid	angle,	45,	49

Sensitivity,	514
measuring,	515
tangential,	516
time	control,	499
law,	499

Shannon	sampling	theorem,	534
Sidelobe,	27,	29
blanker,	680,	681
cancellation,	653	(See	sidelobe	canceller)
canceller,	656
auxiliary	antenna,	656
closed	loop,	656
coherent	processing,	672
Howells-Applebaum,	675



main	antenna,	656
open	loop,	656
sample	matrix	inversion,	673
SMI,	673
timing,	672
weight,	656

clutter	region,	387
Signal	energy,	21,	31
Signal	processor,	251,	252
Signal-to-clutter	ratio	improvement,	413
Signal-to-noise	ratio,	21,	35
energy,	35
power,	35

sinc(x),	700
sine	Fresnel	integral,	308
sine	integral,	701
Singer,	James
PRN	codes,	286

Single-pulse	SNR,	201
SINR
maximimized,	629

Slant	range,	4,	22
SLB	(See	sidelobe	blanker)
SLC	(See	sidelobe	canceller)
Slow	time,	621
SMI	(See	sample	matrix	inversion)
Smith,	Harry	B.,	384
Smooth	earth	clutter	model,	385
SNR,	21,	35,	201,	203,	206,	215
single-pulse,	201,	214

Solid-state	LNA,	501
Space-Time	Adaptive	Processing	(See	STAP)
Space-time	processing,	622,	639
example,	641

Spatial	filter,	624,	629
Spatial	processing,	622,	623
Spectrum	analyzer,	310
Spherical	correction,	356
Spotlight	SAR,	574



Spurious	free	dynamic	range,	518
Spurious	signal,	503
order,	503
passband,	504

Square	law
detection,	210
detector,	210,	216

Stable	local	oscillator,	506
Staggered	PRIs,	428
STAP,	621
practical	considerations,	653

STC	(See	sensitivity	time	control)
Steering,	346
phase,	346
time	delay,	346

Steering	vector,	624,	628
airborne	clutter,	649
interference,	628
space-time,	640
temoral,	636

signal,	space-time,	639
space-time,	640

Step	frequency	waveform,	293
Doppler	effects,	298
range	ambiguities,	296
range	resolution,	296

Stretch	processor,	310
block	diagram,	311
configuration,	310
implementation,	317
operation,	313
SNR,	315

Strip	map	SAR,	574,	576
Strutt,	John	William,	51
Subarray,	626
Suboptimal	filter,	697
Sum	pattern,	552
Superheterodyne	receiver,	498
dual	conversion,	505
single	conversion,	498

Swerling,	202,	214



Swerling	RCS	fluctuation	models,	57,	60,	139
Swerling	0/5	(SW0/SW5),	57,	140,	148,	154,	177,	213,	219
Swerling	1	(SW1),	57,	58,	213,	220
SW1/SW2,	57,	140,	150,	153,	177
Swerling	2	(SW2),	57,	58,	213,	221
Swerling	3	(SW3),	57,	58,	213,	222
SW3/SW4,	57,	140,	151,	157,	177
Swerling	4	(SW4),	57,	58,	213,	223

Swerling,	Peter,	139
Synchronous	detector	(See	I/Q	demodulator)
Synthetic	aperture	radar,	307	(See	SAR)
System	noise
figure,	87,	90
temperature,	33,	45,	84

T/R	modules,	98,	99
MIMO,	691

Tangential	sensitivity,	516
Taylor	weights,	384
Telemobiloscope,	1
Temperature
reference,	508,	509

Temporal	processing,	631
example,	637

Thermal	noise,	32,	79,	508
Three-channel	monopulse,	551
Time	delay,	4
steering,	346,	348

Time-bandwidth	product,	194
TNR,	207,	214
Transmit	loss,	24
Transmit	power
average,	24
peak,	24

Traveling	wave	tube,	500
Triangle	function,	295
Triangular	packing,	356,	363
Trilateration,	687
T-type	attenuator,	86
Two-channel	monopulse,	556



sign	switching,	557

Unambiguous	range,	5
Uncompressed	pulsewidth,	194,	404
Unmodulated	pulse,	189,	255
Up	chirp,	192
Usable	range
maximum,	7
minimum,	7

Van	Vleck,	J.	H.,	181
Van	Vleck-Weisskopf	formula,	134
Vertically	polarized,	374
Video,	210
Visible	space,	333,	355
VSWR,	101

Wallman,	Henry,	181
Wave	number,	338
Waveform	woding,	267
Waveguide,	95
attenuation,	123

Wavelength,	11,	22
Weight,	657
vector,	624

Weighting
Bartlett,	112
Blackman,	112
Blackman-Harris,	112
Chebyshev,	112,	345
cosn(x),	112,	345
elliptically	symmetric,	360
Gaussian,	112
Hamming,	112
Hann,	112
multiplicative,	360
Nuttall,	112
rectangular,	112
Taylor,	112,	345
uniform,	331

Wiener,	Norbert,	181



Wiener	filter,	655,	658
Wide	sense	stationary,	142,	148
Woodward
ambiguity	function,	251
Woodward,	Philip	M.,	251,	700

WR	number,	123
WSS,	401
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